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Abstract

Over the past decade, exploiting relations
and symmetries within probabilistic models
has been proven to be surprisingly effective
at solving large scale data mining problems.
One of the key operations inside these lifted
approaches is counting - be it for parame-
ter/structure learning or for efficient inference.
Typically, however, they just count exploit-
ing the logical structure using adhoc opera-
tors. This paper investigates whether ‘Com-
pilation to Graph Databases’ could be a prac-
tical technique for scaling lifted probabilistic
inference and learning methods. We demon-
strate that graph database queries to obtain
both exact and approximate counts can make
state-of-the-art inference and learning meth-
ods orders of magnitude faster, without sacri-
ficing performance.

1 Introduction

Statistical Relational AI [5] deals with the problems of
learning and inference in the presence of rich, struc-
tured multi-relational data. A key operation required
by most, if not all, StaRAI models is counting. For in-
stance, Markov Logic networks (MLNs) [3] use counting
as their fundamental operation in computing probabil-
ities. Similarly, most directed probabilistic models em-
ploy a combination function such as mean or weighted
mean [13] that require counts. Finally, lifted inference
methods [6,11,16] that aim to exploit symmetries during
inference also require efficient counting.

However, since the counts are primarily used in ex-
ponents of different functions (be it the log-linear func-
tion of MLNs or the products in lifted inference meth-
ods), computing exact counts is not always necessary,
especially when the counts are large. This is particularly
true because most systems are relational where counting
is one of the most expensive operations, more so, since

∗Indiana University, maydas@indiana.edu
†Pomona College, yuqing.wu@pomona.edu
‡Allen Institute of AI, tusharvkhot@gmail.com
§TU Dortmund, kristian.kersting@cs.tu-dortmund.de
¶Indiana University, natarasr@indiana.edu

counting all possible true relations is a major bottle-
neck [17]. For instance, intuitively, it should not matter
(to an inference algorithm) whether a particular profes-
sor has co-authored approximately 500 publications or
exactly 519 publications when answering a query about
the success of this professor since the number is high
anyway.

Our hypothesis is that efficiently performing ap-
proximate counting can allow for efficiency gains with a
small loss of performance. To this effect, we exploit
the progress in the graph databases and graph the-
ory [1,10,25] to perform fast, approximate counting over
query structures. More specifically, we compile our log-
ical model to a graph/network represented in resource
description framework (RDF) format. This equivalent
model allows for both approximate and exact counts to
be performed in a fraction of time that is required by
the original logical model.

We first show how the logical/relational model can
be converted to an equivalent graph representation.
Then, we present the exact computation algorithm
that simply counts sub-graphs via queries. We then
outline an approximation method (similar to message
passing methods for probabilistic graphical models)
that uses summary statistics (expected values) based
on in-degrees and out-degrees to estimate the counts.
Finally, we demonstrate the effectiveness and efficacy
of the proposed counting approach on different types of
problems in standard benchmark data sets.

To summarize, we make the following key contribu-
tions: (1) We propose a compilation strategy based on
graph databases for relational probabilistic models. (2)
We show how counting can be posed as queries in these
models. (3) We derive a message passing method that
can allow for fast approximate counts in such graphs.
(4) Finally, we perform evaluation on several standard
data sets in learning and probabilistic inference tasks.

2 Background & Related Work

Approximation of counts via summaries is closely
related to cardinality/selectivity estimation and has
been deeply studied in the context of relational
databases [22], be it using histogram based summaries
[23], VC dimension based methods [21] or in context of
Graph databases [14,24]. The complexity lies in the fact



that graphs can potentially be multi-relational with the
freedom of encoding infinitely many relations among in-
finitely many different types of entities. Thus there is
no underlying “schema” to a graph-structured database.
Hence, histogram based cardinality estimation methods
that work well with a relational database and SQL ap-
pear to be inadequate for modeling our task. Venugopal
et. al’s work [27] is closest in spirit, which achieves effi-
ciency via counting only the satisfied groundings (sim-
ilar to counting paths in an equivalent graph) for a
specific representation called MLNs; however, the dif-
ference being, our strategy is capable of counting non-
existent paths (unsatisfied groundings) as well and is
representation-independent. Our work is also related to
‘link prediction problems’ on graphs [9, 26], as our ap-
proximate counting depends on probabilistic estimates
about the presence of edges (predicates) between nodes
(constants) (discussed in detail later). Use of graphs
in ILP and SRL is not new, as seen in Richards and
Mooney’s work on relational path finding [19]. How-
ever, they are restricted to exploiting the logical struc-
ture and do not perform fast or approximate counting
as we do. We now present some background definitions.

