
Relative Expressive Power of

Navigational Querying on Graphs using

Transitive Closure

Dimitri Surinx George H.L. Fletcher Marc Gyssens
Dirk Leinders Jan Van den Bussche Dirk Van Gucht

Stijn Vansummeren Yuqing Wu

June 11, 2015

Abstract

Motivated by both established and new applications, we study navi-
gational query languages for graphs (binary relations). The simplest lan-
guage has only the two operators union and composition, together with the
identity relation. We make more powerful languages by adding any of the
following operators: intersection; set difference; projection; coprojection;
converse; transitive closure; and the diversity relation. All these opera-
tors map binary relations to binary relations. We compare the expressive
power of all resulting languages, both for binary-relation queries as well
as for boolean queries. In the absence of transitive closure, a complete
Hasse diagram of relative expressiveness has already been established [8].
Moreover, it has already been shown that for boolean queries over a sin-
gle edge label, transitive closure does not add any expressive power when
only projection and diversity may be present [11]. In the present paper,
we now complete the Hasse diagram in the presence of transitive closure,
both for the case of a single edge label, as well as for the case of at least
two edge labels. The main technical results are the following:

1. In contrast to the above-stated result [11] transitive closure does add
expressive power when coprojection is present.

2. Transitive closure also adds expressive power as soon as converse is
present.

3. Conversely, converse adds expressive power in the presence of tran-
sitive closure. In particular, the converse elimination result from [8]
no longer works in the presence of transitive closure.

4. As a corollary, we show that the converse elimination result from [8]
necessitates an exponential blow-up in the degree of the expressions.

1

1 Introduction

Graph databases, and the design and analysis of query languages appropriate
for graph data, have a rich history in database systems and theory research [4].
Originally investigated from the perspective of object-oriented databases, in-
terest in graph databases research has been continually renewed, motivated by
data on the Web [1, 12] and new applications such as dataspaces [13], Linked
Data [6] and RDF [22].

Typical of access to graph-structured data is its navigational nature. Indeed,
in restriction to trees, there is a standard navigational query language, called
XPath, whose expressive power has been intensively studied [5, 17]. XPath has
been formalized in terms of a number of basic operators on binary relations [18].
Hence a natural approach [3,15,20] is to take this same set of operators but now
evaluate them over graphs instead of over trees.

In a project that has been going on over the past few years, our goal has
been to understand the relative importance of the different operators in this
setting. The main results were already summarized in a conference paper in
2011 [10]. The present article is the final one in a series [8, 9, 11] of journal
articles providing full details and proofs for that conference paper.

Concretely we consider a number of natural operators on binary relations
(graphs): union; composition; intersection; set difference; projection; coprojec-
tion; converse; transitive closure and the identity and diversity relations. The
largest language that we consider has all operators, while the smallest language
has only union, composition and the identity relation. Expressions are built
up from input relation names using these operators. Since each operator maps
binary relations to binary relations, these query languages express queries from
binary relations to binary relations: we call such queries path queries. By iden-
tifying nonemptiness with the boolean value ‘true’ and emptiness with ‘false’,
we can also express yes/no queries within this framework. To distinguish them
from general path queries, we shall refer to the latter as boolean queries.

In our previous paper [8] we established a complete comparison of the expres-
siveness of all resulting languages not containing transitive closure, and this for
both general path queries and boolean queries. The contribution of the present
paper is to complete the picture by adding transitive closure. At the level of
path queries, transitive closure obviously adds expressive power, since the lan-
guages without transitive closure are contained in first-order logic, whereas the
transitive closure of a binary relation is not expressible in first-order logic [14].
When both languages L1 and L2 have transitive closure, however, we will show
here that L1 ≤path L2, meaning that every path query expressible in L1 is also
expressible in L2, holds precisely when L′1 ≤path L′2, where L′i denotes Li with
transitive closure removed again. To establish this characterization we will make
use of the “strong” separations shown in our previous paper.

For boolean queries, the situation is more complicated. On the one hand, in
the absence of transitive closure, we already know [8] that adding converse to
a language containing projection but not containing intersection does not add
boolean expressive power. We will show here, however, that this no longer holds

2

in the presence of transitive closure: adding converse then always adds boolean
expressive power. Using the same intermediary results we establish that the
aforementioned converse elimination in the absence of transitive closure has an
inherent exponential character.

We then again consider the question whether adding the transitive closure
operator strictly increases the expressive power of a language not yet containing
transitive closure, but now for boolean queries. Over structures with at least
two binary relations (equivalently, graphs with multiple edge labels), this ques-
tion has an obvious affirmative answer. The question is more difficult, however,
for boolean queries over structures consisting of a single binary relation (equiv-
alently, graphs with a single edge label). Indeed, in a companion article [11], we
have already shown that for boolean queries over a single edge label, transitive
closure does not add any expressive power when only projection and diversity
may be present. In the present paper, we show that these are essentially the only
exceptions. Concretely, we show that, even over a single edge label, transitive
closure adds expressive power for boolean queries as soon as either intersection,
coprojection, or converse is present.

Let us briefly discuss some of the methods we use. The main technical result
of the paper, in which we show that the collapse in expressive power involving
the converse operator disappears in the presence of transitive closure, is proven
using invariance under bisimulation from arrow logics [7]. The main technical
challenge in such arguments is to establish bisimulations for increasing quantifier
rank among pairs of graphs of increasing size. Our bisimulation argument also
implies the exponential blowup inherent to converse elimination. To prove the
cases where transitive closure does add expressive power at the level of boolean
queries over a single edge label, we employ standard techniques from finite model
theory such as Hanf-locality and first-order reductions [14].

For further motivational material on why we think our results are interesting,
as well as extensive comparisons to the literature, we refer to our companion
papers [8, 9, 11].

This paper is further organized as follows. In Section 2, we define the class
of languages studied in the paper. In Section 3, we state the complete relative
expressiveness theorems including transitive closure, this at the level of path
queries as well as at the level of boolean queries. We prove these theorems in
Sections 4 to 7. In Section 4 we do this for path queries and in Section 5 for
boolean queries. Section 6 details the proofs of the bisimulation and exponential
blowup results. Finally, Section 7 looks at the specific case of graphs with a
single edge label.

2 Preliminaries

In this paper, we are interested in navigating over graphs whose edges are labeled
by symbols from a finite, nonempty set of labels Λ. We can regard these edge
labels as binary relation names and thus regard Λ as a relational database
schema. For our purposes, then, a graph G is an instance of this database

3

schema Λ. That is, assuming an infinite universe V of data elements called
nodes, G assigns to every R ∈ Λ a relation G(R) ⊆ V × V . Each pair in G(R)
is called an edge with label R. In what follows, G(R) may be infinite, unless
explicitly stated otherwise. All inexpressibility results in this paper already hold
when restricting to finite graphs, however.

The most basic language for navigating over graphs we consider is the alge-
bra N whose expressions are built recursively from the edge labels, the prim-
itive ∅, and the primitive id , using composition (e1 ◦ e2) and union (e1 ∪ e2).
Semantically, each expression e ∈ N defines a path query. A path query is
a function q taking any graph G as input and returning a binary relation
q(G) ⊆ adom(G) × adom(G). Here, adom(G) denotes the active domain of G,
which is the set of all entries occurring in one of the relations of G. Formally,

adom(G) = {m | ∃n,∃R ∈ Λ : (m,n) ∈ G(R) ∨ (n,m) ∈ G(R)}.

In detail, the semantics of N is inductively defined as follows:

R(G) = G(R) ;

∅(G) = ∅ ;

id(G) = {(m,m) | m ∈ adom(G)} ;

e1 ◦ e2(G) = {(m,n) | ∃p ((m, p) ∈ e1(G) & (p, n) ∈ e2(G))} ;

e1 ∪ e2(G) = e1(G) ∪ e2(G) .

The basic algebra N can be extended by adding some of the following features:
diversity (di), converse (e−1), intersection (e1 ∩ e2), difference (e1 \ e2), projec-
tions (π1(e) and π2(e)), coprojections (π1(e) and π2(e)), and transitive closure
(e+). We refer to the operators in the basic algebra N as basic features; we
refer to the extensions as nonbasic features. The semantics of the extensions is
as follows:

di(G) = {(m,n) | m,n ∈ adom(G) & m 6= n} ;

e−1(G) = {(m,n) | (n,m) ∈ e(G)} ;

e1 ∩ e2(G) = e1(G) ∩ e2(G) ;

e1 \ e2(G) = e1(G) \ e2(G) ;

π1(e)(G) = {(m,m) | m ∈ adom(G) & ∃n (m,n) ∈ e(G)} ;

π2(e)(G) = {(m,m) | m ∈ adom(G) & ∃n (n,m) ∈ e(G)} ;

π1(e)(G) = {(m,m) | m ∈ adom(G) & ¬∃n (m,n) ∈ e(G)} ;

π2(e)(G) = {(m,m) | m ∈ adom(G) & ¬∃n (n,m) ∈ e(G)} ;

e+(G) =
⋃
k≥1

ek(G) .

Here, ek denotes e ◦ · · · ◦ e (k times).
If F is a set of nonbasic features, we denote by N (F) the language obtained

by adding all features in F to N .

4

We will actually compare language expressiveness at the level of both path
queries and boolean queries. Path queries were defined above; a boolean query
is a function from graphs to {true, false}.

Definition 2.1. A path query q is expressible in a languageN (F) if there exists
an expression e ∈ N (F) such that, for every graph G, we have e(G) = q(G).
Similarly, a boolean query q is expressible in N (F) if there exists an expression
e ∈ N (F) such that, for every graph G, we have that e(G) is nonempty if, and
only if, q(G) is true. In both cases, we say that q is expressed by e.

For the given set of edge labels Λ, we write N (F1) ≤path
Λ N (F2) if every

path query expressible in N (F1) on graphs over Λ is also expressible in N (F2).
Similarly, we write N (F1) ≤bool

Λ N (F2) if every boolean query expressible in

N (F1) on graphs over Λ is also expressible in N (F2). We write 6≤path
Λ and 6≤bool

Λ

for the negation of ≤path
Λ and ≤bool

Λ .

When discussing ≤path
Λ and ≤bool

Λ , in a context that is valid for any Λ, how-
ever, we will omit the subscript Λ and simply write ≤path and ≤bool. We already
use this convention in the next definition, which introduces stronger variants of
≤path and ≤bool.

Note that N (F1) ≤path N (F2) implies N (F1) ≤bool N (F2), but not neces-
sarily the other way around.

It will also be interesting to consider stronger variants of 6≤path and 6≤bool.

Definition 2.2. The language N (F1) is strongly separable from the language
N (F2) at the level of path queries if there exists a path query q expressible in
N (F1) and a finite graph G, such that, for every expression e ∈ N (F2), we have

q(G) 6= e(G). We write N (F1) 6≤path
strong N (F2) in this case. Similarly, N (F1) is

strongly separable from N (F2) at the level of boolean queries if there exists a
boolean query q expressible in N (F1) and two finite graphs G1 and G2, with
q(G1) true and q(G2) false, such that, for every expression e ∈ N (F2), e(G1)
and e(G2) are both empty, or both nonempty. We write N (F1) 6≤bool

strong N (F2)
in this case.

Notice that strong separation indeed implies normal separation, i.e., 6≤path
strong

implies ≤path and 6≤bool
strong implies ≤bool. Intuitively, strong separation already

establishes the separation by exhibiting just a single counterexample graph (for
path queries), or just two counterexample graphs (for boolean queries). When
strong separation can be established, it is very useful. However, this is not
always possible. For a simple example, if F does not contain transitive closure
then N (F ∪ {+}) 6≤path N (F), but N (F ∪ {+}) 66≤path

strong N (F) is impossible.
Indeed, on a given finite graph G, every expression in N (F ∪ {+}) can be
“unrolled” into an expression without transitive closure that yields the same
result on G (see the proof of Proposition 4.1).

