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Many graph query languages rely on composition to navigate graphs and select nodes of interest,
even though evaluating compositions of relations can be costly. Often, this need for composition can
be reduced by rewriting toward queries using semi-joins instead, resulting in a significant reduction
of the query evaluation cost. We study techniques to recognize and apply such rewritings. Concretely,
we study the relationship between the expressive power of the relation algebras, which heavily rely
on composition, and the semi-join algebras, which replace composition in favor of semi-joins. Our
main result is that each fragment of the relation algebras where intersection and/or difference is
only used on edges (and not on complex compositions) is expressively equivalent to a fragment of the
semi-join algebras. This expressive equivalence holds for node queries evaluating to sets of nodes.
For practical relevance, we exhibit constructive rules for rewriting relation algebra queries to semi-
join algebra queries and prove that they lead to only a well-bounded increase in the number of steps
needed to evaluate the rewritten queries. In addition, on sibling-ordered trees, we establish new
relationships among the expressive power of Regular XPath, Conditional XPath, FO-logic and the

semi-join algebra augmented with restricted fixpoint operators.
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1. INTRODUCTION

The graph data model (representing labeled binary relations) is
a versatile and natural data model for representing RDF data,
social networks, gene and protein networks and other sources
of data.

Example 1.1. In Fig. 1 we show a simple social network
represented by graph data. Its nodes represent objects corre-
sponding to persons and its edges represent various semantic

relationships between these persons. Here, we have ParentOf
and FriendOf relationships.

In Fig. 2 we show the same data represented as labeled binary
relations.

To query such graph data, a multitude of navigational and
pattern-based graph query languages have been proposed [1].
Our focus in this paper is primarily on navigational query
languages, as even pattern-based query languages—such as
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790 J. Hellings et al.

FIGURE 1. An example of social network graph data.

FIGURE 2. Labeled binary relations representing the graph data in
Fig. 1.

SPARQL [2], Cypher [3] and Gremlin [4]—often rely on
(sub)queries that are essentially navigational in nature [1].

Many navigational query languages use, at their core, a
fragment of the relation algebra of Tarski [5], augmented with
the Kleene-star operator (transitive closure). Examples of such
relation-algebra-inspiredquery languages include XPath and its
many formalizations [6–12], GXPath [13], the (nested) regular
path queries [14] and the navigational expressions [15–19].

In query languages, graph navigation is primarily supported
by composition (◦). To see this, consider the query defined by
the following relation algebra expression:

ParentOf ◦ ParentOf ◦ FriendOf.

This query searches for all pairs of people (m, n) such that
n is a friend of m’s grandchild. When applied to the data
shown in Fig. 1, it returns the binary relation {(Alice, Peggy),
(Bob, Peggy)}. As another example, consider the expression

GgpAndFriends

≡ π1[ParentOf ◦ ParentOf ◦ ParentOf] ◦ FriendOf,

which defines the query that yields the set of all pairs of great-
grandparents and their friends. Indeed, in this expression, the
projection

π1[ParentOf ◦ ParentOf ◦ ParentOf]

returns the set of pairs of the form (m, m) where m is a great-
grandparent, i.e. the pairs {(Alice, Alice), (Bob, Bob)}. When
this relation is composed with the FriendOf relation, we get
the desired result {(Alice, Victor), (Bob, Wendy)}.

These examples illustrate that the composition operator cap-
tures the intent of graph navigation in a simple and intuitive
way, which explains why many graph query languages rely
on it. In the setting of big data, this use of composition for
graph navigation has a major drawback, however. Computing
query results by evaluating each of the compositions involved is
costly, both in terms of runtime and in terms of memory require-
ments. This is already evident from the above example: the
subquery ParentOf ◦ ParentOf ◦ ParentOf yields pairs of great-
grandparents and great-grandchildren. After computing these
pairs, the projection-step will discard all computed information
on the great-grandchildren. Consequently, evaluating the query
GgpAndFriends by evaluating each of the operators involved is
a relative wasteful process and a more efficient approach would
be to find all great-grandparents without also computing all
great-grandchildren.

We notice that the above example reflects typical constructs
used in graph query languages. Indeed, languages, such as
XPath, GXPath and the Nested RPQs allow for the selection
of nodes based on some navigational conditions (e.g. the ‘[q]’
construct in XPath, with q a query). In our work, such node
selections are represented by the projection π1.

For relatively simple queries such as GgpAndFriends, we can
add operators to the relation algebra to enable the direct expres-
sion of more efficient query evaluation approaches at a high
level. One way to do so is by adding the semi-join operators
� and �. Rather than computing the composition of relations,
semi-joins only determine the pairs that are involved in such
compositions. In particular, if R and S are binary relations, then
the left semi-join R � S determines the pairs in R that can be
composed with pairs in S, i.e. {(m, n) ∈ R | ∃z (n, z) ∈ S} and
the right semi-join R � S determines the pairs in S that can be
composed with pairs in R, i.e. {(m, n) ∈ S | ∃z (z, m) ∈ R}.
We can now rewrite the query GgpAndFriends into the path-
equivalent query

π1[ParentOf � (ParentOf � ParentOf)] � FriendOf

using semi-joins instead of compositions. The main advantage
of replacing compositions by semi-joins in the above query is
easy to see: evaluation of the resulting query by evaluating each
operation involved will yield small and efficient-to-compute
intermediate results, whereas evaluation of the original query
can yield intermediate results of quadratic size. As social net-
works and other graph datasets tend to be extremely large, the
original composition-based approach is unacceptably expen-
sive, whereas the semi-join-based approach might be feasible.
This also holds in general, as it is well-known that evaluating
semi-joins is more efficient than evaluating compositions, even
in the worst case [20].

To achieve these improvements in practice, we can add the
semi-join operators to appropriate query languages. This puts
the burden of efficient query evaluation on the users, however.
Observe that, in the above rewriting, we needed both the left
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From Relation Algebra to Semi-Join Algebra: An Approach to Graph Query Optimization 791

and right semi-join operators. With respect to the former, we
additionally had to insert parenthesis to control the order of
evaluation of this non-associative operator. So, even in this
simple example, the resulting expression becomes less intuitive
and harder to write. Therefore, we believe that in modern graph
database systems, which use declarative high-level graph query
languages, such rewritings should be performed for the users,
rather than by the users.

Here, we study ways to apply these semi-join optimizations
automatically. More concretely, we study how fragments of the
relation algebra relate to fragments of the semi-join algebra,
the latter obtained by replacing composition by semi-joins and
the Kleene-star by appropriate less-costly forms of fixpoint
iteration.

To the best of our knowledge, we are the first to study
the relationships between the expressive power of the relation
algebra and the semi-join algebra comprehensively. We should
point out that the study of semi-joins has already received
attention in the setting of Codd’s relational algebra [21–25].
In this setting, the semi-join version of the relational algebra is
studied as a query language that has limited expressive power,
cheap query evaluation and for which many decision problems
are decidable.

In the design and implementation of relational database
systems, basic semi-join rewrite rules are well-known and the
automatic usage of semi-join steps plays an important role
in the efficient evaluation of distributed joins [26] and in
Yannakakis’s algorithm for evaluating acyclic joins [27, 28].
In both cases, these semi-join steps are used as reducers that
provide a preprocessing step aimed at reducing the size of
intermediate relations before joining them. A similar reducer-
based role for the semi-join has also been studied in the context
of the multiset relational algebra [29]. This focus on using
the semi-join as a reducer sharply contrasts with our usage,
as we aim at eliminating compositions altogether in favor of
semi-joins.

The main contributions of this paper are of both theoretical
and practical interest. First, the main theoretical results are as
follows:

1. We show that the semi-join algebra has the same expres-
sive power as FO[2], first-order logic in which formulae
have at most two variables. Since the relation algebra has
the same expressive power as FO[3] [5, 17], the semi-
join algebra has less expressive power than the relation
algebra [30–34].

2. To further establish the relationships in the expressive
power of the relation algebra and the semi-join algebra,
we investigate how the relative expressive power of
fragments of the relation algebra compares to the relative
expressive power of fragments of the semi-join algebra.
We do so by showing that expressions of the form πj[e],
j ∈ {1, 2}, can be rewritten into path-equivalent expres-
sions in the semi-join algebra whenever the expression

does not use intersection or difference. We call this
path equivalence of projection-expressions projection
equivalence.

3. To extend the above results to the setting in which also
the Kleene-star operator occurs, we introduce a sim-
ple semi-join-style form of fixpoint iteration. We show
that this form of fixpoint iteration can be expressed in
L2∞ω, the infinitary first-order logic extension of FO[2].
We also show that expressions that use the Kleene-
star operator can be rewritten into projection-equivalent
expressions in the semi-join algebra augmented with this
fixpoint operator.

4. The above-mentioned rewritings only put restrictions on
the usage of intersection and difference. To show that
these restrictions are not too severe, we prove that not all
expressions using both composition and intersection are
expressible in FO[2]. We identify syntactical restrictions
on the usage of intersection and difference in the relation
algebra and show that the resulting language fragments
have exactly the same expressive power as the semi-
join algebra with respect to projection equivalence. From
these results, it follows that intersection and difference
only provide limited expressive power in the semi-join
algebra.

5. In the setting of finite sibling-ordered trees [9], we use
the above results to strengthen the well-known collapse
of first-order logic on sibling-ordered trees (FOtree) to
Conditional XPath (a fragment of the relation algebra)
by proving a projection-equivalent collapse of FOtree

queries to the semi-join algebra.
6. Finally, we investigate how the newly introduced

notion of projection equivalence compares to the
standard notions of path equivalence and Boolean
equivalence. In particular, we also strengthen the
known Boolean equivalences between fragments of the
relation algebra when querying graphs [35] to projection
equivalences.

To put the above theory in practice, we also study how
rewriting from the relation algebra to the semi-join algebra can
be utilized for graph query optimization. With this aim, our
main results are as follows:

1. We propose an algorithm for the efficient evaluation of
the simple form of fixpoint iteration that we introduce,
and we argue that the semi-join and fixpoint operators
can be considered more efficient than compositions and
Kleene-stars.

2. We revisit the analysis of the semi-join rewrite rules and
add to this analysis by providing strict bounds on the size
of rewritten expressions. We show that if the input of
the semi-join rewrite rules is an expression of length s
that uses at most u union-operators, then application of
the rewrite rules we propose yields a rewritten expres-
sion that can be evaluated in at most s + u ≤ 2 · s
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792 J. Hellings et al.

evaluation steps, demonstrating the practical feasibility
of our rewriting techniques.

3. We show that the semi-join rewrite rules provide strict
guarantees on the data complexity—the complexity in
terms of the size of the graph—of evaluating queries by
evaluating each of the operators involved. The applica-
tion of the semi-join rewrite rules can decrease the data
complexity of query evaluation significantly, and will
never increase it.

4. Finally, we also identify the identity, diversity and copro-
jection operators as expensive to evaluate. We show how
common usage of these operators can be replaced by
specialized, efficient to evaluate, operators.

This work is a revised and extended version of the paper
‘From relation algebra to semi-join algebra: an approach for
graph query optimization’ presented at the 16th International
Symposium on Database Programming Languages, Munich,
Germany (DBPL 2017) [36]. In comparison to this previous
work, we have added a reflection on projection equivalence
(Section 4.4) and looked at other expensive operators besides
composition (Section 6.5). We have also provided proof details
of the results presented.