Property Graph (Model) [2] is a model for rep-
resenting graph structured data efficiently. Ev-
ery edge E = 〈v1, v2〉 is denoted as a triple
〈subject, predicate, object〉, such that, subject =
v1, object = v2 and predicate = label(E). Conceptu-
ally, predicate is a property of the subject, and the
object is the value of that property. For example
〈Book,Name, “Hamlet”〉 is a triple where the predicate
Name is a property of the subject Book and Hamlet
is the value of the property Name. This allows us to
encode multiple types of entities and relations between
entities on a single graph.

Resource Description Framework (RDF) [2] is a
framework for representing a property graph where sub-
ject, predicate or object is a resource, with a namespace
binding. The namespace has to be a valid URL.

SPARQL [18] is a query language for querying
RDFs. It is different from SQL, in that the subgraph
we query is encoded in the WHERE part of the query
as connected triples. The variables are denoted with a
‘?’ in front and the constants must be bound by the
declared namespace as shown below.

PREFIX namespace:〈url〉 SELECT ?a ?b ?c
FROM Gf WHERE {?a namespace:Friends ?b.
?b namespace:Hates ?c}

3 Graph-Based Approximate Counting

We now present how formulas in first order predicate
logic (FOL) [4] can be represented as a “property graph”
before presenting the counting algorithms.

3.1 Equivalent Representation Given the predi-
cate type definitions in logical form, the goal is to con-
struct an equivalent property graph G. The arguments
of the predicates become the nodes of G. Each pred-
icate becomes a labeled, directed edge in G with the
label being the name. This edge connects the nodes
which are the argument of the corresponding predicate.
The direction of the edge is determined by the order of
the arguments of the predicate. This is motivated by
the fact that predicates express relation between two or
more entities or at times a property of an entity, viewed
as a reflexive relation of an entity with itself.

For example consider a predicate pred(A1, A2). The
arguments A1 and A2 are added to nodes set (N ) in G.
E = A1 → A2 is a directed edge added to the set of
edges E, where label(E) = pred. We now show how we
handle the predicates.

- Unary Predicates: For unary predicates (pred(Ai)),
the directed edge will be a ‘self-loop’, i.e., E = Ai →
Ai ∈ E. This is illustrated in Figure 1(a).

- Binary Predicates: This is the straightforward case.
For pred(A1, A2), the two nodes A1 and A2 have a
directed edge E = A1 → A2 ∈ E. See Figure 1(b).

- N-ary Predicates: The more general case can be
handled by converting the N-ary to N − 1 bi-
nary predicates as is done with most formalisms.
Thus, for predicate pred(A1, A2, A3), we construct
two edges E1 = A1 → A2 and E2 = A2 → A3

(Figure 1(c)), both the edges having the same la-
bel. While this can introduce some spurious re-
lations [7], with large amounts of data, this is a
reasonable approximation. Handling N-ary predi-
cates in a more principled manner is an interesting
future research direction.

(a) Unary (b) Binary (c) N-ary

Figure 1: Handling Arity

To summarize, given a set of facts (evidence)

Fev = {predi(Ai1, Ai2, . . . , Aij)}Ki=1 where K is the
number of facts and j ≥ 1 (value of j is the Arity
of predicate predi), we construct a corresponding
evidence graph Gev of size O(K ∗ |A|). We use the
standard “Smokes-Friends-Cancer” problem [3] and
demonstrate the graph construction in Figure 2(a). As



can be observed, Smokes(Anna) and Cancer(Gary)
are both unary predicates and hence are self-loops
while others are directed edges. As another example,
for the facts (about authors and venues) presented
below, the equivalent graph is shown in Figure 2(b).

author(“class 7′′, “auth ba′′). author(“class 8′′,
“auth ba′′). author(“class 9′′, “auth ba′′).
title(“class 7′′, “TITLE A′′). title(“class 8′′,
“TITLE A′′). title(“class 9′′, “TITLE B′′).
venue(“class 7′′, “venue1′′). venue(“class 8′′,
“venue2′′). venue(“class 9′′, “venue3′′).
haswordauthor(“auth ba′′, “word a′′).
haswordauthor(“auth ba′′, “word b′′).