5

3 Results

We recall the following notation [8]. If F is a set of nonbasic features, then
F is the set obtained by augmenting F with all nonbasic features that can be
expressed in N (F) through a repeated application of the following equalities:

π1(e) = (e ◦ e−1) ∩ id = (e ◦ (id ∪ di)) ∩ id = π1(π1(e));

π2(e) = (e−1 ◦ e) ∩ id = ((id ∪ di) ◦ e) ∩ id = π2(π2(e));

π1(e) = id \ π1(e);

π2(e) = id \ π2(e);

e1 ∩ e2 = e1 \ (e1 \ e2).

The relative expressive power at the level of path queries for languages not
containing transitive closure is captured by the following theorem [8]:

Theorem 3.1 ([8]). Let Λ be an arbitrary finite nonempty set of edge labels,
and let F1 and F2 be sets of nonbasic features such that + 6∈ F1 and + 6∈ F2.
Then, N (F1) ≤path

Λ N (F2) if and only if F1 ⊆ F2.

In this paper we extend this theorem to include transitive closure:

Theorem 3.2. Let Λ be an arbitrary finite nonempty set of edge labels. Let F1

and F2 be sets of nonbasic features. Then N (F1) ≤path
Λ N (F2) if and only if

F1 ⊆ F2.

We discuss and prove Theorem 3.2 in Section 4.
The above theorem settles the relative expressive power at the level of path

queries. Let us now turn our attention to boolean queries. To state what is
already known we introduce the following additional notation. For a set of
nonbasic features F , we define

F̂ =

{
(F \ {−1}) ∪ {π}, if −1 ∈ F ,∩ 6∈ F ,+ 6∈ F
F, otherwise

This notation extends notation introduced earlier [8] to include transitive clo-
sure. Indeed, for languages without transitive closure, the following is already
known [8]:

Theorem 3.3 ([8]). Let Λ be an arbitrary finite nonempty set of edge labels,
and let F1 and F2 be sets of nonbasic features such that + 6∈ F1 and + 6∈ F2.
Then, N (F1) ≤bool

Λ N (F2) if and only if F1 ⊆ F2 or F̂1 ⊆ F2.

By the above Theorem, when F contains neither intersection nor transitive clo-
sure, boolean queries expressed in N (F) can be translated to expressions in

N (F̂), thus effectively eliminating converse (at the expense of adding projec-
tion). We will refer to this phenomenon as converse elimination.

6

In this paper we will extend the analysis to include transitive closure. It
turns out that we will need to consider the case where there are at least two
edge labels separately from the case where there is only one edge label. For the
first case, we can again generalize the above theorem verbatim.

Theorem 3.4. Assume that Λ contains at least two edge labels, and let F1 and
F2 be sets of nonbasic features. Then, N (F1) ≤bool

Λ N (F2) if and only if F1 ⊆ F2

or F̂1 ⊆ F2.

We discuss and prove Theorem 3.4 in Sections 5 and 6.
In the case of a single edge label, all edges have the same label. Hence,

the edge label carries no information which is why we refer to this case as the
“unlabeled” case. We will use the notation ≤bool

unl to denote this case. The
theorem is now as follows:

Theorem 3.5. Let F1 and F2 be sets of nonbasic features. Then N (F1) ≤bool
unl

N (F2) if and only if at least one of the following conditions hold:

1. F1 ⊆ F2;

2. F̂1 ⊆ F2;

3. + ∈ F1, + 6∈ F2, F1 ⊆ {π, di ,+} and F1 \ {+} ⊆ F2.

We thus see that in the unlabeled case, transitive closure does not always add
expressive power for boolean queries. We discuss and prove Theorem 3.5 in
Section 7.

4 Path queries

The goal of this section is to show that Theorem 3.2 holds. Thereto, we need
the following result: if there is a separation at the level of path queries for
languages not containing transitive closure, then the separation still stands when
we include transitive closure.

Proposition 4.1. Let F1 and F2 be sets of nonbasic features such that + 6∈ F1

and + 6∈ F2. If N (F1) 6≤path N (F2) then N (F1) 6≤path N (F2 ∪ {+}).

Proof. In our previous work [8] we have proven that if N (F1) 6≤path N (F2), then

either N (F1) 6≤bool N (F2) or N (F1) 66≤path
strong N (F2). If N (F1) 6≤bool N (F2), the

result will follow directly from Proposition 5.3 (which clearly does not rely on the

present proposition). Now suppose N (F1) 6≤path
strong N (F2). Then there exists a

path query q expressible in N (F1), and a finite graph G such that q(G) 6= e(G)
for every expression e ∈ N (F2). We will show that q is not expressible in
N (F2 ∪ {+}). To this end let e′ ∈ N (F2 ∪ {+}). Note that, for any graph
H with at most n nodes, and any expression f ∈ N (F2), we have f+(H) =
(
⋃n

i=1 f
i)(H). Hence if we remove transitive closure applications in e′ using

this equality, we obtain an expression e′′ ∈ N (F2) such that e′′(G) = e′(G).

7

Therefore, q(G) 6= e′′(G) since q(G) 6= e′(G). Thus we can conclude that q is

not expressible in N (F2∪{+}), whence N (F1) 6≤path
strong N (F2∪{+}) as desired.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. We first take care of the ‘if’ direction. Every expression
e ∈ N (F1) can be transformed into an equivalent expression e′ ∈ N (F2) by using
the appropriate interdependencies introduced at the beginning of Section 3.

For the ‘only if’ direction we split our proof into three cases.

• If + 6∈ F1 and + 6∈ F2, then our theorem coincides with Theorem 3.1.

• If + ∈ F1 and + 6∈ F2, then any query expressible in N (F2) is also ex-
pressible in first-order logic. It is well known, however, that the transitive
closure of a binary relation is not expressible in first-order logic [14].

• If + ∈ F2, then F2 = F2 \ {+}∪{+}. Hence F1 ⊆ F2 iff F1\{+} ⊆ F2 \ {+}.
We now show the contrapositive of the ‘only if’ direction. To this end,
suppose that F1 \{+} * F2 \ {+}. Then Theorem 3.1 implies that N (F1 \
{+}) 6≤path N (F2 \ {+}). The result now follows directly from Proposi-
tion 4.1.

5 Boolean queries

The goal of this section is to show that Theorem 3.4 holds. Thereto, we first
need a few preliminary results. At the level of boolean queries, transitive closure
adds expressive power if Λ contains at least two edge labels.

Proposition 5.1. Assume that Λ contains at least two edge labels, and let F1

and F2 be sets of nonbasic features. If + ∈ F1 and + 6∈ F2, then N (F1) 6≤bool
Λ

N (F2).

Proof. Let S and R be two different edge labels in Λ. If the boolean query
expressed by S ◦ R+ ◦ S ∈ N (F1) would be expressible in N (F2), it would
also be expressible in first-order logic. It is well known, however, that such
a reachability query is not expressible in first-order logic [2]. Hence it is not
expressible in N (F2) either.

In Section 7 we explore whether transitive closure adds expressive power in the
unlabeled case.

It has been shown that if π ∈ F1 and F2 ⊆ {−1, di} then N (F1) 6≤bool

N (F2) [8]. We extend this result to include transitive closure:

Proposition 5.2. Let F1 and F2 be sets of nonbasic features. If π ∈ F1 and
F2 ⊆ {−1, di ,+}, then N (F1) 6≤bool N (F2).

8

Figure 1: The graph BZZZ used to prove Proposition 5.2. All edges are assumed
to have the same label R.

Proof. It is sufficient to show that N (π) 6≤bool N (−1, di ,+) since N (π) ≤bool

N (F1) and N (F2) ≤bool N (−1, di ,+). We adapt the proof of Proposition 4.1 in
our previous work [8] with some minor changes so that it provides a proof for
Proposition 5.2. Let BZZZ be the graph displayed in Figure 1, and let Q be the
boolean query

π1(R4 ◦ π2(π1(R4) ◦R)) ◦ π1(R5 ◦ π2(π1(R5) ◦R)) ◦ π1(R6 ◦ π2(π1(R6) ◦R)) 6= ∅

clearly expressible in N (π). This query accepts BZZZ , i.e., Q(BZZZ) 6= ∅.
Since every transitive closure application f+ can be written as an infinite union⋃∞

i=1 f
i and unions in N (−1, di) can be brought outside, every expression e ∈

N (−1, di ,+) can be written as an infinite union of union-free expressions in
N (−1, di). Therefore, we can write the expression Q ∈ N (−1, di ,+), which
supposedly expresses QZZZ , as Q =

⋃∞
i=1 ei where ei is a union-free expression

in N (−1, di) for every natural number i. Since Q(BZZZ) 6= ∅, there exists an
expression e ∈ {ei | i ∈ N} such that e(BZZZ) 6= ∅. The proof now proceeds
exactly as in the proof of Proposition 4.1 in our previous work [8].

If there is a separation at the level of boolean queries for languages not con-
taining transitive closure, the separation still stands when we include transitive
closure.

Proposition 5.3. Let F1 and F2 be sets of nonbasic features such that + 6∈ F1

and + 6∈ F2. If N (F1) 6≤bool N (F2) then N (F1) 6≤bool N (F2 ∪ {+}).

Proof. In our previous work [8] we have proven that if N (F1) 6≤bool N (F2) then
either π ∈ F1 and F2 ⊆ {−1, di}, or N (F1) 6≤bool

strong N (F2). If π ∈ F1 and

F2 ⊆ {−1, di}, then F2 ∪ {+} ⊆ {−1, di ,+}, whence N (F1) 6≤bool N (F2 ∪ {+})
due to Proposition 5.2.

So from here we may assume that N (F1) 6≤bool
strong N (F2). In this case there

exists an expression q ∈ N (F1) and two graphs G1 and G2 with q(G1) = true
and q(G2) = false, such that for every expression e ∈ N (F2), e(G1) and e(G2)
are both empty or both nonempty. Now, let n = max(adom(G1), adom(G2)).

9

We show that q is not expressible in N (F2 ∪ {+}). To this end let e′ ∈ N (F2 ∪
{+}). Note that, for any graph H with at most n nodes, and any expression
f ∈ N (F2), we have f+(H) = (

⋃n
i=1 f

i)(H). Hence if we remove transitive
closure applications in e′ using this equality, we obtain an expression e′′ ∈ N (F2)
such that e′′(G1) = e′(G1) and e′′(G2) = e′(G2). Since e′′(G1) and e′′(G2)
are both empty or both nonempty, e′(G1) and e′(G2) are both empty or both
nonempty. Thus we can conclude that q is not expressible in N (F2 ∪ {+}),
whence N (F1) 66≤bool

strong N (F2 ∪ {+}) as desired.

In Section 6 we will prove the following proposition, showing that converse
elimination, discussed in Section 3, no longer occurs in the presence of transitive
closure. Specifically, we will show that the boolean query R2◦(R◦R−1)+◦R2 6= ∅
is not expressible in the largest language without converse.

Proposition 5.4. Let F1 and F2 be sets of nonbasic features. If −1 ∈ F 1,
+ ∈ F 1, and −1 6∈ F 2, then N (F1) 6≤bool N (F2).

For later purposes, we first examine a selection of languages for which the
requirement for multiple edge labels of Theorem 3.4 can be removed.

