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ABSTRACT
Many graph query languages rely on the composition operator to

navigate graphs and select nodes of interests, even though evalu-

ating compositions of relations can be costly. Often, this need for

composition can be reduced by rewriting towards queries that use

semi-joins instead. In this way, the cost of evaluating queries can

be significantly reduced.

We study techniques to recognize and apply such rewritings.

Concretely, we study the relationship between the expressive pow-

er of the relation algebras, that heavily rely on composition, and

the semi-join algebras, that replace the composition operator in

favor of the semi-join operators.

As our main result, we show that each fragment of the relation

algebraswhere intersection and/or difference is only used on edges

(and not on complex compositions) is expressively equivalent to

a fragment of the semi-join algebras. This expressive equivalence

holds for node queries that evaluate to sets of nodes. For practi-

cal relevance, we exhibit constructive steps for rewriting relation

algebra queries to semi-join algebra queries, and prove that these

steps lead to only a well-bounded increase in the number of steps

needed to evaluate the rewritten queries.

In addition, on node-labeled graphs that are sibling-ordered

trees, we establish new relationships among the expressive power

of Regular XPath, Conditional XPath, FO-logic, and the semi-join

algebra augmented with restricted fixpoint operators.

CCS CONCEPTS
• Theory of computation → Database query processing and
optimization (theory); Logic and databases; Database query lan-
guages (principles); Finite Model Theory;
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1 INTRODUCTION
The graph data model (representing labeled binary relations) is a

versatile and natural data model for representing RDF data, social

networks, gene and protein networks, and other sources of data.

Example 1.1. In Figure 1 we show a simple social network rep-

resented by graph data. Its nodes represent objects corresponding

to persons and its labeled edges represent various semantic rela-

tionships between these persons. In this example, we have the Par-
entOf and FriendOf relationships. In Figure 2 we show the same

data represented as labeled binary relations.

Alice Bob

Carol

ParentOf ParentOf

Dan

ParentOf

Faythe

ParentOf

Grace

ParentOf

PeggyFriendOf FriendOf

Victor
FriendOf

Wendy
FriendOf

Figure 1: An example of social network graph data.

ParentOf FriendOf
Alice Carol Alice Victor

Bob Carol Bob Wendy

Carol Dan Dan Peggy

Carol Faythe Faythe Peggy

Faythe Grace Peggy Faythe

Figure 2: Labeled binary relations representing the graph
data in Figure 1.
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To query such graph data, many navigational query languages

have been developed which, at their core, use a fragment of the

relation algebra of Tarski [25], augmented with the Kleene-star

operator (transitive closure). Examples of such relation-algebra-

inspired query languages include XPath and its many formaliza-

tions [2, 3, 5, 20, 21, 26, 27], GXPath [19], the (nested) regular path

queries [1], and the navigational expressions [7, 8, 10, 12, 24]. In

these languages, graph navigation is primarily supported by com-
position (◦). To see this, consider the query defined by the following
relation algebra expression:

ParentOf ◦ ParentOf ◦ FriendOf .

This query searches for all pairs of people (m,n) such that n is a

friend ofm’s grandchild. When applied to the data shown in Fig-

ure 1, it returns the binary relation

Alice Peggy

Bob Peggy

As another example, consider the expression

π1[ParentOf ◦ ParentOf ◦ ParentOf ] ◦ FriendOf ,

which defines the query that yields the set of all pairs of great-

grandparents and their friends. Indeed, in this expression, the pro-

jection

π1[ParentOf ◦ ParentOf ◦ ParentOf ]

returns the set of pairs of the form (m,m) where m is a great-

grandparent, i.e., the pairs {(Alice,Alice), (Bob,Bob)}. When this

relation is composed with the FriendOf relation, we get the desired
result {(Alice,Victor), (Bob,Wendy)}.

These examples illustrate that the composition operator cap-

tures the intent of graph navigation in a simple and intuitive way,

which explains why many graph query languages rely on it. In the

setting of big data, this use of composition for graph navigation

has a major drawback, however. Computing query results by eval-

uating each of the compositions involved is costly, both in terms

of runtime and in terms of memory requirements.

Instead of relying on composition for graph navigation, one can

consider using the semi-join operators⋉ and⋊. Rather than com-

puting the composition of relations, semi-joins instead only de-

termine the pairs that are involved in such compositions. In par-

ticular, when R and S are binary relations, the left semi-join R⋉ S

determines the pairs in R that can be composed with pairs in S, i.e.,

{(m,n) ∈ R | ∃z (n, z) ∈ S} and the right semi-join R⋊S determines

the pairs in S that can be composed with pairs in R, i.e., {(m,n) ∈
S | ∃z (z,m) ∈ R}. Using the semi-join operators we can rewrite

the above expression π1[ParentOf ◦ParentOf ◦ParentOf ]◦FriendOf
into the following equivalent expression:

π1[ParentOf ⋉ (ParentOf ⋉ ParentOf )]⋊ FriendOf .

The main advantage of replacing compositions by semi-joins in

rewriting is that the evaluation of the resulting expression (by eval-

uating each operation involved) is possible in linear time with re-

spect to the size of relations, whereas evaluation of the original

expression takes quadratic time. This also holds in general, as it is

well-known that evaluating semi-joins is more efficient than eval-

uating compositions, even in the worst-case [18].

To achieve these improvements in practice, we can add the semi-

join operators to appropriate query languages. This does, how-

ever, put the burden of efficient query evaluation on the users:

in the above rewriting, we needed both the left and right semi-

join operators. With respect to the former, we additionally had to

insert parenthesis to control the order of evaluation of this non-

associative operator. So, even in this simple example, the result-

ing expression becomes less intuitive and harder to write. There-

fore, we believe that in modern graph database systems, which

use declarative high-level graph query languages, such rewritings

should be performed for the users, rather than by the users.
As an alternative to manual rewriting, we study ways to apply

semi-join optimizations automatically. Towards this goal, we study

the relation algebras—augmented with the Kleene star—and how

they relate to the semi-join algebras obtained by replacing compo-

sition by semi-joins and the Kleene-star by appropriate less-costly

forms of fixpoint iteration.

To the best of our knowledge, we are the first to study the rela-

tionships between the expressive power of the relation algebra and

the semi-join algebra in their full generality. We should point out

that the study of semi-joins has already received attention in the

setting of Codd’s relational algebra [13, 15–17]. In this setting, the

semi-join version of the relational algebra is studied as a query lan-

guage that has limited expressive power, cheap query evaluation,

and for which many decision problems are decidable.

In the design and implementation of relational database sys-

tems, basic semi-join rewrite rules are well-known and the au-

tomatic usage of semi-join steps plays an important role in the

evaluation of distributed joins [4] and the evaluation of acyclic

joins (Yannakakis algorithm) [28, 31]. In both cases, these semi-

join steps are used as reducers that provide a preprocessing step

aimed at reducing the size of intermediate relations before join-

ing them. A similar reducer-based role for the semi-join has also

been studied in the context of the multiset relational algebra [23].

