Lecture 37

Graphs

Graphs are very flexible data structures that have many different applications.

Where do graphs come up in real life?

- transportation networks (flights, roads, etc.)
 - flights and flight patterns.
 - what sort of questions might we ask? What sort of application might we be interested in having a graph?
 * booking flights, picking shortest time? shortest distance?
 * airlines save fuel, number of people who use the route
 - google maps
 * driving directions, mapping out sightseeing
- communications networks/utility networks
 - electrical grid, phone networks, computer networks
 - minimize cost for building infrastructure
 - minimize losses, route packets faster
- social networks
 - does this person know that person.
 - Can this person introduce me to that person – job opportunities

Definitions

Formally, we can define a graph this way:

A graph $G = (V, E)$, where V is a finite, non-empty set of vertices and E is a binary relation on V (that is, E is a set of edges that connects pairs of vertices).

In general, there are two major types of graphs – Directed and Undirected.

Undirected graphs can be described as:
A
C
D
B

\[G = (V, E) \]
\[V = \{A, B, C, D\} \]
\[E = \{\{A, C\}, \{A, B\}, \{A, D\}, \{B, D\}\} \]

Directed graphs can be described as:

\[G = (V, E) \]
\[V = \{1, 3, 9, 13\} \]
\[E = \{(1,3), (3,1), (13, 1), (9,13), (9,9)\} \]

path – a sequence of connected vertices.

simple path – a path where all vertices occur only once.

path length – number of edges in the path. Example from undirected graph above, path C-A-D-B has length 3.

cycle – path of length \(\geq 1 \) that begins and ends with the same vertex. From above, path A-D-B-A is a cycle.

simple cycle – a simple path that begins and ends with the same vertex. (Note, we do not count the start and end vertex twice when determining a simple path). From above, A-D-B-A is also a simple cycle.
self loop A cycle consisting of one edge and one vertex. Typically, we talk about self loops in directed graphs. See vertex 9 above.

incident edges:

Edge (A,B) above is incident on A and B. Thus, A and B are said to be adjacent.

Edge (13, 1) above is incident from vertex 13, and incident to vertex 1. 13 and 1 are also said to be adjacent.

degree – number of incident edges for a vertex. From above, vertex A has degree 3. Vertex 9 has degree 2.

simple graph – A graph with no self loops.

acyclic graph – a graph with no cycles.

connected graph – a graph where every pair of vertices is connected by a path.

strongly connected graph – a connected, directed graph.

weakly connected graph – a directed graph that would be connected if all of its directed edges were replaced by undirected edges.

forest – an acyclic, undirected graph.

tree – a connected, acyclic, undirected graph.

Graph representations

There are two basic types of graph representation, though variations of both are common.

1. Adjacency Matrix (e.g., for undirected graph above)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Good for dense graphs, and have constant time lookup of edges.

2. Adjacency List (e.g., for directed graph above)

Good for sparse graphs, have linear time lookup of edges.