Proposition 5.5. Let Λ be an arbitrary finite nonempty set of edge labels, and
let F1 and F2 be sets of nonbasic features such that + ∈ F1 implies + ∈ F2.
Then, N (F1) ≤bool N (F2) if and only if F1 ⊆ F2 or F̂1 ⊆ F2.

Proof. We split our proof into three cases.

• If + 6∈ F1 and + 6∈ F2, then our theorem coincides with Theorem 3.3.

• If + 6∈ F1 and + ∈ F2, then F2 = F2 \ {+} ∪ {+}. Let us first con-
sider the ‘if’ direction. By the argument above, F1 ⊆ F2 \ {+}. There-
fore N (F1) ≤bool N (F2 \ {+}) by Theorem 3.3 since + 6∈ F1, whence
N (F1) ≤bool N (F2).

For the ‘only if’ direction, we consider its contrapositive. In this case
F̂1 * F2 \ {+} = F2 \ {+} and F1 ⊆ F2 \ {+} = F2 \ {+}. Theorem 3.3
can now be applied, which tells us that N (F1) 6≤bool N (F2 \ {+}). The
result now directly follows from Proposition 5.3.

• If + ∈ F1 and + ∈ F2, then

F̂1 ⊆ F2 ∨ F1 ⊆ F2 ⇔ F1 ⊆ F2 ⇔ F1 \ {+} ⊆ F2 \ {+} = F2 \ {+}.

First we take care of the ‘if’ direction. By the first equivalence above, we
may assume that F1 ⊆ F2. By Theorem 3.2 we have N (F1) ≤path N (F2),
whence also N (F1) ≤bool N (F2).

For the ‘only if’ direction, we consider its contrapositive. By the second
equivalence above, we may assume that F1 \ {+} * F2 \ {+}. If −1 6∈ F1,

then ̂F1 \ {+} = F1 \ {+} * F2 \ {+} by definition. Hence we can apply
Theorem 3.3. The result now follows from Proposition 5.3.

10

Conversely, suppose that −1 ∈ F1. Additionally, if −1 6∈ F2, then the result
follows directly from Proposition 5.4. On the other hand, if −1 ∈ F2 then
F1 \{+} * F2 \ {+} implies that another feature x ∈ F1 \{+} not equal to
−1 is not present in F2 \ {+}, whence ̂F1 \ {+} * F2 \ {+} by definition.
Hence, N (F1 \ {+}) 6≤bool N (F2 \ {+}) by Theorem 3.3. The result now
follows directly from Proposition 5.3.

We are now ready for the proof of Theorem 3.4.

Proof of Theorem 3.4. If + ∈ F1 and + 6∈ F2, then clearly F̂1 * F2 and F1 * F2.
Furthermore, N (F1) 6≤bool

Λ N (F2) by Proposition 5.1, which we can apply since
Λ contains at least two edge labels. This concludes our proof in this case.

In the remaining cases our theorem follows directly from Proposition 5.5.

6 Converse cannot be eliminated in the presence
of transitive closure

The goal of this section is to prove Proposition 5.4. To do so we will prove
in Section 6.2 that R2 ◦ (R ◦ R−1)+ ◦ R2 6= ∅ is not expressible in the largest
language without converse.

To show this inexpressibility result, we will employ invariance results under
the notion of bisimulation below. In essence, this notion is based on the notion
of bisimulation known from arrow logics [19]. Below, we adapt this notion to
the current setting.

Let G = (G, a, b) denote a marked graph, i.e., a graphG with a, b ∈ adom(G).
The degree of an expression e is the maximum depth of nested applications of
composition, projection and coprojection in e. For example, the degree of R◦R
is 1, while the degree of both R ◦ (R ◦ R) and π1(R ◦ R) is 2. Intuitively, the
degree of e corresponds to the quantifier rank of the standard translation of e
into FO3. For a set of features F , N (F)k denotes the set of expressions in N (F)
of degree at most k.

In what follows, we are only concerned with bisimulation results regard-
ing N (\, di). The following is an appropriate notion of bisimulation for this
language.

Definition 6.1 (Bisimilarity). Let k be a natural number and let G1 =
(G1, a1, b1) and G2 = (G2, a2, b2) be marked graphs. We say that G1 is bisim-
ilar to G2 up to depth k, denoted G1 'k G2, if the following conditions are
satisfied:

Atoms a1 = b1 if and only if a2 = b2; and (a1, b1) ∈ G1(R) if and only if
(a2, b2) ∈ G2(R), for every R ∈ Λ;

Forth if k > 0, then, for every c1 in adom(G1), there exists some c2 in
adom(G2) such that

(G1, a1, c1) 'k−1 (G2, a2, c2) and (G1, c1, b1) 'k−1 (G2, c2, b2);

11

Y

W

T

y1 y2 ym ym+1

x1 x2 z2
z1

w1 w2 wm wm+1wm
2 +1

ym
2 +1

t1 t2 tm tm+1tm
2 +1

u1 u2 um um+1
U

V

W ′

x′1 x′2

z′2
z′1

w′1 w′2 w′m w′m+1

v1 v2 vm vm+1vm
2 +1

um
2 +1

w′m
2 +1

Figure 2: Graphs Gm
1 (top) and Gm

2 (bottom) used to establish boolean sepa-
ration in the proof of Proposition 5.4.

Back if k > 0, then, for every c2 in adom(G2), there exists some c1 in adom(G1)
such that

(G1, a1, c1) 'k−1 (G2, a2, c2) and (G1, c1, b1) 'k−1 (G2, c2, b2).

We also say that there is a bisimulation of depth k between G1 and G2 if
G1 'k G2.

Recall the following adequacy theorem for bisimulations.

Theorem 6.2 ([9]). Let k be a natural number; and let G1 = (G1, a1, b1) and
G2 = (G2, a2, b2) be marked graphs. We have, G1 'k G2 iff (a1, b1) ∈ e(G1)⇔
(a2, b2) ∈ e(G2) for every e ∈ N (\, di)k.

Intuitively, this proposition tells us that marked graphs are indistinguishable by
k-degree path queries iff these graphs are bisimilar up to depth k.

In Section 6.1, we will establish bisimulations between the classes of graphs
Gm

1 and Gm
2 displayed in Figure 2. This is then used in Section 6.2 to prove

Proposition 5.4. Moreover, in Section 6.3 we use the bisimulations to show
an exponential blowup for converse elimination (cf. the discussion following
Theorem 3.3). Specifically, we will prove:

Theorem 6.3. Let F be a set of nonbasic features such that −1 ∈ F , ∩ 6∈ F
and + 6∈ F . Furthermore, let h be a function that translates expressions e in
N (F) to e′ ∈ N (F̂) such that e′ is equivalent to e at the level of boolean queries
(such a function h exists by Theorem 3.3). If f : N→ N is a function such that
for every e ∈ N (F) we have degree(h(e)) ≤ f(degree(e)), then f 6= o(2n).

6.1 A bisimulation result

In this section we will establish the required bisimulations to prove Proposi-
tion 5.4. For the remainder of this section let m > 4 be an integer multiple of

12

four, let Gm
1 be the graph at the top and Gm

2 be the graph at the bottom in
Figure 2. It is important to note that these graphs have the displayed form only
when m is a multiple of four.

The goal is to establish the following theorem:

Theorem 6.4. For every pair (a1, b1) ∈ adom(Gm
1)2 there exists another pair

(a2, b2) ∈ adom(Gm
2)2 such that (Gm

1 , a1, b1) 'm/2−1 (Gm
2 , a2, b2).

Before we can do so, we introduce some terminology. We say that a pair
(x, y) ∈ adom(Gm

1)× adom(Gm
2) is valid if the following conditions hold:

• if x ∈ {yi, wi, ti} then y ∈ {ui, vi, w′i};

• if x = x1 then y = x′1;

• if x = x2 then y = x′2;

• if x = z1 then y = z′1;

• if x = z2 then y = z′2.

Intuitively, the pair (x, y) is valid if x and y are displayed in the same column
in Figure 2, so formally, instead of saying that (x, y) is valid, we also say that
x and y are in the same column. Moreover, we will extend this terminology for
nodes x and y belonging to the same graph, with the obvious meaning.

Definition 6.5. A 4-tuple (a1, b1, a2, b2) ∈ adom(Gm
1)2 × adom(Gm

2)2 is valid
if the following conditions hold:

(a) (a1, a2) and (b1, b2) are valid;

(b) (a1, b1) ∈ Gm
1 if and only if (a2, b2) ∈ Gm

2 ; and a1 = b1 if and only if
a2 = b2. Note that this is the Atoms condition for bisimilarity;

(c) if a1 = x2, b1 = y2 and a2 = x′2, then b2 = u2;

(d) if a1 = x2, a2 = x′2 and b2 = u2, then b1 = y2.

Intuitively, a valid quadruple is a potential starting point for a bisimulation
between Gm

1 and Gm
2 .

For any node x ∈ adom(Gm
1) we introduce the following terminology.

• If x equals x1 or x2, or yi, wi or ti with 0 ≤ i ≤ m/2 + 1, we call x a left
element.

• If x is not a left element, i.e., x equals z1 or z2, or yi, wi or ti with
m/2 + 1 < i ≤ m+ 1, we call x a right element.

• If x equals yi for any i, we call x a Y element. Analogously, if x equals
wi, ti, xi, or zi for any i, we call x a W , T , X or Z element, respectively.

13

Clearly we can combine these adjectives and thus speak about a Y left element,
for example.

For any node y ∈ adom(Gm
2) we can use the analogous terminology of left,

right, U , V , W ′, X ′ and Z ′ elements with analogous meaning.
Let us now define a function f mapping valid pairs to natural numbers:

f(d, e) =

m/2 if d = yi left and e = ui

i− 1 if d = yi left and (e = vi or e = w′i)

m+ 1− i if d = yi right and (e = ui or e = w′i)

m/2 if d = yi right and e = vi

i− 1 if (d = wi or d = ti) left and e = ui

m/2 if (d = wi or d = ti) left and (e = vi or e = w′i)

m/2 if (d = wi or d = ti) right and (e = ui or e = w′i)

m+ 1− i if (d = wi or d = ti) right and e = vi

i− 1 if d = ti left and e = ui

m/2 if d = ti left and (e = vi or e = w′i)

m/2 if d = ti right and (e = ui or e = w′i)

m+ 1− i if d = ti right and e = vi

m/2 if d = xi and e = x′i
m/2 if d = zi and e = z′i

Intuitively, f(d, e) = m/2 only when d and e are in the middle column or d and
e are on the side of chains with similar endings in Figure 2, i.e., d is Y left iff e
is U left, and d is Y right iff e is V right. In all other cases f(d, e) < m/2. For
example, let us examine the values for the valid pairs (x, y), (w, z), (a1, a2) and
(b1, b2) in the graphs G8

1 and G8
2 displayed in Figure 3. In this case m = 8, thus

f(x, y) = 2, f(w, z) = m+ 1− 7 = 2, f(a1, a2) = m/2 = 4 and f(b1, b2) = 3.
Our key idea to establish Theorem 6.4 is to show that min(f(a1, a2), f(b1, b2))

is a lower bound on the bisimulation depth between (Gm
1 , a1, b1) and (Gm

2 , a2, b2);
this will be our key Lemma 6.22. Before proving this in detail, we intuitively
describe the overall strategy.

To establish a bisimulation of depth d between (Gm
1 , a1, b1) and (Gm

2 , a2, b2),
we need that (a1, b1, a2, b2) satisfies the Atoms condition, and we need that the
Forth and Back conditions hold. A first characteristic of our strategy is that we
take care to maintain not just the Atoms condition, but the stronger property
of validity from Definition 6.5. Viewing a bisimulation argument as a game, the
validity property provides tighter control on the possible game situations that
can arise.