This focus on using the semi-join as a reducer sharply contrasts

with our usage, as we aim at eliminating compositions altogether

in favor of semi-joins.

It is well-known that the relation algebra has the same expres-

sive power as FO[3], the first-order logic in which formulae are

restricted to having three variables [10, 25].We show that the semi-

join algebra has the same expressive power as FO[2]. Hence, our

work also studies relationships between FO[3] and FO[2].

Our main results are as follows:

(1) We establish sufficient conditions on a relation algebra ex-

pression that, when satisfied, imply that we can rewrite the expres-

sion into a semi-join algebra expression that, when interpreted as

a node query on graphs, is equivalent to the original expression.

(2) We extend the above results towards relation algebra aug-

mented with the Kleene-star operator. For this augmented algebra,

we show a collapse on the level of node queries towards the semi-

join algebra augmented with fixpoint iteration.

(3) To substantiate the practical usefulness of the above col-

lapses, we present a constructive rewrite procedure to automat-

ically rewrite expressions and subexpressions written in the re-

lation algebra into semi-join algebra expressions. If the input to

this procedure is an expression of length s and using at most u
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union-operations, then application of the rewrite procedure we

propose yields a rewritten expression that can be evaluated in at

most s + u ≤ 2 · s evaluation steps, demonstrating the practical

feasibility of our rewrite techniques.

(4) We only place conditions on the usage of intersection and

difference. To show that these restrictions are not too severe, we

show that every query expressible in the semi-join algebra can be

rewritten into an equivalent expression in the relation algebra that

satisfies all restrictions we put on intersection and difference. We

provide a similar rewriting for the semi-join algebra augmented

with fixpoint iteration, which we rewrite towards the relation al-

gebra augmented with the Kleene-star.

(5) In the setting of finite sibling ordered trees [20], we show

that our results imply that first-order logic on trees (FO
tree

) col-

lapses to FO[2] (i.e., the semi-join algebra) with respect to node

queries.

2 GRAPH DATA MODEL AND QUERIES
In this work, we use an edge-labeled graph data model. A graph is

a triple G = (N, Σ,E), with N a finite set of nodes, Σ a finite set of

edge labels, and E : Σ → 2
N×N

a function mapping edge labels to

edge relations.

We define a query as a mapping from graphs to binary relations

overN. It is useful to adopt the following notations: if R is a binary

relation, then R|1 = {m | ∃n (m,n) ∈ R} and R|2 = {n | ∃m (m,n) ∈
R} denote the first and second column of R. If a query maps every

graph into a set of identical pairs of nodes, i.e. into a subset of the

pairs {(n,n) | n ∈ N}, then we call it a node query. The intuition
is that we interpret a pair (n,n) as a representation for the node n
and, as such, a node query “maps” each graph into a subset of the

nodes of that graph.

In subsequent sections, we consider expressions of various al-
gebraic languages and restricted first-order logic languages which

define queries. If q is such an expression, then we denote the eval-
uation of q on graph G by [[q]]G . If an expression defines a node

query, we call it a node expression.

2.1 Equivalence notions
To reason about the soundness of rewrite rules for expressions, we

need notions of expression equivalence. We consider three such

notions: path-equivalence, left-projection-equivalence, and right-

projection-equivalence. Let q1 and q2 be expressions. We say that

q1 and q2 are

path-equivalent, denoted by q1 ≡
path

q2, if, for every graph G,

[[q1]]G = [[q2]]G ;
left-projection-equivalent, denoted byq1 ≡π1 q2, if, for every graph

G, [[q1]]G |1 = [[q2]]G |1; and
right-projection-equivalent, denoted by q1 ≡π2 q2, if, for every

graph G, [[q1]]G |2 = [[q2]]G |2.

Clearly, expressions that are path-equivalent are also left- and

right-projection-equivalent. The reverse is not true in general. In-

deed, the expressions R◦S and R⋉S are left-projection-equivalent,

but not path-equivalent. Likewise, the expressions R ◦ S and R⋊ S

are right-projection-equivalent, but not path-equivalent. Finally,

we observe that the three equivalence notions coincide on the class

of node expressions.

Example 2.1. Looking back at the example queries used in the

Introduction, we formally have

ParentOf ⋉ (ParentOf ⋉ ParentOf ) ≡π1
ParentOf ◦ ParentOf ◦ ParentOf

and also

π1[ParentOf ◦ ParentOf ◦ ParentOf ] ◦ FriendOf ≡
path

π1[ParentOf ⋉ (ParentOf ⋉ ParentOf )]⋊ FriendOf .

2.2 Expressive power
The equivalence notions introduced in the previous sections ex-

tend naturally to subsumption and equivalence notions between

classes of expressions.

Let z ∈ {path,π1,π2}. We say that the class of expressions L1 is

z-subsumed by the class of expressions L2, denoted by L1 ⪯z L2,

if every expression in L1 is z-equivalent to an expression in L2.

We say that the classes of expressions L1 and L2 are z-equivalent,
denoted byL1 ≡z L2, ifL1 ⪯z L2 andL2 ⪯z L1. We say thatL1

and L2 are projection-equivalent, denoted by L1 ≡π L2, if L1 ≡π1
L2 and L1 ≡π2 L2.

3 NAVIGATIONAL GRAPH QUERIES
In this work, we mainly study the relationship between the ex-

pressive power of the relation algebra and the semi-join algebra,

which are algebraic representations of FO[3] and FO[2], respec-

tively. In our study, we also include iteration—in the form of tran-

sitive closure—as iteration is essential in graph querying.

3.1 Relation algebra and the semi-join algebra
The graph expressions are defined by the grammar

e := ∅ | id | di | ℓ | ℓ⌢ | πj [e] | π j [e] |

e ◦ e | e ⋉ e | e ⋊ e | e ∪ e | e ∩ e | e − e,

in which ℓ ∈ Σ and j ∈ {1, 2}. Let G = (N, Σ,E) be a graph and

let e be an expression. The semantics of evaluation is defined as

follows:

[[∅]]G = ∅;

[[id]]G = {(m,m) | m ∈ N};

[[di]]G = {(m,n) | m,n ∈ N ∧m , n};

[[ℓ]]G = {(m,n) | (m,n) ∈ E (ℓ)} (with ℓ ∈ Σ);

[[ℓ⌢]]G = {(n,m) | (m,n) ∈ E (ℓ)} (with ℓ ∈ Σ);

[[πj [e]]]G = {(m,m) | m ∈ [[e]]G |j } (with j ∈ {1, 2});

[[π j [e]]]G = [[id]]G − [[πj [e]]]G (with j ∈ {1, 2});

[[e1 ◦ e2]]G = {(m,n) | ∃z (m, z) ∈ [[e1]]G ∧ (z,n) ∈ [[e2]]G};

[[e1 ⋉ e2]]G = {(m,n) | (m,n) ∈ [[e1]]G ∧ ∃z (n, z) ∈ [[e2]]G};

[[e1 ⋊ e2]]G = {(m,n) | (m,n) ∈ [[e2]]G ∧ ∃z (z,m) ∈ [[e1]]G};

[[e1 ⊕ e2]]G = [[e1]]G ⊕ [[e2]]G (with ⊕ ∈ {∪,∩,−}).

