Lecture 26: Dynamic Semantics

CS 181O
Spring 2016
Kim Bruce

Some slides based on those of Christina Unger

Coordination

- NP: John and Mary went to the store
 - John went to the store and Mary went to the store
- V: Mary danced and sang all night
 - Mary danced all night and Mary sang all night
- Adj: The ball was big and red
- VP: John kicked the ball and ran down the field
 - John kicked the ball and John ran down the field
- Ann baked and Betty ate all the cookies.

Meaning via Continuations

- What is context around conjunctive phrase?
 - Mary danced and sang all night
 - $k = \lambda x. \text{Mary} \times \text{all night}$
 - $k(\text{danced and sang}) = k(\text{danced}) \land k(\text{sang})$
 - intCON_CPS And = $\lambda k \lambda m \lambda n. k(m) \land k(n)$
 - intCON_CPS Or = $\lambda k \lambda m \lambda n. k(m) \lor k(n)$

Still issues

- Chris and Betty met at the fair
 - Chris met at the fair \land Betty met at the fair????
- Different meaning of “and”
 - Individuals or group
Standard Approach

- Contrast continuations w/standard approach:
- Raise Boolean operators to function spaces
- Let \(f, g : A \rightarrow \text{Bool} \). Define ops on \(A \rightarrow \text{Bool} \)
 - \((f \land g)(x) = f(x) \land g(x)\)
 - \((f \lor g)(x) = f(x) \lor g(x)\)
 - \((-f)(x) = -(f(x))\)

Can go farther!

- Let \(\text{BOOL} ::= t \mid a \rightarrow \text{BOOL} \)
 - where \(a \) is any type
 - So contains: \((e \rightarrow t) \rightarrow (e \rightarrow t)\), for example
- \(\neg, \land, \lor \), and \(\land \), \(\lor \) be usual ops on true, false
- Let \(s = t \rightarrow u \) in Bool. Define recursively:
 - \(\neg s = \lambda P : s. \lambda x : t. \neg u \ P \ x \)
 - \(\land s = \lambda P : s. \lambda Q : s. \lambda x : t. P \ x \ \land u \ Q \ x \)
 - \(\lor s = \lambda P : s. \lambda Q : s. \lambda x : t. P \ x \ \lor u \ Q \ x \)

Example

- intNP: \(\text{NP} \rightarrow (e \rightarrow t) \rightarrow t \)
 - intNP (Conj \(\text{np1 np2} \)) = intNP (np1) \(\land (e \rightarrow t) \rightarrow t \) (intNP np2)
 - intNP (Disj \(\text{np1 np2} \)) = intNP (np1) \(\lor (e \rightarrow t) \rightarrow t \) (intNP np2)
- Similarly for adjectives, adverbs, etc.

Dynamic Semantics

(Discourse Representation Theory)

From Sentences to Paragraphs!
Anaphora

• Anaphors are referentially dependent expressions.
 • Their interpretation is in some way determined by the interpretation of another expression, which is called the antecedent.
 • Prototypical example is referential pronoun
 • There is a deer in the park. It is a statue.

\[\text{Antecedent} \quad \vdash \quad \text{Anaphor} \]

Anaphora Resolution

• How do you figure out what anaphors refer to?

 • *Cataphora (forward reference) too hard for us:* Because he refused to behave nicely, Mary walked away from James.

Come in many flavors

• Classify by:
 • Syntactic category (NP, VP, adverbs)
 • Type of antecedent (person or object, group, event)
 • Location of antecedent (same sentence or earlier, inferred from context or background)

Pronominal Anaphora

• Pronouns get most attention:
 • Personal pronouns: I like to visit new restaurants. **They** usually have interesting food.
 • Possessive pronouns: **Their** owners are trying hard to make **their** customers happy.
 • Reflexive pronouns: Sometimes they take **themselves** too seriously, however.
Noun Phrase Anaphora

- Noun phrases often refer back to previously mentioned items.
 - I ate at Otium last week. The restaurant was very busy.
- Special case: Epithets
 - *typically metaphorically* used for decorative or defamatory reasons
 - This jewel of a restaurant is turning heads in LA.
 - I heard candidate X on TV yesterday. The liar really upset me.

Type of Antecedents

- Can be more complicated than just persons or objects
 - Last week we had an active shooter drill. **It made me** nervous.
 - I ride my bike every Sunday. **It makes me** happy!