2. GRAPH DATA MODEL AND QUERIES

We use an edge-labeled graph data model. A graph is a triple
G = (V , �, E), with V a finite set of nodes, � a finite set of
edge labels, and E : � → 2V×V a function mapping edge
labels to edge relations.

In our setting, a query q maps a graph to a set of node tuples.
We write �q�G to denote the evaluation of q on graph G. We can
interpret a query q as a Boolean query, in which case �q�G 	= ∅
representstrue. For simplicity, we assume that queries always
yield binary relations (sets of node-pairs, �q�G ⊆ V×V). From
this perspective, queries that in spirit return nodes will return
identical pairs of nodes. Therefore, we refer to queries whose
output is a subset of {(n, n) | n ∈ V} as node queries.

Finally, if R is a binary relation, then we denote by R|1 the
set of nodes {m | ∃n (m, n) ∈ R} and by R|2 the set of nodes
{n | ∃m (m, n) ∈ R}. The relation R is typically obtained by the
evaluation of a query on a graph. For example, if q is a query
and G a graph, then we write �q�G |1 to denote {m | ∃n (m, n) ∈
�q�G}.

2.1. Equivalence notions

In this work, we prove relationships between query languages
using rewrite rules. To reason about the soundness of these
rewrite rules, we need notions of expression equivalence. We
consider four such notions: the traditional path-equivalence and
Boolean-equivalence, which have been studied in great detail
[15, 16, 18, 19, 35, 37, 38], and left-projection-equivalence and
right-projection-equivalence, which we introduce to study the
rewrite rules we provide.

Definition 2.1. Let q1 and q2 be queries. We say that q1 and
q2 are

1. path-equivalent, denoted by q1 ≡path q2, if, for every
graph G, �q1�G = �q2�G;1

2. Boolean-equivalent, denoted by q1 ≡bool q2, if, for every
graph G, �q1�G = ∅ if and only if �q2�G = ∅;

3. left-projection-equivalent, denoted by q1 ≡π1 q2, if, for
every graph G, �q1�G |1 = �q2�G |1; and

4. right-projection-equivalent, denoted by q1 ≡π2 q2, if, for
every graph G, �q1�G |2 = �q2�G |2.

By definition, expressions that are path-equivalent must also
be left-projection-equivalent and right-projection-equivalent.
Expressions that are left-projection-equivalent or right-
projection-equivalent must also be Boolean-equivalent. The
converse is generally not true. (We will look at this in more
detail in Section 4.4). We observe that path-equivalence,
left-projection-equivalence and right-projection-equivalence
coincide on the class of node expressions.

Next, we illustrate these equivalence notions:

Example 2.1. Looking back at the example queries used in
the Introduction, we have

ParentOf � (ParentOf � ParentOf)

≡π1 ParentOf ◦ ParentOf ◦ ParentOf.

These expressions are not path-equivalent, however. We also
have

π1[ParentOf ◦ ParentOf ◦ ParentOf] ◦ FriendOf

≡path π1[ParentOf � (ParentOf � ParentOf)] � FriendOf.

2.2. Expressive power

The equivalence notions introduced in the previous section
extend naturally to subsumption and equivalence notions
between classes of expressions.

Definition 2.2. Let sem ∈ {path, π1, π2, bool}. We say that
the class of queries L1 is sem-subsumed by the class of queries
L2, denoted by L1 �sem L2, if every query in L1 is sem-
equivalent to a query in L2. We say that the classes of queries
L1 and L2 are sem-equivalent, denoted by L1 ≡sem L2, if
L1 �sem L2 and L2 �sem L1. We say that the classes of
queries L1 and L2 are projection-equivalent if L1 ≡π1 L2 and
L1 ≡π2 L2.

1 We follow the generally accepted use of the term path-equivalence for this notion

for historical reasons, but must point out at the same time that this term is somewhat

misleading, because it involves only ‘sources’ and ‘targets’ of a navigation, and not the

path in the graph that this navigation might follow.
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3. NAVIGATIONAL GRAPH QUERIES

The focus of this work is mainly on the relationship between
the expressive power of the relation algebra and the semi-
join algebra, which are algebraic representations of FO[3]
and FO[2], respectively. We also include iteration—in the
form of transitive closure—since iteration is essential in graph
querying.

3.1. Relation algebra and the semi-join algebra

We first define the relation algebra and the semi-join algebra
without iteration.

Definition 3.1. The graph expressions are defined by the
grammar

e := ∅ | id | di | � | �� | πj[e] | π j[e] | e ◦ e | e � e

| e � e | e ∪ e | e ∩ e | e − e,

in which � ∈ � and j ∈ {1, 2}. Let G = (V , �, E) be a
graph and let e be an expression. The semantics of evaluation
is defined as follows:

�∅�G = ∅;

�id�G = {(m, m) | m ∈ V};
�di�G = {(m, n) | m, n ∈ V ∧ m 	= n};
���G = E (�) ;

����G = {(n, m) | (m, n) ∈ E (�)};
�πj[e]�G = {(m, m) | m ∈ �e�G |j};
�π j[e]�G = �id�G − �πj[e]�G ;

�e1 ◦ e2�G = {(m, n) | ∃z (m, z) ∈ �e1�G ∧
(z, n) ∈ �e2�G};

�e1 � e2�G = {(m, n) | (m, n) ∈ �e1�G ∧
∃z (n, z) ∈ �e2�G};

�e1 � e2�G = {(m, n) | (m, n) ∈ �e2�G ∧
∃z (z, m) ∈ �e1�G};

�e1 ∪ e2�G = �e1�G ∪ �e2�G ;

�e1 ∩ e2�G = �e1�G ∩ �e2�G ;

�e1 − e2�G = �e1�G − �e2�G .

We sometimes use the shorthand all = id ∪ di, which evaluates
to the set of all node pairs in a graph.

The relation algebra, which we denote by N3, allows every
operator above except for the semi-joins (� and �). The semi-

join algebra, which we denote by N2, allows every operator
above except for composition (◦).

Example 3.1. The expressions

e1 = π1[ParentOf ◦ π1[OwnsPet] ◦ ResearcherAt];

e2 = π1[ParentOf � (π1[OwnsPet] � ResearcherAt)]

both return people that are parents of researchers that do not
own any pets. The expression e1 is in N3 and the expression
e2 is in N2. Both expressions are node expressions. We have
e1 ≡path e2.

3.2. Adding iteration

The relation algebra, as a graph query language, is often aug-
mented with a general Kleene-star operator (transitive closure):
if e is an expression, then so is [e]∗. The semantics of evaluation
on graph G is defined as

�[e]∗�G = ⋃
0≤i �ei�G

with e0 = id and ek = e◦ ek−1. We denote the relation algebra,
augmented with the Kleene-star, by N ∗

3 .
As a semi-join-like counterpart of the Kleene-star, which

itself is an iterated version of composition, we introduce a form
of fixpoint iteration. We add the operator fpj,N[e union b] with
j ∈ {1, 2}, b an expression, e an expression and N the single
free variable of e that represents the set of nodes resulting from
evaluating the fixpoint. We do not allow N to occur anywhere
else. The semantics of evaluating fpj,N[e union b] on graph G
is defined next. We first define

si :=
{

�b�G |j if i = 0;

si−1 ∪ �e�G+si−1 |j if i > 0,

in which G + si−1 is the graph G augmented with the edge
relation {(n, n) | n ∈ si−1} labeled withN. Due to monotonicity
of ∪, there exists k, k ≤ |V|, such that sk = sk+1. We define
�fpj,N[e union b]�G = {(n, n) | n ∈ sk}.

Example 3.2. As a first example, consider the expression

e1 = π1[[ParentOf]∗ ◦ FriendOf]

inN ∗
3 , which returns (identical pairs of) all ancestors of persons

having a friend (including these persons themselves). Next,
consider the expression

e2 = fp1,N[ParentOf � N union FriendOf].

We have e1 ≡path e2. To illustrate this, we formally evaluate
e2 on the graph G shown in Fig. 3. (Notice this is a variation
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794 J. Hellings et al.

FIGURE 3. Variation of Fig. 1 used in Example 3.2.

on the graph shown in Fig. 1 obtained by removing Victor and
Wendy.)

We have the following:

s0 = {Dan, Faythe, Peggy};
s1 = {Carol, Dan, Faythe, Peggy};
s2 = {Alice, Bob, Carol, Dan, Faythe, Peggy};
s3 = {Alice, Bob, Carol, Dan, Faythe, Peggy}.

Hence,

�e2�G = {(Alice, Alice), (Bob, Bob), (Carol, Carol),

(Dan, Dan), (Faythe, Faythe), (Peggy, Peggy)}.
Clearly, �e2�G = �e1�G .

As a second example, consider the expression

e3 = π1[[ParentOf ◦ π1[OwnsPet]]∗ ◦ ResearcherAt]

in N ∗
3 which returns (identical pairs of) people that are ances-

tors of a chain of descendants that do not own pets and in which
the youngest descendant is also a researcher. Now, let e′ =
ParentOf � (π1[OwnsPet] � N), and consider the expression

e4 = fp1,N[e′ union ResearcherAt].

We have e3 ≡path e4.
Observe that both e2 and e4 have no free variables. In both

cases, the variable N has been bound within the scope of a
fixpoint operator fp1,N.

We only introduce fixpoint iteration here as a less costly
alternative to the Kleene-star. For this purpose, general fix-
points are too strong, however. Therefore, we put additional
restrictions on the expression e used in fpj,N[e union b]: if
j = 1, then e must be right-recursive in N and, if j = 2, then e
must be left-recursive in N, which we inductively define next.

Let dir ∈ {left, right}. If N is a variable, then the expression
N is dir-recursive in N. Expressions of the form e = e1 ∪ e2
are dir-recursive in N if e1 and e2 are dir-recursive in N.
Expressions of the form e = e1 � e2 are right-recursive in

N if e1 does not have free variables and e2 is right-recursive
in N. Expressions of the form e = e1 � e2 are left-recursive
in N if e2 does not have free variables and e1 is left-recursive
in N. Finally, we consider fixpoint expressions that are nested
within the scope of other fixpoint expressions. Expressions of
the form e = fp1,N′ [e′ union b′] are right-recursive in N if b′
is right-recursive in N (while e′ must not contain N and must
be right-recursive in N′). Likewise, expressions of the form
e = fp2,N′[e′ union b′] are left-recursive in N if b′ is left-
recursive in N.2

Example 3.3. The expression e = ParentOf�(π1[OwnsPet]�
N), as used in Example 3.2, is right-recursive. The expression
e′ = N � familyOf ∪ N � FriendOf is left-recursive. The
expression

e′′ = fp2,N[e′ union OwnsPet�]

yields pet owners and people that are related to pet owners via
friend and family relations.

We denote the semi-join algebra, augmented with this
restricted form of fixpoint iteration, by N fp

2 .

3.3. Fragments of N ∗
3 and N fp

2

We write F ⊆ {di, �, π , π , ∩, −} to denote a set of operators in
which π represents both π1 and π2, and, likewise, π represents
both π1 and π2. By N3(F ) we denote the fragment of N3 that
only allows ∅, id, � ∈ �, ◦, ∪ and all operators in F , and
by N2(F ) we denote the fragment of N2 that only allows ∅,
id, � ∈ �, �, �, ∪ and all operators in F . By N ∗

3 (F ), we
denote the fragment of N ∗

3 that allows the Kleene-star and the
operators allowed by N3(F ). Finally, by N fp

2 (F ), we denote
the fragment of N fp

2 that allows the fixpoint iterator and the
operators allowed by N2(F ).