The relation algebra, which we denote by N3, allows every op-

erator above except for the semi-joins (⋉ and ⋊). The semi-join
algebra, which we denote by N2, allows every operator above ex-

cept for composition (◦).



DBPL 2017, September 1, 2017, Munich, Germany J. Hellings, C. L. Pilachowski, D. Van Gucht, M. Gyssens, and Y. Wu

Example 3.1. The queries

Q
1
= π1[ParentOf ◦ π 1[OwnsPet] ◦ ResearcherAt];

Q
2
= π1[ParentOf ⋉ (π 1[OwnsPet]⋉ ResearcherAt)],

both return people that are parents of researchers that do not own

any pets. The query Q
1
is a relation algebra expression and the

query Q
2
is a semi-join algebra expression. Both expressions are

node expressions and we have Q
1
≡
path

Q
2
. (Observe that, more

generally, for any expression e , π1[e] and π2[e] are node expres-

sions.)

3.2 Adding iteration
The relation algebra, as a graph query language, is usually aug-

mentedwith a general Kleene-star operator (transitive closure): if e
is an expression, then so is [e]∗. The semantics of evaluating [e]∗ on

graph G is [[[e]∗]]G =
⋃

0≤i [[e
i ]]G with e0 = id and ek = e ◦ ek−1.

We denote the relation algebra, augmented with the Kleene-star,

by N∗
3
.

Example 3.2. The query

Q
3
= π1[[ParentOf ◦ π 1[OwnsPet]]∗ ◦ ResearcherAt]

returns people that are ancestors of a chain of descendants that do

not own pets, where the youngest descendant is also a researcher.

As an FO[2]-like counterpart of the Kleene-star, which is inher-

ently based on the composition, we introduce a form of fixpoint

iteration. We add the operator fpi,N[e union b] with i ∈ {1, 2}, b
an expression, e an expression, and N the single free variable of e .
We do not allow N to occur elsewhere.

The semantics of evaluating fpi,N[e union b] on graph G is

defined next. Let s0 := [[b]]G |i and define sj := sj−1∪[[e]]G+sj−1 |i in
which G+sj−1 is the graph obtained from G by interpreting the set

of nodes sj−1 as the edge relation {(n,n) | n ∈ sj−1} labeled withN.
Due to monotonicity of ∪, there is bound to exist a k , k ≤ |N|, such
that sk = sk+1. We define [[fpi,N[e union b]]]G = {(n,n) | n ∈ sk }.

Example 3.3. Let e = ParentOf ⋉ (π 1[OwnsPet] ⋉ N). This ex-
pression has a single free variable N. Now consider the queries Q

3

of Example 3.2 and

Q
4
= fp

1,N[e union ResearcherAt].

We have Q
3
≡
path

Q
4
and we observe that Q

4
does not have free

variables.

We only introduce fixpoint iteration here as a less-costly alter-

native to the Kleene-star. For this purpose, general fixpoints are too

strong, however. Therefore, we put restrictions on the expression

e used in fpi,N[e union b]: if i = 1, then e must be right-recursive
in N and, if i = 2, then e must be left-recursive in N.

Let x ∈ {left, right}. If N is a variable, then the expression N

is x-recursive in N. Expressions of the form e = e1 ∪ e2 are x-
recursive in N if e1 and e2 are x-recursive in N. Expressions of the
form e = fpj,N′[e

′ union b ′] arex-recursive inN ifb ′ isx-recursive
in N (j = 1 if x = right and j = 2 if x = left). Expressions of the

form e = e1 ⋉ e2 are right-recursive in N if e1 does not have free
variables and e2 is right-recursive in N. Finally, expressions of the
form e = e1 ⋊ e2 are left-recursive in N if e2 does not have free

variables and e1 is left-recursive in N.

Example 3.4. The expression e = ParentOf ⋉(π 1[OwnsPet]⋉N),
as used in query Q

4
of Example 3.3, is right-recursive. The expres-

sion e ′ = N⋊FamilyOf ∪N⋊FriendOf is left-recursive. The query

Q
5
= fp

2,N[e
′ union OwnsPet⌢]

yields pet owners and people that are related to pet owners via

friend and family relations.

We denote the semi-join algebra, augmented with this restricted

form of fixpoint iteration, by N
fp
2
.

3.3 Relationships with other languages
Observe that the relation algebra and the semi-join algebra are

single-sorted languages, i.e., every expression operates on binary

relations and yields binary relations. This is in contrast with well-

known languages such as GXPath and KAT [14, 19], in which ex-

pressions can yield unary relations (sets of nodes) or binary rela-

tions. The results in this paper indicate that it is not necessary to

have these two-sorted expressions from the point of view of auto-

matic query optimization. Hence, we prefer using simpler single-

sorted languages instead.

We finish this section with some observations about the first-

order counterparts of the relation algebra and the semi-join alge-

bra. Let G = (N, Σ,E) be a graph with Σ = {ℓ1, . . . , ℓ |Σ |}. We write

FO[k] to denote the first-order logic where variables are restricted
to a set of at most k variables over the structure (N; ℓ1, . . . , ℓ |Σ |),
in which ℓj , 1 ≤ j ≤ |Σ|, represents the edge relation E

(
ℓj
)
.

It is well-known that the relation algebra has the same expres-

sive power as FO[3] formulae with two free variables [10, 25]. Like-

wise, based on the equivalence of FO[2] and themulti-dimensional

modal logicMLR2 [22], we can establish the following proposition.
(Due to space limitation we omit the proof.)

Proposition 3.5. We have FO[2] ≡
path

N2. The language N
fp
2

is path-subsumed by FO[2] to which either inflationary fixpoints or
infinitary connectives have been added.

4 REWRITING THE RELATION ALGEBRAS
In this section, we explore ways to automatically rewrite expres-

sions with composition and Kleene-star operators into expression

with semi-join and fixpoint operators. The aim of this is to obtain

queries that can be evaluated more efficiently.

The rewrite rules we present try to eliminate costly composition

and Kleene-star operations. Towards this goal, the following obser-

vations are useful. Expressions of the form fj [e], with f ∈ {π ,π }
and j ∈ {1, 2}, are node expressions. We identify two situations in

which the presence of such node expressions allow for optimiza-

tions by eliminating composition in favor of semi-joins:

(1) The expression itself is a node expression due to the usage of

projections or coprojections at the outer level. An example is the

expression π1[e1 ◦ e2], where a straightforward rewriting yields

π1[e1 ◦ e2] ≡path
π1[e1 ⋉ e2].