Antecedent

- Antecedents are generally provided in the context.
 - linguistic context
 - explicitly mentioned in the previous discourse
 - physical context
 - persons, objects and events in range
 - knowledge context
 - can be inferred from the discourse and world knowledge

Antecedents in Extra-linguistic Context

- E.g., pronouns can be used without an explicitly mentioned antecedent if there is a salient entity given by the situation.
 - And? Do you like it?
 - Intuitively, the presence of the item and the attention it gets establishes it as a discourse entity.
Antecedents in Extra-linguistic Context

- Deictic pronouns refer to entities in the external world without having a linguistic antecedent. Their reference is often made clear by physical pointing and they are usually not counted as anaphors.
 - You will get to know me better.
 - Hand that to me. (*said while pointing*)

Inferred Antecedents

- Some antecedents are neither mentioned nor given by the situation, but have to be inferred from what was said, possibly together with world knowledge.
 - Mary and Sue met a long time ago. They are still friends.
 - I ate at Otium last week. The waiter was very helpful.
 - That car is a lemon. The salesperson lied to me.

Anaphoric Pronouns

- Recall: Interpretation of anaphor is determined by the interpretation of the antecedent.
- By the way the interpretation of a pronoun is determined by interpretation of the antecedent, distinguish at least three kinds of anaphoric pronouns:
 - referential pronouns
 - bound variable pronouns
 - E-type and lazy pronouns

Referential pronouns

- Referential pronouns refer to some entity in the external world, either directly or via coreference with its antecedent.
 - The girl is enjoying her meal. She seems to savor every bite.
Identity of reference or of sense

- Anaphor can refer to the *reference* or the *sense* of the antecedent.
- The president stepped off the plane. She waved to the crowd.
- The president is elected every four years. She came in way ahead among minority voters.

Bound Variable Pronouns

- Bound variable pronouns do not refer to fixed entities in the world. They take a range of values, which depends on some quantificational expression.
 - Each candidate claimed he would be best.
 - No candidate could imagine he would lose.
 - One candidate would win. She would have quite a celebration!
- BVP’s appear in different ways in different languages: personal pronouns, reflexive pronouns, etc.

E-Type Pronouns

- Hard to model formally. See donkey sentences:
 - Every farmer who owns a donkey, feeds it.
- Existential or universal quantifier “a”???
 - Nested universal?

Translations

- Every farmer who owns a donkey is rich.
 - \(\forall x (\text{farmer}(x) \land \exists y (\text{donkey}(y) \land \text{owns}(x,y)) \rightarrow \text{rich}(x)) \)
- Every farmer who owns a donkey, feeds it.
 - \(\forall x (\text{farmer}(x) \land \exists y (\text{donkey}(y) \land \text{owns}(x,y)) \rightarrow \text{feeds}(x,y)) \)
 - last y is free!!
 - \(\forall x \exists y (\text{farmer}(x) \land \text{donkey}(y) \land \text{owns}(x,y)) \rightarrow \text{feeds}(x,y)) \)
 - Clearly wrong as always true if there is any non-donkey.
 - \(\forall x \forall y (\text{farmer}(x) \land \text{donkey}(y) \land \text{owns}(x,y)) \rightarrow \text{feeds}(x,y)) \)
 - Seems fine, but destroyed structure of sentence. “a” is Ψ?
Lazy Pronouns

- A pronoun is called lazy, when it seems to function as a shorthand for a repetition of its antecedent. So it is a device for repeating an occurrence of a linguistic form rather than for referring back to its reference.
 - The farmer who feeds his donkey is much nicer than the farmer who beats him.

Non-Anaphoric Pronouns

- Not all occurrences of “it” are anaphoric. These are called pleonastic, and don’t refer to anything!
 - It's been raining for two weeks.
 - It is not as late as I thought.
 - There was wild dancing.
 - It's a long way to Tokyo.
 - It is forbidden to smoke here.

Interpreting Pronouns

- There is a deer in the park. It is a statue.
 - $\exists x.((\text{deer } x) \land (\text{inPark } x) \land (\text{statue } x))$

- But two separate sentences:
 - $\exists x.((\text{deer } x) \land (\text{inPark } x))$
 - $(\text{statue } x)$

- Problem: Want to keep asserting things about x, but subsequent occurrences of x are outside of the scope of \exists.

Attacking the Problem!
Key Insights

• Sentences are not islands but are embedded in a discourse and often related to other sentences in that discourse.
• Discourses are about entities, which are introduced and can then be referred back to.