3.4. Relationships with first-order logic

To express graph queries, we can also use standard first-order
logic formulae over graphs [32]. These formulae adhere to the
grammar

ϕ := x � y | �(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ,

2 The concepts of left-recursive and right-recursive expressions are closely related to

concepts in formal languages [39]. Indeed, all expressions we allow can be mapped to

concepts in context-free grammars: node variables map to non-terminals, unions map to

individual grammar rules for a non-terminal and semi-joins map to the compositions within

a single grammar rule. This is no coincidence: it is well known that a context-free grammar

that is left-recursive or right-recursive can always be rewritten into a regular expression

(using Kleene-star instead of recursion) [39].

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 64 No. 5, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/64/5/789/5827080 by The C
larem

ont C
olleges Library user on 25 D

ecem
ber 2021



From Relation Algebra to Semi-Join Algebra: An Approach to Graph Query Optimization 795

in which � denotes the equality operator, x and y are node
variables, and � ∈ �. We interpret graphs G = (V , �, E) with
� = {�1, . . . , �|�|} as structures (V; �1, . . . , �|�|) in which �i,
1 ≤ i ≤ |�|, is interpreted as the binary relation E (�i) ⊆
V × V . If ϕ(x1, . . . , xn) is a first-order logic formula with
free variables x1, . . . , xn, then we define (V; �1, . . . , �|�|) |�
ϕ(o1, . . . , on), with o1, . . . , on ∈ V , in the standard manner and
we define

�ϕ(x1, . . . , xn)�G = {(o1, . . . , on) | (o1, . . . , on) ∈ Vn

∧ (V; �1, . . . , �|�|) |� ϕ(o1, . . . , on)}.

We write FO[k] to denote the first-order formulae with at most
k variables. It is well-known that the relation algebra N3 has
the same expressive power as FO[3] formulae with two free
variables [5, 17]. Hence, N3 ≡path FO[3]. Next, we look at
the relationships between the semi-join algebra and first-order
logic.

Theorem 3.1. N2 is path-equivalent to FO[2].

Proof. The proof is based on the proof of the equivalence
of FO[2] and the multi-dimensional modal logic MLR2 [40,
Section 2.3.1]. For the translation from FO[2] queries of the
form ϕ(v, w), with ϕ a FO[2] formula with free variables v and
w, to expressions in N2, we use the following rewriting κ:

κ(v � w) = id;

κ(w � v) = id;

κ(v � v) = all;

κ(w � w) = all;

κ(�(v, w)) = �;

κ(�(w, v)) = ��;

κ(�(v, v)) = (� ∩ id) � all;

κ(�(w, w)) = all � (� ∩ id);

κ(¬ϕ) = all − κ(ϕ);

κ(ϕ ∨ ψ) = κ(ϕ) ∪ κ(ψ);

κ(∃v ϕ) = all � κ(ϕ[v, w/w, v]);

κ(∃w ϕ) = κ(ϕ[v, w/w, v]) � all.

In the above, the notation ϕ[v, w/w, v], with ϕ an FO[2] for-
mula, denotes the formula derived from ϕ by simultaneously
substituting v for w and w for v (i.e. swapping v and w).

For the translation from expressions in N2 to FO[2] queries
of the form ϕ(v, w), with ϕ an FO[2] formula with free variables

v and w, we use the following rewriting λ:

λ(id) = v � w;

λ(di) = ¬(v � w);

λ(�) = �(v, w);

λ(��) = �(w, v);

λ(π1[e]) = v � w ∧ ∃w λ(e);

λ(π2[e]) = v � w ∧ ∃v λ(e);

λ(π1[e]) = v � w ∧ ¬∃w λ(e);

λ(π2[e]) = v � w ∧ ¬∃v λ(e);

λ(e1 � e2) = λ(e1) ∧ ∃v (v � w ∧ ∃w λ(e2));

λ(e1 � e2) = λ(e2) ∧ ∃w (v � w ∧ ∃v λ(e1));

λ(e1 ∪ e2) = λ(e1) ∨ λ(e2);

λ(e1 ∩ e2) = λ(e1) ∧ λ(e2);

sλ(e1 − e2) = λ(e1) ∧ ¬λ(e2).

In the rules for id, π and π , we use the construction v � w to
enforce that the query evaluates to a node query.

Correctness of these translations follows from a straightfor-
ward structural induction argument. �

The next example illustrates the rewriting κ as used in the
above proof:

Example 3.4. Consider the FO[2] query ϕ(v, w) with

ϕ = v � w ∧ ∃w ParentOf(v, w).

This query yields identical pairs of parents. Notice that e1 ∧
e2 = ¬(¬e1 ∨ ¬e2). Hence, ϕ is equivalent to

ϕ′ = ¬(¬(v � w) ∨ ¬(∃w ParentOf(v, w))).

Next, we rewrite ϕ′ to an expression in N2:

κ(ϕ′) = κ(¬(¬(v � w) ∨ ¬(∃w ParentOf(v, w))))

= all − (κ(¬(v � w) ∨ ¬(∃w ParentOf(v, w))))

= all − (κ(¬(v � w)) ∪ (¬(∃w ParentOf(v, w))))

= all − ((all − κ(v � w)) ∪(all−κ(∃w ParentOf(v, w))))

= all − ((all − id) ∪ (all − (κ(ParentOf(w, v)) � all)))

= all − ((all − id) ∪ (all − (ParentOf� � all))).
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796 J. Hellings et al.

Some straightforward simplifications yield:

κ(ϕ′) = all − (di ∪ (all − (ParentOf� � all)))

= (all − di) ∩ (all − (all − (ParentOf� � all)))

= id ∩ (ParentOf� � all)

= id ∩ (π2[ParentOf�] � all)

= id ∩ (π1[ParentOf] � all)

= π1[ParentOf].

We can generalize Theorem 3.1 to also cover fixpoints. It is
well-known that first-order logic cannot express recursion such
as provided by the Kleene-star or by fixpoints [32]. Instead,
we consider the infinitary logic Lk∞ω, the standard infinitary
first-order logic extension of FO[k] that allows conjunctions
and disjunctions over arbitrary, possibly infinite, sets [31, 32].
The Kleene-star operator can be expressed in L3∞ω [31], and
we have N ∗

3 �path L3∞ω. For the relationship between L2∞ω and
N fp

2 , we do not need to consider the full power of L2∞ω. Instead,
we restrict ourselves to adding to FO[2] an inflationary fixpoint
of the form [ifpz,P ϕ](z), with P a fresh monadic predicate
defined by the fixpoint and z ∈ {v, w}. This inflationary fixpoint
can be expressed in L2∞ω [31]. Next, we define the semantics
of evaluating [ifpz,P ϕ](z) on graph G. We first define

si :=

⎧⎪⎨
⎪⎩

∅ if i = 0;

si−1 ∪ {oz | (ov, ow) ∈ V2 ∧
(V; �1, . . . , �|�|, P) |� ϕ(ov, ow)} if i > 0,

in which P is the monadic relation that evaluates to the set si−1.
Due to monotonicity of ∪, there exists k, k ≤ |V|, such that sk =
sk+1. Finally, we say that (V; �1, . . . , �|�|) |� [ifpz,P ϕ](o) if
o ∈ sk. Notice that the semantics of the fixpoint operator fp we
use is closely related to the semantics of the usual inflationary
fixpoints we just introduced.

Proposition 3.1. N fp
2 is path-subsumed by FO[2] to which

inflationary fixpoints have been added.

Proof. Let fpj,N[e union b] be a fixpoint expression in N fp
2 .

We translate the fixpoint as follows:

λ(fp1,N[e union b]) = (v � w) ∧
[ifpv,P ∃w (λ(π1[e]) ∨ λ(π1[b]))](v);

λ(fp2,N[e union b]) = (v � w) ∧
[ifpw,P ∃v (λ(π2[e]) ∨ λ(π2[b]))](w),

in which P is the fresh monadic predicate defined by the
fixpoint, and we translate node variables N by λ(N) = (v �
w) ∧ P(v). �

From Proposition 3.1, we also conclude that N fp
2 is path-

subsumed by L2∞ω, the two-variable fragment of infinitary
logic [31, 34].

3.5. Relationships with other languages

The regular path queries (RPQs) use regular expressions to
define the labeling of paths in the graph that are of interest
[14] and are equivalent to the basic fragment N ∗

3 () of N ∗
3 . This

is no coincidence: the RPQs with and without the Kleene-star
operator are often studied as a formalization of the ‘greatest
common divisor’ of navigation in many practical graph and tree
query languages, which also motivated our choice for the most
basic languages, N3() and N ∗

3 ().
The RPQs can only be used to define very simple path-

based intentional relationships. To strengthen the expressive
power of the RPQs, several more expressive variants have
been proposed and studied in the literature. The 2RPQs are
obtained by adding converse (�) [41] and the Nested RPQs are
obtained by also adding projections (π1 and π2) [42]. Usually,
expressions in these languages serve as binary predicates in a
conjunctive query framework such as the CRPQs and C2RPQs
[43, 44]. The Regular Queries are a particular powerful CRPQ-
based language that can express all queries in N ∗

3 (�, π , ∩, ∗)
[45]. The RPQ-based query languages serve as the simplest
of the relation algebras we study in this paper. The relation
algebras themselves have also been studied in great detail with
respect to graph querying [15, 16, 18, 19, 35, 37, 38]. Based
on these results, the relationship in the expressive power of
the relation algebras can be summarized as follows: we have
N ∗

3 (F1) �path N ∗
3 (F2) if and only if F1 ⊆ C(F2), in which

C(F2) is obtained from F2 by adding any missing operators
that are directly expressible using the operators already in F2
(e.g. adding ∩ when − ∈ F2 and adding π when π ∈ F2).

As already argued in the Introduction, the relation algebra
and its fragments are also at the core of many other graph query
languages, including both navigational-based and pattern-
based languages [1]. Examples include XPath (for querying
XML data) [6–12, 46, 47], SPARQL (for querying RDF data)
[2, 48], the graph query languages GXPath [13], Cypher [3]
and Gremlin [4], and languages used for program verification
such as PDL and KAT [49, 50]. Via the connections between the
relation algebra and FO[2] we explore in this paper, there is also
a close relation between the relation algebra and logics used in
formal verification such as CTL, LTL and the μ-calculus [51].
We have summarized the query languages whose expressive
power exactly match languages studied in this paper in Fig. 4.

4. REWRITING RELATION ALGEBRAS

In this section, we explore ways to automatically rewrite
expressions with compositions and Kleene-stars into expres-
sions with semi-joins and fixpoints. We start by identifying
two situations in which the presence of a node expression, as a
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FIGURE 4. An overview of the relationships between graph query
languages and path-equivalent fragments of the relation algebra. In
this figure, each language is strictly more expressive than the lan-
guages it encloses.

subexpression of an expression e, allows for the elimination of
composition from e in favor of semi-joins:

1. The expression e itself is a node expression due to the use
of projection or coprojection at the outer level. An exam-
ple is the expression π1[e1 ◦ e2], where a straightforward
rewriting yields π1[e1 ◦ e2] ≡path π1[e1 � e2].

2. The expression e is a composition e1 ◦ e2, in which e1
or e2 is a node expression. An example is the expression
e1 ◦π1[e2], where a straightforward rewriting yields e1 ◦
π1[e2] ≡path e1 � π1[e2].

Since the semantics of the Kleene-star is defined using
composition, similar observations can be made with respect
to the Kleene-star. The first observation above relies on the
freedom to rewrite expressions to expressions that agree on
either the first or the second column: hence, we are looking
for left-projection-equivalent and right-projection-equivalent
rewritings.