(2) In a composition e1 ◦e2, one of the two expressions involved
is a node expression. An example is the expression e1 ◦ π1[e2],
where a straightforward rewriting yields e1 ◦ π1[e2] ≡

path
e1 ⋉

π1[e2].
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Since the semantics of the Kleene-star is defined in terms of

composition, similar observations can be made with respect to the

Kleene-star.

To support the rewritings of compositions towards semi-joins

and Kleene-stars to fixpoints in cases similar to the situations dis-

cussed above, we propose the rewrite rules of Figure 3. We will

argue later that τ (e) ≡
path

e , τπ1 (e) ≡π1 e , and τπ2 (e) ≡π2 e .
We observe that in these rewrite rules expressions restricted to

contain only edge labels ℓ, ℓ ∈ Σ, conversed edge labels ℓ⌢, the

relations ∅, id, and di, and the binary operators ∪, ∩, and − are

expressible in both N3 and in N2. We refer to these expressions

as basic expressions. The rewrite rules we consider do not change

these basic expressions. If e is an expression inN∗
3
, then τ (e) results

in a path-equivalent expression. Likewise, τπ1 (e) and τπ2 (e) result
in left-, respectively, right-projection-equivalent expression.

Example 4.1. Consider the query

Q
6
= π1[((WorksOn ◦WorksOn⌢) ∩ FriendOf ) ◦ EditorOf ] ◦

StudentOf .

This query returns pairs of professors and their students, such that

the professor is friends with an editor with whom the professor

collaborates on a project. For clarity, we abbreviate each edge label

in Q
6
, resulting in π1[((W ◦W⌢)∩F)◦E]◦S. We have the following:

τ (Q
6
) = τπ2 (π1[((W ◦W⌢) ∩ F) ◦ E])⋊ τ (S)

= π1[τπ1 (((W ◦W⌢) ∩ F) ◦ E)]⋊ S

= π1[τ◦1 ((W ◦W⌢) ∩ F ;τπ1 (E))]⋊ S

= π1[(τ (W ◦W⌢) ∩ τ (F))⋉ E]⋊ S

= π1[((τ (W ) ◦ τ (W⌢)) ∩ F)⋉ E]⋊ S

= π1[((W ◦W⌢) ∩ F)⋉ E]⋊ S.

We shall prove (Theorem 4.4) that Q
6
and τ (Q

6
) are path-equiv-

alent. This rewriting results in a query in which two out of three

applications of composition are eliminated in favor of semi-joins.

In Example 6.4 (Section 6), we shall show that the last remaining

composition step is unavoidable.

The rules of Figure 3 depend on the ability to determine if an

expression e is a node expression. This is, in general, hard to deter-
mine without evaluation of e . We can, however, use the semantics

of N∗
3
to define a predicate ns(e) that evaluates to true only if the

expression e is a node expression:

ns(∅) = ns(id) = True;

ns(di) = False;

ns(ℓ) = ns(ℓ⌢) = “ℓ ∈ Σ is a node label”;

ns(fje) = True (with f ∈ {π ,π } and j ∈ {1, 2});

ns(e1 ◦ e2) = ns(e1) ∧ ns(e2);

ns(e1 ⋉ e2) = ns(e2 ⋊ e1) = ns(e1);

ns(e1 ∪ e2) = ns(e1) ∧ ns(e2);

ns(e1 ∩ e2) = ns(e1) ∨ ns(e2);

ns(e1 − e2) = ns(e1) ∨ (e2 = di);

ns([e]∗) = ns(e);

ns(fpj,N[e union b]) = True (with j ∈ {1, 2}); .

We not only claim soundness of the rewrite rules of Figure 3.

We also argue that the rewrite rules are practically useful for graph

query optimization. Thereto, we also analyze the complexity of the

expression resulting from the rewritten expression in terms of the

expression size, the number of steps needed for evaluation, and the

complexity of the operations involved. In this analysis, we use the

following terminology:

Definition 4.2. The size of an expression e , denoted by ∥e∥, is
the number of operations in e . We have

∥∅∥ = ∥id∥ = ∥di∥ = ∥ℓ∥ = ∥ℓ⌢∥ = 0;

∥ fj [e]∥ = 1 + ∥e ∥;

∥e1 ⊗ e2∥ = 1 + ∥e1∥ + ∥e2∥;

∥e1 ⊕ e2∥ = 1 + ∥e1∥ + ∥e2∥;

∥[e]∗∥ = 1 + ∥e ∥;

∥N∥ = 0;

∥fpj,N[e union b]∥ = 1 + ∥e ∥ + ∥b∥,

with f ∈ {π ,π }, j ∈ {1, 2}, ⊗ ∈ {◦,⋉,⋊}, and ⊕ ∈ {∪,∩,−}.

The subexpression set of e , denoted by S(e), is the set of all unique
non-atomic subexpressions that must be evaluated:

S(∅) = S(id) = S(di) = S(ℓ) = S(ℓ⌢) = ∅;

S(fj [e]) = { fj [e]} ∪ S(e);

S(e1 ⊗ e2) = {e1 ⊗ e2} ∪ S(e1) ∪ S(e2);

S(e1 ⊕ e2) = {e1 ⊕ e2} ∪ S(e1) ∪ S(e2);

S([e]∗) = {[e]∗} ∪ S(e);

S(N) = ∅;

S(fpj,N[e union b]) = {fpj,N[e union b]} ∪ S(e) ∪ S(b).

The evaluation size of e , denoted by eval-steps(e), is defined by

eval-steps(e) = |S(e)|.

Example 4.3. Consider the query

Q
7
= ((ℓ ◦ ℓ) ◦ (ℓ ◦ ℓ)) ◦ ((ℓ ◦ ℓ) ◦ (ℓ ◦ ℓ)).

We have ∥Q
7
∥ = 7, whereas we have eval-steps(Q

7
) = 3. Indeed,

this expression can be evaluated in three steps, namely by first

evaluating e1 = ℓ ◦ℓ, next e2 = e1 ◦e1, and, finally, e = e2 ◦e2. Now
consider the query

Q′
7
= ℓ ◦ (ℓ ◦ (ℓ ◦ (ℓ ◦ (ℓ ◦ (ℓ ◦ (ℓ ◦ ℓ)))))),

for which we have Q
7
≡
path

Q′
7
and ∥Q′

7
∥ = eval-steps(Q′

7
) = 7.

We observe that the only rewrite rule of Figure 3 that increases

the expression size significantly is the rewrite rule τ◦i (e1 ∪ e2; ε) =
τ◦i (e1; ε) ∪ τ◦1 (e2; ε), as this rewrite rule duplicates the expression
ε . By u(τ (e)), u(τπj (e)), and u(τ◦j (e; ε)) (j ∈ {1, 2}), we denote

the number of times the rewrite rule τ◦i (e1 ∪ e2; ε) = τ◦i (e1; ε) ∪
τ◦1 (e2; ε) has been applied in the rewriting of e using the rewrite

rules τ (e), τπj (e), or τ◦j (e; ε
′), respectively.