Dynamic Approach

• Utterances play two roles:
 • They convey information about the world. (truth conditions)
 • They change the context (e.g. introduce new referents) in which subsequent utterances will be interpreted. (context change potential)
• Predicate logical representations handle the truth-conditional dimension of meaning well, but the context dimension is missing.

Dynamic Approach

• Static semantics:
 • Sentences express truth-conditions.

• Dynamic semantics:
 • Sentences are instructions for updating a discourse representation.
 • Dynamic semantics investigates aspects of interpretation that are beyond mere truth-conditions, mainly how the interpretation of natural language expressions depends on the context and also how it changes that context.

Meaning as Context Change Potential

• A context (or: information state) comprises the entities we are talking about and what we have said about these entities.
• Emphasis is in the growth of information in time, i.e. not only on the result of interpretation but also on the interpretation process.
• Pieces of text or discourse are viewed as instructions to update an existing context with new information.

\[\text{context} \quad \text{information} \quad \text{new context}\]
Dynamic Semantic Theories

- Discourse Representation Theory (Hans Kamp, 1981)
- File Change Semantics (Irene Heim, 1982)
- Dynamic Predicate Logic (Jeroen Groenendijk & Martin Stokhof, 1991)

Context

- Hans found a unicorn. **He** photographed **it** before **it** could run away from **him**. **He** showed Mary the **photo**, but **she** thought **he** was playing a **joke**.

- Add context parameter (set of referents) to each denotation and pass it around during interpretation process.

- Names and indefinite NP’s add referents to context, pronouns and definite NP’s pick up referents from context.

Adding Context

- What about quantifiers?
 - Each unicorn thinks **it** is the only one of **its** kind.
 - Each unicorn grazes. **It** is bored???
 - John didn't eat lunch. **It** was good.????

- Context needs more structure
 - DRT incorporates structure in discourse representations.

- Developed by Kamp in early 80s
Interpretation in Context

- Each sentence of a discourse is interpreted in the context of the preceding sentences.
- Context updated with the contribution of the sentence, yielding a new context in which subsequent sentences are interpreted.
- This update often involves connecting elements of the sentence with elements from the context (e.g. antecedents for anaphors).

Content and Context

- Same structure serves simultaneously as content and as context – two concepts that are kept separate in Montague semantics.
- Common idea in the psychology of language:
 - A hearer builds up a mental representation of the discourse as it unfolds, and every incoming sentence prompts additions to that representation.
- DRT uses this idea as starting point for semantic theory:
 - The interpretation process builds mental representations called Discourse Representation Structures (DRS).

Semantics in DRT

- The level of semantic representations is essential again. (Recall that it was completely dispensable in Montague semantics.)
- Natural language expression
 - Construction rules
 - DRS
 - model-theoretic interpretation
 - truth conditions

Ingredients

- a formal definition of the representation language
 - a recursive definition of well-formed DRSs
 - a model-theoretic semantics for those DRSs
- a construction procedure for updating an existing DRS when a new sentence is added to the discourse
Discourse Representation Structures

- A DRS consists of two parts:
 - a set of referent markers (or: discourse referents) for the entities that a discourse is about
 - a set of conditions (formulas)
- Example: The boy ate dinner.

<table>
<thead>
<tr>
<th>x, y</th>
</tr>
</thead>
<tbody>
<tr>
<td>boy(x)</td>
</tr>
<tr>
<td>dinner(y)</td>
</tr>
<tr>
<td>ate(x,y)</td>
</tr>
</tbody>
</table>

Referent Markers

- The referent markers in the universe of a DRS are interpreted existentially.
- All referent markers in the universe of a context DRS are available as antecedents to pronouns and other anaphoric expressions that are interpreted within this context.
- The interpretation of a sentence S in the context provided by a DRS D results in a new DRS D’, which captures the content represented by D together with the content of S, as interpreted with respect to D.

Discourse Representation Structures

- Example: The boy ate dinner. It was good.

<table>
<thead>
<tr>
<th>x, y, z</th>
</tr>
</thead>
<tbody>
<tr>
<td>boy(x)</td>
</tr>
<tr>
<td>dinner(y)</td>
</tr>
<tr>
<td>ate(x,y)</td>
</tr>
<tr>
<td>good(z)</td>
</tr>
<tr>
<td>y = z</td>
</tr>
</tbody>
</table>

Like Programs

- Introduction of new variable results in allocation of new space
- New variable can be used in later statements.
Questions?