(a) Smokes Friends Graph

(b) Author-Venue Property Graph

Figure 2: Property Graphs

Algorithm 1 presents the creation of the evidence
graph. Evidence graph construction is straightforward
parsing of facts (ground atoms given as evidence) and
adding corresponding nodes and edges to the graph Gev

as described earlier. It runs in linear time O(n), n being
the size of the evidence. However, arity of the predicates
have to be handled carefully.

3.2 Obtaining Counts We now explain the count-
ing process given summary statistics of a graph.
The key is that this is equivalent to counting sub-
graphs in a heterogeneous network while satisfying cer-
tain constraints. For example, consider the Smokes-
Friends-Cancer example in Figure 2(a). For simplic-
ity, let us assume the following clause: Smokes(a1) ∧
Friends(a1, a2).

To calculate the number of satisfiable groundings

Algorithm 1 CreateGraph

1: procedure CreateGraph(F)
2: Input: Evidence File F
3: Output: Evidence Graph Gev
4: Initialization: Empty Evidence Graph Gev = {}
5: for each ground predicate P = p(A1, A2, ..) in F do
6: Parse P
7: Edge E ← p
8: if P is unary then
9: Subject Node Ns ← A1

10: Object Node No ← Ns [Self loop]
11: else
12: if P is binary then
13: Subject Node Ns ← A1

14: Object Node No ← A2

15: else
16: Split and process N-ary into N − 1 binary

predicates.
17: end if
18: end if
19: New Triple T← 〈Ns, E ,No〉
20: Add T to Gev
21: end for
22: return (Gev)

23: end procedure

of this clause, we count the subgraphs (motifs) that
have the structure shown in Figure 3(a) that are present
in the Smokes-Friends-Cancer network given in Fig-
ure 2(a). This particular structure becomes the con-
straint on the counting task, i.e., the goal is to count
subgraphs that satisfy this (structure) constraint. Fig-
ure 3(b) is an example of this structure given two
groundings of the above clause (Bob and Ed being
friends of Anna). i.e.,

1 : Smokes(Anna) ∧ Friends(Anna,Bob)
2 : Smokes(Anna) ∧ Friends(Anna,Ed)

3.2.1 Exact Counting Given that we have mapped
the counting of satisfied groundings to subgraph count-
ing, exact counting can be performed in a relatively
straightforward manner. First, we represent the prop-
erty graph as an RDF (as shown earlier). Now, exact
counting requires simply retrieving all the subgraphs
matching the motif or the pattern induced by a clause as
shown in Figure 3 and finally, enumerating and count-
ing them. This can be achieved by a straightforward
SPARQL query.

For the clause Smokes(a1) ∧ Friends(a1, a2), the
query to return all the subgraphs is:

SELECT ?a1 ?a2 FROM Evidence_Graph

WHERE {?a1 Smokes ?a1.

?a1 Friends ?a2}

This query will return all the subgraphs present in the
evidence graph Gev which can then be counted. All



(a) First Order Clause

(b) SubGraphs satifying the

clause

Figure 3: FO-Clause and equivalent subgraph counting

the constraints (here parameterised first order predi-
cates) are encoded in the “WHERE” part of the query.
Once all possible subgraphs in the evidence graph are

returned into a result set Rs = {g(1)
s , g

(2)
s , . . .}, the size

of result set |Rs| is the count value.
While this is straightforward, we have just essen-

tially converted one NP-Complete problem to another,
since sub-graph matching is already a hard problem.
Even though databases might allow for efficient count-
ing, this may not be tractable for all problems. So we
next present an approximate technique.