Using structural induction on relation algebra expressions, we

can establish the following main result about the soundness and

evaluation complexity of the rewrite rules in Figure 3 (proof omit-

ted):

Theorem 4.4. Let e be an expression in N∗
3
.
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τ (b) = b τπi (b) = b τ◦1 (b; ε) = b ⋉ ε τ◦2 (b; ε) = ε ⋊ b

τ (fj [e]) = fj [τπj (e)] τπi (fj [e]) = fj [τπj (e)] τ◦1 (fj [e]; ε) = fj [τπj (e)]⋉ ε τ◦2 (fj [e]; ε) = ε ⋊ fj [τπj (e)]

τ (e1 ◦ e2) = ◦
path

(e1; e2) τπi (e1 ◦ e2) = ◦πi (e1; e2) τ◦i (e1 ◦ e2; ε) = τ◦i (e1;τ◦i (e2; ε))

τ (e1 ∪ e2) = τ (e1) ∪ τ (e2) τπi (e1 ∪ e2) = τπi (e1) ∪ τπi (e2) τ◦i (e1 ∪ e2; ε) = τ◦i (e1; ε) ∪ τ◦i (e2; ε)

τ (e1 ⊕ e2) = τ (e1) ⊕ τ (e2) τπi (e1 ⊕ e2) = τ (e1) ⊕ τ (e2) τ◦1 (e1 ⊕ e2; ε) = (τ (e1) ⊕ τ (e2))⋉ ε τ◦2 (e1 ⊕ e2; ε) = ε ⋊ (τ (e1) ⊕ τ (e2))

τ ([e]∗) = [τ (e)]∗ τπi ([e]
∗) = id τ◦i ([e]

∗
; ε) = fpN,i [τ◦i (e;N) union ε]

◦
path

(e1; e2) =


τ (e1) ◦ τ (e2) if e1 and e2 are not node expressions;

τ (e1)⋉ τπ1 (e2) if e2 is a node expression;

τπ2 (e1)⋊ τ (e2) if e1 is a node expression.

◦πi (e1; e2) =

{
τ◦1 (e1;τπ1 (e2)) if i = 1;

τ◦2 (e2;τπ2 (e1)) if i = 2.

Figure 3: Rewrite rules aimed at rewriting compositions to semi-joins and Kleene-star operators to fixpoint operators. In these
rules, b is a basic subexpression, ε is an already rewritten expression, f ∈ {π ,π }, i ∈ {1, 2}, j ∈ {1, 2}, ⊕ ∈ {∩,−}, and N is a fresh
variable.

(i) Let u = u(τ (e)). We have τ (e) ≡
path

e , eval-steps(τ (e)) ≤

u + ∥e ∥, and ∥τ (e)∥ = Θ(∥e ∥ · 2u ) in the worst case.
(ii) Let i ∈ {1, 2} and u = u(τπi (e)). We have τπi (e) ≡πi e ,

eval-steps(τπi (e)) ≤ u + ∥e ∥, and ∥τπi (e)∥ = Θ(∥e∥ · 2u )

in the worst case.

The rewrite rules of Figure 3 are sound, as stated in Theorem 4.4,

but not complete, as illustrated by the following example:

Example 4.5. Consider the query

Q
8
= (FriendOf ∩ (FriendOf ◦ FriendOf )) − (id ∪ di).

Due to the presence of intersection, The rewritings τ (Q
8
), τπ1 (Q8),

and τπ2 (Q8) do not result in an expression in (a fragment of)N2 or

N
fp
2
. Since Q

8
always evaluates to ∅, however, we have Q

8
≡
path

∅,

and ∅ is, by definition, in N2 and N
fp
2
.

5 REWRITING AND QUERY OPTIMIZATION
The rules of Figure 3 are purposely kept simple. These rewrite rules

will not necessarily improve query evaluation performance at ev-

ery evaluation step, as illustrated by the following example:

Example 5.1. Consider the query

Q
9
= π1[ℓ1 ◦ ℓ2].

We have τ (Q
9
) = π1[ℓ1⋉ℓ2]. Now consider the graph G = (N, Σ,E)

with N = {m,n1, . . . ,n |N |−1}, Σ = {ℓ1, ℓ2}, E (ℓ1) = {(m,ni ) | 1 ≤

i ≤ |N| − 1}, and E (ℓ2) = {(ni ,m) | 1 ≤ i ≤ |N| − 1}. We shall

argue that straightforward evaluation of Q
9
—first evaluating the

composition and then evaluating the projection—is less costly than

straightforward evaluation of τ (Q
9
). Observe that we have

[[ℓ1 ◦ ℓ2]]G = {(m,m)};

[[ℓ1 ⋉ ℓ2]]G = E (ℓ1) .

Due to the intermediate result of evaluating ℓ1 ◦ ℓ2 being much

smaller than the intermediate result of evaluating ℓ1⋉ℓ2, straight-
forward projection algorithms will perform the projection step in

Q
9
at a much lower cost than the projection step in τ (Q

9
). More-

over, in this specific example, algorithms for computing the com-

position can easily achieve comparable performance to algorithms

for computing the semi-join.

In the following, we explore how the rewrite rules of Figure 3

can be used for graph query optimization. In Section 5.1, we look

at how to deal with the situation outlined in Example 5.1. In Sec-

tion 5.2, we look at the complexity of evaluating fixpoints. Finally,

in Section 5.3, we look at the cost of evaluating expressions and

their optimized counterparts.

5.1 Query rewriting and optimization
The complexity of evaluating the relation algebra and semi-join

algebra operators can be derived from well-known complexities

for evaluating relational algebra [9, 18, 28]. In practice, the cost

of each operation o depends on the size of the relations obtained

by evaluating the operands of o. From this observation, the issue

shown in Example 5.1 can easily be explained: the rewrite rules of

Figure 3 can rewrite expression e into an expression e ′ such that

|[[e]]G | < |[[e ′]]G |.
We change the rewrite rules of Figure 3 such that the resulting

rewrite rules provide strong-guarantees with respect to the size of

the evaluation of a rewritten expression. We do so by modifying

τ◦i (e; ε) by replacing rewritings of the form д⋉ ε by π1[д⋉ ε] and
of the form ε ⋊ д by π2[ε ⋊ д].

Proposition 5.2. Let G be a graph, let e be an expression inN∗
3
,

and let ε be an expression. If we use the rewrite rules of Figure 3 with
the above modifications, then τ◦1 (e; ε) and τ◦2 (e; ε) are node expres-
sions and their evaluation yields the smallest possible sets such that
[[τ◦1 (e; ε)]]G |1 = [[e ⋉ ε]]G |1 and [[τ◦2 (e; ε)]]G |2 = [[ε ⋊ e]]G |2.