For the Forth condition we need to find a node c2 ∈ adom(Gm
2) for every

node c1 ∈ adom(Gm
1) such that there is a bisimulation of depth d − 1 between

(Gm
1 , a1, c1) and (Gm

2 , c1, a2), and (Gm
1 , c1, b1) and (Gm

2 , c2, b2). For the Back
condition we need to do the same thing except that the roles of c1 and c2 are
switched.

14

Y

W

T

x

a1

b1

w

U

V

W ′
b2

y

a2

z

Figure 3: The graphs G8
1 at the top, and G8

2 at the bottom. Notice here that
(x, y), (w, z), (a1, a2) and (b1, b2) are valid pairs. Since m = 8 in this case,
we have that f(x, y) = 2, f(w, z) = m + 1 − 7 = 2, f(a1, b2) = m/2 = 4 and
f(b1, b2) = 3

Actually, instead of directly working with bisimulations with a certain depth,
we will show that we can pick a c2 ∈ adom(Gm

2) for every c1 ∈ adom(Gm
1)

(and vice versa) that ensures validity of (a1, c1, a2, c2) and (c1, b1, c2, b2) while
providing a lower bound on f(c1, c2). This will provide enough information to
prove Lemma 6.22 by induction.

So let us now have an intuitive look at the strategy used in the technical
lemmas to pick such a c2 ∈ adom(Gm

2) for every c1 ∈ adom(Gm
1). First, re-

member that we only work with valid quadruples, so c2 has to be in the same
column as c1. This leaves us with three candidate nodes (or just one in case c1
is an X or Z element). We pick one of these nodes according to the following
strategy:

1. First, we check whether a1 = c1, c1 = b1, (a1, c1) is an edge, or (c1, b1) is
an edge. If this is indeed the case, we say that c1 is related to a1 or b1.
Here we pick c2 so that it is related in the same way as c1 is related to a1

or b1. The relation of c1 and to a1 of b1 ensures that c1 is in the column
next to, or in the same column as a1 or b1. This implies that f(c1, c2) is
at most one lower than f(a1, a2) or f(b1, b2).

For example, if (c1, b1) is an edge, we pick c2 in the same column as c1
such that (c2, b2) is an edge (see Figure 4).

2. If c1 is not related to a1 or b1, i.e., if a1 6= c1, c1 6= b1, (a1, c1) is not an
edge, and (c1, b1) is not an edge, we check whether it is possible to pick
c2 such that f(c1, c2) = m/2 without breaking validity. Since m/2 is the
maximum output of f , we can be sure that f(c1, c2) is sufficiently large.
For an example of this scenario see Figure 5.

15

Y

W

T

c1

a1

b1

U

V

W ′
b2c2

a2

Figure 4: An example of the first step in our strategy on the graphs Gm
1 and

Gm
2 with m = 8. Here c1 is related to b1, i.e, (c1, b1) is an edge. The node c2

is thus picked such that (c2, b2) is an edge. The validity of (a1, b1, a2, b2) then
ensures that a2 is not related to c2. Notice also that f(c1, c2) = f(b1, b2)− 1 by
definition.

Y

W

T
b1

c1

a1

U

V

W ′

b2

c2

a2

Figure 5: An example of the second step in our strategy on Gm
1 and Gm

2 with
m = 8. Hence c1 is not related a1 and b1 (a1 6= c1, c1 6= b1, (a1, c1) is not
an edge, and (c1, b1) is not an edge), and it is possible to pick c2 such that
f(c1, c2) = m/2 without violating validity. Notice that c2 has to be picked on
U in this example since only then f(c1, c2) = m/2 by definition.

16

Y

W

T

c1

a1

b1

U

V

W ′

b2

c2

a2

Figure 6: An example of the third step in our strategy on Gm
1 and Gm

2 with
m = 8. Hence c1 is not related to a1 and b2 (a1 6= c1, c1 6= b1, (a1, c1) is not
an edge, and (c1, b1) is not an edge), and it is not possible to pick c2 such that
f(c1, c2) = m/2. Indeed, here f(c1, c2) = m/2 only if c2 is on U . Thus c2 has to
be picked on the chain not containing a2 and b2. Clearly f(c1, c2) = f(b1, b2)−1
by definition.

3. If we cannot pick c2 such that f(c1, c2) = m/2 without breaking valid-
ity, we just pick c2 such that validity is ensured. It turns out that even
then f(c1, c2) is sufficiently large, i.e., at most one lower than f(a1, a2) or
f(b1, b2). For an example of this scenario see Figure 6.

The strategy by itself may seem quite arbitrary. Why do we not provide
a single c2 for each c1 without the trial and error in the second step of the
strategy? The reason why we introduced the trial and error step, is because a
failure in that step tells us something about the location of a1 and a2, and b1
and b2. Indeed, if the validity of (a1, c1, a2, c2) is broken, for example, we know
that a2 = c2, or that (a2, c2) is an edge, which implies that a1 and a2 are in
the same column as, or in the column next to c1 and c2. Using these facts, we
will be able to determine the values of f(a1, a2) and f(b1, b2), which will appear
to be sufficiently low by itself so that we can pick c2 without having to worry
about f(c1, c2).

We will now start the technical proof with several lemmas. Lemmas 6.6
and 6.7 take care of first step of the strategy outlined above. Lemmas 6.8
and 6.17 take care of the second and third step. To establish these last two
steps, we use several sublemmas for clarity (Lemmas 6.9 to 6.16).

Lemma 6.6. Suppose that (a1, b1, a2, b2) is valid, f(a1, a2) > 0, f(b1, b2) > 1
and c1 ∈ adom(Gm

1) such that a1 = c1, b1 = c1, (a1, c1) is an edge, or (c1, b1)
is an edge. Then there exists c2 ∈ adom(Gm

2) such that (a1, c1, a2, c2) and
(c1, b1, c2, b2) are valid, and f(c1, c2) ≥ min(f(a1, a2), f(b1, b2))− 1.

17

Proof. First suppose that a1 = c1. Then we pick c2 = a2. Clearly (a1, c1, a2, c2)
and (c1, b1, c2, b2) are valid by construction. Furthermore, f(c1, c2) = f(a1, a2) ≥
min((fa1, a2)), f(b1, b2))− 1. The case where c1 = b1 is analogous.

Now suppose that (a1, c1) is an edge. Then we pick c2 in the same column
as c1 (thus (c1, c2) is valid) such that (a2, c2) is an edge. This is clearly possible
if a1 6= ym+1, since in that case any node in the same column of a2 has a
forward or backward outgoing edge in the same way as a1. On the other hand,
if a1 = ym+1, then a2 = vm+1 since f(a1, a2) > 0. Again ym+1 in Gm

1 and
vm+1 in Gm

2 have similar outgoing edges. Clearly (a1, c1, a2, c2) is valid by
construction. The validity of (c1, b1, c2, b2) is not so evident. Note, however,
that b1 = y2 iff b2 = u2 since f(b1, b2) > 1. Thus conditions (c) and (d) for the
validity of (c1, b1, c2, b2) are trivially satisfied. Thus we only have to show that
(c1, b1, c2, b2) satisfies the Atoms condition.

b1 = c1 ⇐⇒ (a1, b1) is an edge (since (a1, c1) is an edge)

⇐⇒ (a2, b2) is an edge (since (a1, b1, a2, b2) is valid)

⇐⇒ b2 = c2 (since (c1, c2) is valid and (a2, c2) is an edge)

Suppose (c1, b1) is also an edge, then c1 ∈ {x2, y1, z2} because these are the
only nodes with incoming as well as outgoing edges. If c1 = x2, then c2 = x′2,
and b1 = y1, whence b2 = u1 since f(b1, b2) > 0. On the other hand, if c1 = y1,
then a1 = x2, c2 = u1, b1 = y2, and a2 = x′2. Now by conditions (c) and (d)
from the validity of (a1, b1, a2, b2) we have that b2 = u2. Finally, if c1 = z2, then
c2 = z′2 and b1 = z1, whence b2 = z′1 since (a1, b1, a2, b2) is valid. In either case,
(c2, b2) is an edge as desired.

On the other hand suppose that (c2, b2) is an edge, then c2 ∈ {x′2, u1, z
′
2}

because these are the only nodes with incoming as well as outgoing edges. If
c2 = x′2, then c1 = x2, and b2 = u1, whence b1 = y1 since f(b1, b2) > 0. On the
other hand, if c2 = u1, then c1 = y1, a2 = x′2 and b2 = u2. Now by conditions
(c) and (d) from the validity of (a1, b1, a2, b2) we have that b2 = y2. Finally, if
c2 = z′2, then c1 = z2 and b2 = z′1, whence b2 = z1 since (a1, b1, a2, b2) is valid.
In either case, (c1, b1) is an edge as desired.

So it remains to be shown that f(c1, c2) ≥ min(f(a1, a2), f(b1, b2)) − 1.
Since (a1, c1) is an edge, it is clear that c1 is in the column to the left or right
of a1. Thus if f(a1, a2) < m/2, we must have that f(c1, c2) ≥ f(a1, a2) − 1 ≥
min(f(a1, a2), f(b1, b2))− 1. On the other hand, suppose that f(a1, a2) = m/2.
Let us list the possibilities for f(a1, a2) to equal m/2: the column of a1 is
m/2 + 1; a1 is Y left and a2 is U left; a1 is W left and a2 is W ′ left; a1 is
W left and a2 is V left; a1 is T left and a2 is W ′ left; a1 is T left and a2

is V left; a1 is Y right and a2 is V right; a1 is W right and a2 is W ′ right;
a1 is W right and a2 is U right; a1 is T right and a2 is W ′ right; or a1 is
T right and a2 is U right. Therefore, unless a1 ∈ {ym

2 +1, tm
2 +1, wm

2 +1}, c1 is
on the same side of the chain as a1, and c2 is on the same side (left or right)
of the chain as a2 since (a1, c1) and (a2, c2) are edges. The definition of f
implies that f(c1, c2) = m/2. If a1 ∈ {ym

2 +1, tm
2 +1, wm

2 +1}, then the column
of c1 and c2 is m/2 or m/2 + 2 since (a1, c1) and (a2, c2) are edges. Therefore

18

f(c1, c2) ≥ m+ 1− (m/2 + 2) = m/2− 1 as desired.
The case where (c1, b1) is an edge is analogous to the case where (a1, c1) is

an edge.

Notice that three consecutive columns in Gm
1 are isomorphic to the three

corresponding columns in Gm
2 displayed in Figure 2. Hence we can exchange

the roles of c1 and c2 in the proof of the previous lemma without violating the
Atoms condition since the Atoms condition can only fail if there is a problem on
the columns directly surrounding c1 and c2. Furthermore, notice that the value
of f(a1, a2) only depends on how a1 and a2 relate to one another on one side
of the graph (the left or right-hand side). Hence, the condition on f(c1, c2) also
remains intact, since Gm

1 and Gm
2 look completely the same on the left-hand

(right-hand) side. Thus the proof of the following lemma is analogous to the
proof of Lemma 6.6.

Lemma 6.7. Suppose that (a1, b1, a2, b2) is valid, f(a1, a2) > 0, f(b1, b2) > 1
and c2 ∈ adom(Gm

2) such that a2 = c2, b2 = c2, (a2, c2) is an edge, or (c2, b2)
is an edge. Then there exists c1 ∈ adom(Gm

1) such that (a1, c1, a2, c2) and
(c1, b1, c2, b2) are valid, and f(c1, c2) ≥ min(f(a1, a2), f(b1, b2))− 1.

