
Journal of Computer and System Sciences 82 (2016) 229–259
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Structural characterizations of the navigational expressiveness

of relation algebras on a tree ✩

George H.L. Fletcher a,∗, Marc Gyssens b, Jan Paredaens c, Dirk Van Gucht d,
Yuqing Wu e

a Eindhoven University of Technology, Eindhoven, The Netherlands
b Hasselt University, Hasselt, Belgium
c University of Antwerp, Antwerp, Belgium
d Indiana University, Bloomington, IN, USA
e Pomona College, Claremont, CA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 June 2013
Accepted 12 July 2015
Available online 10 November 2015

Keywords:
Trees
Relation algebra
XML
XPath
Bisimulation
Instance expressivity

We study the expressiveness on a given document of various fragments of XPath, the core
navigational language on XML documents. Viewing these languages as fragments of Tarski’s
relation algebra, we give characterizations for when a binary relation on the document’s
nodes (i.e., a set of paths) is definable by an expression in these algebras. In contrast
with this “global view” on language semantics, there is also a “local view” where one
is interested in the nodes to which one can navigate starting from a particular node. In
this view, we characterize when a set of nodes can be defined as the result of applying an
expression to a given node. All of these global and local definability results are obtained
using a two-step methodology, which consists of first characterizing when two nodes
cannot be distinguished by an expression in the language, and then bootstrapping these
characterizations to the desired results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we investigate the expressive power of several basic fragments of Tarski’s relation algebra [2] on finite
tree-structured graphs. Tarski’s algebra is a fundamental tool in the field of algebraic logic which finds various applications
in computer science [3–6]. Our investigation is specifically motivated by the role the relation algebra plays in the study of
database query languages [7–15], and, more in particular, these query languages restricted to tree-structured graphs [16].
The algebras we consider in this paper correspond to natural fragments of XPath. XPath is a simple language for navigation
in XML documents (i.e., a standard syntax for representing node-labeled trees), which is at the heart of standard XML
transformation languages and other XML technologies [17]. Keeping in the spirit of XML, we will continue to speak in what
follows of trees as “documents” and the algebras we study as “XPath” algebras.

XPath can be viewed as a query language in which an expression associates to every document a binary relation on
its nodes representing all navigation paths in the document defined by that expression [9,18,19]. From this query-level

✩ A preliminary version of some of the results given here were presented at the 25th ACM Symposium on Principles of Database Systems [1].

* Corresponding author.
E-mail addresses: g.h.l.fletcher@tue.nl (G.H.L. Fletcher), marc.gyssens@uhasselt.be (M. Gyssens), jan.paredaens@ua.ac.be (J. Paredaens),

vgucht@cs.indiana.edu (D. Van Gucht), melanie.wu@pomona.edu (Y. Wu).
http://dx.doi.org/10.1016/j.jcss.2015.10.002
0022-0000/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2015.10.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:g.h.l.fletcher@tue.nl
mailto:marc.gyssens@uhasselt.be
mailto:jan.paredaens@ua.ac.be
mailto:vgucht@cs.indiana.edu
mailto:melanie.wu@pomona.edu
http://dx.doi.org/10.1016/j.jcss.2015.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2015.10.002&domain=pdf

230 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
perspective, several natural semantic issues have been investigated in recent years for various fragments of XPath. These
include expressibility, closure properties, and complexity of evaluation [9,10,19–21], as well as decision problems such as
satisfiability, containment, and equivalence [22–24].

Alternatively, we can view XPath as a navigational tool on a particular given document, and study expressiveness is-
sues from this document-level perspective. (A similar duality exists in the relational database model, where Bancilhon [25]
and Paredaens [26] considered and characterized expressiveness at the instance level, which, subsequently, Chandra and
Harel [27] contrasted with expressiveness at the query level.)

In this setting, our goal is to characterize, for various natural fragments of XPath, when a binary relation on the nodes
of a given document (i.e., a set of navigation paths) is definable by an expression in the fragment.

To achieve this goal, we develop a robust two-step methodology. The first step consists of characterizing when two
nodes in a document cannot be distinguished by an expression in the fragment under consideration. It turns out for those
fragments we consider that this notion of expression equivalence of nodes is equivalent to an appropriate generalization of
the classic notion of bisimilarity [28]. The second step of our methodology then consists of bootstrapping this result to a
characterization for when a binary relation on the nodes of a given document is definable by an expression in the fragment.

We refer to this perspective on the semantics of XPath at the document level as the “global view.” In contrast with this
global view, there is also a “local view” which we consider. In this view, one is only interested in the nodes to which one
can navigate starting from a particular given node in the document under consideration. From this perspective, a set of
nodes of that document can be seen as the end points of a set of paths starting at the given node. For each of the XPath
fragments considered, we characterize when such a set represents the set of all paths starting at the given node defined
by some expression in the fragment. These characterizations are derived from the corresponding characterizations in the
“global view,” and turn out to be particularly elegant in the important special case where the starting node is the root.

In this paper, we study several natural XPath fragments. The most expressive among them is the XPath algebra which
permits the self, parent, and child operators, predicates, compositions, and the boolean operators union, intersection, and
difference. (Since we work at the document level, i.e., the document is given, there is no need to include the ancestor and
descendant operators as primitives.) We also consider the core XPath algebra, which is the XPath algebra without intersection
and difference at the expression level. The core XPath algebra is the adaptation to our setting of Core XPath of Gottlob
et al. [18,21,29]. Of both of these algebras, we also consider various “downward” and “upward” fragments without the parent
and child operator, respectively. We also study “positive” variants of all the fragments considered, without the difference
operator.

Our strategy is to introduce and characterize generalizations of each of these practical fragments, towards a broader
perspective on relation algebras on trees. These generalizations are based on a simple notion of path counting, a feature
which also appears in XPath.

The robustness of the characterizations provided in this paper is further strengthened by their feasibility. As discussed
in Section 9, the global and local definability problems for each of the XPath fragments are decidable in polynomial time.
This feasibility hints towards efficient partitioning and reduction techniques on both the set of nodes and the set of paths
in a document. Such techniques may be applied fruitfully towards, e.g., document compression [30], access control [31], and
designing indexes for efficient query processing [11,32,33].

We proceed in the paper as follows. In Section 2, we formally define documents and the algebras, and then in Section 3,
we define a notion of “signatures” which will be essential in the sequel. In Section 4, we define the semantic and syntactic
notions of node distinguishability necessary to obtain our desired structural characterizations. In the balance of the paper,
we apply our two-step methodology to link semantic expression equivalence in the languages to appropriate structural
syntactic equivalence notions. In particular, we give structural characterizations, under both the global and local views,

• of “strictly” (Section 5) and “weakly” (Section 6) downward languages, and their positive variants;
• of upward languages and their positive variants (Section 7); and
• of languages with both downward and upward navigation, and their positive variants (Section 8).

Along the way, we also establish the equivalence of some of these fragments, using the structural characterizations obtained.
We conclude in Section 9 with a discussion of some ramifications of our results and directions for further study.

2. Documents and navigation

In this paper, we are interested in navigating over documents in the form of unordered labeled trees. Formally, we denote
such a document as D = (V , Ed, r, λ), with D the document name, V the set of nodes of the tree, Ed the set of edges of the
tree, r the root of the tree, and λ : V →L a function assigning to each node a label from some infinite set of labels L.

Example 2.1. Fig. 1 shows an example of a document that will be used throughout the paper. Here, r = v1 is the root of the
tree with label λ(v1) = a.

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 231
Fig. 1. Example document.

Table 1
Binary operations on documents. The left column shows the syntax of the opera-
tion, and the right column its semantics, when the operator is applied to a given
document D = (V , Ed, r, λ). Below, � is a label in L and k ≥ 1 a natural number.
Furthermore, in the recursive definitions, e, e1, and e2 represent expressions built
with the operations.

Operator Operator(D)

∅ ∅
ε {(v, v) | v ∈ V }
�̂ {(v, v) | v ∈ V & λ(v) = �}
↓ Ed
↑ Ed−1

π1(e) {(v, v) | (∃w)(v, w) ∈ e(D)}
π2(e) {(w, w) | (∃v)(v, w) ∈ e(D)}
e−1 e(D)−1

ch≥k(e) {(v, v) | v ∈ V & |{w | (v, w) ∈ Ed & (w, w) ∈ π1(e)(D)}| ≥ k}
e1/e2 {(u, w) | (∃v)((u, v) ∈ e1(D) & (v, w) ∈ e2(D))}
e1 ∪ e2 e1(D) ∪ e2(D)

e1 ∩ e2 e1(D) ∩ e2(D)

e1 − e2 e1(D) − e2(D)

We next define a set of operations on documents, as tabulated in Table 1. The left column shows the syntax of the
operation, and the right column its semantics, given a document D = (V , Ed, r, λ). Notice that, in each case, the result is a
binary relation on the nodes of the document.

The basic algebra, denoted X , is the language consisting of all expressions built from ∅, ε, �̂ with � ∈ L, composition
(“/”), and union (“∪”).1 The basic algebra X can be extended by adding some of the other operations in Table 1, which we
call nonbasic. If E is a set of nonbasic operations, then X (E) denotes the algebra obtained by adding the operations in E to
the basic algebra X .

Notice that we do not consider transitive closure operations such as the descendant (“↓∗”) or ancestor (“↑∗”) operations
of XPath. The reason for this is that, in this paper, we do not reason at the query level but only consider navigation within
a given document.2

Example 2.2. Consider the document D in Fig. 1. Let e be the expression ↑/π1(↓/b̂/↓/ĉ) − ch≥2(ε)/↑ in the lan-
guage X (↓, ↑, π1, ch≥2(.), −) (or, for that matter, in any language X (E) with {↓, ↑, π1, ch≥2(.), −} ⊆ E). Then, e(D) =
{(v2, v1), (v8, v4), (v10, v4)}.

Not all the above operations are primitive, however. For instance, intersection (“∩”) is expressible as soon a set difference
(“−”) is expressible, since, for any two sets A and B , A ∩ B = A − (A − B). Even more eliminations are possible in the
following setting.

1 When writing expressions, we assume that unary operations take precedence over binary operations, and that composition takes precedence over the
set operations.

2 Indeed, if d is the height of the given document, then, on that document, e.g., ↓∗ is equivalent to ⋃d
i=1 ↓i , where ↓i denotes i-fold composition of ↓.

232 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
Proposition 2.3. Let E be a set of nonbasic operations containing set difference (“−”) or intersection (“∩”) for which “↓” and “↑”
are both contained in E or both not contained in E. Then, for each expression e in X (E), there is an equivalent expression in X (E −
{π1, π2, −1}).

Proof. First, we eliminate both projections using the identities

π1(e) = (e/e−1) ∩ ε;
π2(e) = (e−1/e) ∩ ε.

To eliminate inverse (“.−1”), we first observe that we can propagate this operation down to the level of the atomic opera-
tions ∅, ε, �̂ (� ∈L), ↑, and ↓. Of these, inverse has only an effect on ↑ and ↓. It suffices now to note that ↑−1 and ↓−1 are
equivalent to ↓ and ↑, respectively. �

Notice that in a language with both upward (“↑”) and downward (“↓”) navigation, the identities π1(e)(D) = π2(e−1)(D)

and π2(e)(D) = π1(e−1)(D) imply that one projection operation can be eliminated in favor of the other. Hence, it does not
make sense to consider them separately in this context.

Some counting operations (“ch≥k(e)”) can also be simulated. One can easily verify the following.

Proposition 2.4. Let D = (V , Ed, r, λ) be a document. Then,

1. ch≥1(e)(D) = π1(↓/e)(D);
2. ch≥2(e)(D) = π1(↓/(π1(e)/↑/↓/π1(e) − ε))(D); and
3. ch≥3(e)(D) = π1(↓/((π1(e)/↑/↓/π1(e) − ε)/(π1(e)/↑/↓/π1(e) − ε) − ε))(D).

Example 2.5. Consider again the expression e := ↑/π1(↓/b̂/↓/ĉ) − ch≥2(ε)/↑ of Example 2.2. Using Proposition 2.4,
and making some straightforward simplifications, we can rewrite e as ↑/π1(↓/b̂/↓/ĉ) − π1(↓/(↑/↓ − ε))/↑, an expres-
sion of X (↓, ↑, π1, −). Using Proposition 2.3 and the techniques exhibited in its proof, we can further rewrite this as
↑/(↓/b̂/↓/ĉ/↑/↓) − ↓/((↑/↓ − ε)/(↑/↓ − ε) ∩ ε)/↑, an expression in X (↓, ↑, ∩, −). Finally, we invite the reader to verify
that e can also be rewritten as π1(ε − π1(↓/(↑/↓ − ε)))/↑/π1(↓/b̂/↓/ĉ) also an expression of X (↓, ↑, π1, −).

We shall call the language X (↓, ↑, π1, π2, .−1, ∩, −), which by Proposition 2.3 is equivalent to X (↓, ↑, −), the XPath
algebra, because, on a given document, it is equivalent to basic XPath [17].3

Besides the standard languages X (E), with E a set of nonbasic operations, we also consider the so-called core languages
C(E). More concretely, C(E) is defined recursively in the same way as X (E − {∩, −}), except that in expressions of the
form π1(f), and π2(f), f may be a boolean combination of expressions of the language using union and the operations in
E ∩ {∩, −}, rather than just an expression of the language.

The above terminology is inspired by the fact that C(↓, ↑, π1, π2, −, ∩), the language which we call the core XPath algebra,
is the adaptation to our setting of Core XPath of Gottlob and Koch [18].

Example 2.6. Continuing with Example 2.5, we consider again the expression e := ↑/π1(↓/b̂/↓/ĉ) − ch≥2(ε)/↑ of Exam-
ple 2.2. Obviously, there is no core language of which e is an expression, as set difference (“−”) occurs at the outer level,
and not in a subexpression f which in turn is embedded in a subexpression of the form π1(f) or π2(f). However, in
Example 2.5, the expression e has been shown to be equivalent to π1(ε − π1(↓/(↑/↓ − ε)))/↑/π1(↓/b̂/↓/ĉ) which is an
expression of C(↓, ↑, π1, −, ∩), and hence also of the core XPath algebra.

Given a set of nonbasic operators E , an expression in X (E) can in general not be converted to an equivalent expression
in C(E), however, as will follow from the results of this paper, although there are exceptions (see Theorem 5.19).

Table 2 gives an overview of the relation algebra fragments we consider.
To conclude this section, we observe that, given a document and an expression, we have defined the semantics of that

expression as a binary relation over the nodes of the document, i.e., as a set of pair of nodes. From the perspective of
navigation, however, it is useful to be able to say that an expression allows one to navigate from one node of the document
to another. For this purpose, we introduce the following notation.

Definition 2.7. Let e be an arbitrary expression, and let D = (V , Ed, r, λ) be a document. For v ∈ V , e(D)(v) := {w | (v, w) ∈
e(D)}.

3 Note that the XPath algebra corresponds to the (full) relation algebra of Tarski [2], adapted to our setting (cf. [10]).

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 233
Table 2
Languages studied in this paper.

Language Relation Algebra Fragment

Strictly downward (core) XPath algebra with counting up to k X (↓,π1, ch≥1(.), . . . , ch≥k(.),−) = C(↓,π1, ch≥1(.), . . . , ch≥k(.),−)

Strictly downward (core) XPath algebra X (↓,π1,−) = C(↓,π1,−)

Strictly downward positive (core) XPath algebra X (↓,π1,∩) = X (↓,π1) = C(↓,π1,∩) = C(↓,π1)

Weakly downward (core) XPath algebra with counting up to k X (↓,π1,π2, ch≥1(.), . . . , ch≥k(.),−) = C(↓,π1,π2, ch≥1(.), . . . , ch≥k(.),−)

Weakly downward (core) XPath algebra X (↓,π1,π2,−) = C(↓,π1,π2,−)

Weakly downward positive (core) XPath algebra X (↓,π1,π2,∩) = X (↓,π1,π2) = C(↓,π1,π2,∩) = C(↓,π1,π2)

Strictly upward (core) XPath algebra X (↑,π1,−) = C(↑,π1,−)

Strictly upward positive (core) XPath algebra X (↑,π1,∩) = X (↑,π1) = C(↑,π1,∩) = C(↑,π1)

Weakly upward languages See Section 7.2
XPath algebra with counting up to k X (↓,↑, ch≥1(.), . . . , ch≥k(.),−)

XPath algebra X (↓,↑,π1,π2, .−1,∩,−) = X (↓,↑,−)

Core XPath algebra with counting up to k C(↓,↑,π1,π2, ch≥1(.), . . . , ch≥k(.),−)

Core XPath algebra C(↓,↑,π1,π2,−,∩)

Positive (core) XPath algebra ([34]) X (↓,↑,∩) = X (↓,↑,π1,π2) = C(↓,↑,π1,π2,∩)

Definition 2.7 reflects the “local” perspective of an expression working on particular nodes of a document, rather than
the “global” perspective of working on an entire document.

Example 2.8. Consider again the expression e := ↑/π1(↓/b̂/↓/ĉ) − ch≥2(ε)/↑ of Example 2.2. We have established that, for
the document D in Fig. 1, e(D) = {(v2, v1), (v8, v4), (v10, v4)}. Hence, e(D)(v8) = {v4} and e(D)(v1) = ∅.