3.2.2 Approximate counting We now present our
algorithm called FACT (Fast Approximate CounTing
for relational probabilistic models). Our key intuition
remains the same – a clause is equivalent to a pattern
and our goal is to search for that pattern in the evidence
graph Gev as shown in Figure 3. The important differ-
ence is that instead of getting the exact counts of the
sub-graphs, we propagate summary statistics obtained
via the Summarize() procedure in Algorithm 2 to esti-
mate the counts of the query results. Summarization
(Algorithm 2) involves getting the in-degree and out-
degree summaries of each node in the graph Gev via
aggregation queries (SPARQL) and storing them using
in-memory data structures. Table 1 shows an example
out-degree summary table based on the graph shown in
Figure 2(a).

Inspired by the success of message passing algo-
rithms in probabilistic graphical models, we develop an
algorithm that uses augmented count values from sum-
mary statistics as messages. Before presenting the algo-
rithm, we define a few terms.

Table 1: Example out-degree summary

Node Edge Label(Predicate) Out-Degree

Anna
Smokes 1
Friends 2

Ed Friends 1
Gary Cancer 1

Algorithm 2 Summarize

1: procedure Summarize(Gev)
2: Input: Evidence Graph Gev
3: Output: Summary statistics in a set of Hash data

structures {Hin, Hout, H
(avg)
in , H

(avg)
out }

4: Initialization: {Hin, Hout} as empty structures.
5: Query ← “SELECT {count(?s) as ?cnt} ?p ?o from
Gev WHERE {?s ?p ?o} GROUP BY ?p ?o”

6: ResultSet Rs ← execute(Query,Gev)
7: for each 〈cnt, p, o〉 ∈ Rs do
8: put(Hin, 〈o, 〈p, cnt〉〉)
9: end for

10: Query ← “SELECT ?s ?p {count(?o) as ?cnt} from
Gev WHERE {?s ?p ?o} GROUP BY ?s ?p”

11: ResultSet Rs ← execute(Query,Gev)
12: for each 〈s, p, cnt〉 ∈ Rs do

put(Hout, 〈s, 〈p, cnt〉〉)
13: end for
14: H

(avg)
in , H

(avg)
out ← Aggregate

(average)
predicates(Hin, Hout)

15: return Hin, Hout, H
(avg)
in , H

(avg)
out

16: end procedure

• Inpr(c) is the in-degree of a node with constant c
present in Gev w.r.t edges with predicate pr. In
Figure 2(b), Inauthor(auth ba) = 3.

• Outpr(c) is the out-degree of a node with constant
c present in Gev w.r.t edges with predicate pr. In
Figure 2(b), Outhaswordauthor(auth ba) = 2.

• In(avg)
pr is the average in-degree of all nodes that

have incoming edge E with label(E) = pr. Hence

In
(avg)
pr =

∑N
i Inpr(vi)

N .

• Out(avg)
pr is the average out-degree of all nodes that

have incoming edge E with label(E) = pr. Hence

Out
(avg)
pr =

∑N
i Outpr(vi)

N .

• Θ(v) or type count is the number of constants
possible (given by the evidence) for variable v. So
for parameterized predicate pr(v), if the structure
of the predicate is pr(typeA), i.e., the argument of
the predicate is of type typeA then Θ(v) = |A|,
where typeA ← A = {a1, a2, . . .}.

• µpr
vi→vj is the message transmitted from node (vari-

able) vi to node (variable) vj over edge pr.



• Gq is the query graph, or the graph formed by the
formula/clause for which we are counting.

Next we will first describe the process informally, and
present the algorithm. For example, consider the clause
below whose equivalent graph for the body of the clause1

is shown in Figure 4.

(3.1) pr1(a1, a2) ∧ pr2(a3, a2) ∧ pr3(a2, a4)⇒ h(a2)

Figure 4: Graph for body of clause in Equation 3.1

We start with the assumption that at least one
of the variables is grounded, that is, the counts are
obtained against one value of the variable (in our case
let us assume that the variable a2 is grounded). This
is typically the case in several problems. For instance,
during probabilistic inference, we usually condition the
query on the value of a variable. Or when learning the
parameters, we learn the distribution over the children
values given the values of the parent. This value is what
we refer to as being grounded. However, even if no
variable is grounded, we can always sum over the counts
for all values of a variable in the clause.