Let us now take care of steps two and three in the intuitive strategy outlined
before Lemma 6.6, i.e., when c1 is not related to a1 or b1.

Lemma 6.8. Suppose that (a1, b1, a2, b2) is valid, f(a1, a2) > 0, f(b1, b2) > 1
and c1 ∈ adom(Gm

1) such that a1 6= c1, c1 6= b1, (a1, c1) and (c1, b1) are
not edges. Then there exists c2 ∈ adom(Gm

2) such that (a1, c1, a2, c2) and
(c1, b1, c2, b2) are valid, and f(c1, c2) ≥ min(f(a1, a2), f(b1, b2))− 1.

Proof. The goal is to follow the following strategy, unless it breaks the Atoms
condition for (a1, c1, a2, c2) or (c1, b1, a2, c2). Henceforth we will refer to this
strategy as the Greedy Strategy.

c1 = zi ∧ 1 ≤ i ≤ 2 =⇒ c2 = z′i

c1 = xi ∧ 1 ≤ i ≤ 2 =⇒ c2 = x′i

c1 = yi ∧ 0 ≤ i ≤ m/2 + 1 =⇒ c2 = ui

c1 = yi ∧m/2 + 1 < i ≤ m+ 1 =⇒ c2 = vi

c1 = wi =⇒ c2 = w′i

c1 = ti ∧ 0 ≤ i ≤ m/2 + 1 =⇒ c2 = vi

c1 = ti ∧m/2 + 1 < i ≤ m+ 1 =⇒ c2 = ui.

The reason why we use this strategy is because in this case f(c1, c2) = m/2, in
which case it is trivial that f(c1, c2) ≥ min{f(a1, a2), f(b1, b2)} − 1.

First, we establish that the Atoms conditions cannot be broken in the fol-
lowing situations: c1 = y1; c1 = ym+1; c1 = zi with i = 1, 2; c1 = xi with
i = 1, 2; or (a1, c1) = (x2, y2). To prove this, suppose first that c1 = y1; then by
the strategy outlined above c2 = u1.

19

• If (a2, c2) is an edge then a2 = x′2, whence a1 = x2 since (a1, b1, a2, b2) is
valid. Thus (a1, c1) is also an edge, which is a contradiction.

• If a2 = c2 then a2 = u1, whence a1 = y1 since f(a1, a2) > 0. Thus a1 = c1
which is a contradiction.

? If (c2, b2) is an edge then b2 = u2, whence b1 = y2 since f(b1, b2) > 1. Thus
(c1, b1) is also an edge, which is a contradiction. (This item is specially
marked with ? for later reference in the proof of Lemma 6.20.)

• If b2 = c2 then b2 = u1, whence b1 = y1 since f(b1, b2) > 0. Thus c1 = b1
which is a contradiction.

So, when c1 = y1 the chosen c2 does not break the Atoms conditions.
Next suppose that c1 = ym+1; then by the Greedy Strategy c2 = vm+1.

• (a2, c2) cannot be an edge since vm+1 has no incoming edges.

• If a2 = c2 then a2 = vm+1, whence a1 = ym+1 since f(a1, a2) > 0. Thus
a1 = c1 which is a contradiction.

• If (c2, b2) is an edge then b2 = z′2, whence b1 = z2 since (a1, b1, a2, b2) is
valid. Thus (c1, b1) is also an edge, which is a contradiction.

• If c2 = b2 then b2 = vm+1, whence b1 = ym+1 since f(b1, b2) > 0. Thus
b1 = c1 which contradicts the given.

Next suppose that c1 = x2; then by the Greedy Strategy c2 = x′2.

• If (a2, c2) is an edge, then a2 = x′1, whence a1 = x1 since (a1, b1, a2, b2).
Thus (a1, c1) is also an edge, which is a contradiction.

• If a2 = c2 then a2 = x′2, whence a1 = x2. Thus a1 = c1 which is a
contradiction.

• If (c2, b2) is an edge then b2 = u1, whence b1 = y1 since f(b1, b2) > 0.
Thus (c1, b1) is an edge which is a contradiction.

• If b2 = c2 then b2 = x′2, whence b1 = x2 since (a1, b1, a2, b2) is valid. Thus
b1 = c1 which contradicts the given.

The situations where c1 = x1 or c1 = zi with i = 1, 2 are similar to the
previous case.

Finally, suppose that (a1, c1) = (x2, y2); then by the Greedy Strategy (a2, c2) =
(x′2, u2). Now, for the Atoms condition to be broken, we must have that c2 = b2
since u2 only has outgoing edges. Thus (a1, b1, a2, b2) = (x2, b1, x

′
2, u2), whence

b1 = y2 by condition (d) for the validity of (a1, b1, a2, b2). But then c1 = b1
which contradicts the given.

At this point, we may assume that the Atoms condition is broken if c2 is
picked according to the Greedy Strategy. By the arguments before, then, c1 is
not y1, ym+1 or zi, xi for i = 1, 2, and (a1, c1) 6= (x2, y2).

20

Furthermore, we do not have to consider cases where c1 is in the middle
column, or the two columns directly adjacent to it, i.e., the column directly to
the left and right of the middle one. Indeed, since there are three chains in
Gm

2 , we can always pick another node cnew2 on the chain that does not contain
a2 and b2. Thus (a1, c1, a2, c

new
2) and (c1, b1, c

new
2 , b2) are certainly valid. Since

c1 and cnew2 is located on either of the three middle columns, we have that
f(c1, c

new
2) ≥ m/2 − 1 ≥ min(f(a1, a2), f(b1, b2)) − 1 since f(x, y) is at most

m/2 for any pair of nodes (x, y) ∈ adom(Gm
1)× adom(Gm

2).
From here we will write cold2 for the c2 chosen by the Greedy Strategy.
We will split the proof into several sublemmas (Lemmas 6.9 to 6.16). First,

in Lemmas 6.9 to 6.14 we show, for each case where the Atoms condition is
broken, that we can pick a cnew2 ∈ adom(Gm

2) such that conditions (a) and (b)
for the validity of both (a1, c1, a2, c

new
2) and (c1, b1, c

new
2 , b2) are satisfied, and

f(c1, c
new
2) ≥ min(f(a1, a2), f(b1, b2)) − 1. Then, in Lemmas 6.15 and 6.16 we

show that (a1, c1, a2, c
new
2) and (c1, b1, c

new
2 , b2) also satisfy conditions (c) and

(d) for validity.

Lemma 6.9. If a2 = cold2 or (a2, c
old
2) is an edge, and c1 is on Y then there ex-

ists cnew2 ∈ adom(Gm
2) such that (a1, c1, a2, c

new
2) and (c1, b1, c

new
2 , b2) both satisfy

conditions (a) and (b) for validity, and f(c1, c
new
2) ≥ min(f(a1, a2), f(b1, b2))−

1.

Proof. If c1 is Y left (respectively Y right), cold2 is U left (respectively V right).
Since c1 is not in the middle three columns, c1 6∈ {x1, x2, y1}, and a2 = cold2

or (a2, c
old
2) is an edge, we have that a2 is also U left (respectively V right),

whence f(a1, a2) < m/2 by definition. We now pick cnew2 on the chain that
does not contain a2 or b2, in the same column as c1, whence (a1, c1, a2, c

new
2)

and (c1, b1, c
new
2 , b2) both satisfy conditions (a) and (b) for validity. This is

indeed possible since there are three chains. Thus we may conclude that cnew2

is not U left (respectively V right), and hence f(c1, c2) < m/2. Therefore,
if a2 = cold2 , clearly f(c1, c

new
2) = f(a1, a2) < m/2 by definition, since then

c1 is in the same column as a1 and a2. On the other hand, if (a2, c
old
2) is an

edge, then f(c1, c
new
2) ≥ f(a1, a2) − 1 by definition, since then c1 is in one

of the columns next to a1 and a2. Thus we may conclude that f(c1, c
new
2) ≥

min(f(a1, a2), f(b1, b2))− 1.

The proof of the following lemma is similar to the proof of Lemma 6.9 where
the roles of a1 and a2 are replaced by b1 and b2, and (a2, c2) being an edge is
replaced by (c2, b2) being an edge.

Lemma 6.10. If b2 = cold2 or (cold2 , b2) is an edge, and c1 is on Y then there ex-
ists cnew2 ∈ adom(Gm

2) such that (a1, c1, a2, c
new
2) and (c1, b1, c

new
2 , b2) both satisfy

conditions (a) and (b) for validity, and f(c1, c
new
2) ≥ min(f(a1, a2), f(b1, b2))−1.

Lemma 6.9 and 6.10 have considered the scenarios where the Atoms condi-
tion was broken when c1 is located on Y . The scenarios when c1 is located on W
are handled by Lemmas 6.11 and 6.12, and the scenarios when c1 is located on

21

T are handled by Lemmas 6.13 and 6.14. We now have a look at the scenarios
where c1 is located on W .

Lemma 6.11. If a2 = cold2 or (a2, c
old
2) is an edge, and c1 is on W then

there exists cnew2 ∈ adom(Gm
2) such that conditions (a) and (b) for the valid-

ity of both (a1, c1, a2, c
new
2) and (c1, b1, c

new
2 , b2) are satisfied, and f(c1, c

new
2) ≥

min(f(a1, a2), f(b1, b2))− 1.

Proof. In this case cold2 is on W ′, whence a2 is also on W ′ since a2 = cold2 , or
(a2, c

old
2) is an edge. Since a1 6= c1 and (a1, c1) is not an edge, we have that a1

is on Y or on T . If a1 is on Y , then f(a1, a2) < m/2 since c1 is not in the three
middle columns. Hence whatever new cnew2 we pick such that (c1, c2) is valid,
we have f(c1, c

new
2) ≥ f(a1, a2) − 1 since c1 and cnew2 are either located in the

same column as, or in the column next to a1 and a2. Thus, if we pick cnew2 on
the chain that does not contain a2 and b2, in the same column as c1, we have
that (a1, c1, a2, c

new
2) and (c1, b1, c

new
2 , b2) both satisfy conditions (a) and (b) for

validity, and f(c1, c
new
2) ≥ min(f(a1, a2), f(b1, b2))− 1.

On the other hand, suppose that a1 is on T then f(a1, a2) = m/2. This
could be problematic if a1 is T left (respectively T right) and if we cannot put
cnew2 on the left side of V (respectively the right side of U), in the same column
as c1, simultaneously. That is, if putting cnew2 on the left side of V , in the same
column as c1, (respectively right side of U) makes b2 = cnew2 or (cnew2 , b2) an edge.
If this is not the case, then we simply put cnew2 on V , in the same column as
c1 (respectively U). Then by construction (a1, c1, a2, c

new
2) and (c1, b1, c

new
2 , b2)

satisfy conditions (a) and (b) for validity and f(c1, c2) = m/2.
In the problematic case we will show that f(b1, b2) is sufficiently low. So in

this case putting cnew2 in the same column as c1 on the left side of V (respectively
right side of U) violates the Atoms condition for (c1, b1, c

new
2 , b2). Then b2 is V

left (respectively U right), in the same column as, or in the column next to c1
and cold2 . Since cold2 = a2 or (a2, c

old
2) is an edge, a2 must be on W ′ as well. This

implies that a2 6= b2 and that (a2, b2) is not an edge, since b2 is on V (respectively
U) as mentioned before. Therefore, by the validity of (a1, b1, a2, b2), we can also
conclude that a1 6= b1 and that (a1, b1) is not an edge. Thus b1 is certainly not
on T since then a1 = b1 or (a1, b1) would be an edge. It cannot be on W either
because then c1 = b1 or (c1, b1) would be an edge, which contradicts the given.
Thus we may conclude that in this case b1 is on Y , whence f(b1, b2) < m/2
since b1 is V left (respectively U right). If we now put cnew2 on the chain that
does not contain a2 or b2, in the same column as c1, then (a1, c1, a2, c

new
2) and

(c1, b1, c
new
2 , b2) certainly satisfy conditions (a) and (b) for validity, and we have

that f(c1, c
new
2) ≥ f(b1, b2)− 1 ≥ min(f(a1, a2), f(b1, b2))− 1 since c1 and cnew2

are either in the column next to, or in the same column as b1 or b2. For an
example of this scenario see Figure 7.