First, in Section 4.1, we introduce rewrite rules that support
the rewriting of compositions and Kleene-stars to semi-joins
and fixpoints in situations similar to the ones discussed above.
Next, in Section 4.2, we look in detail to the implications of
these rewrite rules with respect to the expressive power of the
relation algebra. In Section 4.3, we look at the limitations of
the rewrite rules and, in specific, at the roles of intersection
and difference. Finally, in Section 4.4, we investigate how
projection-equivalence, which is at the core of our rewrite rules,
relates to the more standard path-equivalence and Boolean-
equivalence.

4.1. Rewriting compositions and Kleene-stars

To support rewriting of compositions and Kleene-stars to semi-
joins and fixpoints in situations similar to the ones discussed
above, we will develop ways to rewrite (parts of) expressions
in N ∗

3 to path-equivalent (parts of) expressions in N fp
2 . As a

first step, we consider basic expressions built without using the
composition, Kleene-star, semi-join and fixpoint operators.

Definition 4.1. The basic expressions are defined by the
grammar

e := ∅ | id | di | � | �� | πj[e] | π j[e] | e ∪ e | e ∩ e | e − e,

in which � ∈ � and j ∈ {1, 2}.

Observe that these basic expressions are both in N3 and N2.
More specifically, every basic expression in N3(F ), F ⊆
{di, �, π , π , ∩, −}, is also in N2(F ). To deal with composition
and Kleene-star operators, we propose the rewrite rules of
Fig. 5. We notice that these rewrite rules do not change basic
expressions. We will argue later that τ(e) ≡path e, τπ1(e) ≡π1 e
and τπ2(e) ≡π2 e.

Example 4.1. Consider the expression

e = π1[((WorksOn ◦ WorksOn�) ∩
FriendOf) ◦ EditorOf] ◦ StudentOf.

This expression returns pairs of professors and their students,
but only for professors that are friends with an editor with
whom they collaborate on a project. For clarity, we abbreviate
each edge label in e, resulting in π1[((W ◦ W�) ∩ F) ◦ E] ◦ S.
We have the following:

τ(e) = τπ2(π1[((W ◦ W�) ∩ F) ◦ E]) � τ(S)

= π1[τπ1(((W ◦ W�) ∩ F) ◦ E)] � S

= π1[τ◦1((W ◦ W�) ∩ F; τπ1(E))] � S

= π1[(τ (W ◦ W�) ∩ τ(F)) � E] � S

= π1[((τ (W) ◦ τ(W�)) ∩ F) � E] � S

= π1[((W ◦ W�) ∩ F) � E] � S.

We shall prove (Theorem 4.1) that e and τ(e) are path-
equivalent. This rewriting results in an expression in which
two out of three applications of composition are eliminated in
favor of semi-joins. In Proposition 4.2 (Section 4.3), we shall
show that the last remaining composition step is unavoidable.

When applied on expressions with subexpressions of the
form [e]∗, the rewrite rules can introduce fixpoint operators.
Consequently, certain rewrite rules yield subexpressions with
free node variables. For these expressions, we have only
defined the semantics within the scope of fixpoint iteration.
Hence, we have not defined when these expressions are
left-projection-equivalent or right-projection-equivalent. To
enable reasoning about expressions with free node variables
and proving soundness of the rewrite rules, we generalize
Definition 4.1:
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798 J. Hellings et al.

FIGURE 5. Rewrite rules aimed at rewriting compositions to semi-
joins and Kleene-stars to fixpoints. In these rules, b is a basic expres-
sion, ε is an already rewritten expression, f ∈ {π , π}, i ∈ {1, 2},
j ∈ {1, 2}, ⊕ ∈ {∩, −} and N is a fresh variable.

Definition 4.2. Let e1 and e2 be expressions with a single
free node variable N. We say that e1 and e2 are left-projection-
equivalent, denoted by e1 ≡π1 e2, if, for every graph G =
(V , �, E) and every s ⊆ V , �e1�G+s|1 = �e2�G+s|1, in which

G + s is the graph G augmented with the edge relation {(n, n) |
n ∈ s} labeled with N. Likewise, we say that e1 and e2 are
right-projection-equivalent, denoted by e1 ≡π2 e2, if, for every
graph G = (V , �, E) and every s ⊆ V , �e1�G+s|2 = �e2�G+s|2.

Example 4.2. We have (ParentOf ◦ FriendOf) � N ≡π1

ParentOf�(FriendOf�N). Indeed, for any possible node query
we can fill in forN, the evaluation of both expressions will yield
the same set of nodes in the first column.

To prove soundness of the rewrite rules in Fig. 5, we use the
following:

Lemma 1.16. Let g, h, φ and ψ be expressions. We have:

1. If g ≡πj h with j ∈ {1, 2}, then πj[g] ≡path πj[h] and
π j[g] ≡path π j[h].

2. Let g ≡path h. If φ ≡π1 ψ , then g � φ ≡path h � ψ ,
g ◦ φ ≡π1 h ◦ ψ and g ◦ φ ≡π1 h � ψ . If φ ≡π2 ψ , then
φ �g ≡path ψ �h, φ ◦g ≡π2 ψ ◦h and φ ◦g ≡π2 ψ �h.

3. Let g ≡path h and let φ be a node expression. If φ ≡π1 ψ ,
then g◦φ ≡path h�ψ . If φ ≡π2 ψ , then φ◦g ≡path ψ�h.

4. If g ≡sem h and φ ≡sem ψ with sem ∈ {path, π1, π2},
then g ∪ φ ≡sem h ∪ ψ .

5. If g ≡path h and φ ≡path ψ , then g ∩ φ ≡path h ∩ ψ and
g − φ ≡path h − ψ .

6. id ≡π1 [φ]∗ and id ≡π2 [φ]∗.
7. If g � N ≡π1 h and φ ≡π1 ψ , then [g]∗ ◦ φ ≡π1

fp1,N[h union ψ]. If N � g ≡π2 e[h] and φ ≡π2 ψ ,
then φ ◦ [g]∗ ≡π2 fp2,N[h union ψ].

Proof. Statements 1–6 follow from the semantics of the opera-
tors involved. We prove the first case of Statement 7; the second
case is analogous. Assume g � N ≡π1 h and φ ≡π1 ψ . We
shall prove [g]∗ ◦ φ ≡π1 fp1,N[h union ψ] using induction
on the stages of the evaluation of the fixpoint operator fp. By
si, we denote the i-th stage of the evaluation of the fixpoint
and, by ei, we denote the expression (g0 ∪ · · · ∪ gi) ◦ φ. By
induction, we shall prove that �ei�G |1 = si. The base case is
i = 0. We have e0 = g0 ◦ φ ≡path id ◦ φ ≡path φ ≡π1 ψ .
Hence, �e0�G |1 = �φ�G |1 = �ψ�G |1 = s0. Now assume that,
for every j with 0 ≤ j < i, �ej�G |1 = sj. We have

ei ≡path (g0 ∪ · · · ∪ gi) ◦ φ

≡path (g0 ∪ · · · ∪ gi−1) ◦ φ ∪ g◦ ((g0 ∪ · · · ∪ gi−1) ◦ φ)

≡path ei−1 ∪ (g ◦ ei−1)

≡π1 ei−1 ∪ (g � ei−1).
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Due to the induction hypothesis, we have �ei−1�G |1 = si−1.
Hence, during computation of si, we have

si = si−1 ∪ �h�G+si−1 |1
= �ei−1�G |1 ∪ �g � N�G+si−1 |1.

By the semantics of G + si−1 and �ei−1�G |1 = si−1, we can
replace N by ei−1, resulting in

si = �ei−1 ∪ (g � ei−1)�G |1
= �ei�G |1.

By the semantics of the iteration operators, there exists k, 0 ≤ k,
such that sk = sk+1 and �ek�G = �ek+1�G . Hence, we conclude
[g]∗ ◦ φ ≡π1 fp1,N[h union ψ]. �

The rewrite rules of Fig. 5 depend on the ability to determine
if an expression e is a node expression. This is hard to determine
without evaluation of e. We can, however, use the semantics of
N3, N ∗

3 , N2 and N fp
2 to define a predicate ns(e) that evaluates

to true only if the expression e is a node expression:3

ns(∅) = ns(id) = true;

ns(di) = false;

ns(�) = ns(��) = false;

ns(fj[e]) = true;

ns(e1 ◦ e2) = ns(e1) ∧ ns(e2);

ns(e1 � e2) = ns(e2 � e1) = ns(e1);

ns(e1 ∪ e2) = ns(e1) ∧ ns(e2);

ns(e1 ∩ e2) = ns(e1) ∨ ns(e2);

ns(e1 − e2) = ns(e1);

ns([e]∗) = ns(e);

ns(fpj,N[e union b]) = true,

in which f ∈ {π , π} and j ∈ {1, 2}. Using Lemma 4.1 and
induction on the length of relation algebra expressions, we can
establish the following main result about the soundness of the
rewrite rules in Fig. 5:

Theorem 4.1. Let e be an expression in N ∗
3 . We have

τ(e) ≡path e, τπ1(e) ≡π1 e and τπ2(e) ≡π2 e.

3 For some node queries e, we have ns(e) = false. We will not treat these queries

as node queries during rewriting, but as normal queries. This prevents the application of

some of the rewrite techniques used to eliminate composition and Kleene-star, but does

not invalidate the end result.

The rewrite rules of Fig. 5 are sound, as stated in Theorem 4.1,
but not complete, as illustrated by the following example:

Example 4.3. Consider the expression

e = (FriendOf ∩ (FriendOf ◦ FriendOf)) − all.

Due to the presence of intersection, the rewritings τ(e), τπ1(e)
and τπ2(e) do not result in an expression in N2 or N fp

2 . Since e
always evaluates to ∅, however, we have e ≡path ∅, and ∅ is, by
definition, in N2 and N fp

2 .

Remark 1.1 Before closing Section 4.1, we wish to point
attention to the order in which operators are evaluated in
expressions. We can express this order explicitly using paren-
theses. Consider, for example,

e = ParentOf ◦ (FriendOf ◦ OwnsPet).

The parentheses in this expression suggest to first evaluate the
composition FriendOf ◦ OwnsPet, after which the remaining
composition is evaluated. Due to associativity of composition,
this expression is path-equivalent to

e′ = (ParentOf ◦ FriendOf) ◦ OwnsPet,

in which the order of evaluation is swapped. Therefore, the
parentheses can be omitted in as far as only the meaning of the
query is concerned. However, the order of evaluating the com-
positions (which are joins) greatly influences the performance
of query evaluation. Hence, many optimization techniques
employed by database systems aim at picking the right (or a
sufficiently good) order of evaluation [20, 27, 28, 52–57].