3. Signatures

Given a pair of nodes in a document, there is a unique path in that document (not taking into account the direction of
the edges) to navigate from the first to the second node, in general by going a few steps upward in the tree, and then going
a few steps downward. We call this the signature of that pair of nodes, and shall formally represent it by an expression in
X (↓, ↑).

Definition 3.1. Let D = (V , Ed, r, λ) be a document, and let v, w ∈ V . The signature of the pair (v, w), denoted sig(v, w), is
the expression in X (↓, ↑) that is recursively defined as follows:

• if v = w , then sig(v, w) := ε;
• if v is an ancestor of w , and z is the child of v on the path from v to w , then sig(v, w) := ↓/ sig(z, w);
• otherwise,4 if z is the parent of v , then sig(v, w) := ↑/ sig(z, w).

Given nodes v and w of a document D = (V , Ed, r, λ), we denote by top(v, w) the unique node on the undirected path
from v to w that is an ancestor of both v and w . Clearly, sig(v, w) = sig(v, top(v, w))/ sig(top(v, w), w) = ↑m/↓n , where
m, respectively n, is the distance from top(v, w) to v , respectively w; and, for an expression e and a natural number i ≥ 1,
ei denotes the i-fold composition of e.5 (We put e0 := ε.)

The signature of a pair of nodes of a document can be seen as a description of the unique path connecting these nodes,
but also as an expression that can be applied to the given document. We shall often exploit this duality.

Example 3.2. For the document D in Fig. 1, sig(v1, v1) = ε, sig(v1, v2) = ↓, sig(v6, v4) = ↑2/↓, and sig(v11, v5) = ↑3/↓2.
We have that

sig(v11, v5)(D) = {(v11, v5), (v12, v5), (v13, v5), (v11, v6), (v12, v6), (v13, v6),

(v11, v7), (v12, v7), (v13, v7), (v11, v8), (v12, v8), (v13, v8),

(v11, v9), (v12, v9), (v13, v9), (v11, v10), (v12, v10), (v13, v10)}.
Notice that not each pair in the result has the same signature as (v11, v5). For instance, sig(v11, v8) = ↑2/↓ and
sig(v11, v9) = ↑.

Now, let (v1, w1) and (v2, w2) be two pairs of nodes in a document D = (V , Ed, r, λ). We say that (v1, w1) subsumes
(v2, w2), denoted (v1, w1) � (v2, w2), if (v2, w2) ∈ sig(v1, w1)(D). We say that (v1, w1) are (v2, w2) congruent, denoted

4 In particular, v
= r.
5 Here, and elsewhere in this paper, equality between expressions must be interpreted at the semantic and not at the syntactic level, i.e., for two

expressions e1 and e2 in one of the languages considered here, e1 = e2 means that, for each document D , e1(D) = e2(D).

234 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
(v1, w1) ∼= (v2, w2), if (v1, w1) � (v2, w2) and (v2, w2) � (v1, w1). It can be easily seen that, in this case, sig(v1, w1) =
sig(v2, w2). Informally speaking, the path from v1 to w1 has then the same shape as the path from v2 to w2.

Example 3.3. Consider again Example 3.2. Clearly, (v11, v5) subsumes each pair of nodes in sig(v11, v5)(D), e.g., (v11, v5) �
(v12, v6) and (v11, v5) � (v12, v9). Notice that also (v12, v6) � (v11, v5), and hence (v11, v5) ∼= (v12, v6). However,
(v12, v9)
� (v11, v5). Hence, these pairs are not congruent.

By definition, subsumption is captured by the “sig” expression. One may wonder if there also exists an expression that
precisely captures congruence. This is the case in the following situations.

Proposition 3.4. Let D = (V , Ed, r, λ) be a document and let v1, v2, w1, w2 ∈ V . Then,

1. if v1 is an ancestor of w1 or vice versa, (v1, w1) ∼= (v2, w2) if and only if (v2, w2) ∈ sig(v1, w1)(D);
2. otherwise, let sig(v1, w1) = ↑m/↓n. Then, as m ≥ 1 and n ≥ 1, (v1, w1) ∼= (v2, w2) if and only if (v2, w2) ∈ ↑m/↓n −

↑m−1/↓n−1(D).

Proof. We only prove the “if” part of Property 2. Let t2 := ↑m(D)(v2). Since w2 ∈ ↓n(D)(t2), t2 is a common ancestor of
v2 and w2. Let v ′

2 and w ′
2 be the children of t2 on the path to v2 and w2, respectively. If v ′

2 = w ′
2, then (v2, w2) ∈

↑m−1/↓n−1(D), a contradiction. Hence, v ′
2
= w ′

2 and t2 = top(v2, w2), and sig(v2, w2) = ↑m/↓n = sig(v1, w1). �
For later use, but also because of their independent interest, we finally note the following fundamental properties of

subsumption and congruence.

Proposition 3.5. Let D = (V , Ed, r, λ) be a document, and let v, w, v1, w1, z1, v2, w2, z2 ∈ V . Then the following properties hold.

1. (v, v) � (w, w).
2. (v1, w1) � (v2, w2) implies that (w1, v1) � (w2, v2).
3. If top(v1, z1) is also an ancestor of w1 , then (v1, w1) � (v2, w2) and (w1, z1) � (w2, z2) imply that (v1, z1) � (v2, z2).
4. All properties above also hold when subsumption is replaced by congruence, provided that, in item 3, the condition “top(v2, z2) is

also an ancestor of w2” is added.

Proof. All properties are straightforward, except for Property 3. So, assume that (v1, w1) � (v2, w2) and (v1, z1) � (v2, z2).
Hence, (v2, w2) ∈ sig(v1, w1)(D) and (v2, z2) ∈ sig(v1, z1)(D), as a consequence of which

(v2, z2) ∈ sig(v1, w1)/ sig(w1, z1)(D).

For the sake of abbreviation, let t1 := top(v1, w1) and u1 := top(w1, z1). Using these nodes, we can write

sig(v1, w1)/ sig(w1, z1) = sig(v1, t1)/ sig(t1, w1)/ sig(w1, u1)/ sig(u1, z1),

which is equal to sig(v1, s1)/ sig(s1, z1), where s1 is the higher of t1 and u1 in D . Notice that s1 is a common ancestor
of v1 and z1, as a consequence of which it is also an ancestor of top(v1, z1), the least common ancestor of v1 and z1.
By assumption, top(v1, z1) is a common ancestor of v1, w1, and z1, and hence also of top(v1, w1) and top(w1, z1), the
highest of which is s1. Thus, s1 = top(v1, z1), and, therefore, sig(v1, s1)/ sig(s1, z1) = sig(v1, z1). In summary, (v2, z2) ∈
sig(v1, z1)(D), and hence (v1, z1) � (v2, z2). �

Observe that the condition in Proposition 3.5, (3), is necessary for that part of the proposition to hold, as shown by the
following counterexample.

Example 3.6. Consider the document in Fig. 2. Labels have been omitted, because they are not relevant in this discussion.
(We assume all nodes have the same label.) Observe that (v1, w1) ∼= (v2, w2) and (w1, z1) ∼= (w2, z2). However, top(v1, z1)

is not an ancestor of w1, hence, Proposition 3.5, (3), is not applicable. We see that, indeed, (v1, z1) does not subsume
(v2, z2), let alone that (v1, z1) and (v2, z2) would be congruent.

4. Distinguishability of nodes in a document

We wish to link the distinguishing power of a navigational language on a document to syntactic conditions which can
readily be verified on that document. As argued before, the action of an expression on a document can be interpreted as
(1) returning pairs of nodes, or (2) given a node, returning the set of nodes that can be reached from that node. We shall
refer to the first interpretation as the pairs semantics, and to the second interpretation as the node semantics. In this section,
we propose suitable semantic and syntactic notions of distinguishability for the node semantics.

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 235
Fig. 2. Document of Example 3.6.

4.1. Distinguishability of nodes at the semantic level

We propose the following distinguishability criterion based on the emptiness or nonemptiness of the set of nodes that
can be reached by applying an arbitrary expression of the language under consideration.

Definition 4.1. Let L be one of the languages considered in Section 2. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V .
Then,

1. v1 and v2 are expression-related, denoted v1 ≥exp v2, if, for each expression e in L, e(D)(v1)
= ∅ implies e(D)(v2)
= ∅;
and

2. v1 and v2 are expression-equivalent, denoted v1 ≡exp v2, if v1 ≥exp v2 and v2 ≥exp v1.

In principle, we should have reflected the language under consideration in the notation for expression-equivalence. As
the language under consideration will always be clear from the context, we chose not to do so in order to avoid overloaded
notation.

The following observation is useful.

Proposition 4.2. Let E be a set of nonbasic operations containing first projection (“π1”) and set difference (“−”). Consider expression-
equivalence with respect to either X (E) or C(E). Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . Then, v1 ≡exp v2 if and only
if v1 ≥exp v2 .

Proof. Assume that v2 �exp v1. Then there exists an expression f in X (E) or C(E) such that f (D)(v2)
= ∅ and
f (D)(v1) = ∅. Now consider e := π1(ε −π1(f)), which is also an expression of X (E), respectively C(E). Clearly, e(D)(v2) =
∅ and e(D)(v1)
= ∅, hence v1 �exp v2. By contraposition, v1 ≥exp v2 implies v2 ≥exp v1, and hence also v1 ≡exp v2. �
4.2. Distinguishability of nodes at the syntactic level

Our syntactic criterion of distinguishability is based on the similarity of the documents locally around the nodes under
consideration. In order to decide this similarity, we shall consider a hierarchy for the degree of coarseness by which we
compare the environments of those nodes. We shall also consider variants for the cases where from the given nodes of the
document we (1) only look downward; (2) only look upward; or (3) look in both directions.

4.2.1. Downward distinguishability
For the downward case, we consider the following syntactic notions of node distinguishability. They are defined recur-

sively on the height of the first node.

Definition 4.3. Let D = (V , Ed, r, λ) be a document, let v1, v2 ∈ V , and let k ≥ 1. Then, v1 and v2 are downward-k-equivalent,
denoted v1 ≡k↓ v2, if

1. λ(v1) = λ(v2);
2. for each child w1 of v1, there exists a child w2 of v2 such that w1 ≡k w2, and vice versa;
↓

236 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
3. for each child w1 of v1 and w2 of v2 such that w1 ≡k↓ w2, min(|w̄1|, k) = min(|w̄2|, k), where, for i = 1, 2, w̄i is the
set of all siblings of wi (including wi itself) that are downward k-equivalent to wi .6

For k = 1, the third condition above is trivially satisfied. In the literature, downward 1-equivalence is usually referred to
as bisimilarity [28].

Example 4.4. Consider again the document in Fig. 1. Notice that v2 ≡k↓ v10 for any value of k ≥ 1. We also have that
v2 ≡1↓ v3, and, for any value of k ≥ 2, v2
≡k↓ v3. Finally, notice that v3
≡k↓ v4 for any value of k ≥ 1.

The following is immediate from the second condition in the Definition 4.3.

Proposition 4.5. Let D = (V , Ed, r, λ) be a document, let v1, v2 ∈ V , and let k ≥ 1. If v1 ≡k↓ v2 , then v1 and v2 have equal height7

in D.

The following property of downward-k-equivalence will turn out to be very useful in the sequel.

Proposition 4.6. Let D = (V , Ed, r, λ) be a document, and let k ≥ 1. Let “≡” be an equivalence relation on V such that, for all
v1, v2 ∈ V with v1 ≡ v2 ,

1. λ(v1) = λ(v2);
2. for each child w1 of v1 , there exists a child w2 of v2 such that w1 ≡ w2 , and vice versa; and
3. for each child w1 of v1 and each child w2 of v2 such that w1 ≡ w2 , min(|w̃1|, k) = min(|w̃2|, k), where, for i = 1, 2, w̃i is the

set of all siblings of wi (including wi itself) that are equivalent to wi under “≡.”

Then, for all v1, v2 ∈ V , v1 ≡ v2 implies v1 ≡k↓ v2 .

Proof. By induction of the height of v1.
If v1 is a leaf, the second condition above implies that v2 must also be a leaf. By the first condition, λ(v1) = λ(v2).

Hence, v1 ≡k↓ v2.
If v1 is not a leaf, we still have, by the first condition, that λ(v1) = λ(v2). Hence the first condition in the definition of

v1 ≡k↓ v2 (Definition 4.3) is satisfied.

The second condition in the definition of v1 ≡k↓ v2 follows from the second condition above and the induction hypothesis.

It remains to show that also the third condition in the definition of v1 ≡k↓ v2 holds. Thereto, let w1 be a child of v1 and
w2 be a child of v2 such that w1 ≡k↓ w2. We show that min(|w̄1|, k) = min(|w̄2|, k), where, for i = 1, 2, w̄i is the set of all
siblings of wi (including wi itself) that are downward k-equivalent to wi . Let {W11, . . . , W1�} be the coarsest partition of
w̄1 in ≡-equivalent nodes, and let {W21, . . . , W2�} be the coarsest partition of w̄2 in ≡-equivalent nodes. By the induction
hypothesis and the second condition above, both partitions have indeed the same size. It follows furthermore that no node
of w̄1 is ≡-equivalent with a child of v1 outside w̄1, and that no node of w̄2 is ≡-equivalent with a child of v2 outside
w̄2. Without loss of generality, we may assume that, for i = 1, . . . , �, every node in W1i is ≡-equivalent to every node in
W2i . Hence, by the third condition above, min(|W1i |, k) = min(|W2i |, k). We now distinguish two cases.

1. For i = 1, . . . , �, |W1i | < k. Then, for i = 1, . . . , �, |W1i | = |W2i |. It follows that |w̄1| = |w̄2|, and, hence, also that
min(|w̄1|, k) = min(|w̄2|, k).

2. For some i, 1 ≤ i ≤ �, |W1i| ≥ k. Then, |W2i | = |W1i | ≥ k. Hence, |w̄1| ≥ k and |w̄2| ≥ k. It follows that min(|w̄1|, k) =
min(|w̄2|, k) = k.

We conclude that, in both cases, the third condition in the definition of v1 ≡k↓ v2 is also satisfied. �
So, given a document D = (V , Ed, r, λ), downward-k-equivalence is the coarsest equivalence relation on V satisfying

Proposition 4.6.
A straightforward application of Proposition 4.6 yields

Corollary 4.7. Let k ≥ 1. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . If v1 ≡k+1
↓ v2 , then v1 ≡k↓ v2 .

6 For a set A, |A| denotes the cardinality of A.
7 By the height of a node, we mean the length of the longest path from that node to a leaf.

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 237
Proof. It suffices to observe that “≡k+1
↓ ” is an equivalence relation satisfying Proposition 4.6 for the value of k in the

statement of the Corollary, above. For the first two conditions in Proposition 4.6, this follows immediately from the corre-
sponding conditions in Definition 4.3. For the third condition in Proposition 4.6, this also follows from the third condition
in Definition 4.3 if one takes into account that, for arbitrary sets A and B , min(|A|, k + 1) = min(|B|, k + 1) implies that
min(|A|, k) = min(|B|, k). �
4.2.2. Upward distinguishability

If we only look upward in the document, there is but one reasonable definition of node distinguishability, as each node
has at most one parent. In contrast with the downward case, the recursion in it is on the depth of the first node.

Definition 4.8. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . Then, v1 and v2 are upward-equivalent, denoted
v1 ≡↑ v2, if

1. λ(v1) = λ(v2);
2. v1 is the root if and only if v2 is the root; and
3. if v1 and v2 are not the root, and u1 and u2 are the parents of v1 and v2, respectively, then u1 ≡↑ u2.

It is easily seen that two nodes are upward-equivalent if the paths from the root to these two nodes are isomorphic in
the sense that they have the same length and corresponding nodes have the same label.

Example 4.9. In the example document of Fig. 1 we have, e.g., that v6 ≡↑ v7, v8 ≡↑ v9, v11 ≡↑ v12, but v8
≡↑ v13.

4.2.3. Two-way distinguishability
If we look both upward and downward in a document, we can define a notion of equivalence by combining the

definitions of upward- and k-downward-equivalence: two nodes are k-equivalent if they are upward-equivalent, and if cor-
responding nodes on the isomorphic paths from the root to these nodes are k-downward-equivalent. More formally, we
have the following recursive definition, where the recursion is on the depth of the first node.

Definition 4.10. Let D = (V , Ed, r, λ) be a document, let v1, v2 ∈ V , and let k ≥ 1. Then, v1 and v2 are k-equivalent, denoted
v1 ≡k� v2, if

1. v1 ≡k↓ v2;
2. v1 is the root if and only if v2 is the root; and
3. if v1 and v2 are not the root, and u1 and u2 are the parents of v1 and v2, respectively, then u1 ≡k� u2.

Stated in a nonrecursive way, two nodes are k-equivalent if the paths from the root to these two nodes have equal length
and corresponding nodes on these two paths are downward-k-equivalent.

Example 4.11. Consider again the document in Fig. 1. We have that, e.g., v5 ≡1� v6 ≡1� v7, but no two of these nodes are
k-equivalent for any value of k ≥ 2. Also, v5
≡k� v8 and v8
≡k� v13, for any value of k ≥ 1.

By a straightforward inductive argument, the following is immediate from Corollary 4.7.