The proof of the following lemma is similar to the proof of Lemma 6.11 where
the roles of a1 and a2 are replaced by b1 and b2, and (a2, c2) being an edge is
replaced by (c2, b2) being an edge.

22

Y

W

T

c1

a1

b1

U

V

W ′
b2

cnew2

a2
cold2

Figure 7: An example of a problem scenario in Lemma 6.11. Clearly cold2 breaks
the Atoms condition. Furthermore, if we would have picked cnew2 on V , (cnew2 , b2)
would have been an edge, which is not allowed. Thus we are forced to pick cnew2

on U . This, however, is no problem since in this scenario b1 and b2 are on sides
of chains with different endings.

Lemma 6.12. If cold2 = b2 or (cold2 , b2) is an edge, and c1 is on W then there ex-
ists cnew2 ∈ adom(Gm

2) such that (a1, c1, a2, c
new
2) and (c1, b1, c

new
2 , b2) both satisfy

conditions (a) and (b) for validity, and f(c1, c
new
2) ≥ min(f(a1, a2), f(b1, b2))−1.

As announced we now look at the scenarios when c1 is located on T . The
reasoning used to prove the following lemma is again analogous to the proof of
Lemma 6.11, but since the Greedy Strategy deviates in this scenario compared
to the scenario of Lemma 6.11, we need to address some detailed differences.

Lemma 6.13. If a2 = cold2 or (a2, c
old
2) is an edge, and c1 is on T then there ex-

ists cnew2 ∈ adom(Gm
2) such that (a1, c1, a2, c

new
2) and (c1, b1, c

new
2 , b2) both satisfy

conditions (a) and (b) for validity, and f(c1, c
new
2) ≥ min(f(a1, a2), f(b1, b2))−

1.

Proof. If c1 is T left, then cold2 is V left, while if c1 is T right, then cold2 is U
right. Furthermore, if cold2 is V left, then a2 is also V left, and if cold2 is U right,
a2 is also U right. This is because a2 = cold2 or (a2, c

old
2) is an edge, and c1 is

not located in the middle three columns. Since a1 6= c1 and (a1, c1) is not an
edge, we have that a1 is on Y or on W . If a1 is on Y then f(a1, a2) < m/2 since
c1 is not in the three middle columns. Hence whatever new cnew2 we pick in the
same column as c1 we have f(c1, c

new
2) ≥ f(a1, a2)− 1. Thus, if we pick cnew2 on

the chain that does not contain a2 and b2, in the same column as c1, we have
that (a1, c1, a2, c

new
2) and (c1, b1, c

new
2 , b2) both satisfy conditions (a) and (b) for

validity, and f(c1, c
new
2) ≥ min(f(a1, a2), f(b1, b2))− 1.

On the other hand, suppose that a1 is on W , then f(a1, a2) = m/2. This
could be problematic if a1 is W left (respectively W right) and if we cannot

23

Y

W

T
c1

a1

b1

U

V

W ′

b2

cnew2

a2
cold2

Figure 8: An example of a problem scenario in Lemma 6.13. Clearly cold2

breaks the Atoms condition. Furthermore, if we would have picked cnew2 on
W ′, (cnew2 , b2) would have been an edge, which is not allowed. Thus we are
forced to pick cnew2 on V . This, however, is no problem since in this scenario b1
and b2 are on sides of chains with different endings.

put cnew2 on W ′, in the same column as c1, simultaneously, i.e., if putting cnew2

on W ′, in the same column as c1, makes b2 = cnew2 or (cnew2 , b2) an edge. If
this is not the case we simply put cnew2 on W ′, in the same column as c1. Then
by construction (a1, c1, a2, c

new
2) and (c1, b1, c

new
2 , b2) both satisfy conditions (a)

and (b) for validity, and f(c1, c2) = m/2.
In the problematic case we will show that f(b1, b2) is sufficiently low. So

in this case putting cnew2 on W ′, in the same column as c1, violates the Atoms
condition for (c1, b1, c

new
2 , b2). Then b2 is on located on W ′, in the same column

as, or in the column next to c1 and cold2 . Since cold2 = a2 or (a2, c
old
2) is an edge,

and c1 is not in the middle three columns, a2 must be on V if c1 is T left, or on
U if c1 is U right. In either case, this implies that a2 6= b2 and that (a2, b2) is
not an edge, since b2 is on W ′ as mentioned before. Therefore, by the validity
of (a1, b1, a2, b2), we can also conclude that a1 6= b1 and that (a1, b1) is not an
edge. Thus b1 is certainly not on W since then a1 = b1 or (a1, b1) would be
an edge. It cannot be on T either because then c1 = b1 or (c1, b1) would be an
edge, which contradicts the given. Thus we may conclude that in this case b1 is
on Y , whence f(b1, b2) < m/2 since b1 is W ′. If we now put cnew2 on the chain
that does not contain a2 or b2, in the same column as c1, then (a1, c1, a2, c

new
2)

and (c1, b1, c
new
2 , b2) certainly satisfy conditions (a) and (b) for validity, and we

have that f(c1, c
new
2) ≥ f(b1, b2)− 1 ≥ min(f(a1, a2), f(b1, b2))− 1 since c1 and

cnew2 are either in the column next to, or in the same column as b1 or b2. For
an example of this scenario see Figure 8.

The proof of the following lemma is similar to the proof of Lemma 6.13 where
the roles of a1 and a2 are replaced by b1 and b2, and (a2, c2) being an edge is

24

replaced by (c2, b2) being an edge.

Lemma 6.14. If cold2 = b2 or (cold2 , b2) is an edge, and c1 is on T then there ex-
ists cnew2 ∈ adom(Gm

2) such that (a1, c1, a2, c
new
2) and (c1, b1, c

new
2 , b2) both satisfy

conditions (a) and (b) for validity, and f(c1, c
new
2) ≥ min(f(a1, a2), f(b1, b2))−1.

Together Lemma 6.9 to 6.14 cover all scenarios for c1 where one of the
Atoms conditions was broken. Thus, all that remains to establish Lemma 6.8 is
to show that (a1, c1, a2, c

new
2) and (c1, b1, c

new
2 , b2) satisfy conditions (c) and (d)

for validity. Let us first take care of (a1, c1, a2, c
new
2).

Lemma 6.15. Let cnew2 ∈ adom(Gm
2) be the node chosen in Lemmas 6.9 to

6.14. Then (a1, c1, a2, c
new
2) also satisfies conditions (c) and (d) for validity.

Proof. Condition (c) is only involved when (a1, c1) = (x2, y2), a case we have
already excluded at the start of the proof.

Condition (d) is only involved when (a2, c
new
2) = (x′2, u2). Since (a1, b1, a2, b2)

is valid, we must have that a1 = x2, whence f(a1, a2) = m/2. We now show that
c1 = y2. Suppose for the sake of contradiction that c1 6= y2. Then by definition
f(c1, c

new
2) = 1. Furthermore, cold2 = v2 or cold2 = w′2 by the Greedy Strat-

egy. Since f(c1, c2) ≥ min(f(a1, a2), f(b1, b2)) − 1 = min(m/2, f(b1, b2)) − 1 =
f(b1, b2)− 1 by assumption, we have f(b1, b2) ≤ 2. Remember that the Atoms
condition for either (a1, c1, a2, c

old
2) or (c1, b1, c

old
2 , b2) was broken. Notice that

in this case the Atoms condition for (a1, c1, a2, c
old
2) was not broken, since c1

and cold2 are two columns to the right of a1 and a2. Thus the Atoms condition
for (c1, b1, c

old
2 , b2) was broken. Hence cold2 = b2 or (cold2 , b2) is an edge (because

by assumption c1 is not related to b1). It is not possible for (cold2 , b2) to be
an edge since v2 and w′2 have no outgoing edges. Thus we may conclude that
cold2 = b2 = v2 or cold2 = b2 = w′2. Hence b1 = y2 in both cases since f(b1, b2) ≤ 2.
Therefore (a1, b1, a2, b2) = (x2, y2, x

′
2, b2) where b2 = v2 or w′2, which contradicts

condition (c) for the validity of (a1, b1, a2, b2).

Finally, we take care of (c1, b1, c
new
2 , b2).

Lemma 6.16. Let cnew2 ∈ adom(Gm
2) be the node chosen in Lemmas 6.9 to

6.14. Then (c1, b1, c
new
2 , b2) also satisfies conditions (c) and (d) for validity.

Proof. Condition (c) is only involved when b1 = y2. Then b2 = u2 since
f(b1, b2) > 1, as desired.

Condition (d) is only involved when b2 = u2. Then b1 = y2 since f(b1, b2) >
1, as desired.

Together Lemmas 6.15 and 6.16 establish that both (a1, c1, a2, c
new
2) and

(c1, b1, c
new
2 , b2) also satisfy conditions (c) and (d) for validity. Since we already

established that (a1, c1, a2, c
new
2) and (c1, b1, c

new
2 , b2) satisfy conditions (a) and

(b) for validity, we may conclude that (a1, c1, a2, c
new
2) and (c1, b1, c

new
2 , b2) are

both valid, which concludes the proof of Lemma 6.8.

25

The proof of the following lemma is analogous to the proof of Lemma 6.8,
this is because of the same reasons why the proof of Lemma 6.7 was analogous
to the proof of Lemma 6.6.

Lemma 6.17. Suppose that (a1, b1, a2, b2) is valid, f(a1, a2) > 0, f(b1, b2) > 1
and c2 ∈ adom(Gm

2) such that a1 6= c1, c1 6= b1, (a1, c1) and (c1, b1) are
not edges. Then there exists c1 ∈ adom(Gm

1) such that (a1, c1, a2, c2) and
(c1, b1, c2, b2) are valid, and f(c1, c2) ≥ min(f(a1, a2), f(b1, b2))− 1.

Combining Lemmas 6.6 and 6.8 we get the following corollary.

Corollary 6.18. If (a1, b1, a2, b2) is valid, f(a1, a2) > 0 and f(b1, b2) > 1, then
for every c1 ∈ adom(Gm

1) there exists c2 ∈ adom(Gm
2) such that (a1, c1, a2, c2)

and (c1, b1, c2, b2) are valid, and f(c1, c2) ≥ min(f(a1, a2), f(b1, b2))− 1.

We will see later that this corollary is crucial to show that the duplicator has a
winning strategy starting in (a1, b1, a2, b2).

On the other hand, combining Lemmas 6.7 and 6.17 yields the following
corollary.

Corollary 6.19. If (a1, b1, a2, b2) is valid, f(a1, a2) > 0 and f(b1, b2) > 1, then
for every c2 ∈ adom(Gm

2) there exists c1 ∈ adom(Gm
1) such that (a1, c1, a2, c2)

and (c1, b1, c2, b2) are valid, and f(c1, c2) ≥ min(f(a1, a2), f(b1, b2))− 1.