The semi-join operator is not associative, however. Indeed,
the order in which semi-joins are evaluated is usually fixed,
and cannot be changed without also changing the meaning of
the query. Compare, on the one hand, the query

e1 = ParentOf � (FriendOf � OwnsPet),

which yields those parent-child-pairs in which the child has a
friend, and that friend owns a pet and, on the other hand, the
query

e2 = (ParentOf � FriendOf) � OwnsPet,

which yields parent-child-pairs in which the child has a friend
and that same child (not the friend) has a pet. These queries
clearly have a different meaning. In particular, only e ≡π1 e1.
Since semi-joins leave no choice in the order in which they are
evaluated, there is also no point in considering different semi-
join evaluation orderings for efficiency reasons. Fortunately,
the semi-join is—overall—a much cheaper operator to evaluate
than composition.
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Finally, we want to point out that the rewrite rules of Fig. 5
are designed to yield the correct parentheses for the semi-join
evaluation. To illustrate this, we rewrite both π1[e] and π1[e′].
For clarity, we use straightforward abbreviations for the edge
labels used in e and e′. We have

τ(π1[e]) = τ(π1[P ◦ (F ◦ O)])

= π1[τπ1(P ◦ (F ◦ O))]

= π1[τ◦1(P; τπ1(F ◦ O))]

= π1[τ◦1(P; τ◦1(F; τπ1(O)))]

= π1[τ◦1(P; τ◦1(F; O))]

= π1[τ◦1(P; F � O)] = π1[P � (F � O)];

τ(π1[e′]) = τ(π1[(P ◦ F) ◦ O])

= π1[τπ1((P ◦ F) ◦ O)]

= π1[τ◦1(P ◦ F; τπ1(O))]

= π1[τ◦1(P ◦ F; O)]

= π1[τ◦1(P; τ◦1(F; O))]

= π1[τ◦1(P; F � O)] = π1[P � (F � O)].

As one can see, rewriting π1[e] and π1[e′] yields identical semi-
join expressions, as intended.

4.2. Relative expressive power of N3 and N fp
2

The rewrite rules of Fig. 5 do not fully rewrite every expression
in N ∗

3 to N fp
2 . To better understand the limitations of those

rewrite rules, we will take a closer look at how they rewrite
fragments of N ∗

3 . Before we do so, we first study the reverse:
expressing the semi-join algebra using the relation algebra. To
do so, we propose the rewrite rules of Fig. 6.

Using a straightforward induction on the length of expres-
sions, in which the base cases are basic expressions and
Lemma 4.1 is used to prove the inductive cases, we conclude
the following:

Proposition 4.1. Let {π} ⊆ F ⊆ {di, �, π , π , ∩, −} and let
e be an expression.

1. If e is inN2(F ), then e ≡path ρ(e) and ρ(e) is inN3(F );
2. If e is in N fp

2 (F ), then e ≡path ρ(e) and ρ(e) is in
N ∗

3 (F ).

A careful analysis of the rewrite rules of Fig. 5, Theorem 4.1
and Proposition 4.1 allows us to conclude

Theorem 4.2. Let {π} ⊆ F ⊆ {di, �, π , π}. We have

1. N2(F ) �path N3(F ) and N2(F ) ≡π N3(F );
2. N fp

2 (F ) �path N ∗
3 (F ) and N fp

2 (F ) ≡π N ∗
3 (F ).

FIGURE 6. Rewrite rules aimed at rewriting semi-joins to com-
positions and fixpoints to Kleene-stars. In these rules, b is a basic
expression, f ∈ {π , π}, j ∈ {1, 2}, ⊕ ∈ {∩, −} and dir ∈ {left, right}.

4.3. The role of intersection and difference

Observe that Theorem 4.2 does not cover the cases where
intersection or difference are involved. This is a very severe
restriction, since intersection and difference are allowed in
the semi-join algebra. Careful analysis of the rewrite rules of
Fig. 5 reveals that rewriting intersection and difference only
causes issues in conjunction with compositions, but not when
used in basic expressions. As a consequence, we can extend
Theorem 4.2 slightly.

Definition 4.3. Let F ⊆ {di, �, π , π , ∩, −}. We write
B3(F ), B∗

3(F ), B2(F ) and Bfp
2 (F ) to denote the basic frag-

ments of N3(F ), N ∗
3 (F ), N2(F ) and N fp

2 (F ), respectively,
in which intersection and difference occur in basic expressions
only.

Below, we write F , F ⊆ {di, �, π , π , ∩, −}, to denote the
fragment F to which ∩ is added if − ∈ F and π is added if
π , − ∈ F .

Theorem 4.3. Let {π} ⊆ F ⊆ {di, �, π , π , ∩, −}. We have

1. B2(F ) �path B3(F ), B2(F ) ≡π B3(F ) and
B2(F ) ≡path N2(F );

2. Bfp
2 (F ) �path B∗

3(F ), Bfp
2 (F ) ≡π B∗

3(F ) and
Bfp

2 (F ) ≡path N fp
2 (F ).

Proof. It suffices to observe that in the semi-join algebra we
may assume without loss of generality that intersection and
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From Relation Algebra to Semi-Join Algebra: An Approach to Graph Query Optimization 801

difference occur in basic expressions only, since we can push
down intersection and difference through projections, copro-
jections, semi-joins and unions. We push down intersection
using the following properties (j ∈ {1, 2}):

e ∩ πj[e
′] ≡path πj[e

′] ∩ e ≡path (e ∩ id) � πj[e
′];

e ∩ π j[e
′] ≡path π j[e

′] ∩ e ≡path (e ∩ id) � π j[e
′];

e ∩ (e1 � e2) ≡path (e1 � e2) ∩ e ≡path (e ∩ e1) � e2;

e ∩ (e1 � e2) ≡path (e1 � e2) ∩ e ≡path e1 � (e ∩ e2);

e ∩ (e1 ∪ e2) ≡path (e1 ∪ e2) ∩ e

≡path (e ∩ e1) ∪ (e ∩ e2);

e ∩ (e1 − e2) ≡path (e1 − e2) ∩ e ≡path (e ∩ e1) − e2,

We push down difference using the following properties:

e − πj[e
′] ≡path (e ∩ di) ∪ ((e ∩ id) � π j[πj[e

′]]);

e − π j[e
′] ≡path (e ∩ di) ∪ ((e ∩ id) � π j[π j[e

′]]);

πj[e
′] − e ≡path πj[e

′] � π j[e ∩ id];

π j[e
′] − e ≡path π j[e

′] � π j[e ∩ id];

e − (e1 � e2) ≡path (e − e1) ∪ ((e ∩ e1) � π1[e2]);

(e1 � e2) − e ≡path (e1 − e) � e2;

e − (e1 � e2) ≡path (e − e2) ∪ (π2[e1] � (e ∩ e2));

(e1 � e2) − e ≡path e1 � (e2 − e);

e − (e1 ∪ e2) ≡path (e − e1) − e2;

(e1 ∪ e2) − e ≡path (e1 − e) ∪ (e2 − e).

We observe that fixpoints are node expressions and we can
treat them as if they were projections. By repeatedly pushing
down intersection and difference until this is no longer possible,
all intersections and differences occur in basic expressions
only. �

Theorem 4.2 and 4.3 also imply a collapse of semi-join
algebra fragments to the corresponding basic semi-join algebra
fragments:

Corollary 4.1. Let {π} ⊆ F ⊆ {di, �, π , π , ∩, −}. We
have

1. N2(F ) �path B3(F ) and N2(F ) ≡π B3(F );
2. N fp

2 (F ) �path B∗
3(F ) and N fp

2 (F ) ≡π B∗
3(F ).

Corollary 4.1 does not generalize to a collapse of relation
algebra fragments to the corresponding basic relation algebra
fragments. More generally, we prove that all basic fragments
of N3 that include intersection have less expressive power than
their non-basic counterparts:

FIGURE 7. On the left, two 3-cycle graph G3,3. On the right, single
4-cycle graph G4. All edges are assumed to be labeled �.

Proposition 4.2. Let F ⊆ {di, �, π , π , ∩, −} with ∩ ∈ F .
We have

1. N3(F ) �bool B3(F ) and N3(F ) �bool N2(F );
2. N ∗

3 (F ) �bool B∗
3(F ) and N3(F ) �bool N fp

2 (F ).

Proof. Consider the expression e′ = (� ◦ �) ∩ �. This
expression is based on the part of e in Example 4.1 that could
not be rewritten without using composition. The expression e′
has an occurrence of intersection beyond the scope of basic
expressions. We claim that, for any F ⊆ {di, �, π , π , ∩, −},
no expression in B∗

3(F ) is path-equivalent, left-projection-
equivalent, right-projection-equivalent or Boolean-equivalent
to e′.

To show this, consider the graphs G3,3 and G4 of Fig. 7 and
observe that �e′�G3,3 	= ∅ while �e′�G4 = ∅. To show that
no expression in B∗

3(F ) can distinguish between G3,3 and G4,
it suffices to show that no expression in N fp

2 can distinguish
between G3,3 and G4 (Corollary 4.1). We can do so using
standard two-pebble game results for the FO[2]-variant of the
infinitary finite variable logics [31, Example 3.10]. �

On graphs, the intersection and difference operators used
only within the basic fragments of N3 still have useful roles,
as shown in the next example.

Example 4.4. Consider again the relationships FriendOf and
WorksWith and consider the following basic expressions:

e1 = FriendOf ∩ WorksWith;

e2 = FriendOf − WorksWith;

e3 = WorksWith − id;

e4 = WorksWith ∩ di.

Expression e1 yields work-friends, whereas expression e2
yields non-work-friends. These examples show how intersec-
tion and difference can be used to select specific combinations
of edge labels. Both expression e3 and e4 yields people who
work with each other, while excluding self-loops (people that
work with themselves).

4.4. The role of projection equivalence

In this paper, we introduced projection equivalence to study
rewriting and simplifying expressions while keeping either the
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802 J. Hellings et al.

FIGURE 8. A chain of length three. All edges are assumed to be
labeled �.

first projection or second projection of the rewritten expression
equivalent to the original expression. One can ask how pro-
jection equivalence relates to the more commonly studied path
equivalence and Boolean equivalence.

Proposition 4.3. Let F1, F2 ⊆ {di, �, π , π , ∩, −} and
X ∈ {N3,N ∗

3 }. We have X(F1) �π X(F2) if and only if
X(F1) �bool X(F2).

Proof. We always have that X(F1) �π X(F2) implies
X(F1) �bool X(F2). To prove that X(F1) �bool X(F2)

implies X(F1) �π X(F2), we distinguish two cases:

1. X(F1) �path X(F2). Then both X(F1) �π X(F2) and
X(F1) �bool X(F2).

2. X(F1) �path X(F2) and X(F1) �bool X(F2). In this
case, there exists a fragment F ⊆ {di, �, π , π} such
that F1 = F ∪ {�} and F2 = F ∪ {π}. The proof
of X(F1) �bool X(F2) in Fletcher et al. [15, Proof
of Proposition 4.2] reveals that, for every expression e
in X(F1), there exist expressions e1 and e2 in X(F2)

such that e1 ≡path π1[e] and e2 ≡path π2[e]. Hence, by
definition, X(F1) �π X(F2). �

We observe that Proposition 4.3 implies that we may not
conclude from L1 ≡π L2 that L1 ≡path L2. Next, we show
that we may not conclude from L1 ≡bool L2 that L1 ≡π L2.

Proposition 4.4. Let X ∈ {N3,N ∗
3 }. On chains, we have

X(π) �bool X() and X(π) �π X().

Proof. By a result from Hellings et al. [18, Theorem 4],
we have X(π) �bool X(). We prove X(π) �π X() via a
simple counterexample. Consider the query e = π2[�] ◦ π1[�]
evaluated on the chain C of Fig. 8. This query will return the
node-pair (v, v). An exhaustive search shows that no expression
in X() is j-projection-equivalent to e, j ∈ {1, 2}. �

Using Proposition 4.3 and Proposition 4.4, we conclude the
following:

Corollary 4.2. Let L1 and L2 be query languages. We have
that L1 ≡bool L2 does not imply L1 ≡π L2 and L1 ≡π L2
does not imply L1 ≡path L2.