Proposition 4.12. Let k ≥ 1. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . If v1 ≡k+1
� v2 , then v1 ≡k� v2 .

4.3. Distinguishability of pairs of nodes at the syntactic level

We also define notions of distinguishability of pairs of nodes, by requiring that the pairs have subsumed or congruent
signatures and that corresponding nodes on the (undirected) paths between begin and end points of both pairs are related
under one of the notions defined in Subsection 4.2.

Definition 4.13. Let D = (V , Ed, r, λ) be a document, let ϑ be one of the syntactic relationships between nodes defined in
Subsection 4.2, and let v1, w1, v2, w2 ∈ V . Then, (v1, w1) ϑ-subsumes (v2, w2), denoted (v1, w1)�ϑ (v2, w2) (respectively,
(v1, w1) and (v2, w2) are ϑ-congruent, denoted (v1, w1)∼=ϑ (v2, w2)) if

238 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
Table 3
Distinguishability notions of Section 4.

Distinguishability Notion Notation Defined in

Expression-related ≥exp Definition 4.1
Expression-equivalent ≡exp Definition 4.1
Downward-k-equivalent ≡k↓ Definition 4.3
Upward-equivalent ≡↑ Definition 4.8
k-equivalent ≡k� Definition 4.10
ϑ-subsumes �ϑ Definition 4.13
ϑ-congruent ∼=ϑ Definition 4.13

1. (v1, w1) � (v2, w2) (respectively, (v1, w1) ∼= (v2, w2)); and
2. for each node y1 on the path form v1 to w1, y1ϑ y2, where y2 is the unique ancestor of v2 or w2 or both for which

(v2, y2) ∈ sig(v1, y1)(D) (or, equivalently, (y2, w2) ∈ sig(y1, w1)(D)).8

Example 4.14. Consider again the document in Fig. 1. We have that, e.g., (v2, v5)∼=≡k↓
(v3, v6) for k = 1 but not for any

higher value of k; (v2, v5)∼=≡k↓
(v10, v13) for any value of k ≥ 1; (v2, v5)∼=≡↑ (v4, v9); (v5, v6)∼=≡k�

(v5, v7) for any value of
k ≥ 1; and (v6, v7)�≡1�

(v2, v5), but not the other way around.

From Proposition 3.4, (1), the following is obvious.

Proposition 4.15. Let D = (V , Ed, r, λ) be a document, let ϑ be one of the syntactic relationships between nodes defined in Subsec-
tion 4.2, and let v1, v2, w1, w2 ∈ V . If v1 is an ancestor of w1 or vice versa, (v1, w1)∼=ϑ (v2, w2) if and only if (v1, w1)�ϑ (v2, w2).

Finally, from Definitions 4.10 and 4.13, the following is also obvious.

Proposition 4.16. Let D = (V , Ed, r, λ) be a document, let v1, v2 ∈ V , and let k ≥ 1. Then, v1 ≡k� v2 if and only if (r, v1)∼=≡k↓
(r, v2).

Table 3 summarizes all of the distinguishability notions presented in this section. The balance of the paper is devoted to
identifying the languages which correspond in expressive power to each of these notions.

5. Strictly downward languages

We call a language downward if, for any expression e and for any node v of the given document D , all nodes in e(D)(v)

are descendants of v . In this section, we consider languages with the stronger property that e(D)(v) = e(D ′)(v), where D ′
is the subtree of D rooted at v . We shall call such languages strictly downward. Downward languages that are not strictly
downward will be called weakly downward and are the subject of Section 6.

Considering the nonbasic operations in Table 1, the language X (E) is strictly downward if and only if E does not contain
upward navigation (“↑”), second projection (“π2”), and inverse (“.−1”). It is the purpose of this section to investigate the
expressive power of these languages at the document level, and, in some cases, derive actual characterizations.

5.1. Sufficient conditions for expression equivalence

If e is an expression in a downward language X (E), then it follows immediately from the definition that, given a node
v of the document D under consideration, each node in e(D)(v) is a descendant of v . Therefore, we only need to consider
ancestor-descendant pairs of nodes, for which corresponding notions of subsumption and congruence coincide (Proposi-
tion 4.15).

The following property of ≡k↓-congruence, k ≥ 1, for ancestor-descendant pairs of nodes will turn out to be very useful.

Lemma 5.1. Let D = (V , Ed, r, λ) be a document, let v1, w1, v2 ∈ V such that w1 is a descendant of v1 , and let k ≥ 1. If v1 ≡k↓ v2 ,
then v2 has a descendant w2 such that (v1, w1)∼=≡k↓

(v2, w2).

Proof. The proof is by induction of the length of the path from v1 to w1. If w1 = v1, then, obviously, Lemma 5.1 is
satisfied for w2 := v2. If w1
= v1, then let y1 be the child of v1 on the path to w1. By Definition 4.3, v2 has a child y2

8 In the sequel, we call y1 and y2 corresponding nodes.

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 239
such that y1 ≡k↓ y2. By the induction hypothesis, y2 has a descendant w2 in D such that (y1, w1)∼=≡k↓
(y2, w2). Obviously,

(v1, w1)∼=≡k↓
(v2, w2). �

We now link ≡k↓-congruence of ancestor-descendant pairs of nodes with expressibility in strictly downward languages.

Proposition 5.2. Let k ≥ 1, and let E be the set of all nonbasic operations in Table 1, except for upward navigation (“↑”), second
projection (“π2”), inverse (“.−1”), and selection on at least m children satisfying some condition (“ch≥m(.)”) for m > k. Let e be an
expression in X (E). Let D = (V , Ed, r, λ) be a document, let v1, w1, v2, w2 ∈ V such that, for i = 1, 2, wi is a descendant of vi , and
(v1, w1)∼=≡k↓

(v2, w2). Then, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D).

Proof. By symmetry, it suffices to prove that (v1, w1) ∈ e(D) implies (v2, w2) ∈ e(D). We use structural induction. As the
base case for the atomic operators ∅, ε, �̂ (� ∈L), and ↓ is straightforward, we focus on the induction step.

1. e := e1/e2, with e1 and e2 satisfying Proposition 5.2. Assume that (v1, w1) ∈ e(D). Then there exists y1 ∈ V such that
(v1, y1) ∈ e1(D) and (y1, w1) ∈ e2(D). By the strictly downward nature of X (E), y1 is on the path from v1 to w1. Let y2
be the node on the path from v2 to w2 corresponding to y1. Obviously, (v1, y1) ≡k↓ (v2, y2) and (y1, w1) ≡k↓ (y2, w2).
By the induction hypothesis, (v2, y2) ∈ e1(D) and (y2, w2) ∈ e2(D). Hence, (v2, w2) ∈ e(D).

2. e := π1(f), with f satisfying Proposition 5.2. Assume that (v1, w1) ∈ e(D). Then, necessarily v1 = w1, and, conse-
quently, v2 = w2. From (v1, v1) ∈ π1(f)(D), it follows that there exists z1 ∈ V such that (v1, z1) ∈ f (D). Since v1 ≡k↓ v2,
it also follows, by Lemma 5.1, that there exists a descendant z2 of w2 such that (v1, z1)∼=≡k↓

(v2, z2). By the induction
hypothesis, (v2, z2) ∈ f (D). Hence, (v2, v2) ∈ e(D).

3. e := ch≥m(f), with m ≤ k and f satisfying Proposition 5.2. Assume that (v1, w1) ∈ ch≥m(f)(D). Hence, v1 = w1, which
in turn implies v2 = w2. Let ↓/π1(f)(D)(v1) = Y1 and let ↓/π1(f)(D)(v2) = Y2. By assumption, |Y1| ≥ m. Now, let
y be a child of v1 in Y1 or a child of v2 in Y2, and let z be a child of v1 not in Y1 or a child of v2 not in Y2. By
assumption, there exists y′ ∈ V such that (y, y′) ∈ f (D). Now, suppose that y ≡k↓ z. Then, by Proposition 5.1, there exists
z′ ∈ V such that (y, y′)∼=≡k↓

(z, z′). But then, by the induction hypothesis, (z, z′) ∈ f (D), contrary to our assumptions.

We may therefore conclude that y
≡k↓ z. Since furthermore v1 ≡k↓ v2, it follows that, for all y1 ∈ Y1, there exists y2 ∈ Y2

such that y1 ≡k↓ y2, and vice versa. Hence, for some n ≥ 1, we can write Y1 = Y11 ∪ . . . ∪ Y1n and Y2 = Y21 ∪ . . . ∪ Y2n
such that
(a) Y11, . . . , Y1n are maximal sets of mutually downward-k-equivalent children of v1, and are hence pairwise disjoint;
(b) Y21, . . . , Y2n are maximal sets of mutually downward-k-equivalent children of v2, and are hence pairwise disjoint;

and
(c) for i = 1, . . . , n, each node of Y1i is downward-k-equivalent to each node of Y2i .
If, for some i, |Y1i | ≥ k, it follows from v1 ≡k↓ v2 that |Y2i | ≥ k, and, hence, that |Y2| ≥ k ≥ m. If, on the other hand,
for i = 1, . . . , n, |Y1i| < k, it follows from v1 ≡k↓ v2 that |Y1i | = |Y2i |, and, hence, that |Y1| = |Y2|. Since |Y1| ≥ m, it
follows that, also in this case, |Y2| ≥ m. We may thus conclude that, in all cases, |Y2| ≥ m, and, hence, that (v2, v2) ∈
ch≥m(f)(D) = e(D).

4. e := e1 ∪ e2, with e1 and e2 satisfying Proposition 5.2. Assume that (v1, w1) ∈ e(D). Then, (v1, w1) ∈ e1(D) or
(v1, w1) ∈ e2(D). Without loss of generality, assume the former. Then, by the induction hypothesis, (v2, w2) ∈ e1(D).
Hence, (v2, w2) ∈ e(D).

5. e := e1 ∩ e2, with e1 and e2 satisfying Proposition 5.2. Assume that (v1, w1) ∈ e(D). Then, (v1, w1) ∈ e1(D) and
(v1, w1) ∈ e2(D). It follows by the induction hypothesis that (v2, w2) ∈ e1(D) and (v2, w2) ∈ e2(D). Hence, (v2, w2) ∈
e(D).

6. e := e1 − e2, with e1 and e2 satisfying Proposition 5.2. Assume that (v1, w1) ∈ e(D). Then (v1, w1) ∈ e1(D) and
(v1, w1) /∈ e2(D). By the induction hypothesis, (v2, w2) ∈ e1(D) and (v2, w2) /∈ e2(D). (Indeed, if (v2, w2) ∈ e2(D),
then, again by the induction hypothesis, (v1, w1) ∈ e2(D), a contradiction.) Hence, (v2, w2) ∈ e(D). �

Corollary 5.3. Let k ≥ 1, and let E be the set of all nonbasic operations in Table 1, except for upward navigation (“↑”), second projection
(“π2”), inverse (“.−1”), and selection on at least m children (“ch≥m(.)”) for m > k. Let e be an expression in X (E). Let D = (V , Ed, r, λ)

be a document, let v1, v2 ∈ V such that v1 ≡k↓ v2 , and let w1 be a descendant of v1 . If (v1, w1) ∈ e(D), then there exists a descendant
w2 of v2 such that (v2, w2) ∈ e(D).

Proof. By Lemma 5.1, there exists a descendant w2 of v2 such that (v1, w1)∼=≡k↓
(v2, w2). By Proposition 5.2, it now follows

that (v2, w2) ∈ e(D). �
Corollary 5.4. Let k ≥ 1, and let E be a set of nonbasic operations in Table 1 not containing upward navigation (“↑”), second projection
(“π2”), inverse (“.−1”), or selection on at least m children satisfying some condition (“ch≥m(.)”) for m > k. Consider the language X (E)

or C(E). Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . If v1 ≡k v2 , then v1 ≡exp v2 .
↓

240 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
Proof. Let e be an expression such that e(D)(v1)
= ∅. Hence, there exists a descendant w1 of v1 such that (v1, w1) ∈ e(D).
By Corollary 5.3, there exists a descendant w2 of v2 such that (v2, w2) ∈ e(D), so e(D)(v2)
= ∅. By symmetry, the converse
also holds. Hence, v1 ≡exp v2. �

Hence, downward-k-equivalence is a sufficient condition for expression-equivalence under a strictly downward language
if ch≥m(.) cannot be expressed for m > k. This restriction cannot be removed, as shown by this counterexample:

Example 5.5. Consider again the document in Fig. 1. We established in Example 4.4 that v2 ≡1↓ v3, but v2
≡2↓ v3. In the
language X (ch≥2(.)), clearly v2
≡exp v3, as ch≥2(ε)(D)(v2) = ∅, while ch≥2(ε)(D)(v3)
= ∅.

5.2. Necessary conditions for expression equivalence

We now explore requirements on the set of nonbasic operations expressible in a language under which downward-k-
equivalence (k ≥ 1) is necessary for expression-equivalence. As we tried to make as few assumptions as possible, Proposi-
tion 5.6 also holds for a class of languages that are not (strictly) downward.

Proposition 5.6. Let k ≥ 1, and let E be a set of nonbasic operations containing set difference (“−”). Consider the language X (E) or
C(E). Assume that first projection (“π1”) is expressible, as well as selection on at least m children satisfying some condition (“ch≥m(.)”),
for m = 1, . . . , k. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . If v1 ≡exp v2 , then v1 ≡k↓ v2 .

Proof. Without loss of generality, we may assume that the language under consideration is C(E). To prove the result, it
suffices to show that expression-equivalence (“≡exp”) satisfies the conditions of Proposition 4.6. Thus, let v1, v2 ∈ V be such
that v1 ≡k↓ v2.

1. Since λ̂(v1)(D)(v1)
= ∅, λ̂(v1)(D)(v2)
= ∅, and hence λ(v1) = λ(v2).
2. Assume that v1 has a child w1. Since ch≥1(ε)(D)(v1)
= ∅, ch1(ε)(D)(v2)
= ∅. Hence v2 has at least one child. Let

w1
2, . . . , w

n
2 be all children of v2. Suppose for the sake of contradiction that, for i = 1, . . . , n, w1
≡exp wi

2. Then, by
Proposition 4.2, there exists an expression ei in C(E) such that ei(D)(w1)
= ∅ and ei(D)(wi

2) = ∅, for i = 1, . . . , n. Now,
let e := π1(e1)/ . . . /π1(en). Then, ch≥1(e)(D)(v1)
= ∅ while ch≥1(e)(D)(v2) = ∅, a contradiction. Hence, v2 has a child
w2 such that w1 ≡exp w2. Of course, the same also goes with the roles of v1 and v2 reversed.

3. Assume that v1 has a child w1 and v2 has a child w2 such that w1 ≡exp w2. For i = 1, 2, let w̃i be the set of
all siblings of wi (including wi itself) that are expression-equivalent to wi . As in the previous item, we can con-
struct an expression e in C(E) such that e(D)(w1)
= ∅ (and hence e(D)(w)
= ∅ for each node w in w̃1 or w̃2)
and e(D)(w) = ∅ for each sibling of w1 not in w̃1 and for each sibling of w2 not in w̃2. For the sake of contra-
diction, assume that min(|w̃1|, k)
= min(|w̃2|, k). Without loss of generality, assume that min(|w̃1|, k) < min(|w̃2|, k).
Hence, min(|w̃1|, k) = |w̃1|. Let m := min(|w̃2|, k). Then, ch≥m(e)(D)(v1) = ∅, while ch≥m(e)(D)(v2)
= ∅, a contradic-
tion. Hence, min(|w̃1|, k) = min(|w̃2|, k). �

Hence, downward-k-equivalence is a necessary condition for expression-equivalence under a strictly downward language
containing first projection (“π1”) and set difference (“−”) if selection on at least m children satisfying some condition
(“ch≥m(.)”) for m = 1, . . . , k can be expressed.

5.3. Characterization of expression equivalence

We call X (↓, π1, ch≥1(.), . . . , ch≥k(.), −) (C(↓, π1, ch≥1(.), . . . , ch≥k(.), −)) the strictly downward (core) XPath algebra with
counting up to k. As these are the languages under consideration which effectively contain downward navigation (“↓”) and
satisfy both Corollary 5.4 and Proposition 5.6, we obtain

Theorem 5.7. Let k ≥ 1, and consider the strictly downward (core) XPath algebra with counting up to k. Let D = (V , Ed, r, λ) be a
document, and let v1, v2 ∈ V . Then v1 ≡exp v2 if and only if v1 ≡k↓ v2 .

A special case arises when k = 1, since, by Proposition 2.4, selection on at least one child satisfying some condition
(“ch≥1(.)”) can be expressed in terms of the other operations required by Theorem 5.7. We call X (↓, π1, −) (C(↓, π1, −))
the strictly downward (core) XPath algebra. We have the following.

Corollary 5.8. Consider the strictly downward (core) XPath algebra. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . Then
v1 ≡exp v2 , if and only if v1 ≡1↓ v2 .

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 241
5.4. Characterization of navigational expressiveness

We now investigate the expressiveness of strictly downward languages at the document level. Given a document, we
try to characterize when a set of pairs of nodes of that document is the result of some query in the language under
consideration applied to that document. Such results are often referred to as BP-characterizations, after Bancilhon [25] and
Paredaens [26] who first proved such results for Codd’s relational calculus and algebra, respectively (cf. [27]).