Before we can finally start the bisimulations needed for the proof of Propo-
sition 5.4, notice that until now we have always required that f(b1, b2) > 1. The
cases where f(b1, b2) = 1 are handled separately. Indeed, when f(b1, b2) = 1,
we cannot necessarily guarantee that (c1, b1, c2, b2) is valid (see Figure 9). We
can only guarantee the Atoms condition as shown Lemmas 6.20 and 6.21. This
will turn out to be sufficient.

Lemma 6.20. Suppose that (a1, b1, a2, b2) is valid, f(a1, a2) > 0, f(b1, b2) =
1. Then, for every c1 ∈ adom(Gm

1) there exists c2 ∈ adom(Gm
2) such that

(a1, c1, a2, c2) and (c1, b1, c2, b2) satisfy the Atoms condition.

Proof. Careful inspection of the proofs of Lemmas 6.6 and 6.8 reveals that
f(b1, b2) > 1 is only used for showing conditions (c) and (d) for the validity of
(a1, c1, a2, c2) and (c1, b1, c2, b2), except in the case where c1 = y1 and b2 = u2

(item marked with ? in the proof of Lemma 6.8). If we are not in this case, we
can simply pick the same c2 as in these proofs.

Now suppose we are in this exceptional case. Since f(b1, b2) = 1, b1 is
not on Y . Notice that (a1, c1) cannot be an edge, since then a1 = x2, and
hence also a2 = x′2 since (a1, b1, a2, b2) is valid. Thus we have (a1, b1, a2, b2) =
(x2, b1, x

′
2, u2). Condition (d) for the validity of (a1, b1, a2, b2) then implies that

b1 = y2, which contradicts the fact that b1 is not on Y .
If a1 = c1, then we pick a2 = c2. Notice that in this case b2 6= c2. Indeed, if

b2 = c2 = a2, then a1 = b1 by the validity of (a1, b1, a2, b2). Thus c1 = b1 which
is a contradiction.

On the other hand, if a1 6= c1, we simply pick c2 on the chain not containing
a2 or b2, in the same column as c1. This is possible since there are three chains.

26

Y

W

T

b1
c1

U

V

W ′

c2

b2

Figure 9: An example of a problem scenario where we are forced to pick a c2
such that (c1, b1, c2, b2) does not satisfy condition (c) for validity. It turns out
that it is sufficient to only satisfy the Atoms condition because this scenario
only occurs when f(b1, b2) = 1.

The proof of the following lemma is analogous to the proof of the previous
lemma. This is because of the same reasons why the proof of Lemma 6.7 was
analogous to the proof of Lemma 6.6.

Lemma 6.21. Suppose that (a1, b1, a2, b2) is valid, f(a1, a2) > 0, f(b1, b2) =
1. Then, for every c2 ∈ adom(Gm

2) there exists c1 ∈ adom(Gm
1) such that

(a1, c1, a2, c2) and (c1, b1, c2, b2) satisfy the Atoms condition.

We are now ready to show our key Lemma.

Lemma 6.22. Let s be a natural number and let m > 4 be a natural number
divisible by four. If (a1, b1, a2, b2) ∈ adom(Gm

1)2 × adom(Gm
2)2 is valid and

s ≤ min(f(a1, a2), f(b1, b2)), then (Gm
1 , a1, b1) 's (Gm

2 , a2, b2).

Proof. We prove this lemma by induction on s. If s = 0 then, (Gm
1 , a1, b1) 's

(Gm
2 , a2, b2) since the Atoms condition is implied by the validity of (a1, b1, a2, b2).
Now let s > 0, so both f(a1, a2) > 0 and f(b1, b2) > 0. If f(b1, b2) = 1 then

Lemma 6.20 implies that for every c1 ∈ adom(Gm
1), there exists c2 ∈ adom(Gm

2)
such that (a1, c1, a2, c2) and (c1, b2, c2, b2) satisfy the Atoms condition. This,
however, is equivalent to

(Gm
1 , a1, c1) '0 (Gm

2 , a2, c2) and (Gm
1 , c1, b1) '0 (Gm

2 , c2, b2).

Hence the Forth condition holds. Furthermore, Lemma 6.21 implies that for
every c2 ∈ adom(Gm

2), there exists c1 ∈ adom(Gm
1) such that (a1, c1, a2, c2)

and (c1, b2, c2, b2) both satisfy the Atoms condition. Again this is equivalent to
(Gm

1 , a1, c1) '0 (Gm
2 , a2, c2) and (Gm

1 , c1, b1) '0 (Gm
2 , c2, b2). Hence the Back

condition holds. Thus (Gm
1 , a1, b1) '1 (Gm

2 , a2, b2).

27

Now suppose that f(a1, a2) > 0 and f(b1, b2) > 1. We will first show
that the Forth condition holds. Suppose that c1 ∈ adom(Gm

1). Then by
Corollary 6.18 there exists c2 ∈ adom(Gm

2) such that both (a1, c1, a2, c2) and
(c1, b1, c2, b2) are valid and f(c1, c2) ≥ min(f(a1, a2), f(b1, b2)) − 1. Further-
more, f(c1, c2) ≥ s − 1 since s − 1 ≤ min(f(a1, a2), f(b1, b2)) − 1. Hence
s− 1 ≤ min(f(c1, c2), f(a1, a2)) and s− 1 ≤ min(f(c1, c2), f(b1, b2)). Therefore
we can apply our induction hypothesis, which tells us that (Gm

1 , a1, c1) 's−1

(Gm
2 , a2, c2) and (Gm

1 , c1, b1) 's−1 (Gm
2 , c2, b2) as desired.

The Back condition is verified similarly using Corollary 6.19.

Theorem 6.4 finally follows:

Proof of Theorem 6.4. First, if (a1, b1) = (ym/2+1, ym/2+2), then we pick the
pair (a2, b2) = (um/2+1, um/2+2). In this case (a1, b1, a2, b2) is valid, f(a1, a2) =
m/2 and f(b1, b2) = m+ 1− (m/2 + 2) = m/2− 1 and thus (G1, a1, b1) 'm/2−1

(G2, a2, b2) due to Lemma 6.22.
If (a1, b1) 6= (ym/2+1, ym/2+2) then we use the following strategy:

a1 = yi ∧ 0 ≤ i ≤ m/2 + 1 =⇒ a2 = ui

a1 = yi ∧m/2 + 1 < i ≤ m+ 1 =⇒ a2 = vi

a1 = wi =⇒ a2 = w′i

a1 = ti =⇒ a2 = w′i

We use the same strategy to determine b2 from b1. Clearly in this case (a1, b1, a2,
b2) is valid, and f(a1, a2) = f(b1, b2) = m/2, whence (G1, a1, b1) 'm/2−1

(G2, a2, b2) due to Lemma 6.22.

The bisimulations that we use always require that (a1, b1, a2, b2) is valid.
There might be a a bisimulation of a larger depth when we remove this restric-
tion. It turns out that we can find an upper bound on the depth.

Proposition 6.23. There is no bisimulation between (Gm
1 , ym

2 +1, ym
2 +1) and

(Gm
2 , a, b) for any (a, b) ∈ adom(Gm

1)2 of depth 3m/4 + 2.

Proof. By Theorem 6.2 it suffices to show that there exists an expression e ∈
N (\, di) of degree 3m/4 + 2 such that (ym

2 +1, ym
2 +1) ∈ e(Gm

1) and (a, b) 6∈
e(Gm

2). To this end, define the following family of expressions:

e0 := π2(R3)

e′0 := π1(R2)

e1 := π1(R ◦ e0)

en+1 := π1(R ∩ ((R ◦ di) ◦ (en ◦R))) (for n > 1)

e′n+1 := π1(R ∩ ((R ◦ di) ◦ (e′n ◦R))) (for n > 0)

For n = 1, . . . ,m/2, we have (y2n+1, y2n+1) ∈ en(Gm
1) and (ym+1−2n, ym+1−2n) ∈

e′n(Gm
1). Thus we may also conclude that (ym

2 +1, ym
2 +1) ∈ em/4 ∩ e′m/4(Gm

1).

28

On the other hand, en(Gm
2) only contains pairs of nodes on U , while e′n(Gm

2)
only contains nodes on V for any n = 1 . . .m/2. Hence en ∩ e′n(Gm

2) is empty
for n = 1, . . . ,m/2. Thus we may conclude that em/4 ∩ e′m/4(Gm

2) is empty, and

thus does not contain (a, b) either.
Since en and e′n have degree 3n + 2, the degree of em/4 ∩ e′m/4 is 3m/4 + 2

as desired.

6.2 Inexpressibility of the query R2 ◦ (R ◦R−1)+ ◦R2 6= ∅
Using the established bisimulation in Theorem 6.4 and the characterization in
Theorem 6.2 we can finally show that R2 ◦(R◦R−1)+ ◦R2 6= ∅ is not expressible
in e ∈ N (\, di ,+)

Proposition 6.24. The boolean query R2◦(R◦R−1)+◦R2 6= ∅ is not expressible
in N (\, di ,+).

Proof. Suppose that q denotes the boolean query R2 ◦ (R ◦ R−1)+ ◦ R2 6= ∅.
Assume for the sake of contradiction that q is expressible by an expression
e ∈ N (\, di ,+). Define Gn as the class of graphs with an active domain of size
at most n and define en as the expression e where every subexpression of the
form f+ in e is replaced with ∪ni=1f

i. Remember that expressions of the form
f+ are equivalent to the expression ∪ni=1f

i when we only consider graphs in
Gn. Therefore en is equivalent to e on Gn. Now, notice that if we carefully
arrange the compositions in f i, we obtain that degree(∪ni=1f

i) = degree(f) +
dlog2 ne. Furthermore, note that in the worst case scenario every operation
which contributes to the degree of e is a transitive closure application. Hence
if we carefully arrange the compositions in en, we obtain that degree(en) ≤
ddlog2 ne where d is the degree of e.

Observe that | adom(Gm
1)| = | adom(Gm

2)| = 3m+7 for every natural number
m. By the argument above, we know that e3m+7 has degree at most ddlog2(3m+
7)e for any natural number m. Moreover, there has to exist a natural number
m such that ddlog2(3m+ 7)e ≤ (3m+ 7)/6− 3 < m/2− 1. The first inequality
holds since there clearly exists a natural number l′ such that for every l ≥ l′:
ddlog2 le ≤ l/6 − 3, and the second inequality holds since (3m + 7)/6 − 3 =
m/2 − 11/6 < m/2 − 1. Hence the degree of e3m+7 is less than m/2 − 1, i.e.,
e3m+7 ∈ N (di , \)m/2−1. Since | adom(Gm

1)| = | adom(Gm
2)| = 3m+ 7, we know

that e3m+7 agrees with e on Gm
1 and Gm

2 . Since e 6= ∅ is supposed to express
q, and since q(Gm

1) is clearly true, we have e3m+7(Gm
1) 6= ∅. Thus let (a1, b1) ∈

e3m+7(Gm
1). By Theorem 6.4 there exists (a2, b2) such that (Gm

1 , a1, b1) 'm/2−1

(Gm
2 , a2, b2). Then by Theorem 6.2 also (a2, b2) ∈ e3m+7(Gm

2). However, since
q(Gm

2) is clearly false, e3m+7(Gm
2) should be empty. We have thus obtained a

contradiction.

We are now ready to prove Proposition 5.4.

Proof. First observe that N (−1,+) ≤bool N (F1). Hence it suffices to prove
that N (−1,+) 6≤bool N (F2). Furthermore, since F2 ⊆ {\, di ,+}, it follows

29

from Theorem 3.1 that N (F2) ≤path N (\, di ,+) and therefore also N (F2) ≤bool

N (\, di ,+). Thus it is sufficient to show that N (−1,+) 6≤bool N (\, di ,+).
The boolean query R2◦(R◦R−1)+◦R2 6= ∅ is clearly expressible in N (−1,+).