5. QUERYING SIBLING-ORDERED TREES

The above expressiveness results have interesting implications
for the relationship between, on the one hand, Regular XPath

and Conditional XPath [9–12], and, on the other hand, first-
order logic evaluated on node-labeled sibling-ordered trees,
which we detail next. On finite node-labeled sibling-ordered
trees, Conditional XPath is path-equivalent to FOtree: first-
order logic on tree structures represented by a descendant and
a following-sibling relation, unary node-label predicates and
equality [9, Proposition 2.7]. We shall prove that this collapse
can be sharpened to a projection-equivalence collapse of FOtree

queries to N fp
2 . For the readers not familiar with Conditional

XPath and Regular XPath, we first provide a brief introduction
to these languages.

Conditional XPath is a syntactical fragment of Regular
XPath, and Regular XPath is a query language for querying
node-labeled sibling-ordered XML data [9]. Regular XPath
distinguishes path formulae, which evaluate to binary relations,
and node formulae, which evaluate to unary relations (sets of
nodes). Path formulae are defined by the grammar4

p_wff = Edge | p_wff ◦ p_wff | p_wff ∪ p_wff |
[p_wff]∗ | ?n_wff,

in which Edge ∈ {Child, Parent, Left, Right} denotes the edge
relations (the parent-child axis and the ordered sibling axis),
n_wff is a node formula and ?n_wff interprets the node for-
mulae as a binary relation. Node formulae are defined by the
grammar

n_wff = � | id | π1[p_wff] | n_wff | n_wff ∪ n_wff |
n_wff ∩ n_wff,

in which � denotes a node label.
As a first step toward proving the collapse of Boolean FOtree

queries to the semi-join algebra, we claim that Regular XPath is
path-equivalent to N ∗

3 (�, π). We prove this claim by rewriting
path formulae to expressions in N ∗

3 (�, π) and node formulae
to node expressions in N ∗

3 (�, π). We represent node labels
using edge labels. These choices result in a straightforward
rewriting τp_wff(p_wff) for path formulae p_wff. For rewritings
involving node formulae, we have

τp_wff(?n_wff) = π1[τn_wff(n_wff)];

τn_wff(�) = �;

τn_wff(id) = id;

τn_wff(π1[p_wff]) = π1[τp_wff(p_wff)];

τn_wff(n_wff) = π1[τn_wff(n_wff)];

τn_wff(n_wff1 ∪ n_wff2) = τn_wff(n_wff1) ∪ τn_wff(n_wff2);

τn_wff(n_wff1 ∩ n_wff2) = τn_wff(n_wff1) ◦ τn_wff(n_wff2).

4 We have slightly adapted the Regular XPath syntax to better match the syntax of N ∗
3 .
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From Relation Algebra to Semi-Join Algebra: An Approach to Graph Query Optimization 803

As Conditional XPath is a restriction of Regular XPath in
which the Kleene-star can only be applied to steps instead of
generic expressions,5 we conclude the following:

Proposition 5.1. With respect to queries yielding binary rela-
tions evaluated on finite node-labeled sibling-ordered trees,
we have Regular XPath ≡path N ∗

3 (�, π), Conditional XPath
�path N ∗

3 (�, π) and N ∗
3 (�, π) �bool Conditional XPath.

Proof. To translate from Regular XPath to N ∗
3 (�, π), we

use the rewrite rules τp_wff(p_wff). For the other direction,
we adapt the above rewrite rules. The only difficulty in
this are subexpressions of the form π2[e] and π2[e]. We
deal with these subexpressions by rewriting them toward
π1[[e]−1] and π1[[e]−1], respectively, in which [e]−1 is the
converse of e, which can be expressed using �. The remainder
of the statement of the Proposition follows from the well-
known relationships between Regular XPath and Conditional
XPath [9]. �

We combine Theorem 4.2, Proposition 5.1 and a result from
Marx [9]:

Corollary 5.2. With respect to queries yielding binary rela-
tions evaluated on finite node-labeled sibling-ordered trees,
we have Regular XPath ≡π N fp

2 (�, π), Conditional XPath
�π N fp

2 (�, π) and N fp
2 (�, π) �bool Conditional XPath.

Finally, we combine Corollary 5.2 with the collapse of FOtree

to Conditional XPath [9, Proposition 2.7] to conclude the
following:

Proposition 5.2. With respect to queries yielding binary rela-
tions evaluated on finite node-labeled sibling-ordered trees, we
have FOtree �π N fp

2 (�, π).

Unfortunately, it is not possible to strengthen Proposition 5.2
by showing that one can translate Conditional XPath to the two-
variable fragment of FOtree via N fp

2 (�, π). This follows from
the simple fact that the two-variable fragment of FOtree cannot
express basic Conditional XPath constructions, including the
edge relations Child and Right, and step-based conditional
iteration via the descendant and the following-sibling relations.

6. OPTIMIZING GRAPH QUERIES

In Section 4, we studied the relationship between the relation
algebra and the semi-join algebra using composition-to-semi-
join rewrite rules. In this Section, we will review these rewrite

5 A step is an edge relation to which, optionally, a test is applied of the form ?n_wff.

rules and investigate their usefulness with respect to graph
query optimization.

To do so, we introduce in Section 6.1 a simple classification
of the complexity of evaluating the operators in the relation
algebra and the semi-join algebra. Next, in Section 6.2, we
show that also the fixpoint operator we use can be evaluated
efficiently. In Section 6.3, we look at the size of expressions
rewritten using the introduced rewrite rules. In Section 6.4,
we further fine-tune the rewrite rules aimed at improving
graph query optimizations. In Section 6.5, we look at all other
operators we identified in Section 6.1 as being expensive, and
show how their common usages can be optimized. Finally, in
Section 6.6, we conclude on the query optimization potential
of the rewrite rules we introduced.

6.1. The cost of evaluating operators

Most operators in the relation algebra and semi-join algebra
can easily be evaluated using specialized versions of the many
query evaluation algorithms that are used in traditional rela-
tional database management systems [20, 27, 52–57]. The only
exception is the evaluation of the fixpoint operators, which we
discuss in-depth in Section 6.2. Here, we focus on giving a cost
model for the other operators. A detailed cost model for the
evaluation cost of queries evaluation involves many aspects and
is outside the scope of this work. Luckily, the worst-case cost
of each operator we consider is almost entirely determined by
the size of the evaluation result of its operands and the size of
its result, even if we use naive algorithms for evaluating these
operators [27, 52, 57]. We categorize the operators in three
complexity classes.6

Definition 6.1. An operator is expression-linear if it is guar-
anteed to yield a result linearly upper-bounded by the size of the
evaluation result of its operands. An operator is node-linear if it
is not expression-linear, but still is guaranteed to yield a result
linearly upper-bounded by the number of nodes (independent of
the size of the evaluation result of any operands). An operator
is non-linear if it does not fall in the above two categories.

We deem expression-linear operators to be the least expen-
sive and the non-linear operators to be the most expensive. We
classify the relation algebra and semi-join algebra operators as
follows:

Lemma 6.1. The operators π1, π2, �, �, ∪, ∩ and − are
expression-linear, the operators id, π1 and π2 are node-linear,
and the operators di, ◦ and ∗ are non-linear.

6 The categorization is similar to the categorization of Leinders and Van den

Bussche [20].
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804 J. Hellings et al.

Proof. To show that the operators id, π1 and π2 are node-
linear, it suffices to provide an example showing that they are
not expression-linear. To show that the operators di, ◦ and ∗
are non-linear, we provide an example showing that they are
not expression-linear and node-linear. Let G = (V , �, E) be
a graph with V = {m, n1, . . . , n|V|−1}, � = {�, �′}, E (�) =
{(m, ni), (ni, m) | 1 ≤ i ≤ |V| − 1} and E

(
�′) = {(m, m)}.

We have

�id�G = {(n′, n′) | n′ ∈ V};
�di�G = V2 − {(v, v) | v ∈ V};

�π1[�′]�G = �π2[�′]�G = {(ni, ni) | 1 ≤ i ≤ |V| − 1};
�� ◦ ��G = V2 − E (�) ;

�[�]∗�G = V2.

Observe that |�id�G | = |V|, |�di�G | = |V|2−|V|, |�π1[�′]�G | =
|V| − 1 and |�� ◦ ��G | = |V|2 − 2 · (|V| − 1). �

Lemma 6.1 illustrates why we consider composition and the
Kleene-star to be expensive and why also identity, diversity
and coprojections are to be avoided. Next, we shall look at the
complexity of fixpoint iteration.

6.2. Efficient evaluation of fixpoints

Due to the restrictions put on fixpoints, they can be eval-
uated very efficiently, which we will show next. Let f =
fpj,N[e union b] be an expression without free variables. The
complexity of evaluating f is a function of the recursion steps
of f and the cost of evaluating the non-recursive terms of f ,
which we define next.

We define R(e) by

R(N) = 1;

R(e1 � e2) = R(e2 � e1) = 1 + R(e1);

R(e1 ∪ e2) = R(e1) + R(e2) + 1;

R(fpj,N′[e′ union b′]) = R(b′) + R(e′) + 1,

with N a variable, and we define the recursion steps of f by
R(f ) = R(e). We define the multiset T (e) by

T (N) = [ ];

T (e1 � e2) = T (e2 � e1) = [e2] + T (e1);

T (e1 ∪ e2) = T (e1) + T (e2);

T (fpj,N′[e′ union b′]) = T (b′) + T (e′).

with N a variable, and we define the non-recursive terms of f
by T (f ) = [b] + T (e).

FIGURE 9. Graph representing the expression e = fp1,N[A � e′
union F] with e′ = fp1,N′ [(B � (C � N′)) ∪ (D � N′) union
E � N]. This graph is obtained by applying the graph representation
construction of the proof of Proposition 6.1 on e.

Proposition 6.1. Let G = (V , �, E) be a graph and let f =
fpj,N[e union b] be an expression without free variables. The
worst-case cost for evaluating �f �G is O(R(f ) · n + s + c), in
which

n = max{|�t�G |j| | t ∈ T (f )};
s =

∑
{|�t�G | | e[t] ∈ T (f )}

and c is the total cost of evaluating the expressions in T (f ).

Proof. We observe that expression e does not use negation
on the path toward the variable N: we only allow union,
semi-joins and fixpoints, and we do not allow difference and
coprojections. Hence, if we interpret the expressions in T (f )
as pre-computed edge labels, then the restricted language
we consider is expressible in a subset of the alternation-free
μ-calculus, for which very efficient evaluation algorithms
exist [58].

Using these algorithms, we sketch how to efficiently evaluate
the fixpoint expression f when j = 1. The case for j = 2
is analogous. To evaluate the fixpoint expression f , we first
translate the expression into a graph representation. We do
so by making edge-connections between expressions in the
following way.

1. Add an unlabeled connection from the expression e to
the expression N.

2. For any right-recursive subexpression e1 � e2, add a
connection labeled e1 from the expression e2 to the
expression e1 � e2.

3. For any right-recursive subexpression e1 ∪ e2, add unla-
beled connections from the expressions e1 and e2 to the
expression e1 ∪ e2.

4. For any right-recursive subexpression fp1,N′[e′ union
b′], add an unlabeled connection from the expression
N′ to the expression fp1,N′[e′ union b′] and from the
expression b′ to the expression N′.

Figure 9 provides an example of the resulting graph repre-
sentation of a fixpoint expression.