We start by proving a converse to Proposition 5.2.

Proposition 5.9. Let k ≥ 1, and let E be a set of nonbasic operations containing downward navigation (“↓”) and set difference
(“−”). Consider the language X (E) or C(E). Assume that first projection (“π1”) is expressible, as well as selection on at least m
children satisfying some condition (“ch≥m(.)”), for m = 1, . . . , k. Let D = (V , Ed, r, λ) be a document, and let v1, w1, v2, w2 ∈ V
be such that, for i = 1, 2, wi is a descendant of vi , and, for each expression e, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D). Then
(v1, w1)∼=≡k↓

(v2, w2).

Proof. By assumption, (v2, w2) ∈ sig(v1, w1)(D), and vice versa. Hence, (v1, w1) ∼= (v2, w2). Now, let y1 be any node on
the path from v1 to w1, and let y2 be the corresponding node on the path from v2 to w2. By construction, (v1, y1) ∼=
(v1, y2) and (y1, w1) ∼= (y2, w2). It remains to show that y1 ≡k↓ y2. Thereto, let f be any expression in the language
such that f (D)(y1)
= ∅. Let e := sig(v1, y1)/π1(f)/ sig(y1, w1). By construction, (v1, w1) ∈ e(D), so (v2, w2) ∈ e(D), which
implies f (D)(y2)
= ∅. Since the same also holds vice versa, it follows that y1 ≡exp y2. The desired result now follows from
Proposition 5.6. �

Combining Propositions 5.2 and 5.9, we obtain the following.

Corollary 5.10. Let k ≥ 1, and consider the strictly downward (core) XPath algebra with counting up to k. Let D = (V , Ed, r, λ) be a
document, and let v1, w1, v2, w2 ∈ V be such that, for i = 1, 2, wi is a descendant of vi . Then, the property that, for each expression e,
(v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D), is equivalent to (v1, w1)∼=≡k↓

(v2, w2).

In order to state our first BP-result, we need the following two lemmas.

Lemma 5.11. Let k ≥ 1. Let D = (V , Ed, r, λ) be a document, and let v1 ∈ V . There exists an expression ev1 in the strictly downward
core XPath algebra with counting up to k such that, for each v2 ∈ V , ev1(D)(v2)
= ∅ if and only if v1 ≡k↓ v2 .

Proof. Let w ∈ V be such that v1
≡k↓ w . By Theorem 5.7, v1
≡exp w . By Proposition 4.2, there exists an expression f v1,w

in the strictly downward core XPath algebra with counting up to k such that f v1,w(D)(v1)
= ∅ and f v1,w(D)(w) = ∅. Now,
let ev1 be the composition of the expressions π1(f v1,w) for all w ∈ V for which v1
≡k↓ w . By construction, ev1 (D)(v1)
= ∅.
Now consider v2 ∈ V . If v1 ≡k↓ v2, then, by Theorem 5.7, v1 ≡exp v2, and, hence, ev1 (D)(v2)
= ∅. If v1
≡k↓ v2, then, by
construction, ev1 (D)(v2) = ∅. �
Lemma 5.12. Let k ≥ 1. Let D = (V , Ed, r, λ) be a document, and let v1, w1 ∈ V be such that w1 is a descendant of v1 . There exists
an expression ev1,w1 in the strictly downward core XPath algebra with counting up to k such that, for all v2, w2 ∈ V with w2 a
descendant of v2 , (v2, w2) ∈ ev1,w1 (D) if and only if (v1, w1)∼=≡k↓

(v2, w2).

Proof. Let y1 ∈ V . By Lemma 5.11, there exists an expression e y1 in the strictly downward core XPath algebra with counting
up to k such that, for all y2 ∈ V , e y1 (D)(y2)
= ∅ if and only if y1 ≡k↓ y2. Now, let v1, w1 ∈ V be such that w1 is a descendant
of v1, and let v1 = y11, . . . , y1n = w1 be the path from v1 to w1 in D . Let ev1,w1 := π1(e y11)/↓/π1(e y12)/ . . .↓/π1(e y1n).
By construction, (v1, w1) ∈ ev1,w1 (D). Let v2, w2 ∈ V such that w2 is a descendant of v2. If (v1, w1)∼=≡k↓

(v2, w2), then,
by Corollary 5.10, (v2, w2) ∈ ev1,w1(D). Conversely, if (v2, w2) ∈ ev1,w1 (D), then, by construction, (v1, w1) ∼= (v2, w2).
Thus, let v2 = y21, . . . , y2n = w2 be the path from v2 to w2 in D . Again by construction, it follows that, for j = 1, . . . , n,
e y1 j (D)(y2 j)
= ∅, or, equivalently, that y1 j ≡k↓ y2 j . Hence, (v1, w1) ≡k↓ (v2, w2). �

We are now ready to state the actual result.

Theorem 5.13. Let k ≥ 1. Let D = (V , Ed, r, λ) be a document, and let R ⊆ V × V . Then, there exists an expression e in the strictly
downward (core) XPath algebra with counting up to k such that e(D) = R if and only if,

242 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
1. for all v, w ∈ V , (v, w) ∈ R implies w is a descendant of v; and,
2. for all v1, w1, v2, w2 ∈ V such that, for i = 1, 2, wi is a descendant of vi and (v1, w1)∼=≡k↓

(v2, w2), (v1, w1) ∈ R implies
(v2, w2) ∈ R.

Proof. To see the “only if,” it suffices to notice that the first condition follows from the downward character of the language,
and the second from Corollary 5.10. The remainder of the proof concerns the “if.” Let v1, w1 ∈ V such that w1 is a descen-
dant of v1. By Lemma 5.12, there exists an expression ev1,w1 in C(E) such that, for all v2, w2 ∈ V , (v2, w2) ∈ ev1,w1 (D) if
and only if (v1, w1)∼=≡k↓

(v2, w2). Let e := ⋃
(v1,w1)∈R ev1,w1 . Clearly, R ⊆ e(D). It remains to show that e(D) ⊆ R . Thus, let

v2, w2 ∈ V be such that (v2, w2) ∈ e(D). By construction, there exist v1, w1 ∈ V such that w1 is a descendant of v1 and
(v2, w2) ∈ ev1,w1 (D). Hence, (v1, w1)∼=≡k↓

(v2, w2). But then, by assumption, also (v2, w2) ∈ R . �
We specialize Theorem 5.13 to the strictly downward (core) XPath algebra.

Corollary 5.14. Let D = (V , Ed, r, λ) be a document, and let R ⊆ V × V . There exists an expression e in the strictly downward (core)
XPath algebra such that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is a descendant of v; and
2. for all v1, w1, v2, w2 ∈ V such that, for i = 1, 2, wi is a descendant of vi and (v1, w1) ≡1↓ (v2, w2), (v1, w1) ∈ R implies

(v2, w2) ∈ R.

We next recast Theorem 5.13 in terms of node-level navigation.

Theorem 5.15. Let k ≥ 1. Let D = (V , Ed, r, λ) be a document, let v ∈ V , and let W ⊆ V . Then there exists an expression e in the
strictly downward (core) XPath algebra with counting up to k such that e(D)(v) = W if and only if all nodes of W are descendants
of v, and, for all w1, w2 ∈ V such that (v, w1)∼=≡k↓

(v, w2), w1 ∈ W implies w2 ∈ W .

Proof. As the “only if” is straightforward, we only consider the “if.” Thus, let W ⊆ V satisfy the property that all nodes of
W are descendants of v , and, for all w1, w2 ∈ V with w1 ≡k↓ w2, w1 ∈ W implies w2 ∈ W . Let R := {(v ′, w2) | (∃ w1 ∈
W)((v, w1)∼=≡k↓

(v ′, w2))}. Clearly, R satisfies the properties of Theorem 5.13, a straightforward application of which yields
the desired result. �

We also specialize Theorem 5.15 to the strictly downward (core) XPath algebra.

Corollary 5.16. Let D = (V , Ed, r, λ) be a document, let v ∈ V , and let W ⊆ V . Then there exists an expression e in the strictly
downward (core) XPath algebra such that e(D)(v) = W if and only if all nodes of W are descendants of v, and, for all w1, w2 ∈ V
such that (v, w1)∼=≡1↓

(v, w2), w1 ∈ W implies w2 ∈ W .

A special case of Theorem 5.15 arises for navigation from the root only:

Theorem 5.17. Let k ≥ 1. Let D = (V , Ed, r, λ) be a document, and let W ⊆ V . Then there exists an expression e in the strictly
downward (core) XPath algebra with counting up to k such that e(D)(r) = W if and only if, for all w1, w2 ∈ V such that w1 ≡k� w2 ,
w1 ∈ W implies w2 ∈ W .

Proof. By Theorem 5.15, e(D)(r) = W if and only if, for all w1, w2 ∈ V with (r, w1)∼=≡k↓
(r, w2), w1 ∈ W implies w2 ∈ W .

By Proposition 4.16, (r, w1)∼=≡k↓
(r, w2) is equivalent to w1 ≡k� w2. �

The specialization of Theorem 5.17 to the case of the strictly downward (core) XPath algebra is as follows.

Corollary 5.18. Let D = (V , Ed, r, λ) be a document, and let W ⊆ V . Then there exists an expression e in the strictly downward (core)
XPath algebra such that e(D)(r) = W if and only if, for all w1, w2 ∈ V such that w1 ≡1� w2 , w1 ∈ W implies w2 ∈ W .

We observe that none of the characterization results above distinguish between the language X (E) and the correspond-
ing core language C(E). Actually, for all downward languages, the two have the same expressive power, not only at the
navigational level for a given document, but also at the level of queries, i.e., for each expression e in X (E), there exists an
equivalent expression e′ in C(E), meaning that, for each document D , e(D) = e′(D). To see this, we prove a slightly stronger
result.

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 243
Fig. 3. Document of Example 5.22.

Theorem 5.19. Let E be a set of nonbasic operations containing downward navigation (“↓”) and first projection (“π1”), and not
containing upward navigation (“↑”), and inverse (“.−1”). Let e be an expression in the language under consideration. Except where set
difference (“−”) operations are used as operands in boolean combinations of subexpressions inside a first projection, all intersection
(“∩”) and set difference operations can be eliminated, to the extent that these operations occur in the language under consideration.

Proof. The proof goes by structural induction. Therefore, consider the expression e1 ∩ e2, respectively, e1 − e2 (to the extent
these operations occur in the language under consideration), where e1 and e2 are expressions not containing eliminable
intersection and set difference operations. For i = 1, 2, we may write ei = ci0/↓/ci1/↓/ . . . /↓/cini−1/↓/cini , where, for j =
0, . . . , ni , ci j is an expression in C(E) with the property that, for each document D , ci j(D) ⊆ ε(D). We now consider both
cases separately.

1. Intersection. Clearly, if n1
= n2, then, for each document D , e1 ∩ e2(D) = ∅ = ∅(D). In the other case, let n := n1 = n2.
For j = 0, . . . , n, let c j := c1 j/c2 j . Then, e′ := c0/↓/c1/↓/ . . . /↓/cn−1/↓/cn is equivalent to e1 ∩ e2.

2. Difference. Clearly, if n1
= n2, then, for each document D , e1 − e2(D) = e1(D). In the other case, let n := n1 = n2. For
j = 0, . . . , n, let e′

j be e1 in which c1 j is replaced by π1(c1 j −c2 j), which is an expression of C(E), equivalent to c1 j −c2 j .
Then, e′ = e′

0 ∪ e′
1 ∪ . . . ∪ e′

n−1 ∪ e′
n is equivalent to e1 − e2. �

Corollary 5.20. Let E be a set of nonbasic operations containing downward navigation (“↓”) and first projection (“π1”), and not
containing upward navigation (“↑”), and inverse (“.−1”). Then, for each expression e in X (E), there exists an expression e′ in C(E)

such that, for each document D, e(D) = e′(D).

5.5. Strictly downward languages not containing set difference

So far, the characterizations of strictly downward languages involved only languages containing the set difference op-
erator. One could, therefore, wonder if it is possible to provide similar characterizations for languages not containing set
difference. However, the absence of set difference and the logical negation that is inherently embedded in it has as a side
effect that it is no longer always possible to exploit equivalences or derive them.

5.5.1. Weaker notions of downward and two-way distinguishability
Therefore, one would like to consider an asymmetric version of downward k-equivalence, say “downward k-relatedness,”

which, for the appropriate language, could correspond to expression relatedness. For k = 1, such an approach could lead to
the following definitions.

Definition 5.21. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . Then,

1. v1 and v2 are downward-related, denoted v1 ≥↓ v2, if
(a) λ(v1) = λ(v2); and
(b) for each child w1 of v1, there exists a child w2 of v2 such that w1 ≥↓ w2.

2. v1 and v2 are weakly downward-equivalent, denoted v1 �↓ v2, if v1 ≥↓ v2 and v2 ≥↓ v1.

Obviously, downward 1-equivalence implies weak downward equivalence. The converse, however, is not true, as illus-
trated by the following, simple example.

Example 5.22. Consider the document in Fig. 3. Labels have been omitted, because they are not relevant in this discussion.
(We assume all nodes have the same label.) Obviously, x1 ≡1↓ x2, hence x1 �↓ x2. In particular, x1 ≥↓ x2 and x2 ≥↓ x1. Also,
y1 ≥↓ x2, as the second condition to be verified is voidly satisfied in this case. We may thus conclude that v1 �↓ v2.
However, v1
≡1 v2, as there is no child of v2 that is downward 1-equivalent to y1.
↓

244 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
Table 4
Distinguishability notions of Section 5.5.1.

Distinguishability Notion Notation Defined in

Downward-related ≥↓ Definition 5.21
Weakly-downward-equivalent �↓ Definition 5.21
Related ≥� Definition 5.23
Weakly-equivalent �� Definition 5.23

Notice that, in Example 5.22, there is even no child of v2 that is weakly downward equivalent to y1! Therefore, we shall
not even attempt to generalize Definition 5.21 to the case where k > 1, as there is no straightforward way to adapt the third
condition of Definition 4.3.

We conclude this digression on alternatives for downward 1-equivalence by providing analogue alternatives for
1-equivalence.

Definition 5.23. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . Then,

1. v1 and v2 are related, denoted v1 ≥� v2, if
(a) v1 ≥↓ v2;
(b) v1 is the root if and only if v2 is the root; and
(c) if v1 and v2 are not the root, and u1 and u2 are the parents of v1 and v2, respectively, then u1 ≥� u2.

2. v1 and v2 are weakly equivalent, denoted v1 �� v2, if v1 ≥� v2 and v2 ≥� v1.

Example 5.24. Consider again the document in Fig. 3. Observe that v1 �� v2. Furthermore, y1 ≥� x2, but not the other way
around.

Table 4 summarizes the distinguishability notions presented in this section.
The following analogue of Proposition 4.16 is straightforward.

Proposition 5.25. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . Then,

1. v1 ≥� v2 if and only if (r, v1)∼=≥↓(r, v2); and

2. v1 �� v2 if and only if (r, v1)∼=�↓ (r, v2).

5.5.2. Characterizing expression equivalence and navigational expressiveness
The approach we shall take here is reviewing the results in Sections 5.1–5.3 and examine to which extent these results

in the case where k = 1 allow replacing downward 1-equivalence by weak downward equivalence.
We start by observing that the analogue of Lemma 5.1 does not hold. Indeed, in the example document of Example 5.22,

shown in Fig. 3, v1 �↓ v2. Also, there is no child of v2 that is weakly downward equivalent to x1. Hence, there is no node
z for which (v1, x1)∼=�

1↓
(v2, z). On the other hand, we can restrict Lemma 5.1 to downward relatedness:

Lemma 5.26. Let D = (V , Ed, r, λ) be a document, let v1, w1, v2 ∈ V such that w1 is a descendant of v1. If v1 ≥↓ v2 , then v2 has a
descendant w2 such that (v1, w1)∼=≥↓ (v2, w2).

Proposition 5.2 relies on Lemma 5.1 to prove the inductive step for the first projection (“π1”). It therefore comes as
no surprise that we cannot replace downward 1-equivalence by weak downward equivalence, there. Indeed, consider the
expression e := π1(↓/(ε − π1(↓))). In the example document of Example 5.22, shown in Fig. 3, v1 �↓ v2, and, hence,
(v1, v1)∼=�↓ (v2, v2). Moreover, (v1, v1) ∈ e(D). However, (v2, v2) /∈ e(D). However, we can “save” Proposition 5.2 by replac-
ing downward 1-equivalence by downward relatedness, provided we omit set difference (“−”) from the set of operations of
the language. Indeed, we can then recover the proof, using Lemma 5.26 instead of Lemma 5.1. (Notice that, for the induc-
tion step for set difference in the original proof, we must exploit equivalence in both directions to deal with the negation
inherent to the difference operation.) In summary, we have the following.

Lemma 5.27. Let E be the set of all nonbasic operations in Table 1, except for upward navigation (“↑”), second projection (“π2”),
inverse (“.−1”), selection on at least k children satisfying some condition (“ch≥k(.)”) for k > 1, and set difference (“−”). Let e be an
expression in X (E). Let D = (V , Ed, r, λ) be a document, let v1, w1, v2, w2 ∈ V such that, for i = 1, 2, wi is a descendant of vi , and
(v1, w1)∼=≥ (v2, w2). Then, (v1, w1) ∈ e(D) implies (v2, w2) ∈ e(D).
↓

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 245
Two applications of Lemma 5.27 immediately yield the following.