With a minimal modification to the rewrite rules for τπi (e), i ∈
{1, 2}, we can also guarantee that τπi (e) minimizes intermediate

evaluation results in the way as the modified version of τ◦i (e; ε)
does.We do so by, additionally, applying the following two changes

to τπi (e):

τπi (b) = πi [b];

τπi (e1 ⊕ e2) = πi [τ (e1) ⊕ τ (e2)],

in which b is a basic expression and ⊕ ∈ {∩,−}. Using a straight-

forward induction argument, we obtain
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Proposition 5.3. Let G be a graph and let e be an expression in
N∗
3
. If we use the rewrite rules of Figure 3 with the above modifica-

tions, then τπ1 (e) and τπ2 (e) are node expressions and their evalua-
tion yields the smallest possible sets such that [[τπ1 (e)]]G |1 = [[e]]G |1
and [[τπ2 (e)]]G |2 = [[e]]G |2.

From Proposition 5.3, we conclude:

Corollary 5.4. Let G be a graph, let e be an expression in N∗
3
,

and i ∈ {1, 2}. If we use the rewrite rules of Figure 3 with the above
modifications, then we have |[[τπi (e)]]G | ≤ |[[e]]G |.

We observe that, in practice, the projection-steps introduced by

modifying τ◦i (e; ε) and τπi (e) can easily be integrated into special-

ized versions of the algorithms used to evaluate⋉,⋊, ∪, ∩, and −,

this without increasing the cost for the resulting specialized ver-

sions of the algorithms. Hence, the changes made do not increase

the evaluation cost.

5.2 Efficient evaluation of fixpoints
Let f = fpi,N[e union b] be an expression without free variables.

The complexity of evaluating f is determined by the so-called re-
cursion steps of f , denoted by R(f ), and the cost of evaluating the

so-called non-recursive terms of f , which we denote by T(f ). We

define R(f ) = R(e) with

R(N) = 1 (with N a variable);

R(e1 ⋉ e2) = R(e2 ⋊ e1) = 1 + R(e1);

R(e1 ∪ e2) = R(e1) + R(e2) + 1;

R(fpj,N′[e
′ union b ′]) = R(b ′) + R(e ′) + 1,

and we define T(f ) to be the multiset T(f ) = [b] + T(e) with

T(N) = [ ] (with N a variable)

T(e1 ⋉ e2) = T(e2 ⋊ e1) = [e2] + T(e1);

T(e1 ∪ e2) = T(e1) + T(e2);

T(fpj,N′[e
′ union b ′]) = T(b ′) + T(e ′).

Proposition 5.5. Let G = (N, Σ,E) be a graph and let f =
fpi,N[e union b] be an expression without free variables. The worst-
case cost for evaluating [[f ]]G is O(|R(f )| · n + s + c), in which

n = max{|[[t]]G |i | | t ∈ T (f )};

s =
∑

{|[[t]]G | | t ∈ T (f )},

and c is the total cost of evaluating the expressions in T(f ).

Proof (sketch). We observe that, in expression e , there is no

negation on the path towards the variable N: we only allow union,

semi-joins, and fixpoints (∪,⋉,⋊, and fp), and we do not allow dif-

ference and coprojections (− and π ). Hence, if we interpret the ex-
pressions in T(f ) as pre-computed edge labels, then the restricted

language we consider is expressible in a subset of the alternation-

free µ-calculus, for which very efficient evaluation algorithms ex-

ist [6].

We sketch how to evaluate the fixpoint expression f when i = 1.

The case for i = 2 is analogous. To evaluate the fixpoint expression

f , we first translate the expression into a graph representation.

We do so by making edge-connections between expressions in the

following way:

(1) Add an unlabeled connection from the expression e to the

expression N.

(2) For any right-recursive subexpression e1⋉e2, add a connec-
tion labeled e1 from e2 to e1 ⋉ e2.

(3) For any right-recursive subexpression e1∪e2, add unlabeled
connections from e1 and e2 to e1 ∪ e2.

(4) For any right-recursive subexpression fp
1,N′[e

′ union b ′],
add an unlabeled connection from N′

to fp
1,N′[e

′ union b ′] and
from b ′ to N′

.

E

C
B

D

A

NN′

Figure 4: Graph representation of fp
1,N[A⋉ e ′ union F] with

e ′ = fp
1,N′[B⋉ (C ⋉ N′) ∪ D ⋉ N′) union E ⋉ N].

Figure 4 provides an example of the resulting graph representation

of a fixpoint expression.

The graph representation is used for a message-passing evalu-

ation algorithm: each expression-node maintains a set of graph-

nodes. When an expression-node receives a graph-node v it has

not yet received, then (a) it sends v to every expression-node to

which it has an unlabeled connection and (b) it sends w to ev-

ery expression-node to which it has a connection labeled e ′ with
(w,v) ∈ [[e ′]]G . We initialize this process by sending each graph-

node in [[b]]G |1 to the expression-node N. Let S be the set of all

graph-nodes received byN after all messages have been processed.

We have [[f ]]G = {(v,v) | v ∈ S}.
Over each unlabeled connection, at most n messages are sent

and over each connection labeled with e , at most |[[e]]G | messages

are sent. The number of expression-nodes and the number of unla-

beled connections are both worst-case O(R(f )) and for each non-

recursive term in T(f ) there is exactly one labeled connection.

Hence, at most O(R(f ) · n + s) messages need to be sent. □

5.3 Complexity of rewritten expressions
We consider the complexity of query evaluation in the usual frame-

work [29]. If e is an expression, then the worst-case complexity of

evaluating e is O(eval-steps(e) · c), where c is the maximum cost

for performing a single operation. The query complexity—the cost
of evaluating an expression in terms of the size of the expression

given a fixed graph—is O(eval-steps(e)). The data complexity—the
cost of evaluating a query in terms of the size of the graph given a

fixed query—is O(c).
For most operators, the maximum cost for performing a single

operation can easily be derived or is well-known from the litera-

ture [9, 18, 28], the only exception being the fixpoint operator fp,
which we discussed in Section 5.2. Of these operators, only the

constant relation di, the binary operator ◦, and the unary operator
∗
can cause large query results. This is illustrated by the following,

very easy, example:

Example 5.6. Consider the graph G = (N, Σ,E) with N = {m,
n1, . . . ,n |N |−1}, Σ = {ℓ}, and E (ℓ) = {(m,ni ), (ni ,m) | 1 ≤ i ≤
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|N| − 1}. We have

[[di]]G = N2 − {(v,v) | v ∈ N};

[[ℓ ◦ ℓ]]G = N2 − E (ℓ) ;

[[[ℓ]∗]]G = N2.

Observe that |[[di]]G | = |N|2−|N| and |[[ℓ◦ℓ]]G | = |N|2−2 ·(|N|−1).