With this assumption, we first initialize the counts
of each variable, in the graph formed using the body of
the clause (Figure 4). As the variable a2 is grounded,
its count is initialized to 1 and all other variables are
initialized to their type counts, Θ(v). This is illustrated
in figure 5(a). At the initial state, count(a1) = na1 =
Θ(a1), count(a2) = 1 [∵ a2 is a constant], count(a3) =
na3 = Θ(a3) and count(a4) = na4 = Θ(a4).

Given that the graph is initialized, we now demon-
strate how the message passing occurs here and the
counts are updated. One important factor here is that,
the graph is directional hence the order of the variables
(for eliminating variables during counting) is straight-
forward. The variables (nodes) that have no incoming
edges in the query graph Gq form the starting nodes for
propagation and the order of the rest is implied. Thus,
in our example we start with a1 and a3 and messages
are passed from these nodes to node a2 [µpr1

a1→a2 from

1This is an example of a horn clause of the form a implies b.
a is the body (antecedent) and b is the head (consequent).

(a) Initialization

(b) Next step

(c) Final step

Figure 5: Approx Counting

a1 to a2 and µpr2
a3→a2 from a3 to a2] as displayed in Fig-

ure 5(b). The messages are simply augmented counts:

(3.2) µpr1
a1→a2 =

Out
(avg)
pr1

Θ(a2)
.
Inpr1(C)

Θ(a1)
.na1

The expression
Out

(avg)
pr1

Θ(a2) gives us the ratio of the average

counts of out-going edges to the maximum number
of possible outgoing edges, with predicate pr1 in this

case.
Inpr1(C)

Θ(a1) is a similar expression for the case

of the incoming edge. Their product gives us an
approximation of the expected counts of the predicate in
Gev, which we then use to augment the count. Similarly,
the message µpr2

a3→a2 is obtained as,

(3.3) µpr2
a3→a2 =

Out
(avg)
pr2

Θ(a2)
.
Inpr2(C)

Θ(a1)
.na3

Now, the count value of a2 is updated. Note how the
mean/average of in-degree is not considered here, since
the variable a2 is grounded (constant C).

(3.4) n
(new)
a2 =

∏
(v,pr)∈{(a1,pr1),(a3,pr2)}

µpr
v→a2.n

(old)
a2

where n
(old)
a2 = 1.

Finally another message µpr3
a2→a4 is passed from a2 to a4



as shown in figure 5(c). The message is as shown below:

(3.5) µpr3
a2→a4 =

Outpr3(C)

Θ(a4)
.
In

(avg)
pr3

Θ(a2)
.n

(new)
a2

Updating the count of a4 works in a similar fashion
as shown in Equation 3.4. Due to reasons mentioned
earlier, mean/average out-degree is not considered (in
Eqn 3.5), instead the out-degree of the exact constant
node is used.

Given n
(new)
a4 , it is the final count that is required,

since it is the only variable left after eliminating the
rest, which is an approximate estimate of the number
of subgraphs present in Gev. We now formally present
the algorithm FACT (Algorithm 32).

Pre-process: To preprocess and construct the
graph, we call methods CreateGraph(F) (Algorithm 1)
to get the evidence graphGev and call Summarize(Gev)
(Algorithm 2) to get the summary data structures

H = {Hin, Hout, H
(avg)
in , H

(avg)
out } at the beginning of any

inference or learning system.

3.2.3 Discussion There are a few important things
to mention before presenting the experiments. First,
we apply the Closed World assumption, which allows
us to model the negation of a predicate as absence of an
edge. Second, for a self loop, degree summary is con-
sidered to be either 1 or 0, while N-ary predicates that
have been converted to multiple binary ones behave as
ordinary directed edges in the graph. Third, and most
importantly, to prove that the values returned by our
message-passing/variable-elimination based system can
be considered as counts, it is important to note a few
characteristics of the algorithm FACT: (1) If we multi-
ply the initial count values of the variables in a query
graph, such as in Figure 5(a), we will get the size of the
full cross-product. (2) Instead, the messages passed are
these counts, “augmented” by the belief about the pres-
ence of particular predicate/edge, based on Gev, hope-
fully moving the value away from the cross-product and
bringing it closer to the true count. (3) It must be men-
tioned that these counts returned by our method, are
usually slight over-estimations. However, as we show
empirically next, these are reasonable approximations
that can be computed in a fraction of the time required
for precise counting.