Proposition 5.28. Let E be the set of all nonbasic operations in Table 1, except for upward navigation (“↑”), second projection (“π2”),
inverse (“.−1”), selection on at least k children satisfying some condition (“ch≥k(.)”) for k > 1, and set difference (“−”). Let e be an
expression in X (E). Let D = (V , Ed, r, λ) be a document, let v1, w1, v2, w2 ∈ V such that, for i = 1, 2, wi is a descendant of vi , and
(v1, w1)∼=�↓ (v2, w2). Then, (v1, w1) ∈ e(D) if and only (v2, w2) ∈ e(D).

So, Proposition 5.28 is weaker than Proposition 5.2 in the sense that we had to exclude set difference, but stronger in
the sense that, in return, we were able to replace the precondition by a weaker one.

The analogues of Corollaries 5.3 and 5.4 are now as follows.

Corollary 5.29. Let E be the set of all nonbasic operations in Table 1, except for upward navigation (“↑”), second projection (“π2”),
inverse (“.−1”), selection on at least k children satisfying some condition (“ch≥k(.)”) for k > 1, and set difference (“−”). Let e be an
expression in X (E). Let D = (V , Ed, r, λ) be a document, let v1, v2 ∈ V such that v1 ≥↓ v2 and let w1 be a descendant of v1 . If
(v1, w1) ∈ e(D), then there exists a descendant w2 of v2 such that (v2, w2) ∈ e(D).

In other words, downward relatedness implies expression relatedness. In a straightforward manner, we can bootstrap
this result as follows.

Corollary 5.30. Let E be a set of nonbasic operations not containing upward navigation (“↑”), second projection (“π2”), inverse (“.−1”),
selection on at least k children satisfying some condition (“ch≥k(.)”) for k > 1, and set difference (“−”). Consider the language X (E)

or C(E). Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . If v1 �↓ v2 , then v1 ≡exp v2 .

We now look to necessary conditions for expression equivalence for strictly downward languages not containing set
difference. Notice that the expressibility of set difference is used only once in the proof of Proposition 5.6, namely where
Proposition 4.2 is invoked. We do not need this Proposition, however, in the following variation of Proposition 5.6:

Lemma 5.31. Let E be a set of nonbasic operations containing first projection (“π1”). Consider the language X (E) or C(E). Let D =
(V , Ed, r, λ) be a document, and let v1, v2 ∈ V . If v1 ≥exp v2 , then v1 ≥↓ v2 .

Two applications of Lemma 5.31 immediately yield the following.

Proposition 5.32. Let E be a set of nonbasic operations containing first projection (“π1”). Consider the language X (E) or C(E). Let
D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . If v1 ≡exp v2 , then v1 �↓ v2 .

So, Proposition 5.32 is weaker than Proposition 5.6 in the sense that the conclusion is replaced by a weaker one, but
stronger in the sense that, in return, we no longer have to rely on the presence of difference.

The languages containing downward navigation (“↓”) and satisfying both Corollary 5.30 and Proposition 5.32 are
X (↓, π1, ∩) and C(↓, π1, ∩), which, moreover, are equivalent, by Corollary 5.20. In addition, they are also equivalent to
X (↓, π1) and C(↓, π1), by Theorem 5.19. We refer to these languages as the strictly downward positive (core) XPath algebra.
Combining the aforementioned results yields the following.

Theorem 5.33. Consider the strictly downward positive (core) XPath algebra. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V .
Then v1 ≡exp v2 if and only if v1 �↓ v2 .

We finally turn to characterizing navigational expressiveness. Proposition 5.9 and its proof, and hence also Corollary 5.10,
carry over to the current setting.

Theorem 5.34. Consider the strictly downward positive (core) XPath algebra. Let D = (V , Ed, r, λ) be a document, and let
v1, w1, v2, w2 ∈ V be such that, for i = 1, 2, wi is a descendant of vi . Then, the property that, for each expression e, (v1, w1) ∈ e(D)

if and only if (v2, w2) ∈ e(D), is equivalent to (v1, w1)∼=�↓ (v2, w2).

To derive a BP-result for the strictly downward positive (core) XPath algebra, we observe that Lemmas 5.11 and 5.12 carry
over to the current context, provided we replace downward 1-equivalence by downward relatedness. Hence, Theorem 5.13
carries over to

Theorem 5.35. Let D = (V , Ed, r, λ) be a document, and let R ⊆ V × V . Then, there exists an expression e in the strictly downward
positive (core) XPath algebra such that e(D) = R if and only if,

246 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
1. for all v, w ∈ V , (v, w) ∈ R implies w is a descendant of v; and,
2. for all v1, w1, v2, w2 ∈ V such that, for i = 1.2. wi a descendant of vi and (v1, w1)∼=≥↓ (v2, w2), (v1, w1) ∈ R implies

(v2, w2) ∈ R.

The major difference between Theorems 5.13 and 5.35 is that, in the former, R is a partition of maximal sets of
≡k↓-congruent nodes, while, in the latter, R is merely closed under ≥↓-congruence.

We can also recast Theorem 5.35 in terms of node-level navigation, in much the same way as Theorem 5.13.

Theorem 5.36. Let D = (V , Ed, r, λ) be a document, let v ∈ V , and let W ⊆ V . Then there exists an expression e in the strictly
downward positive (core) XPath algebra such that e(D)(v) = W if and only if all nodes of W are descendants of v, and, for all
w1, w2 ∈ V with (v, w1)∼=≥↓ (v, w2), w1 ∈ W implies w2 ∈ W .

Corollary 5.37. Let D = (V , Ed, r, λ) be a document, and let W ⊆ V . Then there exists an expression e in the strictly downward
positive (core) XPath algebra such that e(D)(r) = W if and only if, for all w1, w2 ∈ V such that w1 ≥� w2 , w1 ∈ W implies w2 ∈ W .

6. Weakly downward languages

We now turn to weakly downward languages: for any node v of a document D all nodes in e(D)(v) are descendants of v ,
but there are possibly nodes v for which e(D)(v)
= e(D ′)(v), with D ′ the subtree of D rooted at v .

6.1. Sufficient conditions for expression-equivalence

The key notion in Sections 6.1–6.3 is ≡k�-congruence, k ≥ 1, restricted to ancestor-descendant pairs. We first explore
some properties of this notion, the first of which can be proved in a straightforward manner.

Lemma 6.1. Let D = (V , Ed, r, λ) be a document, let v1, w1, v2, w2 ∈ V such that, for i = 1, 2, wi is a descendant of vi , and let k ≥ 1.
Then, (v1, w1)∼=≡k�

(v2, w2) if and only if (v1, w1) ∼= (v2, w2) and w1 ≡k� w2 .

Lemma 6.2. Let D = (V , Ed, r, λ) be a document, let v1, w1 ∈ V be such that w1 is a descendant of v1 , and let k ≥ 1. Then, we have
the following.

1. Let v2 ∈ V be such that v1 ≡k� v2 . Then, v2 has a descendant w2 such that (v1, w1)∼=≡k�
(v2, w2).

2. Let w2 ∈ V be such that w1 ≡k� w2 . Then, w2 has an ancestor v2 such that (v1, w1)∼=≡k�
(v2, w2).

Proof. By Lemma 5.1 v2 has a descendant w2 such that (v1, w1)∼=≡k↓
(v2, w2). By Proposition 4.16, (r, v1)∼=≡k↓

(r, v2). It now

readily follows that (r, w1)∼=≡k↓
(r, w2) and w1 ≡k� w2. Claim (1) now follows from Lemma 6.1.

Claim (2) can be shown by induction on the length of the path from v1 to w1. If v1 = w1, then obviously, v2 := w2. If
v1
= w1, we have in particular that w1
= r, and, hence, by w1 ≡k� w2, that w2
= r. Let y1 and y2 be the parents of w1

and w2. By definition, y1 ≡k� y2, and, by the induction hypothesis, there exists v2 ∈ V such that (v1, y1)∼=≡k�
(v2, y2). It now

readily follows that (v1, w1)∼=≡k�
(v2, w2). �

We now link ≡k�-congruence of ancestor-descendant pairs of nodes with expressibility in weakly downward languages.

Proposition 6.3. Let k ≥ 1, and let E be the set of all nonbasic operations in Table 1, except for upward navigation (“↑”), inverse
(“.−1”), and selection on at least m children satisfying some condition (“ch≥m(.)”) for m > k. Let e be an expression in X (E). Let D =
(V , Ed, r, λ) be a document, and let v1, w1, v2, w2 ∈ V be such that, for i = 1, 2, w1 is a descendant of v1 , and (v1, w1)∼=≡k�

(v2, w2).
Then, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D).

Proof. The proof goes along the same lines of the proof of Proposition 5.2, except, of course, for the inductive step for
the second projection (“π2”). Thus, let e := π2(f), with f satisfying Proposition 6.3. If (v1, w1) ∈ π2(f), then v1 = w1,
and, hence, v2 = w2. Also, there exists y1 ∈ V such that (y1, v1) ∈ f (D). By Lemma 6.2, (2), there exists y2 ∈ V such that
(y1, v1)∼=≡k (y2, v2). By the induction hypothesis, (y2, v2) ∈ f (D). Hence, (v2, v2) ∈ π2(f)(D). �
�

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 247
Combining Proposition 6.3 with Lemma 6.2, yields the following.

Corollary 6.4. Let k ≥ 1, and let E be the set of all nonbasic operations in Table 1, except for upward navigation (“↑”), inverse (“.−1”),
and selection on at least m children (“ch≥m(.)”) for m > k. Let e be an expression in X (E). Let D = (V , Ed, r, λ) be a document, and
let v1, w1 ∈ V be such that w1 is a descendant of v1 and (v1, w1) ∈ e(D). Then, we have the following.

1. Let v2 ∈ V be such that v1 ≡k� v2 . Then, v2 has a descendant w2 such that (v2, w2) ∈ e(D).

2. Let w2 ∈ V be such that w1 ≡k� w2 . Then, w2 has an ancestor v2 such that (v2, w2) ∈ e(D).

Finally, we infer the following from Corollary 5.4, (1):

Corollary 6.5. Let k ≥ 1, and let E be a set of nonbasic operations not containing upward navigation (“↑”), inverse (“.−1”), and selection
on at least m children satisfying some condition (“ch≥m(.)”) for m > k. Consider the language X (E) or C(E). Let D = (V , Ed, r, λ) be
a document, and let v1, v2 ∈ V If v1 ≡k� v2 , then v1 ≡exp v2 .

6.2. Necessary conditions for expression equivalence

We now explore requirements on the set of nonbasic operations expressible in a language under which downward-k-
equivalence (k ≥ 1) is necessary for expression-equivalence. As we tried to make as few assumptions as possible, Proposi-
tion 6.6 also holds for a class of languages that are not downward.

Proposition 6.6. Let k ≥ 1, and let E be a set of nonbasic operations containing at least one navigation operation (“↓” or “ ↑”) and
set difference (“−”). Consider the language X (E) or C(E). Assume that both projections (“π1” and “π2”) are expressible, as well as
selection on at least m children satisfying some condition (“ch≥m(.)”), for m = 1, . . . , k. Let D = (V , Ed, r, λ) be a document, and let
v1, v2 ∈ V . If v1 ≡exp v2 , then v1 ≡k� v2 .

Proof. Without loss of generality, we may assume that the language under consideration is C(E). In Proposition 5.6, we have
already established that v1 ≡exp v2 implies v1 ≡k↓ v2. By induction on the length of the path from r to v1, we establish that,
furthermore, v1 ≡k� v2. For the basis of the induction, let v1 = r. Let d be the height of D . We distinguish two cases:

1. ↓ ∈ E . Then, ↓d(D)(v1)
= ∅. Hence, ↓d(D)(v2)
= ∅, and v2 = r.
2. ↑ ∈ E . Then, π2(↑d)(D)(v1)
= ∅. Hence, π2(↑d)(D)(v2)
= ∅, and v2 = r.

So, v1 ≡k� v2. For the induction step, let v1
= r. We again distinguish two cases:

1. ↓ ∈ E . Then, π2(↓)(D)(v1)
= ∅, and, hence, π2(↓)(D)(v2)
= ∅. So, v2
= r.
2. ↑ ∈ E . Then, ↑(D)(v1)
= ∅, and, hence, ↑(D)(v2)
= ∅. So, v2
= r.

Now, for i = 1, 2, let ui be the parent of vi . We show that u1 ≡exp u2. Thereto, let e be an expression in C(E) for which
e(D)(u1)
= ∅. Again, we distinguish two cases:

1. ↓ ∈ E . Then, π2(π1(e)/↓)(v1)
= ∅. Hence, π2(π1(e)/↓)(v2)
= ∅, and e(D)(u2)
= ∅.
2. ↑ ∈ E . Then, ↑/e(v1)
= ∅. Hence, ↑/e(v2)
= ∅, and e(D)(u2)
= ∅.

In both cases, the induction hypothesis yields u1 ≡k� u2. Hence, v1 ≡k� v2. �
We see that Proposition 6.6 is as well applicable to weakly downward languages as to weakly upward languages (see

Section 7.2). We shall see in Section 7.2 that this is no coincidence. For now, we suffice with concluding that k-equivalence
is necessary for expression-equivalence under a weakly downward language containing downward navigation (“↓”), both
projections (“π1” and “π2”), and set difference (“−”), provided selection on at least m children satisfying some condition
(“ch≥m(.)”) for m = 1, . . . , k can be expressed.

6.3. Characterization of expression equivalence

We call X (↓, π1, π2, ch≥1(.), . . . , ch≥k(.), −) (C(↓, π1, π2, ch≥1(.), . . . , ch≥k(.),−)) the weakly downward (core) XPath al-
gebra with counting up to k. Moreover, they are equivalent, by Corollary 5.20. As these are the languages under consideration
which effectively contain downward navigation (“↓”) and satisfy both Corollary 6.5 and Proposition 5.6, we obtain

Theorem 6.7. Let k ≥ 1, and consider the weakly downward (core) XPath algebra with counting up to k. Let D = (V , Ed, r, λ) be a
document, and let v1, v2 ∈ V . Then v1 ≡exp v2 if and only if v1 ≡k v2 .
�

248 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
A special case arises when k = 1, since, by Proposition 2.4, selection on at least one child satisfying some condi-
tion (“ch≥1(.)”) can be expressed in terms of the other operations required by Theorem 6.7. We refer to the language
X (↓, π1, π2, −) (C(↓, π1, π2, −)) as the weakly downward (core) XPath algebra. We have the following.

Corollary 6.8. Consider the weakly downward (core) XPath algebra. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . Then
v1 ≡exp v2 , if and only if v1 ≡1� v2 .

6.4. Characterization of navigational expressiveness

We start by proving a converse to Proposition 6.3.

Proposition 6.9. Let k ≥ 1, and let E be a set of nonbasic operations containing downward navigation (“↓”) and set difference (“−”).
Consider the language X (E) or C(E). Assume that both projections (“π1” and “π2”) are expressible, as well as selection on at least
m children satisfying some condition (“ch≥m(.)”), for m = 1, . . . , k. Let D = (V , Ed, r, λ) be a document, and let v1, w1, v2, w2 ∈ V
be such that, for i = 1, 2, wi is a descendant of vi , and, for each expression e, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D). Then
(v1, w1)∼=≡k�

(v2, w2).

Proof. By Lemma 6.1, it suffices to prove that w1 ≡k� w2, or, by Proposition 4.16, that (r, w1)∼=≡k↓
(r, w2). By Proposi-

tion 5.9, (v1, w1)∼=≡k↓
(v2, w2). Hence, we still must show that (r, v1)∼=≡k↓

(r, v2). Since (v1, w1) ∈ π2(sig(r, v1))/ sig(v1, w1),
(v2, w2) ∈ π2(sig(r, v1))/ sig(v1, w1), from which we readily deduce that (r, v1) ∼= (r, v2). Let u1 be a node on the
path from r to v1, and let u2 be the corresponding node on the path from r to v2. Then, (r, u1) ∼= (r, u2) and
(u1, v1) ∼= (u2, v2). Now, let f be any expression in the language such that f (D)(u1)
= ∅. Then, (u1, u1) ∈ π1(f)(D). Let
e := π2(π1(f)/ sig(u1, v1))/ sig(v1, w1). By construction, (v1, w1) ∈ e(D). Hence, (v2, w2) ∈ e(D), which implies (u2, u2) ∈
π1(f)(D) or f (D)(u2)
= ∅. The same holds vice versa, and we may thus conclude u1 ≡exp u2, and, hence, by Proposition 5.6,
u1 ≡k↓ u2. So, (r, v1) ≡k↓ (r, v2). �

Combining Propositions 6.3 and 6.9 yields the following.

Corollary 6.10. Let k ≥ 1, and consider the weakly downward (core) XPath algebra with counting up to k. Let D = (V , Ed, r, λ) be a
document, and let v1, w1, v2, w2 ∈ V be such that, for i = 1, 2, wi is a descendant of vi . Then, the property that, for each expression e,
(v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D), is equivalent to the property (v1, w1)∼=≡k�

(v2, w2).