The maximum evaluation size and cost of evaluating the opera-

tors not mentioned in Example 5.6 is worst-case upper-bounded by

either the size of their operands only or, additionally, by the num-

ber of nodes in the graph. Hence, Example 5.6 clearly illustrates

why we consider composition and the Kleene-star to be expensive.

We can verify that the rewrite rules τ (e), τπ1 (e), and τπ2 (e) re-
duce the data-complexity in two distinct ways. First, the number

of “expensive” operators (composition and Kleene-star) is reduced

in favor of cheaper operators. Second, by Corollary 5.4, the size of

evaluation results for subqueries is minimized whenever possible,

reducing the cost of evaluating non-rewritten operators.

The cost of the reduction in the data-complexity of evaluat-

ing a query optimized by τ (e), τπ1 (e), or τπ2 (e) is an increase in

the query-complexity of the optimized query. This increase in the

query-complexity is caused by an increase in the evaluation size.

This increase is, in the worst case, an exponential increase, as il-

lustrated in the following example:

Example 5.7. Consider the queries Q
7
of Example 4.3 and

Q
10
= τπ1 (Q7) = ℓ ⋉ (ℓ ⋉ (ℓ ⋉ (ℓ ⋉ (ℓ ⋉ (ℓ ⋉ (ℓ ⋉ ℓ)))))).

By Theorem 4.4, we have Q
7
≡π1 Q10. During rewriting, the expres-

sion size did not increase, while the evaluation size did sharply

increase: we have ∥Q
7
∥ = ∥Q

10
∥ = 7, eval-steps(Q

7
) = 3, and

eval-steps(Q
10
) = 7. As a consequence, we can evaluate Q

10
in

worst-case O(7 · |E (ℓ)|) and Q
7
in worst-case O(3 · |E (ℓ)|2). Hence,

the increase in the query-complexity is accompanied by a sharp

decrease in the data-complexity.

Even with a worst-case exponential increase in the query-com-

plexity, Theorem 4.4 guarantees that the query complexity is lin-

early upper-bounded by the size of the original query. Hence, in

the usual case where queries are small and graphs are very large,

the increase of the query complexity is not an issue.

6 EXPRESSIVE POWER OF N∗
3
AND N

fp
2

The rewrite rules of Figure 3 do not fully rewrite every expression

inN∗
3
toN

fp
2
. To better understand the limits of these rewrite rules,

we take a look at how they rewrite fragments of N3 and N∗
3
.

We write F ⊆ {⌢, di,π ,∩,−} to denote a set of operators in

which π represents both π 1 and π 2. ByN3(F )we denote the frag-

ment of N3 that only allows ∅, ℓ ∈ Σ, id, π1, π2, ◦, ∪, and all op-

erators in F and by N2(F ) we denote the fragment of N2 that

only allows ∅, ℓ ∈ Σ, id, π1, π2,⋉,⋊, ∪, and all operators in F . By

N∗
3
(F ) andN

fp
2
(F )we denote the languages based onN3(F ) and

N2(F ) to which the Kleene-star and the fixpoints, respectively, are

added. We have the following:

Theorem 6.1. If F ⊆ {⌢, di,π }, then
(i) N2(F ) ⪯

path
N3(F ) and N2(F ) ≡π N3(F ); and

(ii) N
fp
2
(F ) ⪯

path
N∗
3
(F ) and N fp

2
(F ) ≡π N∗

3
(F ).

Proof (sketch). The rewrite rules of Figure 3 satisfy two basic

properties. First, no rewrite rule introduces operators not yet in

the original expressions, except for semi-joins (introduced when

rewriting compositions) and fixpoints (introduced when rewriting

Kleene-stars). Second, compositions are only kept in path-equiv-

alent rewritings. During left-projection-equivalent rewriting using

τπ1 (·) and right-projection-equivalent rewriting using τπ2 (·), path-
equivalent rewritings are only enforced by the usage of intersec-

tion and difference outside of basic expressions. □

6.1 Intersection and difference
Observe that Theorem 6.1 does not include intersection and differ-

ence. Within basic expressions, the expressive power of the inter-

section and difference only plays a minor role. As a consequence,

we can extend Theorem 6.1 slightly. Let F ⊆ {⌢, di,π ,∩,−}. We

writeB3(F ),B∗
3
(F ),B2(F ), andB

fp
2
(F ) to denote the fragments

ofN3(F ),N∗
3
(F ),N2(F ), andN

fp
2
(F ), respectively, in which in-

tersection and difference (∩ and −) occur in basic expressions only.

Theorem 6.2. If F ⊆ {⌢, di,π ,∩,−}, then
(i) B2(F ) ⪯

path
B3(F ) and B2(F ) ≡π B3(F );

(ii) B
fp
2
(F ) ⪯

path
B∗
3
(F ) and B

fp
2
(F ) ≡π B∗

3
(F ).

With regard to the semi-join algebra, we may require that in-

tersection and difference occur in basic expressions only, as shown

next.

Proposition 6.3. If F ⊆ {⌢, di,π ,∩,−}, then B2(F ) ≡
path

N2(F ) and B
fp
2
(F ) ≡

path
N

fp
2
(F ).

Proof (sketch). Push down intersection (∩) and difference (−)

through projections, coprojections, semi-joins, and unions using

straightforward rewrite rules. We observe that we can treat fix-

points as if they are projections. By repeatedly pushing down in-

tersection and difference until this is no longer possible, all inter-

sections and differences occur in basic expressions only. □

The above collapse of the semi-join algebras to the basic expres-

sions does not extend to the relation algebras:

Example 6.4. Consider the following query that is based on the

part of Q
6
in Example 4.1 that could not be rewritten without using

composition:

Q
11
= (FriendOf ◦ FriendOf ) ∩ FriendOf .

The query Q
11

has an occurrence of intersection beyond the scope

of basic expressions. We claim that no expression in B∗
3
or B3,

or, equivalently, in B2 or B
fp
2
, is path-equivalent, left-projection-

equivalent, or right-projection-equivalent to Q
11
.

To show this, consider the graphs G3,3 and G4 of Figure 5 and

observe that [[Q
11
]]G3,3

, ∅ and [[Q
11
]]G4
= ∅. To show that no

expression in B2 or B
fp
2

can distinguish between G3,3 and G4, we

can use standard two-pebble game results for the FO[2]-variant of

the infinitary finite variable logics [11, Example 3.10].