4 Implementation & Experiments

To seamlessly handle multi-relational graphs we employ
a powerful graph representation language, RDF [2, 15],

2Note: In Algorithm FACT parse() is just a name given (for

ease of representation) to the operation of parsing an FOL clause
into a query graph as shown in Equation 3.1 and Figure 4

Algorithm 3 FACT

1: procedure FACT(C, H,C,Υ)
2: Input: Clause C,H, constant C for variable Υ
3: Output: Approximate count cnt
4: Initialization: Build Gq(Nq, Eq)← parse(C)
5: n(ui)← Θ(ui) : ui ∈ Nq −Υ and n(Υ)← 1
6: Start eliminating nodes with no incoming edge in Gq

7: V ← ({v : v ∈ Nq} − {n : n ∈ Nq; @(uy n ∈ Eq)})
8: for each variable v ∈ V do
9: for x ∈ Nq, s.t. ∃pr(x, v) : xypr n ∈ Eq do

10: if v = Υ (substitute constant) then

11: µpr
x→v ←

Out
(avg)
pr

Θ(v)
.
Inpr(C)

Θ(x)
.nx

12: else
13: if x = Υ (substitute constant) then

14: µpr
x→v ←

Outpr(C)

Θ(v)
.
In

(avg)
pr

Θ(x)
.nx

15: else

16: µpr
x→v ←

Out
(avg)
pr

Θ(v)
.
In

(avg)
pr

Θ(x)
.nx

17: end if
18: end if
19: end for
20: n

(new)
v ←

∏
{(xi,pr(xi,v))}i µ

pr
x→v.nv

21: if sizeOf(V ) = 1 then
22: cnt← nv

23: break
24: end if
25: V ← V − {v}
26: end for
27: return cnt
28: end procedure

from the Graph Database community. We also employ
the SPARQL query language for querying on Graph
structured data represented via RDF. Our Java im-
plementation uses “Apache Jena” a Java Library that
provides an API which allows for fine grain manipula-
tion of Graph Structured data represented in RDF form
and also supports SPARQL 1.1 (the latest version of
query semantics on RDF). Note that off-the-shelf graph
database systems have their internal optimizers making
it hard to benchmark the effectiveness of the proposed
approach by simply employing them. Hence, we use
Apache Jena. Finally, we assume the inputs to be in
predicate logic format, since this is the common repre-
sentation used across many SRL models.

4.1 Experiments Our experiments, aim to answer
the following questions: (Q1:) How effective is the
proposed approach compared to the standard count-
ing method? (Q2:) What is effect of the approxima-
tion in terms of accuracy of the learned/inferred mod-
els? (Q3:) Is the proposed approach useful across a
variety of learning and inference tasks inside Statisti-
cal Relational Learning (SRL)? Motivated by Q3, we



Table 2: Results of approximate counting on Combining Rules

# Facts # Clauses Metrics CombRulesApprox CombRulesOriginal

yeast 819 1600

Counting time (secs) 2.80 ±0.01 7.89
MSE 0.26 0.24
CLL -0.72 -0.67

IMDb 264 16

Counting time (secs) 0.19 ±1.00E − 04 0.36
MSE 0.17 0.09
CLL -0.58 -0.23

Cora 1498 75

Counting Time (secs) 0.44 ±5.62E − 05 1.28
MSE 0.22 0.22
CLL -0.64 -0.63

WebKB 12284 11K

Counting Time (secs) 4.84 ±6.67E − 11 8.41
MSE 0.29 0.29
CLL -0.63 -0.59

evaluate our algorithm in three different types of SRL
tasks - parameter learning with combining rules, model
(structure) learning from labeled data and finally, per-
forming lifted probabilistic inference that counts sym-
metric groups of variables when answering probabilis-
tic queries. For each of this setting, we used the cor-
responding state-of-the-art algorithm and replaced the
counting computations inside them with our approach.
We discuss each of them in detail.