From here on, the derivation of a BP-result for the weakly downward (core) XPath algebra with counting up to k follows
the development in Section 5.4 very closely, which is why we only state the final results.

Theorem 6.11. Let k ≥ 1. Let D = (V , Ed, r, λ) be a document, and let R ⊆ V × V . Then, there exists an expression e in the weakly
downward (core) XPath algebra with counting up to k such that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is a descendant of v; and,
2. for all v1, w1, v2, w2 ∈ V such that, for i = 1, 2, wi a descendant of vi , and (v1, w1)∼=≡k�

(v2, w2), (v1, w1) ∈ R implies
(v2, w2) ∈ R.

The specialization to the weakly downward (core) XPath algebra is

Corollary 6.12. Let D = (V , Ed, r, λ) be a document, and let R ⊆ V × V . There exists an expression e in the weakly downward (core)
XPath algebra such that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is a descendant of v; and,
2. for all v1, w1, v2, w2 ∈ V such that wi a descendant of vi and (v1, w1)∼=≡1�

(v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

We recast Theorem 6.11 and Corollary 6.12 in terms of node-level navigation.

Theorem 6.13. Let k ≥ 1. Let D = (V , Ed, r, λ) be a document, let v ∈ V , and let W ⊆ V . Then there exists an expression e in the
weakly downward (core) XPath algebra with counting up to k such that e(D)(v) = W if and only if all nodes of W are descendants
of v, and, for all w1, w2 ∈ W with (v, w1)∼=≡k�

(v, w2), w1 ∈ W implies w2 ∈ W .

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 249
Corollary 6.14. Let D = (V , Ed, r, λ) be a document, let v ∈ V , and let W ⊆ V . Then there exists an expression e in the weakly
downward (core) XPath algebra such that e(D)(v) = W if and only if all nodes of W are descendants of v, and, for all w1, w2 ∈ W
with (v, w1)∼=≡1�

(v, w2), w1 ∈ W implies w2 ∈ W .

For v = r, the condition (v, w1)∼=≡k�
(v, w2) reduces to w1 ≡k� w2, by Proposition 4.16 and Lemma 6.1. Comparing Theo-

rem 6.13 and Corollary 6.14 with Theorem 5.17 and Corollary 5.18 then immediately yields the following.

Theorem 6.15. Let D = (V , Ed, r, λ).

1. for each expression e in the weakly downward (core) XPath algebra with counting up to k, k ≥ 1, there exists an expression e′ in
the strictly downward (core) XPath algebra with counting up to k such that e(D)(r) = e′(D)(r); in particular,

2. for each expression e in the weakly downward (core) XPath algebra, there exists an expression e′ in the strictly downward (core)
XPath algebra such that e(D)(r) = e′(D)(r).

Hence, the corresponding weakly downward and strictly downward languages are navigationally equivalent if navigation
always starts from the root.

6.5. Weakly downward languages not containing set difference

To find characterizations for weakly downward languages not containing set difference, we can proceed in two ways:

1. we proceed as in Section 5.5.2 for strictly downward languages without set difference, i.e., reviewing the results in
Sections 6.1–6.3 and examine to which extent these results in the case where k = 1 allow replacing 1-equivalence by
relatedness (Definition 5.23); or

2. we start from the results in Section 5.5.2 on strictly downward languages without set difference and “bootstrap” them
to results on weakly downward languages without set difference in the same way as the results on strictly downward
languages with set difference in Sections 5.1–5.3 were bootstrapped to the results on weakly downward languages
without set difference in Sections 6.1–6.3.

Of course, both approaches lead to the same results. As the necessary intermediate lemmas and all the proofs can readily
be deduced in one of the two ways described above, we only give the main results.

Concretely, the languages for which we provide characterizations in this Section are X (↓, π1, π2, ∩) and C(↓, π1, π2, ∩),
which, moreover, are equivalent, by Corollary 5.20. We refer to one of these languages as the weakly downward positive
(core) XPath algebra. In addition, we can eliminate intersection. Hence, the weakly downward positive (core) XPath algebra
is equivalent to X (↓, π1, π2).

We now summarize the characterization results.

Theorem 6.16. Consider the weakly downward positive (core) XPath algebra. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V .
Then v1 ≡exp v2 if and only if v1 �� v2 .

Theorem 6.17. Consider the weakly downward positive (core) XPath algebra. Let D = (V , Ed, r, λ) be a document, and let
v1, w1, v2, w2 ∈ V be such that, for i = 1, 2, wi is a descendant of vi . Then, the property that, for each expression e, (v1, w1) ∈ e(D)

if and only if (v2, w2) ∈ e(D), is equivalent to (v1, w1)∼=�� (v2, w2).

Theorem 6.18. Let D = (V , Ed, r, λ) be a document, and let R ⊆ V × V . Then, there exists an expression e in the weakly downward
positive (core) XPath algebra such that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is a descendant of v; and,
2. for all v1, w1, v2, w2 ∈ V such that, for i = 1, 2, wi a descendant of vi , and (v1, w1)∼=≥�(v2, w2), (v1, w1) ∈ R implies

(v2, w2) ∈ R.

Corollary 6.19. Let D = (V , Ed, r, λ) be a document, let v ∈ V , and let W ⊆ V . Then there exists an expression e in the weakly
downward positive (core) XPath algebra such that e(D)(v) = W if and only if all nodes of W are descendants of v, and, for all
w1, w2 ∈ V such that (v, w1)∼=≥�(v, w2), w1 ∈ W implies w2 ∈ W .

Corollary 6.20. Let D = (V , Ed, r, λ) be a document, and let W ⊆ V . Then there exists an expression e in the weakly downward
positive (core) XPath algebra such that e(D)(r) = W if and only if, for all w1, w2 ∈ V such that w1 ≥ w2 , w1 ∈ W implies w2 ∈ W .
�

250 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
Hence, the strictly and weakly downward positive (core) XPath algebra are navigationally equivalent if navigation always
starts from the root.

7. Upward languages

We call a language upward if, for every expression e and for every node v of a document D , all nodes in e(D)(v) are
ancestors of v . If in addition it is always the case that e(D)(v) = e(D ′), where D ′ is the subtree of D obtained by removing
from D all strict descendants of v , we call the language strictly upward. Otherwise, we call it weakly upward. For E a set
of nonbasic operations of Table 1, X (E) or C(E) is upward if it does not contain downward navigation (“↓”), and inverse
(“.−1”). Additionally, X (E) or C(E) is strictly upward if it does not contain second projection (“π2”) and counting operations
(“ch≥k(.)”).

Of course, there is a distinct asymmetry between strictly upward and downward languages: because a node has at most
one parent, the analysis of strictly upward languages is much easier than that of strictly downward languages. We shall see,
however, that this asymmetry disappears for their weak counterparts.

Finally, we observe that, for upward languages, set difference (“−”) and intersection (“∩”) can still be eliminated, except
where set difference operations are used as operands in boolean combinations of subexpressions inside a first projection.
Hence, an upward language and its corresponding core language coincide.

7.1. Strictly upward languages

The languages we consider here are X (↑, π1, −) and C(↑, π1, −), which are equivalent, and X (↑, π1, ∩) =X (↑, π1) and
C(↑, π1, ∩) = C(↑, π1), which are also equivalent. We refer to these as the strictly upward (core) XPath algebra, respectively
the strictly upward (core) positive XPath algebra. We summarize the characterization results, as the proofs are similar to those
in Section 5.

Theorem 7.1. Consider the strictly upward (positive) (core) XPath algebra. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V .
Then v1 ≡exp v2 , if and only if v1 ≡↑ v2 .

Theorem 7.2. Consider the strictly upward (positive) (core) XPath algebra. Let D = (V , Ed, r, λ) be a document, and let v1, w1, v2,

w2 ∈ V be such that, for i = 1, 2, wi is an ancestor of vi . Then, the property that, for each expression e, (v1, w1) ∈ e(D) if and only if
(v2, w2) ∈ e(D), is equivalent to (v1, w1)∼=≡↑ (v2, w2).

Theorem 7.3. Let D = (V , Ed, r, λ) be a document, and let R ⊆ V × V . Then, there exists an expression e in the strictly upward (core)
XPath algebra such that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is an ancestor of v; and,
2. for all v1, w1, v2, w2 ∈ V such that, for i = 1, 2, wi is an ancestor of vi , and (v1, w1)∼=≡↑ (v2, w2), (v1, w1) ∈ R implies

(v2, w2) ∈ R.

Theorem 7.4. Let D = (V , Ed, r, λ) be a document, and let R ⊆ V × V . Then, there exists an expression e in the strictly upward positive
(core) XPath algebra such that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is an ancestor of v; and,
2. for all v1, w1, v2, w2 ∈ V such that, for i = 1, 2, wi is an ancestor of v1 , and (v1, w1)∼=≥↑ (v2, w2), (v1, w1) ∈ R implies

(v2, w2) ∈ R.

Notice that the difference between the strictly downward (core) XPath algebra and the strictly downward positive (core)
XPath algebra becomes only apparent in their BP-characterizations.

7.2. Weakly upward languages

Weakly upward languages are closely related to weakly downward languages:

Theorem 7.5. Let Edown be a set of nonbasic operations in which first projection (“π1”) is expressible, but which does not contain
upward navigation (“↑”) and inverse (“.−1”). Let Eup be the set of nonbasic operations obtained from E by replacing downward (“↓”)
by upward navigation, first by second projection, and second by first projection. Then, for each expression e in X (Edown) (C(Edown),
X (Eup), respectively C(Eup)), there is an expression e′ in X (Eup) (C(Eup), X (Edown), respectively C(Edown)) such that e−1 and e′
are equivalent at the level of queries.

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 251
Proof. If e is in X (Edown) or C(Edown), we first replace each subexpression ch≥k(f) in which f is not a condition by
ch≥k(π1(f)). If e is in X (Eup) or C(Eup), we replace each subexpression ch≥k(f) in which f is not a condition, i.e., f is of
the form c/↑/g with c a condition and g an arbitrary subexpression, by π1(g)/ch≥k(c). We eliminate inverse (“.−1”) from
e−1 as in Proposition 2.3, except that we replace subexpressions (1) ch≥k(f)−1, with f a condition, by ch≥k(f −1) rather
than ch≥k(f); (2) π1(e)−1 by π2(e−1) rather than π1(e); and (3) π2(e)−1 by π1(e−1) rather than π2(e). �

Theorem 7.5 has as immediate consequence that each characterization for a weakly downward language in Section 6—in
each instance containing both projections—yields a characterization for the corresponding weakly upward language by re-
placing “descendant” by “ancestor”. Similarly, each characterization for a stricly downward language in Section 5—in each
instance containing only first projection—yields a characterization for the corresponding weakly upward language—in each
instance containing only second projection.

Finally, applying Theorem 7.5 on the strictly upward languages considered in Section 7.1 yields characterizations for
weakly downward languages containing only second projection, which were not considered in Section 6. In view of space
considerations, we shall not discuss these languages, however.

8. Languages for two-way navigation

We finally consider languages which are neither downward nor upward, i.e., in which navigation in both directions
(“↓” and “↑”) is possible. A notable difference in this case is that standard languages no longer always coincide with their
associated core languages in expressive power. Below we distinguish languages with and without difference. In the first
case, we discuss the standard languages and the core languages separately (Sections 8.1 and 8.2). In the second case, there
is no need for this distinction (Section 8.3).

8.1. Standard languages with difference for two-way navigation

First, we state analogues to Lemmas 6.1 and 6.2 for pairs of nodes that are not necessarily ancestor-descendant pairs.

Lemma 8.1. Let D = (V , Ed, r, λ) be a document, let v1, w1, v2, w2 ∈ V , and let k ≥ 1. Then, (v1, w1)∼=≡k�
(v2, w2) if and only if

(v1, w1) ∼= (v2, w2), v1 ≡k� v2 , and w1 ≡k� w2 .

Proof. We only consider the “if.” Since (v1, w1) ∼= (v2, w2), (top(v1, w1), v1) ∼= (top(v2, w2), w2). By Lemma 6.1,
(top(v1, w1), v1)∼=≡k�

(top(v2, w2), v2). In the same way, we derive (top(v1, w1), w1)∼=≡k�
(top(v2, w2), w2). Proposition 3.5,

(2), (3) and (4), then yields the desired result. �
Lemma 8.2. Let D = (V , Ed, r, λ) be a document, let v1, w1 ∈ V , and let k ≥ 2.

1. For each v2 ∈ V such that v1 ≡k� v2 there exists w2 ∈ V such that (v1, w1)∼=≡k�
(v2, w2); and

2. For each w2 ∈ V for which w1 ≡k� w2 there exists v2 ∈ V such that (v1, w1)∼=≡k�
(v2, w2).

Proof. We only prove (1); see Fig. 4. By Lemma 6.2, (2), there exists t2 ∈ V such that (top(v1, w1), v1)∼=≡k�
(t2, v2). Hence,

also (v1, top(v1, w1))∼=≡k�
(v2, t2). Let y1 be the child of top(v1, w1) on the path to w1. Since k ≥ 2, there is a child y2

of t2 such that (1) y1 ≡k� y2 and (2) y2 is not on the path from t2 to v2.9 By Lemma 6.2, (2), there exists w2 ∈ V such
that (y1, w1)∼=≡k�

(y2, w2). In particular, w1 ≡k� w2. By construction, t2 = top(v2, w2), and, hence, (v1, w1) ∼= (v2, w2). The
result now follows from Lemma 8.1. �

We need one more lemma, to deal with composition adequately:

Lemma 8.3. Let D = (V , Ed, r, λ) be a document, let v1, w1, v2, w2 ∈ V be such that (v1, w1)∼=≡k�
(v2, w2), and let k ≥ 3. Then, for

each y1 ∈ V , there exists y2 ∈ V such that (v1, y1)∼=≡k�
(v2, y2), and (y1, w1)∼=≡k�

(y2, w2).

Proof. The proof is a case analysis. In each case description, we assume implicitly that cases already dealt with before are
excluded.

9 Mind that t2 has two different k-equivalent children if top(v1, w1) has.

252 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
Fig. 4. Mutual position of the nodes in Lemma 8.2, (1), and its proof.

Fig. 5. Mutual position of the nodes in Case 5 of the proof of Lemma 8.3.

Fig. 6. Mutual position of the nodes in Case 7 of the proof of Lemma 8.3.

1. y1 is on the path from v1 to w1. Clearly, y2 is the node corresponding to y1 on the path from v2 to w2.
2. y1 is a strict descendant of v1. By Lemma 6.2, (1), there is a (strict) descendant y2 of v2 such that (v1, y1)∼=≡k�

(v2, y2).
The result now follows.

3. y1 is a strict descendant of w1. Analogous to the previous case.
4. y1 is a strict ancestor of top(v1, w1). By Lemma 6.2, (2), there is a (strict) ancestor y2 of top(v2, w2) such that

(top(v1, w1), y1)∼=≡k�
(top(v2, w2), y2). The result now follows immediately.

5. top(v1, y1) is an internal node on the path from v1 to top(v1, w1); see Fig. 5. By Lemma 8.2, (1), there exists y2 ∈ V such
that (v1, y1)∼=≡k�

(v2, y2). Observe that top(y1, w1) = top(v1, w1), an ancestor of v1. Hence, by Proposition 3.5, (2)–(4),

(y1, w1) ∼= (y2, w2). Since, moreover, y1 ≡k� y2 and w1 ≡k� w2, the desired result now follows from Lemma 8.1 and the
constructions therein.

6. top(y1, w1) is an internal node on the path from top(v1, w1) to w1. Analogous to the previous case.
7. top(v1, y1) = top(y1, w1) is a strict ancestor of top(v1, w1); see Fig. 6. By Lemma 8.2, (1), there exists y2 ∈ V such

that (v1, y1)∼=≡k�
(v2, y2). Observe that top(y1, w1) is an ancestor of v1. Hence, by Proposition 3.5, (2)–(4), (y1, w1) ∼=

(y2, w2). Since, moreover, y1 ≡k y2 and w1 ≡k w2, the desired result now follows from Lemma 8.1.
� �

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 253
Fig. 7. Mutual position of the nodes in Case 8 of the proof of Lemma 8.3.

8. top(v1, y1) = top(y1, w1) = top(v1, w1); see Fig. 7. Let z1 be the child of top(v1, w1) on the path to y1. By assumption,
z1 is not on the path from v1 to w1. Since k ≥ 3, there exists z2 ∈ V not on the path from v2 to w2 such that z1 ≡k� z2.10

By Lemma 8.2, (1), there exists y2 ∈ V such that (z1, y1)∼=≡k�
(z2, y2). The result now follows readily. �

We are now ready to state the analogue of Proposition 6.3 for languages with two-way navigation. The proof is similar.

Proposition 8.4. Let k ≥ 3, and let E be the set of all nonbasic operations in Table 1, except for selection on at least m children satisfying
some condition (“ch≥m(.)”) for m > k. Let e be an expression in X (E). Let D = (V , Ed, r, λ) be a document, and let v1, w1, v2, w2 ∈ V
be such that (v1, w1)∼=≡k�

(v2, w2). Then, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D).

As in Section 6.2, we can infer the following result from Proposition 8.4.

Corollary 8.5. Let k ≥ 3, and let E be a set of nonbasic operations not containing selection on at least m children satisfying some
condition (“ch≥m(.)”) for m > k. Consider the language X (E). Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . If v1 ≡k� v2 ,
then v1 ≡exp v2 .