The graph representation is used for a message-passing eval-
uation algorithm in which each expression-node maintains a
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set of received graph-nodes. When an expression-node receives
a graph-node v it has not yet received, then it sends v to
every expression-node to which it has an unlabeled connection
and it sends w to every expression-node to which it has a
connection labeled e′ with (w, v) ∈ �e′�G . We initialize this pro-
cess by sending each graph-node in �b�G |1 to the expression-
node N. Let S be the set of all graph-nodes received by N

after all messages have been processed. We have �f �G =
{(v, v) | v ∈ S}.

Over every unlabeled connection, at most n messages are
sent and over every connection labeled with e, at most |�e�G |
messages are sent. The number of expression-nodes and the
number of unlabeled connections are both worst-caseO(R(f )).
Furthermore, for every non-recursive term in T (f ), there is
exactly one labeled connection. Hence, at most O(R(f ) ·n+ s)
messages need to be sent.

To achieve the stated complexity in the expected case, we
implement the graph-node set at each expression-node by a
hash table and we store �e′�G , necessary for evaluating the con-
nections labeled e′, as a hash table in which the second column
of �e′�G is the search key. Using the approach of Cleaveland and
Steffen [58], one can reach the stated complexity in the worst
case. �

Fixpoints do not really suit the classification we used for the
other operators, as its operands cannot be evaluated indepen-
dently due to the recursion involved. To obtain a classification
in the spirit of Definition 6.1, we can view the set of non-
recursive terms T (f ) as the operands of a fixpoint. Using this
view, we can classify the fixpoint operator as an expression-
linear operator.

6.3. Size-complexity of rewritten expressions

We already claimed soundness of the rewrite rules of Fig. 5. To
claim their usability for query optimization, we will analyze
the complexity of the expression resulting from the rewrite
next. We do so in terms of the expression size, the number of
steps needed for evaluation and the complexity of the operators
involved. In this analysis, we use the following terminology:

Definition 6.2. The size of an expression e, denoted by ‖e‖,
is the number of operations in e. We have

‖∅‖ = ‖id‖ = ‖di‖ = ‖�‖ = ‖��‖ = 0;

‖fj[e]‖ = 1 + ‖e‖;

‖e1 ⊗ e2‖ = 1 + ‖e1‖ + ‖e2‖;

‖e1 ⊕ e2‖ = 1 + ‖e1‖ + ‖e2‖;

‖[e]∗‖ = 1 + ‖e‖;

‖N‖ = 0;

‖fpj,N[e union b]‖ = 1 + ‖e‖ + ‖b‖,

with f ∈ {π , π}, j ∈ {1, 2}, ⊗ ∈ {◦, �, �} and ⊕ ∈ {∪, ∩, −}.
The subexpression set of e, denoted by S(e), is the set of all
unique non-atomic subexpressions that must be evaluated:

S(∅)= S(id) = S(di) = S(�)=S(��)=∅;

S(fj[e])= {fj[e]} ∪ S(e);

S(e1 ⊗ e2)= {e1 ⊗ e2} ∪ S(e1) ∪ S(e2);

S(e1 ⊕ e2)= {e1 ⊕ e2} ∪ S(e1) ∪ S(e2);

S([e]∗)= {[e]∗} ∪ S(e);

S(N)= ∅;

S(fpj,N[e union b])={fpj,N[e union b]}∪S(e)∪S(b).

The evaluation size of e is defined by eval-steps(e) = |S(e)|.

Example 6.1. Consider the expression

e = ((� ◦ �) ◦ (� ◦ �)) ◦ ((� ◦ �) ◦ (� ◦ �)).

We have ‖e‖ = 7, we have eval-steps(e) = 3. Indeed, this
expression can be evaluated in three steps, namely by first
evaluating e1 = �◦�, next e2 = e1 ◦e1 and, finally, e = e2 ◦e2.
Now consider the expression

e′ = � ◦ (� ◦ (� ◦ (� ◦ (� ◦ (� ◦ (� ◦ �)))))),

for which we have e ≡path e′ and ‖e′‖ = eval-steps(e′) = 7.

Next, we characterize the impact of the rewrite rule of
Fig. 5 on the evaluation size and expression size of rewritten
expressions. Observe that the only rewrite rules of Fig. 5 that
increases the expression size significantly are the rewrite rules
τ◦i(e1 ∪ e2; ε) = τ◦i(e1; ε) ∪ τ◦1(e2; ε), i ∈ {1, 2}, as these
rewrite rules duplicate the expression ε. By u(τ (e)), u(τπj(e))
and u(τ◦j(e; ε)), j ∈ {1, 2}, we denote the number of times the
rewrite rules τ◦i(e1 ∪ e2; ε) = τ◦i(e1; ε) ∪ τ◦1(e2; ε), i ∈ {1, 2},
have been applied in the rewriting of e using τ(e), τπj(e), or
τ◦j(e; ε′), respectively. We have the following:

Theorem 6.1. Let e be an expression in N ∗
3 .

1. We have eval-steps(τ (e)) ≤ u(τ (e))+‖e‖ and ‖τ(e)‖ =
�(‖e‖ · 2u(τ (e))) in the worst case.

2. Let i ∈ {1, 2}. We have eval-steps(τπi(e)) ≤ u(τπi(e)) +
‖e‖ and ‖τπi(e)‖ = �(‖e‖ · 2u(τπi (e))) in the worst case.

Proof. We first prove ‖τ(e)‖ = �(‖e‖ · 2u(τ (e))) in the worst
case. In the worst case, we have u(τ (e)) = �(‖e‖). Let e =
π1[(�1 ◦�2 ∪�2 ◦�1)

p ◦�p+1]. We have ‖(�1 ◦�2 ∪�2 ◦�1)
p‖ =

4p−1, ‖�p+1‖ = p, ‖e‖ = 5p and u(τ (e)) = p. This expression
is rewritten into e′ = π1[e1] with, for i, 1 ≤ i < p, ei =
�1�(�2�ei+1)∪�2�(�1�ei+1) and ep = ��(��(· · ·��) . . . ).
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We have ‖e′‖ = 1 + ‖e1‖ with ‖ei‖ = 5 + 2 · ‖ei+1‖ and
‖ep‖ = p. Hence,

‖e′‖ = 1 + 5 · (20 + 21 + · · · + 2p−2) + p · 2p−1

≥ (p · 2p)/2

= ((‖e‖/5) · 2(‖e‖/5))/2 = �(‖e‖ · 2u(τ (e))).

To prove that ‖τπi(e)‖ = �(‖e‖ · 2u(τπi (e))) in the worst case,
it now suffices to observe that τπi(e) = τ(e).

To prove the remainder of the Theorem, it suffices to show
that τ(e), τπi(e), τ◦1(e; ε) and τ◦1(e; ε), with e an expression in
N ∗

3 and ε an expression, satisfy the following conditions:

1. If x = τ(e) and u = u(τ (e)), then x ≡path e, ‖x‖ ≤
‖e‖ · 2u and eval-steps(x) ≤ u + ‖e‖.

2. If i ∈ {1, 2}, x = τπi(e) and u = u(τπi(e)), then x ≡πi e,
‖x‖ ≤ ‖e‖ · 2u and eval-steps(x) ≤ u + ‖e‖.

3. If ε is non-recursive or right-recursive in variable N, x =
τ◦1(e; ε) and u = u(τ◦1(e; ε)), then x ≡π1 e � ε, ‖x‖ ≤
(‖e‖ + ‖ε‖ + 1) · 2u and S(x) = S(ε) ∪ T with |T| ≤
‖e‖ + u + 1. If ε is right-recursive in variable N, then so
is x, else x is non-recursive.

4. If ε is non-recursive or left-recursive in variable N, x =
τ◦2(e; ε) and u = u(τ◦2(e; ε)), then x ≡π2 ε � e, ‖x‖ ≤
(‖e‖ + ‖ε‖ + 1) · 2u and S(x) = S(ε) ∪ T with |T| ≤
‖e‖ + u + 1. If ε is left-recursive in variable N, then so
is x, else x is non-recursive.

These properties are straightforward to prove using induction
on the length of e. The base cases are the basic expressions and
Lemma 4.1 is used to prove the inductive steps. �

6.4. Fine-tuning the semi-join rewriting

The rules of Fig. 5 have been introduced with the purpose of
proving relationships between fragments of the relation algebra
and the semi-join algebra in terms of expressiveness rather
than for optimizing query evaluation. It is therefore to be
expected that these rewrite rules may not always improve query
evaluation performance at every evaluation step, as is illustrated
next.

Example 6.2. Consider the expression e = π1[�1 ◦ �2 ◦ �3].
We have τ(e) = π1[�1 � (�2 � �3)]. Now consider the graph
G = (V , �, E) with V = {m, n1, . . . , n|V|−1}, � = {�1, �2, �3},
E (�1) = {(v, v) | v ∈ V}, E (�2) = {(m, ni) | 1 ≤ i ≤ |V| − 1}
and E (�3) = {(ni, m) | 1 ≤ i ≤ |V| − 1}. This graph is
visualized in Fig. 10.

We shall argue that evaluation of e by first evaluating the
composition and then evaluating the projection is less costly
than evaluation of τ(e). Observe that we have

��2 ◦ �3�G = {(m, m)};
��2 � �3�G = E (�2) .

FIGURE 10. A graph with three edge labels, �1, �2, �3. This graph
is used in Example 6.2.

Due to the intermediate result of evaluating �2 ◦ �3 being much
smaller than the intermediate result of evaluating �2 � �3, the
follow-up composition of �1 with the intermediate query result
{(m, m)} will be much cheaper than the follow-up semi-join of
�1 with the intermediate query result E (�2). Moreover, in this
specific example, algorithms for computing the compositions
involved can easily achieve comparable performance to algo-
rithms for computing the semi-joins involved.

In the following, we explore how the rewrite rules of
Fig. 5 can be adjusted and used for graph query optimization.
Remember that the cost of all operators is influenced primarily
by the size of the evaluation results of its operands. From this
observation, the issue shown in Example 6.2 can be easily
explained: the rewrite rules of Fig. 5 can rewrite an expression
e into an expression e′ such that |�e�G | � |�e′�G |. As a first
step to alleviate this issue, we adjust the rewrite rules of Fig. 5
in such a way that the resulting rules provide the following
strong guarantee: rewriting an expression e always yields and
expression whose evaluation result, on any graph, is guaranteed
to be upper-bounded by the evaluation result of e. We do so by
modifying τ◦i(e; ε) by replacing rewritings of the form g � ε

by π1[g � ε] and of the form ε � g by π2[ε � g].

Proposition 6.2. Let G be a graph, let e be an expression
in N ∗

3 and let ε be an expression. If we use the rewrite rules
of Fig. 5 with the above modifications, then τ◦1(e; ε) and
τ◦2(e; ε) are node expressions and their evaluation yields the
smallest possible sets such that �τ◦1(e; ε)�G |1 = �e � ε�G |1
and �τ◦2(e; ε)�G |2 = �ε � e�G |2.

With a minimal modification to the rewrite rules for τπi(e),
i ∈ {1, 2}, we can also guarantee that τπi(e) minimizes inter-
mediate evaluation results in the same way as the modified
version of τ◦i(e; ε) does. We do so by, additionally, applying
the following two changes to τπi(e):

τπi(b) = πi[b];

τπi(e1 ⊕ e2) = πi[τ(e1) ⊕ τ(e2)],
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in which b is a basic expression and ⊕ ∈ {∩, −}. Using a
straightforward induction argument, we obtain

Proposition 6.3. Let G be a graph and let e be an expression
in N ∗

3 . If we use the rewrite rules of Fig. 5 with the above
modifications, then τπ1(e) and τπ2(e) are node expressions
and their evaluation yields the smallest possible sets such that
�τπ1(e)�G |1 = �e�G |1 and �τπ2(e)�G |2 = �e�G |2.