Datasets: We primarily use several standard SRL
data sets for evaluation, namely (1) Yeast data set,
which is about interaction among proteins, protein
complexes and enzymes in yeasts. The goal is to
predict the class of protein. (2) IMDB data set,
mainly about actors, directors and movies, where the
goal is to predict workedUnder(person1, person2), (3)
Cora, where the primary goal is to predict if two
citations are the same (particulary if the venues are
same, i.e., predict samevenue(venue1, venue2) in case
of our experiments), (4) WebKB, where the goal is to
predict departmentOf(webPage, webPage) predicate -
i.e., department of a web page, and (5) Smokes-
Friends-Cancer data set [3], where the goal is to
predict who has cancer based on the friends network
of individuals and their observed smoking habits. Note
that all the results presented in the system are the
results of 5 runs, but the sizes of the datasets vary
according to the problem. We present the appropriate
sizes in the results.

4.1.1 Learning Parameters of Relational Mod-
els To demonstrate the usefulness of our proposed ap-
proach on learning probabilistic relational models, we
consider the problem of parameter learning with mean
and weighted-mean combining rule [13]. Specifically,
we consider the use of EM for learning as developed by
Natarajan et al. [13]. The key step of this algorithm is to
count the number of satisfied groundings of a clause and

the number of satisfied groundings across clauses that
share the same target predicate. We replace their sim-
ple counting method (CombRulesOriginal in the results)
with our approximate counting method (CombRulesAp-
prox in the results). We used 4 bench-mark data sets (1)
Yeast, (2) IMDB, (3) Cora and (4) WebKB. Their
sizes are presented in Table 2.

For both approaches, we measure the following -
(1) Counting time: Time taken for counting groundings
that satisfy a clause for every example. (2) MSE : Mean
Squared Error. (3) CLL: Conditional Log Likelihood.
Table 2 presents the results of our experiments. It
can be observed that there is at least a 2 − 3 times
reduction in counting time over all the data sets when
using our approximate counting approach. The MSE
mse(CombRulesApprox) is comparable to the original
MSE mse(CombRulesOriginal), i.e., MSE does not
suffer much because of approximation. However as can
be seen for the IMDB data set, the performance seems
to be much worse than the original approach. Our
hypothesis is that the data set is too small and since our
approximate counting mechanism is based on sample
averages, they do not serve as good approximations
on small data sets. However, with larger data sets,
the efficiency gains are higher with smaller losses in
effectiveness. Thus Q1 and Q2 can be answered by
observing that for reasonably larger data sets, the
proposed method is effective and efficient.

4.1.2 Learning Structure of SRL Models Given
the performance in parameter learning, we next turn our
attention to learning structure of SRL models. Specif-
ically, we consider the state-of-the-art learning method
for Markov Logic Networks that employs Functional
Gradient Boosting [8] (called MLNBoost). Markov
Logic networks [20], in brief, are weighted first-order
logic clauses that soften logic by allowing the clauses
to be unsatisfied in some cases. Roughly, the probabil-



Table 3: Results of Approx. Counting on MLN-Boost

#Facts Metrics MLN-BoostApprox MLN-BoostOriginal

Yeast 1641

Learning Time(millisec) 15040 ±2.89 34108
Inference Time(millisec) 749 ±42.88 1346

AUC ROC 0.5 0.51
AUC PR 0.38 0.45

WebKB 26223

Learning Time(millisec) 10609 ±102.18 73123
Inference Time(millisec) 1542 ±96.55 3915

AUC ROC 1.00 1.00
AUC PR 1.00 1.00

Smokes-Friends-Cancer 150,401

Learning Time(millisec) 34K ±199.56 114K
Inference Time(millisec) 806 ±201.55 2183

AUC ROC 0.74 0.75
AUC PR 0.82 0.82

ity of a given world (set of facts) being true is propor-
tional to the weigted count of the satisfied groundings of
all the clauses. Specifically, the probability distribution
over possible worlds x specified by a ground Markov
network is given by P (X = x) = 1

Z exp (
∑

iWini(x))
(where ni(x) is the number of true groundings of the
first-order formula Fi in x, x{i} is the state (truth val-
ues) of the atoms appearing in Fi). We approximate
ni(x). Count approximation is significant here since,
complete grounding (instantiation) is a major bottle-
neck in inference tasks for MLNs, especially when ev-
idence is large [17]. Nearly all learning methods im-
plicitly use inference in their inner loop, making count
approximation a compelling improvement strategy.