The standard language for two-way navigation satisfying both Corollary 8.5 and Proposition 6.6—which is indeed also
applicable to an important class of languages allowing two-way navigation—is X (↓, ↑, ch≥1(.), . . . , ch≥k(.), −).11 We call
this language the XPath algebra with counting up to k. Combining the aforementioned results yields the following.

Theorem 8.6. Let k ≥ 3, and consider the XPath algebra with counting up to k. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V .
Then, v1 ≡exp v2 if and only if v1 ≡k� v2 .

By Proposition 2.4, selection on up to three children satisfying some condition (“ch≥m(.),” 1 ≤ m ≤ 3) can be expressed
in the XPath algebra. Hence, a special case arises for k = 3:

Corollary 8.7. Consider the XPath algebra. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . Then, v1 ≡exp v2 if and only if
v1 ≡3� v2 .

We next prove a converse to Proposition 8.4.

Proposition 8.8. Let k ≥ 3, and consider the XPath algebra with counting up to k. Let D = (V , Ed, r, λ) be a document, and let
v1, w1, v2, w2 ∈ V be such that, for each expression e, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D). Then (v1, w1)∼=≡k�

(v2, w2).

Proof. Using signature expressions, we can see that (v1, w1) ∼= (v2, w2). Now, let f be any expression such that
f (D)(v1)
= ∅, and let e := π1(f)/ sig(v1, w1). By construction, (v1, w1) ∈ e(D). Hence, (v2, w2) ∈ e(D), and f (D)(v2)
= ∅.
As the same holds vice versa, v1 ≡exp v2. Hence, by Theorem 8.6, v1 ≡k� v2. A similar argument yields w1 ≡k� w2. By
Lemma 8.1, (v1, w1)∼=≡k�

(v2, w2). �
Combining Propositions 8.4 and 8.8 yields the following characterization.

Corollary 8.9. Let k ≥ 3, and consider the XPath algebra with counting up to k. Let D = (V , Ed, r, λ) be a document, and let
v1, w1, v2, w2 ∈ V . Then, the property that, for each expression e, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D), is equivalent
to (v1, w1)∼=≡k�

(v2, w2).

10 Mind that top(v2, w2) has two or three different k-equivalent children if top(v1, w1) has.
11 All other operations are redundant, by Proposition 2.3.

254 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
Using Theorem 8.6 instead of Theorem 5.7, we can recast the proof of Lemma 5.11 into a proof of

Lemma 8.10. Let k ≥ 3. Let D = (V , Ed, r, λ) be a document, and let v1 be a node of D. There exists an expression ev1 in the XPath
algebra with counting up to k such that, for each node v2 of D, ev1 (D)(v2)
= ∅ if and only if v1 ≡k� v2 .

We can next bootstrap Lemma 8.10 to the following result.

Lemma 8.11. Let k ≥ 3. Let D = (V , Ed, r, λ) be a document, and let v1, w1 ∈ V . There exists an expression ev1,w1 in the XPath
algebra with counting up to k such that, for all v2, w2 ∈ V , (v2, w2) ∈ ev1,w1 (D) if and only if (v1, w1)∼=≡k�

(v2, w2).

Proof. From Lemma 8.10, we know that, for all y1 ∈ V , there exists an expression e y1 in the XPath algebra with counting up
to k such that, for all y2 ∈ V , e y1 (D)(y2)
= ∅ if and only if y1 ≡k� y2. Now, denote sig(v1, w1) := ↑u/↓d , with u, d ≥ 0, and
define ev1,w1 := π1(ev1)/ sig(v1, w1)/π1(ew1) − ↑u−1/↓d−1 (where ↑−1 = ↓−1 := ∅). Let v2, w2 ∈ V be such that (v2, w2) ∈
ev1,w1 (D). Then, by Proposition 3.4, sig(v1, w1) = sig(v2, w2). Furthermore, (v2, v2) ∈ ev1 (D) and (w2, w2) ∈ ew1 (D). By
Lemma 8.10, v1 ≡k� v2 and w1 ≡k� w2. By Lemma 8.1, (v1, w1)∼=≡k�

(v2, w2). Clearly, Corollary 8.9 yields the converse. �
The BP characterization results now follow readily.

Theorem 8.12. Let k ≥ 3. Let D = (V , Ed, r, λ) be a document, and let R ⊆ V × V . Then, there exists an expression e in the XPath
algebra with counting up to k such that e(D) = R if and only if, for all v1, w1, v2, w2 ∈ V with (v1, w1)∼=≡k�

(v2, w2), (v1, w1) ∈ R

implies (v2, w2) ∈ R.

The specialization to the XPath algebra is as follows.

Corollary 8.13. Let D = (V , Ed, r, λ) be a document, and let R ⊆ V × V . There exists an expression e in the XPath algebra such that
e(D) = R if and only if, for all v1, w1, v2, w2 ∈ V with (v1, w1)∼=≡3�

(v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

We recast Theorem 8.12 and Corollary 8.13 in terms of node-level navigation.

Theorem 8.14. Let k ≥ 3. Let D = (V , Ed, r, λ) be a document, let v ∈ V , and let W ⊆ V . Then there exists an expression e in the
XPath algebra with counting up to k such that e(D)(v) = W if and only if, for all w1, w2 ∈ W with (v, w1)∼=≡k�

(v, w2), w1 ∈ W

implies w2 ∈ W .

The specialization to the XPath algebra is as follows.

Corollary 8.15. Let D = (V , Ed, r, λ) be a document, let v ∈ V , and let W ⊆ V . Then there exists an expression e in the XPath algebra
such that e(D)(v) = W if and only if, for all w1, w2 ∈ W with (v, w1)∼=≡3�

(v, w2), w1 ∈ W implies w2 ∈ W .

Finally, we consider the special case where navigation starts from the root. For v = r, the condition (v, w1)∼=≡k�
(v, w2)

reduces to w1 ≡k� w2, by Proposition 4.16 and Lemma 6.1. Comparing Theorem 8.14 and Corollary 8.15 with, respectively,
Theorem 5.17 and Corollary 5.18 then immediately yields

Theorem 8.16. Let D = (V , Ed, r, λ).

1. For each expression e in the XPath algebra with counting up to k, k ≥ 3, there exists an expression e′ in the strictly downward
(core) XPath algebra with counting up to k such that e(D)(r) = e′(D)(r).

2. For each expression e in the XPath algebra, there exists an expression e′ in the strictly downward (core) XPath algebra with counting
up to 3 such that e(D)(r) = e′(D)(r).

For navigation from the root, the only capability that the full XPath algebra adds compared to the strictly downward
(core) XPath algebra (Theorem 6.15) is selection on at least 2 and at least 3 children satisfying some condition.

8.2. Core languages with difference for two-way navigation

We now investigate what changes if we replace a standard language with difference for two-way navigation by the
corresponding core language. The most important observation is that both languages are no longer equivalent.

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 255
Fig. 8. Document of Example 8.17.

Example 8.17. Let D = (V , Ed, r, λ) be the document in Fig. 8, and consider the expression e := ↑/↓− ε in the XPath algebra
with counting up to k, k ≥ 2. We have that e(D) = {(v, w), (w, v)}. From Proposition 8.19, it will follow, however, that, for
every expression e′ in the corresponding core XPath algebra with counting up to k, (v, w) ∈ e′(D) implies that not only
(w, v) ∈ e′(D), but also (v, v) ∈ e′(D) and (w, w) ∈ e′(D).

We now explore which changes occur compared to Section 8.1. As Example 8.17 suggests, there is no hope that we can
express congruence in the core XPath algebra with counting up to k, for any k ≥ 2. Therefore, we shall have to work with
subsumption instead of congruence. Luckily, Lemmas 8.1–8.3 still holds if we replace congruence by subsumption, except
that we can strengthen the statement of the last one, as follows.

Lemma 8.18. Let D = (V , Ed, r, λ) be a document, let v1, w1, v2, w2 ∈ V be such that (v1, w1)�≡k�
(v2, w2), and let k ≥ 2. Then,

for each y1 ∈ V , there exists y2 ∈ V such that (v1, y1)�≡k�
(v2, y2), and (y1, w1)�≡k�

(y2, w2).

Proof. The only case in the proof of Lemma 8.3 where we used k ≥ 3 is Case 8 (top(v1, y1) = top(y1, w1) = top(v1, w1))
to guarantee that the paths from top(v2, w2) to v2, w2, and y2 have no overlap. As this is no concern anymore when we
consider subsumption rather than congruence, the condition k ≥ 2 suffices to recast the proof of Lemma 8.3 into a proof of
Lemma 8.18. �

Lemma 8.3 was used to complete the induction step for composition (“/”) in the proof of Proposition 8.4. If we replace
Lemma 8.3 by Lemma 8.18, we can also avoid making the assumption k ≥ 3 here. The restricted use of difference in core
languages allows us to get away with subsumption instead of congruence.

Proposition 8.19. Let k ≥ 2, and let E be the set of all nonbasic operations in Table 1, except for selection on at least m chil-
dren satisfying some condition (“ch≥m(.)”) for m > k. Let e be an expression in C(E). Let D = (V , Ed, r, λ) be a document, and let
v1, w1, v2, w2 ∈ V be such that (v1, w1)�≡k�

(v2, w2). Then, (v1, w1) ∈ e(D) implies (v2, w2) ∈ e(D).

Proof. The proof is similar to that of Proposition 8.4, except that, in the induction step, we need not consider the case
of set difference (“−”). However, we must consider instead the case of projection, where, in the expression e := π1(f) or
e := π2(f), f is now a boolean combination of expressions. For reasons of symmetry, we only consider first projection. Since,
without loss of generality, we may assume that f is union-free, we can write f = f1 ∩ . . . f p ∩ g1 ∩ . . . gq for some p ≥ 1 and
q ≥ 0, with f1, . . . , f p, g1, . . . , gq in C(E) and satisfying the induction hypothesis. Here, g , the complement of g , is defined
by g(D) := V × V − g(D). In particular, if (v1, w1) = (v1, v1) ∈ π1(f)(D), there exists y1 ∈ V such that, for i = 1, . . . , p,
(v1, y1) ∈ f i(D), and, for j = 1, . . . , q, (v1, y1) /∈ g j(D). By Lemma 8.2, there exists y2 ∈ V such that (v1, y1)∼=≡k�

(v2, y2).
Hence, for i = 1, . . . , p, (v2, y2) ∈ f i(D), by the induction hypothesis. Now, assume that, for some j, 1 ≤ j ≤ q, (v2, y2) ∈
g j(D). Then, again by the induction hypothesis, (v1, y1) ∈ g j(D), a contradiction. Hence, for j = 1, . . . , q, (v2, y2) /∈ g j(D),
and (v2, v2) = (v2, w2) ∈ π1(f). �

By applying Proposition 8.19 twice, we obtain the following.

Corollary 8.20. Let k ≥ 2, and let E be the set of all nonbasic operations in Table 1, except for selection on at least m children satisfying
some condition (“ch≥m(.)”) for m > k. Let e be an expression in C(E). Let D = (V , Ed, r, λ) be a document, and let v1, w1, v2, w2 ∈ V
be such that (v1, w1)∼=≡k�

(v2, w2). Then, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D).

As in Section 6.2, we can infer the following result from Corollary 8.20.

Corollary 8.21. Let k ≥ 2, and let E be a set of nonbasic operations not containing selection on at least m children satisfying some
condition (“ch≥m(.)”) for m > k. Consider the language C(E). Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . If v1 ≡k� v2 ,
then v1 ≡exp v2 .

Notice that, for k ≥ 3, Corollary 8.21 also follows from Corollary 8.5. The standard language for two-way navigation
satisfying both Corollary 8.5 and Proposition 6.6—which is indeed also applicable to an important class of languages allowing

256 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
two-way navigation—is C(↓, ↑, π1, π2, ch≥1(.), . . . , ch≥k(.), −).12 We call this language the core XPath algebra with counting
up to k. Combining the aforementioned results yields the following.

Theorem 8.22. Let k ≥ 2, and consider the core XPath algebra with counting up to k. Let D = (V , Ed, r, λ) be a document, and let
v1, v2 ∈ V . Then, v1 ≡exp v2 if and only if v1 ≡k� v2 .

By Proposition 2.4, selection on up to two children satisfying some condition (“ch≥m(.),” 1 ≤ m ≤ 2) can be expressed in
the core XPath algebra. Hence, a special case arises for k = 2:

Corollary 8.23. Consider the core XPath algebra. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . Then, v1 ≡exp v2 if and only
if v1 ≡2� v2 .

The converse of Proposition 8.19 can be proved similarly as Proposition 8.8.

Proposition 8.24. Let k ≥ 2, and consider the core XPath algebra with counting up to k. Let D = (V , Ed, r, λ) be a document, and let
v1, w1, v2, w2 ∈ V be such that, for each expression e, (v1, w1) ∈ e(D) implies (v2, w2) ∈ e(D). Then (v1, w1)�≡k�

(v2, w2).

Combining Propositions 8.19 and 8.24 yields the following characterization.

Corollary 8.25. Let k ≥ 2, and consider the core XPath algebra with counting up to k. Let D = (V , Ed, r, λ) be a document, and let
v1, w1, v2, w2 ∈ V . Then,

1. the property that, for each expression e, (v1, w1) ∈ e(D) implies (v2, w2) ∈ e(D), is equivalent to (v1, w1)�≡k�
(v2, w2); and,

2. the property that, for each expression e, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D), is equivalent to (v1, w1)∼=≡k�
(v2, w2).

Lemma 8.10 also holds for the core XPath algebra, with the condition k ≥ 3 replaced by k ≥ 2. Lemma 8.11 is a different
story, unfortunately. Example 8.17 already indicates that, given v1, w1, v2, w2 ∈ V , we can in general not hope for an
expression ev1,w1 such that (v2, w2) ∈ ev1,w1 (D) if and only if (v1, w1)∼=≡k�

(v2, w2). However, we can replace congruence
by subsumption:

Lemma 8.26. Let k ≥ 2. Let D = (V , Ed, r, λ) be a document, and let v1, w1 ∈ V . There exists an expression ev1,w1 in the core XPath
algebra with counting up to k such that, for all v2, w2 ∈ V , (v2, w2) ∈ ev1,w1 (D) if and only if (v1, w1)�≡k�

(v2, w2).

Proof. The proof is very similar to that of Proposition 8.11, except that, from the proposed expression, the minus term must
be omitted. �

The BP characterization results now follow readily.

Theorem 8.27. Let k ≥ 2. Let D = (V , Ed, r, λ) be a document, and let R ⊆ V × V . Then, there exists an expression e in the core
XPath algebra with counting up to k such that e(D) = R if and only if, for all v1, w1, v2, w2 ∈ V such that (v1, w1)�≡k�

(v2, w2),
(v1, w1) ∈ R implies (v2, w2) ∈ R.

The specialization to the core XPath algebra is as follows.

Corollary 8.28. Let D = (V , Ed, r, λ) be a document, and let R ⊆ V × V . There exists an expression e in the core XPath algebra such
that e(D) = R if and only if, for all v1, w1, v2, w2 ∈ V such that (v1, w1)�≡3�

(v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

We recast Theorem 8.27 and Corollary 8.28 in terms of node-level navigation.

Theorem 8.29. Let k ≥ 2. Let D = (V , Ed, r, λ) be a document, let v ∈ V , and let W ⊆ V . Then there exists an expression e in the
core XPath algebra with counting up to k such that e(D)(v) = W if and only if, for all w1, w2 ∈ W such that (v, w1)�≡k�

(v, w2),
w1 ∈ W implies w2 ∈ W .

The specialization to the core XPath algebra is as follows.

12 Inverse (“−1(.)”) is redundant, as it can be eliminated (cf. Proposition 2.3).

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 257
Corollary 8.30. Let D = (V , Ed, r, λ) be a document, let v ∈ V , and let W ⊆ V . Then there exists an expression e in the core XPath
algebra such that e(D)(v) = W if and only if, for all w1, w2 ∈ W with (v, w1)�≡2�

(v, w2), w1 ∈ W implies w2 ∈ W .

Finally, for the special case where navigation starts from the root, Theorem 8.29 and Corollary 8.30 reduce to the follow-
ing.

Theorem 8.31. Let D = (V , Ed, r, λ).

1. For each expression e in the core XPath algebra with counting up to k, k ≥ 2, there exists an expression e′ in the strictly downward
(core) XPath algebra with counting up to k such that e(D)(r) = e′(D)(r).

2. For each expression e in the core XPath algebra, there exists an expression e′ in the strictly downward (core) XPath algebra with
counting up to 2 such that e(D)(r) = e′(D)(r).

For navigation from the root, the only capability that the full XPath algebra adds compared to the strictly downward
(core) XPath algebra (Theorem 6.15) is selection on at least 2 children satisfying some condition.

8.3. Languages without difference for two-way navigation

As before with languages not containing difference, we do not consider counting operations. Taking into account Propo-
sition 2.3, and recognizing that the techniques used in this paper to establish characterizations heavily use intersection,
we only need this means that we only need to consider X (↓, ↑, ∩) = X (↓, ↑, π1, π2, ∩) and C(↓, ↑, π1, π2, ∩). We refer to
these as the positive (core) XPath algebra. Some of the present authors showed [34] that X (↓, ↑, ∩) and X (↓, ↑, π1, π2) are
equivalent in expressive power at the level of queries. Since obviously X (↓, ↑, π1, π2) = C(↓, ↑, π1, π2), it follows readily
that the positive XPath algebra and the positive core XPath algebra are equivalent. The following results, shown in [34], are
only repeated for completeness’ sake.