From Proposition 6.3, we conclude:

Corollary 6.1. Let G be a graph, let e be an expression in
N ∗

3 and i ∈ {1, 2}. If we use the rewrite rules of Fig. 5 with the
above modifications, then we have |�τπi(e)�G | ≤ |�e�G |.

Notice that the modified rewrite rules for τ◦i(e; ε) and τπi(e)
will result in additional projection steps. In practice, we can
easily eliminate such extra evaluation steps by integrating
projection steps into the algorithms for evaluating the other
operators, e.g. by not only using a general-purpose semi-join
algorithm returning a binary relation, but also using semi-
join algorithms computing only the first or second column of
this binary relation. These specialized single-column operators
can be evaluated at least as efficiently as the original opera-
tors and, consequently, including projection steps within other
operators is frequently employed in practical query evaluation
engines [27, 53–57]. This makes an attractive proposition to
eliminate every usage of the projection operators. Hence, even
though strictly speaking the number of evaluation steps slightly
increases by the above changes, this does not translate into
an increase in the evaluation cost of the resultant rewritten
expressions if these operators are properly implemented.

6.5. Dealing with other expensive operators

The semi-join rewrite rules introduced are aimed at optimizing
query evaluation for common usages of compositions and
Kleene-stars in cases where their full expressive power is
unnecessary. In Section 6.1, we argued that also identity, diver-
sity and coprojections are to be avoided. Next, we recog-
nize common usages in which the full expressive power of
identity, diversity and coprojections is unnecessary. To enable
optimization of query evaluation in these common cases, we
introduce the selection operators σ= and σ	= and the anti-semi-
join operators �̄ and �̄. The semantics of these operators is
defined by

�σ=(e)�G = {(n1, n2) | (n1, n2) ∈ �e�G ∧ (n1 = n2)};
�σ	=(e)�G = {(n1, n2) | (n1, n2) ∈ �e�G ∧ (n1 	= n2)};

�e1 �̄ e2�G = {(m, n) | (m, n) ∈ �e1�G ∧
¬∃z (n, z) ∈ �e2�G};

�e1 �̄ e2�G = {(m, n) | (m, n) ∈ �e2�G ∧
¬∃z (z, m) ∈ �e1�G}.

Before we use these newly introduced operators, we classify
these operators in the style of Lemma 6.1.

Lemma 6.2. The operators σ=, σ	=, �̄ and �̄ are expression-
linear.

Next, we look at ways to rewrite common usages of identity
and diversity. As illustrated by Example 4.4, common usages
of identity and diversity involve intersection and difference. In
these usages, identity and diversity are used to restrict query
results to keep only node pairs of the form (n, n) or to restrict
query results to filter out node pairs of the form (n, n). In these
use cases, we can introduce selection operators:

Proposition 6.4. Let e be an expression. We have

1. e ∩ id ≡path id ∩ e ≡path e − di ≡path σ=(e);
2. e ∩ di ≡path di ∩ e ≡path e − id ≡path σ	=(e).

We observe that expression of the form e − di and σ=(e)
are node expressions. Hence, we can add these cases to the
definition of ns(·). Besides the above usages of identity, we
observe that compositions and semi-joins with identity (id) can
always be eliminated.

Finally, we look at ways to rewrite common usages of
coprojections. In Section 3.4, we observed that e1◦π1[e2] ≡path
e1 �π1[e2] ≡path e1 � e2. We use anti-semi-joins to generalize
these rewritings to also cover coprojections:

Proposition 6.5. Let e and e′ be expressions. We have

1. e ◦ π1[e′] ≡path e �̄ e′ and e ◦ π2[e′] ≡path e �̄ π2[e′];
2. π1[e′] ◦ e ≡path π1[e′] �̄ e and π2[e′] ◦ e ≡path e′ �̄ e.

If, additionally, e is a node expression, then also

1. e ∩ π1[e′] ≡path e �̄ e′ and e ∩ π2[e′] ≡path e �̄ π2[e′];
2. e − π1[e′] ≡path e � e′ and e − π2[e′] ≡path e � π2[e′].

6.6. Data-complexity of rewritten expressions

We will consider the complexity of evaluating expressions
e and the complexity of evaluating the rewritten expression
τ(e) (using the rewrite rules of Section 6.3). To do so, we
use the usual query evaluation complexity framework [59].
The worst-case complexity of evaluating any expression e′ is
O(eval-steps(e′) · c), where eval-steps(e′) is the number of
evaluation steps and c is the maximum cost for performing
a single evaluation step. Hence, the query complexity—the
cost of evaluating an expression in terms of the size of the
expression given a fixed graph—is O(eval-steps(e)) and the
data complexity—the cost of evaluating a query in terms of the
size of the graph given a fixed query—is O(c).

We can verify that the rewrite rules τ(e), τπ1(e) and τπ2(e)
reduce the data-complexity in two distinct ways. First, the
number of expensive non-linear operators (composition and
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Kleene-star) is reduced in favor of cheaper expression-linear
operators (possibly reducing c, but never increasing it). Second,
by Corollary 6.1, the size of evaluation results for subexpres-
sions is minimized whenever possible, reducing the cost of
evaluating non-rewritten operators.

The cost of the reduction in the data-complexity of evalu-
ating an expression optimized by τ(e), τπ1(e) or τπ2(e) is an
increase in the query-complexity of evaluating the optimized
expression. This increase in the query-complexity is caused by
an increase in the evaluation size and, in the worst case, this is
an exponential increase:

Example 6.3. Consider the expressions e and e′ = τπ1(e)
of Example 6.1. By Theorem 4.1, we have e′ ≡π1 e′. During
rewriting, the expression size did not increase, while the eval-
uation size did sharply increase: we have ‖e‖ = ‖e′‖ = 7,
eval-steps(e) = 3 and eval-steps(e′) = 7. As a consequence,
evaluating e and e′ by evaluating each of the operators involved
is possible in worst-case O(3 · |E (�)|2) and O(7 · |E (�)|),
respectively. Hence, any increase in the query-complexity is
accompanied by a sharp decrease in the data-complexity.

Even with a worst-case exponential increase in the query-
complexity, Theorem 4.1 guarantees that the query complexity
is linearly upper-bounded by the size of the original query.
Hence, when queries are small and the data graphs are large,
which is usually the case, the increase of the query com-
plexity is a good trade-off if the data complexity decreases
significantly.

7. CONCLUSION AND FUTURE WORK

The main theme of this paper is the relationship between the
relation algebra and the semi-join algebra. We studied these
relationships with query optimization in mind: we aimed
at rewriting relation algebra expressions containing costly
composition and Kleene-star operators into semi-join algebra
expressions containing less costly semi-join and fixpoint
operators. To do so, we identified sufficient conditions on
relation algebra expressions that allow us to perform such
rewritings and we have shown that these conditions are not
too restrictive.

To make the theory applicable, we presented rewrite rules
which can be used to rewrite (parts of) relation algebra expres-
sions that satisfy the conditions identified. In addition, we have
provided a complexity analysis that shows that our rewrite rules
lead to only a well-bounded increase in the number of steps
needed to evaluate the rewritten queries (while, at the same
time, strictly reducing the number of costly composition and
Kleene-star operations).

Since the relation algebra and the semi-join algebra cor-
respond to FO[3] and FO[2], respectively, our rewrite rules
also provided new insights into the relationship between these
first-order logics. In addition, by specializing our results to

node-labeled sibling-ordered trees, we were able to obtain new
insights in the relationship between the expressive power of full
first-order logic and FO[2] on such trees.

Even though our rewrite rules do not completely solve the
efficient query evaluation problem for the relation algebra,
we have been able to verify that our rewrite rules capture
optimizations that have not yet been fully exploited by existing
database systems (see, e.g. Hellings [60, Chapter 11]). Hence,
a practical empirical study of a query evaluation system that
combines our rewrite rules with other query optimization and
evaluation techniques is an obvious avenue of further research.
To illustrate this, we consider graph querying in social networks
such as visualized in Fig. 1. For users, a core feature of social
networks is to connect with old and new friends. To support
this, several social networks will suggest new friends to users
by suggesting friends-of-friends that are not already friends.
These friends-of-friends can be retrieved via the query

SuggestFriends = (FriendOf ◦ FriendOf) − (FriendOf ∪ id).

If we want to provide Alice with friend suggestions, we simply
evaluate the above query and then select all nodes m such that
the pair (Alice, m) is in the result of query SuggestFriends. This
approach is far from optimal: we ran a complex query on the
social network, after which we selected and used only a very
small portion of the retrieved data. As social networks tend
to be extremely large graphs, this approach is unacceptably
expensive.

A more practical query language would allow us to select the
node Alice within the query, which allows the query optimizer
to take advantage of the selection to simplify query evaluation.
To illustrate this, we can consider using a simple node-selection
operator 〈Alice〉 to retrieve friend suggestions for Alice:

SuggestAliceFriends = π2[〈Alice〉 ◦
((FriendOf ◦ FriendOf) − (FriendOf ∪ id))].

We observe that evaluating the query SuggestAliceFriends as-
is will be as inefficient as the original approach. A standard
approach toward query optimization in existing database sys-
tem is to push down selections. We can do so in this example
by pushing the 〈Alice〉-selection through composition and dif-
ference. These selections enable additional semi-join rewrites
and, consequently, the above SuggestAliceFriends-query can be
optimized to the path-equivalent expression

π2[(〈Alice〉 � FriendOf) � (FriendOf �̄

π2[(〈Alice〉 � FriendOf) ∪ 〈Alice〉])],

which is straightforward to evaluate in a highly efficient man-
ner. Our initial look at combining our semi-joins rewrite rules
with traditional query optimization techniques shows many
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promising opportunities, including rewrite techniques that can
be used to establish the above rewriting [60].

Other directions for future work include the following:

1. In this paper, we have introduced rewriting techniques
for the semi-join algebra specialized to binary relations.
The semi-join algebra has also been studied extensively
for traditional relational databases (see, e.g. [22–25])
and several of its expressiveness properties and query
evaluation benefits have been identified and used in
practice. We plan to investigate how our techniques can
be generalized and be of benefit for relational database
query optimization and evaluation.

2. The intersection and difference operators limit the
applicability of our rewriting techniques. For several
restricted graph structures, well-known collapse results
exist to eliminate intersection and difference (see e.g. [6,
18, 47]). Unfortunately, these known elimination results
blow up the size of the resulting query excessively. Still,
it is worthwhile to investigate whether more practical
approaches exist to eliminate intersection and differences
in the scope of semi-join based query optimization.
At this point, we also notice that the combination of
composition, intersection and difference leads to cyclic
joins, for which it is known that only multi-way join
algorithms can answer these optimally [61, 62].7

3. As argued in the Introduction, the strength of the graph
query language N ∗

3 is navigation. Beyond navigation,
the expressive power of N ∗

3 is rather limited, even with
respect to basic counting. The language is, for example,
incapable of expressing that nodes have a minimum num-
ber of incoming or outgoing edges. For FO[2] and FO[3]
these limitations are usually lifted by adding so-called
counting quantifiers [31]. Such counting quantifiers can
also be added to N ∗

3 and N fp
2 . It is open to determine

to which extent our rewrite rules and query optimization
results are generalizable toward these languages.
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