As with the previous experiment, we replace the
counting of non-trivial groundings of a clause [8] of the
original system (called MLN-BoostOriginal in results),
with our efficient approximation method (referred as
MLN-BoostApprox in results). We used 3 data sets
(1) Yeast , (2) A larger version of WebKB and (3)
Smokes-Friends-Cancer (Table 3).

Since, inference is used inside MLN structure learn-
ing, we employed approximate counting method for
both inference and learning. We measured the follow-
ing metrics to compare MLN-BoostOriginal and MLN-
BoostApprox : (1) Learning Time, (2) Inference Time,
(3) AUC-ROC and (4) AUC-PR. Table 3 presents the
results of the experiment. It was observed that our
method brings reasonable improvement in Learning as
well as Inference time without any significant deteriora-
tion in AUC-ROC/AUC-PR values. This allows us to
answer both Q1 and Q2 affirmatively, and our method
being more efficient than the state-of-the-art on these
challenging tasks makes for a compelling case.

4.1.3 Lifted Inference As a final task, given the re-
cent surge in interest in the so-called lifted probabilis-
tic inference methods, we employed our approxima-

tion strategy for counting in one such method. Specif-
ically, we considered C-FOVE (Milch et.al.) [12] that
counts over satisfied formulas when grouping evidence
into symmetrical sets. We chose this method primar-
ily because : (1) A working implementaion of C-FOVE
(on Java platform) is easily available online and (2) It is
illustrative of how lifted inference methods need count-
ing for them to be efficient. Specifically, this method
focuses on explicit counting of satisfied formulae mak-
ing it possible for our approximate method to directly
replace their counting procedure.

We were able to run both the Original C-Fove
system and our customized system (with approxima-
tion) using Smokes-Friends-Cancer dataset pre-
sented earlier. However, in this experiment, we had to
consider a restricted size of 800 facts and 30 constants.
Datasets larger than this, caused Java Heap Memory
issues in the original system. The results are presented
in Table 4, showing (1) Reasonable gain in Counting
Time t due to approximation and (2) Negligible Aver-
age Absolute Difference (AAD), between the exact final
probability values (computed by C-Fove) and the ones
via approximation, for a given set of 10 query predicates.

The results are similar to previous ones, however
the efficiency decrease is lower. A potential reason
for this is the restricted representation used by the C-
FOVE system. The system is restricted to single length
counting formulas where counting is already reasonably
efficient. Despite this, our system demonstrates a 50%
decrease in learning time compared to original system.
This clearly answers Q1 and Q2 affirmatively.

Table 4: Results of Approx Counting on C-Fove

#Facts Metrics Approx Original

Smokes 800
t (sec) 4.11 ±0.02 6.72

AAD 0.016 0.0

Final note: Given our experiments, Q3 can be an-



swered affirmatively, that our proposed approach is both
effective (predictive performance) and efficient (running
time) across learning and inference tasks against state-
of-the-art systems in benchmark data sets.

5 Conclusion

We presented the first compilation to graph data bases
method for approximate counting of satisfied instances
- a crucial operation in several relational probabilistic
models. It converts the predicate logic format to an
equivalent graph database format that can be queried
effciently. Our novel approximate counting method
is inspired by probabilistic message passing, and our
extensive experimental results demonstrate that it is
effective in learning both parameters and structure
and performing probabilistic inference from moderate
to large data sets, while reducing the running time
significantly.

We next propose to perform more rigorous evalua-
tion. Particularly, we will focus on scaling these to very
large (> 1M) data sets. Deriving theoretical bounds for
the approximation is a crucial and an important step
in realizing the full potential of the proposed approach.
Finally, integrating our approach with other powerful
lifted inference techniques remains an interesting and
fruitful research direction.
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