Theorem 8.32. Consider the positive (core) XPath algebra. Let D = (V , Ed, r, λ) be a document, and let v1, v2 ∈ V . Then, v1 ≥exp v2
if and only if v1 ≥1� v2 , and v1 ≡exp v2 if and only if v1 �� v2 .

Theorem 8.33. Consider the positive (core) XPath algebra. Let D = (V , Ed, r, λ) be a document, and let v1, w1, v2, w2 ∈ V . Then,

1. the property that, for each expression e, (v1, w1) ∈ e(D) implies (v2, w2) ∈ e(D), is equivalent to (v1, w1)�≥1�
(v2, w2); and

2. the property that, for each expression e, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D), is equivalent to (v1, w1)∼=�� (v2, w2).

As in Section 6.5, we can bootstrap these results to BP-characterizations.

Theorem 8.34. Let D = (V , Ed, r, λ) be a document, and let R ⊆ V × V . Then, there exists an expression e in the positive (core) XPath
algebra such that e(D) = R if and only if, for all v1, w1, v2, w2 ∈ V with (v1, w1)�≥� (v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

Finally, Theorem 8.34 can be specialized to the node level, as follows.

Corollary 8.35. Let D = (V , Ed, r, λ) be a document, let v ∈ V , and let W ⊆ V . Then there exists an expression e in the positive
(core) XPath algebra such that e(D)(v) = W if and only if, for all nodes w1 and w2 of D with (v, w1)�≥� (v, w2), w1 ∈ W implies
w2 ∈ W .

Corollary 8.36. Let D = (V , Ed, r, λ) be a document, and let W ⊆ V . Then there exists an expression e in the positive (core) XPath
algebra such that e(D)(r) = W if and only if, for all w1, w2 ∈ V with w1 ≥� w2 , w1 ∈ W implies w2 ∈ W .

Hence, the positive (core) XPath algebra, the weakly downward positive (core) XPath algebra, and the strictly downward
positive (core) XPath algebra are all navigationally equivalent if navigation always starts from the root.

9. Discussion

In this paper, we characterized the expressive power of several natural fragments of XPath at the document level, as
summarized in Table 5. Of course, it is possible to consider other fragments or extensions of the XPath algebra and its
data model. Analyzing these using our two-step methodology in order to further improve our understanding of the instance
expressivity of Tarski’s algebra is one possible research direction which we have pursued recently [12–15,34].

258 G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259
Table 5
Summary of main results.

Language Node Relationship Node Coupling Result Path Relationship Path Coupling Result BP Result

Strictly downward (core) XPath
algebra with counting up to k

≡k↓ Theorem 5.7 ∼=≡k↓
Corollary 5.10 Theorem 5.13

Strictly downward (core) XPath
algebra

≡1↓ Corollary 5.8 ∼=≡1↓
Corollary 5.10 Corollary 5.14

Strictly downward positive (core)
XPath algebra

�↓ Theorem 5.33 ∼=�↓ Theorem 5.34 Theorem 5.35

Weakly downward (core) XPath
algebra with counting up to k

≡k� Theorem 6.7 ∼=≡k�
Corollary 6.10 Theorem 6.11

Weakly downward (core) XPath
algebra

≡1� Corollary 6.8 ∼=≡1�
Corollary 6.10 Corollary 6.12

Weakly downward positive
(core) XPath algebra

�� Theorem 6.16 ∼=�� Theorem 6.17 Theorem 6.18

Strictly upward (core) XPath
algebra

≡↑ Theorem 7.1 ∼=≡↑ Theorem 7.2 Theorem 7.3

Strictly upward positive (core)
XPath algebra

≡↑ Theorem 7.1 ∼=≡↑ Theorem 7.2 Theorem 7.4

Weakly upward languages See Section 7.2
XPath algebra with counting up
to k

≡k� Theorem 8.6 ∼=≡k�
Corollary 8.9 Theorem 8.12

XPath algebra ≡3� Corollary 8.7 ∼=≡3�
Corollary 8.9 Corollary 8.13

Core XPath algebra with
counting up to k

≡k� Theorem 8.22 ∼=≡k�
Corollary 8.25 Theorem 8.27

Core XPath algebra ≡2� Corollary 8.23 ∼=≡2�
Corollary 8.25 Corollary 8.28

Positive (core) XPath algebra [34] �� Theorem 8.32 ∼=�� Theorem 8.33 Theorem 8.34

Another future research direction is refining the links between XPath and finite-variable first-order logics [35]. Indeed,
such links have been established at the level of query semantics. For example, Marx [36] has shown that an extended
version of Core XPath is equivalent to FO2

tree—first-order logic using at most two variables over ordered node-labeled
trees—interpreted in the signature child, descendant, and following_sibling.

Our results establish new links to finite-variable first-order logics at the document level. For example, we can show that,
on a given document, the XPath algebra and FO3—first-order logic with at most three variables—are equivalent in expres-
sive power. Indeed, as we discussed above, at the document level, the XPath-algebra is equivalent with Tarski’s relation
algebra [2] over trees. Tarski and Givant [3,5] established the link between Tarski’s algebra and FO3. Corollary 8.7 can then
be used to give a new characterization, other than via pebble-games [35,37], of when two nodes in an unordered tree are
indistinguishable in FO3. In this light, connections between other fragments of the XPath algebra and finite-variable logics
must be examined.

The connection between the XPath algebra and FO3 also has ramifications with regard to complexity issues. Indeed, using
a result of Grohe [38] which establishes that expression equivalence for FO3 is decidable in polynomial time, it follows
readily from Corollaries 8.13 and 8.15 that the global and local definability problems for the XPath algebra are decidable
in polynomial time. Using the syntactic characterizations in this paper, one can also establish that the global and local
definability problems for the other fragments of the XPath algebra are decidable in polynomial time. As mentioned in the
Introduction, this feasibility suggests efficient partitioning and reduction techniques on the set of nodes and the set of paths
in a document. Such techniques might be successfully applied towards various aspects of XML document processing such
as indexing, access control, and document compression. This is another research direction which we are currently pursuing
[11,39].

References

[1] M. Gyssens, J. Paredaens, D. Van Gucht, G.H.L. Fletcher, Structural characterizations of the semantics of XPath as navigation tool on a document, in:
Proceedings of the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 2006, Chicago, IL, USA, 2006, pp. 318–327.

[2] A. Tarski, On the calculus of relations, J. Symb. Log. 6 (1941) 73–89.
[3] A. Tarski, S. Givant, A Formalization of Set Theory Without Variables, Colloq. Publ., vol. 41, American Mathematical Society, Providence, Rhode Island,

1987.
[4] R. Hirsch, I. Hodkinson, Relation Algebras by Games, Stud. Logic Found. Math., vol. 147, Elsevier, Amsterdam, 2002.
[5] S. Givant, The calculus of relations as a foundation for mathematics, J. Autom. Reason. 37 (2006) 277–322.
[6] R.D. Maddux, Relation Algebras, Stud. Logic Found. Math., vol. 150, Elsevier, Amsterdam, 2006.
[7] M. Gyssens, L.V. Saxton, D. Van Gucht, Tagging as an alternative to object creation, in: J.C. Freytag, D. Maier, G. Vossen (Eds.), Query Processing for

Advanced Database Systems, Morgan Kaufmann, San Mateo, CA, USA, 1994, pp. 201–242.
[8] V.M. Sarathy, L.V. Saxton, D. Van Gucht, Algebraic foundation and optimization for object based query languages, in: Proceedings of the 9th IEEE

International Conference on Data Engineering, ICDE 1993, Vienna, Austria, 1993, pp. 81–90.
[9] M. Marx, M. de Rijke, Semantic characterizations of navigational XPath, SIGMOD Rec. 34 (2005) 41–46.

[10] B. ten Cate, M. Marx, Navigational XPath: calculus and algebra, SIGMOD Rec. 36 (2007) 19–26.
[11] G.H.L. Fletcher, D. Van Gucht, Y. Wu, M. Gyssens, S. Brenes, J. Paredaens, A methodology for coupling fragments of XPath with structural indexes for

XML documents, Inf. Syst. 34 (2009) 657–670.

http://refhub.elsevier.com/S0022-0000(15)00110-5/bib47797373656E735047463036s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib47797373656E735047463036s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib546172736B693431s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib546172736B69476976616E74s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib546172736B69476976616E74s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4869727368486F646B696E736F6Es1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib476976616E743036s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4D6164647578s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib47797373656E7353473931s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib47797373656E7353473931s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib5361726174687953473933s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib5361726174687953473933s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4D6172783A32303035s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib74656E436174653A32303037s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib466C65746368657247574742503039s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib466C65746368657247574742503039s1

G.H.L. Fletcher et al. / Journal of Computer and System Sciences 82 (2016) 229–259 259
[12] G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, S. Vansummeren, Similarity and bisimilarity notions appropriate for charac-
terizing indistinguishability in fragments of the calculus of relations, J. Log. Comput. 25 (2015) 549–580.

[13] G.H.L. Fletcher, M. Gyssens, D. Leinders, D. Surinx, J. Van den Bussche, D. Van Gucht, S. Vansummeren, Y. Wu, Relative expressive power of navigational
querying on graphs, Inf. Sci. 298 (2015) 390–406.

[14] D. Surinx, G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, S. Vansummeren, Y. Wu, Relative expressive power of navigational
querying on graphs using transitive closure, Log. J. IGPL 23 (5) (2015) 759–788, http://dx.doi.org/10.1093/jigpal/jzv028.

[15] G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, S. Vansummeren, Y. Wu, The impact of transitive closure on the expressive-
ness of navigational query languages on unlabeled graphs, Ann. Math. Artif. Intell. 73 (2015) 167–203.

[16] J. Hellings, M. Gyssens, Y. Wu, D. Van Gucht, J. Van den Bussche, S. Vansummeren, G.H.L. Fletcher, Relative expressive power of downward fragments of
navigational query languages on trees and chains, in: Proceedings of the 15th Symposium on Database Programming Languages, Pittsburgh, PA, USA,
October 25–30, 2015, 2015, pp. 59–68.

[17] J. Hidders, J. Paredaens, XPath/XQuery, in: L. Liu, M.T. Özsu (Eds.), Encyclopedia of Database Systems, Springer, US, 2009, pp. 3659–3665.
[18] G. Gottlob, C. Koch, Monadic queries over tree-structured data, in: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS

2002, Copenhagen, Denmark, 2002, pp. 189–202.
[19] M. Benedikt, W. Fan, G.M. Kuper, Structural properties of XPath fragments, Theor. Comput. Sci. 336 (2005) 3–31.
[20] G. Gottlob, C. Koch, R. Pichler, Efficient algorithms for processing XPath queries, ACM Trans. Database Syst. 30 (2005) 444–491.
[21] M. Benedikt, C. Koch, XPath leashed, ACM Comput. Surv. 41 (2009) 3:1–3:54.
[22] G. Miklau, D. Suciu, Containment and equivalence for a fragment of XPath, J. ACM 51 (2004) 2–45.
[23] M. Benedikt, W. Fan, F. Geerts, XPath satisfiability in the presence of DTDs, J. ACM 55 (2008).
[24] M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, Two-variable logic on data trees and XML reasoning, J. ACM 56 (2009).
[25] F. Bancilhon, On the completeness of query languages for relational data bases, in: Proceedings of the 7th Symposium on Mathematical Foundations

of Computer Science, MFCS 1978, Zakopane, Poland, 1978, pp. 112–123.
[26] J. Paredaens, On the expressive power of the relational algebra, Inf. Process. Lett. 7 (1978) 107–111.
[27] A.K. Chandra, D. Harel, Computable queries for relational data bases, J. Comput. Syst. Sci. 21 (1980) 156–178.
[28] D. Sangiorgi, J. Rutten, Advanced Topics in Bisimulation and Coinduction, Cambridge University Press, New York, NY, USA, 2011.
[29] B. ten Cate, T. Litak, M. Marx, Complete axiomatizations for XPath fragments, J. Appl. Log. 8 (2010) 153–172.
[30] P. Buneman, M. Grohe, C. Koch, Path queries on compressed XML, in: Proceedings of the 29th International Conference on Very Large Data Bases, VLDB

2003, Berlin, Germany, pp. 141–152.
[31] I. Fundulaki, M. Marx, Specifying access control policies for XML documents with XPath, in: Proceedings of the 9th ACM Symposium on Access Control

Models and Technologies, SACMAT 2004, Yorktown Heights, New York, USA, 2004, pp. 61–69, http://doi.acm.org/10.1145/990036.990046.
[32] T. Milo, D. Suciu, Index structures for path expressions, in: Proceedings of the 7th International Conference on Database Theory, ICDT 1999, Jerusalem,

Israel, 1999, pp. 277–295.
[33] R. Kaushik, P. Shenoy, P. Bohannon, E. Gudes, Exploiting local similarity for indexing paths in graph-structured data, in: R. Agrawal, K.R. Dittrich (Eds.),

Proceedings of the 18th International Conference on Data Engineering, San Jose, CA, USA, February 26–March 1, 2002, IEEE Computer Society, 2002,
pp. 129–140.

[34] Y. Wu, D. Van Gucht, M. Gyssens, J. Paredaens, A study of a positive fragment of path queries: expressiveness, normal form and minimization, Comput. J.
54 (2011) 1091–1118.

[35] L. Libkin, Elements of Finite Model Theory, Springer, Berlin, 2004.
[36] M. Marx, Conditional XPath, ACM Trans. Database Syst. 30 (2005) 929–959.
[37] L. Krzeszczakowski, Pebble games on trees, in: Proceedings of the 17th International Workshop on Computer Science Logic, CSL 2003, Vienna, Austria,

2003, pp. 359–371.
[38] M. Grohe, Equivalence in finite-variable logics is complete for polynomial time, Combinatorica 19 (1999) 507–532.
[39] S. Brenes Barahona, Structural summaries for efficient XML query processing, Ph.D. thesis, Indiana University, Bloomington, USA, 2011.

http://refhub.elsevier.com/S0022-0000(15)00110-5/bib466C657463686572474C4247563135s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib466C657463686572474C4247563135s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib466C657463686572474C53424756573135s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib466C657463686572474C53424756573135s1
http://dx.doi.org/10.1093/jigpal/jzv028
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib466C657463686572474C424756573135s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib466C657463686572474C424756573135s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4442504C32303135s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4442504C32303135s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4442504C32303135s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib7870617468s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib476F74746C6F624B6F6368s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib476F74746C6F624B6F6368s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib42656E6564696B74464B3035s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib476F74746C6F624B503035s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib42656E6564696B744B6F63683A3230303961s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4D696B6C6175533034s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib42656E6564696B7446473038s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib426F6A616E637A796B4D53533039s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib42616E63696C686F6E3738s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib42616E63696C686F6E3738s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib506172656461656E733738s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4368616E647261486172656Cs1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib53616E67696F726769s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib74656E4361746532303130s1
http://doi.acm.org/10.1145/990036.990046
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4D696C6F533939s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4D696C6F533939s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4B61757368696B5342473032s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4B61757368696B5342473032s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4B61757368696B5342473032s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib57754747503131s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib57754747503131s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4C69626B696E464D54s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4D617278544F44533035s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4B727A65737A637A616B6F77736B693033s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib4B727A65737A637A616B6F77736B693033s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib47726F68653939s1
http://refhub.elsevier.com/S0022-0000(15)00110-5/bib536F666961s1

	Structural characterizations of the navigational expressiveness of relation algebras on a tree
	1 Introduction
	2 Documents and navigation
	3 Signatures
	4 Distinguishability of nodes in a document
	4.1 Distinguishability of nodes at the semantic level
	4.2 Distinguishability of nodes at the syntactic level
	4.2.1 Downward distinguishability
	4.2.2 Upward distinguishability
	4.2.3 Two-way distinguishability

	4.3 Distinguishability of pairs of nodes at the syntactic level

	5 Strictly downward languages
	5.1 Sufﬁcient conditions for expression equivalence
	5.2 Necessary conditions for expression equivalence
	5.3 Characterization of expression equivalence
	5.4 Characterization of navigational expressiveness
	5.5 Strictly downward languages not containing set difference
	5.5.1 Weaker notions of downward and two-way distinguishability
	5.5.2 Characterizing expression equivalence and navigational expressiveness

	6 Weakly downward languages
	6.1 Sufﬁcient conditions for expression-equivalence
	6.2 Necessary conditions for expression equivalence
	6.3 Characterization of expression equivalence
	6.4 Characterization of navigational expressiveness
	6.5 Weakly downward languages not containing set difference

	7 Upward languages
	7.1 Strictly upward languages
	7.2 Weakly upward languages

	8 Languages for two-way navigation
	8.1 Standard languages with difference for two-way navigation
	8.2 Core languages with difference for two-way navigation
	8.3 Languages without difference for two-way navigation

	9 Discussion
	References