6.2 Conditional XPath on sibling-ordered trees
The above expressivity results have interesting implications for

Regular XPath, Conditional XPath, and first-order logic evaluated
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Figure 5: On the left, a two-3-cycle graph G3,3. On the right,
a single-4-cycle graph G4.

on node-labeled sibling-ordered trees, which we detail next. Reg-

ular XPath is a query language for node-labeled sibling-ordered

XML data [20]. Regular XPath distinguishes path formulae, which

evaluate to binary relations, and node formulae, which evaluate to

unary relations (sets of nodes). Path formulae are defined by the

grammar
1

p_wff = Edge | p_wff ◦ p_wff | p_wff ∪ p_wff | [p_wff]∗ |?n_wff,

in which Edge ∈ {Child, Parent, Left, Right} denotes the edge re-

lations (parent-child axis and the ordered sibling axis), n_wff is a

node formula, and ?n_wff interprets the node formulae as a binary

relation. Node formulae are defined by the grammar

n_wff = ℓ | id | π1[p_wff] | n_wff | n_wff∪n_wff | n_wff∩n_wff,

in which ℓ denotes a node label.

To translate between Regular XPath andN3(
⌢,π ), we translate

path formulae to general relation algebra expressions and node for-

mulae to relation algebra expressions that are node expressions.

We represent node labels by using restricted edge labels. These

choices result in a straightforward rewriting τp_wff(p_wff) for path
formulae p_wff, and for node formulae we have:

τn_wff(ℓ) = ℓ;

τn_wff(id) = id;

τn_wff(π1[p_wff]) = π1[τp_wff(p_wff)];

τn_wff(n_wff) = π 1[τn_wff(n_wff)];

τn_wff(n_wff1
∪ n_wff

2
) = τn_wff(n_wff1

) ∪ τn_wff(n_wff2
);

τn_wff(n_wff1
∩ n_wff

2
) = τn_wff(n_wff1

) ◦ τn_wff(n_wff2
).

Conditional XPath is a restriction of Regular XPath in which the

Kleene-star can only be applied to so-called steps instead of generic

expressions. (A step is an edge relation to which, optionally, a test

is applied of the form ⟨p_wff⟩.) We have the following:

Proposition 6.5. With respect to queries yielding binary rela-
tions evaluated on finite node-labeled sibling-ordered trees, we have
Regular XPath ≡

path
N∗
3
(⌢,π ), Conditional XPath ⪯

path
N∗
3
(⌢,π ),

and N∗
3
(⌢,π ) ⪯̸π Conditional XPath.

Proof (sketch). To translate from Regular XPath to N3(
⌢,π ),

we use the above translation τp_wff(p_wff). For the other direc-

tion, we adapt the above translation. The only difficulty in this,

are subexpressions of the form π2[e] and π 2[e]. We deal with these

subexpressions by rewriting them towards π1[e
′] and π 1[e

′], re-

spectively, in which e ′ is obtained from e by pushing down a con-

verse step towards the edge labels Child and Right. The other rela-
tions follow from thewell-known relations between Regular XPath

and Conditional XPath [20]. □

1
We have adapted the Regular XPath syntax to match our N∗

3
syntax.

Combining Theorem 6.1 and Proposition 6.5 with a result from

Marx [20] yields

Corollary 6.6. With respect to queries yielding binary relations
evaluated on finite node-labeled sibling-ordered trees, we have Reg-
ular XPath ≡π N

fp
2
(⌢,π ), Conditional XPath ⪯π N

fp
2
(⌢,π ), and

N
fp
2
(⌢,π ) ⪯̸π Conditional XPath.

On finite node-labeled sibling-ordered trees, Conditional XPath

is path-equivalent to FO
tree

: first-order logic on tree structures rep-

resented by a descendant and a following-sibling relation, unary

node-label predicates, and equality [20, Proposition 2.7]. Hence,

we conclude the following:

Proposition 6.7. With respect to queries yielding binary rela-
tions evaluated on finite node-labeled sibling-ordered trees we have
FO

tree ⪯π N
fp
2
(⌢,π ) and FOtree ⪯π N

fp
2
(⌢,π ).

It is not possible to translate Conditional XPath to the two-

variable fragment of FO
tree

viaN
fp
2
(⌢,π ). In the two-variable frag-

ment of FO
tree

, there is no obvious way to express the relations

Child and Right or express step-based iteration via the descendant

and the following-sibling relations.

7 CONCLUSION AND FUTUREWORK
The main theme of this paper is the relationship between the re-

lation algebra and the semi-join algebra. We studied these rela-

tionships with query optimization in mind: we aimed at rewrit-

ing relation algebra expressions containing costly composition and

Kleene-star operators into semi-join algebra expressions contain-

ing less costly semi-join and fixpoint operators. To do so, we iden-

tified sufficient conditions on relation algebra expressions that al-

low us to perform such rewritings and we have shown that these

conditions are not too restrictive.

Tomake the theory applicable, we presented rewrite ruleswhich

can be used to rewrite (parts of) relation algebra expressions that

satisfy the conditions identified. In addition, we have provided a

complexity analysis that shows that our rewrite rules lead to only

a well-bounded increase in the number of steps needed to evaluate

the rewritten queries (while, at the same time, strictly reducing the

number of costly composition and Kleene-star operations).

Since the relation algebra and the semi-join algebra correspond

to FO[3] and FO[2], respectively, our rewrite rules also provided

new insights into the relationship between these first-order log-

ics. In addition, by specializing our results to node-labeled sibling-

ordered trees, we were able to obtain new insights in the rela-

tionship between the expressive power of full first-order logic and

FO[2] on such trees.

We have identified several directions for future work, including

the following:

(1) Even though our rewrite rules do not completely solve the

efficient query evaluation problem for the relation algebra, we have

been able to verify that our rewrite rules capture optimizations that

have not yet been fully exploited by existing database systems.

Hence, a practical empirical study of a query evaluation system

that combines our rewrite rules with other query optimization and

evaluation techniques is an obvious avenue of further research.

(2) In this paper we have introduced rewriting techniques for

the semi-join algebra specialized to binary relations. The semi-join
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algebra has also been studied extensively for traditional relational

databases (see, e.g. [13, 15–17]) and several of its expressiveness

properties and query evaluation benefits have been identified and

used in practice. We plan to investigate how our techniques can

be generalized and be of benefit for relational database query op-

timization and evaluation.

(3) The intersection and difference operators limit the appli-

cability of our rewriting techniques. For several restricted graph

structures, well-known collapse results exist to eliminate intersec-

tion and difference (see e.g. [2, 12, 30]). Unfortunately, these known

elimination results blow up the size of the resulting query exces-

sively. Still, it is worthwhile to investigate if approaches that are

more practical exist to eliminate intersection and differences in the

scope of semi-join based query optimization.

(4) As argued in the Introduction, the strength of the graph

query language N∗
3
is navigation. Beyond navigation, the expres-

sive power ofN∗
3
is rather limited, evenwith respect to basic count-

ing. The language is, for example, incapable to express that nodes

have aminimumnumber of incoming or outgoing edges. For FO[2]

and FO[3] these limitations are usually lifted by adding so-called

counting quantifiers [11]. Such counting quantifiers can also be

added toN∗
3
andN

fp
2
. It is open to determine to which extend our

rewrite rules and query optimization results are generalizable to-

wards these languages.
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