It is, however, not expressible in N (\, di ,+) by Proposition 6.24, which con-
cludes our proof.

6.3 Exponential blow-up on eliminating converse

In this section we will show that Theorem 6.3 holds. We will do so by employing
the bisimulation result in Section 6.1.

Let a function f : N → N be given as in the statement of Theorem 6.3.
Now suppose for the sake of contradiction that f(n) = o(2n). Let Q be the
path query R2 ◦ (R ◦ R−1)+ ◦ R2. Define Gn as the class of graphs with an
active domain of size at most n and define Qn as the expression Q where every
subexpression of the form f+ in Q is replaced with ∪ni=1f

i. Remember that
expressions of the form f+ are equivalent to the expression ∪ni=1f

i when we
only consider graphs in Gn. Therefore Qn is equivalent to Q on Gn=. As in
the proof of Proposition 6.24, by carefully arranging the compositions in f i, we
obtain that degree(∪ni=1f

i) = degree(f) + dlog2 ne. Hence we can conclude that
degree(Qn) = dlog2 ne+ 3.

We now show that f(degree(Qn)) = o(n). Since f(n) = o(2n), we have by
definition that limn→∞ f(n)/2n = 0. Notice that degree(Qn) goes to infinity as n
goes to infinity. Therefore, we have that limn→∞ f(degree(Qn))/2degree(Qn) = 0
as well. We now show that this last limit implies that f(degree(Qn)) = o(n):

0 = lim
n→∞

f(degree(Qn))

2degree(Qn)
= lim

n→∞

f(dlog2 ne+ 3)

2dlog2 ne+3
≥ lim

n→∞

f(dlog2 ne+ 3)

16n
≥ 0.

Notice that Qn is an expression in N (−1), whence by assumption h(Qn) is
an expression in N (π). We now show that there exists a natural number k such
that for every m ≥ k, h(Q3m+7) is an expression in N (π)m/2−1.

Since f(degree(Qn)) = o(n), also f(degree(Q3m+7)) = o(3m + 7). Further-
more, since o(3m+ 7) = o(m/2−1), we may conclude that f(degree(Q3m+7)) =
o(m/2− 1). Thus by definition, limm→∞ f(degree(Qn))/(m/2− 1) = 0. Hence

∀ε > 0,∃k ∈ N,∀m ∈ N : m ≥ k ⇒ f(degree(Q3m+7))

m/2− 1
< ε.

Hence if we set ε = 1, we can find a k such that for every m ≥ k we have
f(degree(Q3m+7))/(m/2− 1) < 1, or equivalently f(degree(Q3m+7)) < m/2− 1.
This implies that degree(h(Q3m+7)) < m/2 − 1 for any m ≥ k since it is given
that degree(h(Qn)) ≤ f(degree(Qn)) for any n. Thus we may conclude that
h(Q3m+7) is an expression in N (π)m/2−1 for any m ≥ k.

Now let m be a multiple of four, greater then k, and let Gm
1 be the top and

Gm
2 be the bottom graph in Figure 2. Since | adom(Gm

1)| = | adom(Gm
2)| = 3m+

7, we know that Q3m+7 agrees with Q on Gm
1 and Gm

2 . Thus Q3m+7(Gm
1) 6= ∅

since Q(Gm
1) is nonempty. Furthermore, because h(Q3m+7) is equivalent to

30

Q3m+7 at the level of boolean queries, it must also be that h(Q3m+7)(Gm
1) 6= ∅.

Thus let (a1, b1) ∈ h(Q3m+7)(Gm
1). By Theorem 6.4 there exists (a2, b2) such

that (Gm
1 , a1, b1) 'm/2−1 (Gm

2 , a2, b2). Then by Theorem 6.2 also (a2, b2) ∈
h(Q3m+7)(Gm

2). However, since Q(Gm
2) is clearly empty, Q3m+7(Gm

2) as well as
h(Q3m+7)(Gm

2) should be empty. We have thus obtained a contradiction. Thus
we may conclude that f 6= o(2n).

7 Boolean queries in the unlabeled case

In this section, we will prove Theorem 3.5. Here, the set Λ of edge labels is a
singleton. In other words, a graph G is then a relational structure consisting
of a set of nodes V and a simple relation E(G) ⊆ V × V , the set of edges of
G. As said before, we use the notation ≤bool

unl to compare the expressiveness of
languages in this unlabeled case. It has been shown that at the level of boolean
queries, a counterpart of Proposition 5.1 does not exist in this unlabeled case.
That is, transitive closure does not always add expressive power in the unlabeled
case [11].

Theorem 7.1 ([11]). At the level of boolean queries in the unlabeled case, we
have:

N (+) ≤bool
unl N ,

N (π,+) ≤bool
unl N (π),

N (di ,+) ≤bool
unl N (di), and

N (di , π,+) ≤bool
unl N (di , π).

We will now show that in all other cases, transitive closure does add expres-
sive power. We start by showing that it does in the presence of intersection or
converse.

Proposition 7.2. Let F1 and F2 be sets of nonbasic features.

1. If + ∈ F 1, ∩ ∈ F 1, and + 6∈ F 2, then N (F1) 6≤bool
unl N (F2).

2. If + ∈ F 1, −1 ∈ F 1, and + 6∈ F 2, then N (F1) 6≤bool
unl N (F2).

Before we prove this proposition we will first recall some basic terminology
and notions concerning Hanf-locality [14]. Let G be an unlabeled graph, a ∈
adom(G) and r a natural number. The ball with radius r around a is the set

BG
r (a) = {x ∈ adom(G) | dG(x, a) ≤ r}

where dG(x, a) is defined as the length of the shortest undirected path between
x and a. (An undirected path does not need to respect the direction of edges.)
If no such path exists then dG(x, a) is defined as +∞. The r-neighborhood of a
in adom(G), denoted by NG

r (a), is the pair (G′, a) where the graph G′ is defined
as follows:

31

x1 x2 xn x2n−2 x2n−1

y1 y2 yn y2n−2 y2n−1

x y

u1 u2 un u2n−2 u2n−1

v1 v2 vn v2n−2 v2n−1

a b

Figure 10: The only difference between the top graph and the bottom graph is
that the edges incident to b in the bottom graph have the converse direction to
the edges incident to y in the top graph.

• Its nodes are precisely BG
r (a);

• Its edge relation is E(G) ∩ (BG
r (a)×BG

r (a)).

For a node a in graphG1 and a node b in graphG2, we say thatNG1
r (a) = (G3, a)

is isomorphic toNG2
r (b) = (G4, b), denoted byNG

r (a) ∼= NG
r (b) if there is a graph

isomorphism f from G3 to G4 such that f(a) = b.
Let G1 and G2 be graphs, and let d be a natural number. We write G1 �d

G2 if there exists a bijection f : adom(G1) → adom(G2) such that for every
c ∈ adom(G1): NG1

d (c) ∼= NG2

d (f(c)).
A boolean query q is Hanf-local if there exists a natural number d such that

G1 �d G2 implies q(G1) = true⇔ q(G2) = true.

Theorem 7.3 ([14]). Every boolean query expressible in first-order logic is
Hanf-local.

We are now ready to prove Proposition 7.2.

Proof of Proposition 7.2. For (1), it is well known that the query that checks
whether a graph contains a cycle cannot be expressed in first order logic (see,
e.g., [2]). The query, however, is expressed by R+ ∩ id 6= ∅.

For (2), we will show that R2◦(R◦R−1)+◦R2 6= ∅ is not expressible inN (F2).
Let Gn

1 be the graph at the top and Gn
2 be the graph at the bottom of Figure 10

for any natural number n greater than 1. Define f : adom(Gn
1)→ adom(Gn

2) as

32

follows:

f(c) =

vi if c = xi where n < i ≤ 2n− 1;

ui if c = yi where n < i ≤ 2n− 1;

uj if c = xj where 1 ≤ j ≤ n;

vj if c = yj where 1 ≤ j ≤ n;

a if c = x;

b if c = y.

Intuitively, f mirrors the right hand nodes in Gn
1 along the dotted line. We

observe that N
Gn

1
n−1(c) ∼= N

Gn
2

n−1(f(c)) for all c ∈ adom(Gn
1) since N

Gn
1

n−1(c) ∩
{(y, x2n−1), (y2n−1, y)} 6= ∅ implies N

Gn
2

n−1(f(c)) ∩ {(a, u1), (v1, a)} = ∅, and

N
Gn

1
n−1(c)∩{(x, x1), (y1, x)} 6= ∅ implies N

Gn
2

n−1(f(c))∩{(u2n−1, b), (b, v2n−1)} = ∅.
Therefore Gn

1 �n−1 G
n
2 since f is a bijection. Now, suppose that the boolean

query q expressed by R2 ◦ (R ◦ R−1)+ ◦ R2 6= ∅ is expressible in N (F2). Then
certainly, it is also expressible in first-order logic. Hence q is Hanf-local by The-
orem 7.3 and thus by definition, there has to exist a natural number d such that
for every finite graphs A and B, A �d B implies that q agrees on A and B.
However, we established that Gd+1

1 �d G
d+1
2 , but q(Gd+1

1) is true and q(Gd+1
2)

is false, which contradicts that q is Hanf-local.

The two languages not covered by Theorem 7.1 and Proposition 7.2 are
N (π,+) and N (di , π,+). These languages happen to be non-monotone1. We
show that transitive closure does add expressive power for these non-monotone
languages at the level of boolean queries in the unlabeled case.

Proposition 7.4. Let F1 and F2 be sets of nonbasic features. If + ∈ F1, π ∈ F1

and + 6∈ F2, then N (F1) 6≤bool
unl N (F2).

Proof. The boolean query Q:“there is a non-sink node from which no sink node2

can be reached” is expressible inN (π,+) by the boolean query π1((R+◦π1(R)) ∪
R) 6= ∅. If this query would be expressible in N (F2), it would also be expressible
in first-order logic, which we show is impossible.

Suppose for the sake of contradiction that the first-order sentence ψ ex-
presses the boolean query Q. We now show that this contradicts that the
parity query is not expressible on linear chains in first-order logic [14]. Let
Cn = {{x1, . . . , xn}, {E(xi, xi+1) | 1 ≤ i < n}} be a linear chain with n nodes
and define the graph Gn as follows:

• Gn contains n nodes, x1, . . . , xn;

• Add an edge from xi to xi+2 for every i ∈ {1, . . . , n− 2};

• Add an edge from xn to x1.

1An expression e is monotone if e(G) * e(G′) for every two graphs G and G′ such that
G ⊆ G′. A language is non-monotone when it contains an expression that is not monotone.

2A sink node in a graph is a node in that graph with outdegree zero.

33

Let us now define a first-order formula ϕ(x, y), such that (a, b) ∈ Gn if and only
if Cn |= ϕ[a, b]. Clearly

ϕ(x, y) := (∃a : E(x, a) ∧ E(a, y)) ∨ (¬∃a : E(x, a) ∧ ¬∃a : E(a, y))

fulfills this property. Notice that Gn has a disjoint component in the form of a
cycle if n is odd and that Gn

∼= Cn if n is even. Now, notice that if a graph has
such a cycle component, it also has a non-sink node from which no sink node
can be reached since there simply are no sink nodes on such a cycle. On the
other hand, if a graph is isomorphic to Cn, every non-sink node can reach a sink
node. Hence Gn |= ¬ψ if and only if n is even.

Now let χ be the sentence formed by replacing each atomic sub-formula of
the form R(x, y) by ϕ(x, y) in ψ. Then, Cn |= ¬χ if and only if n is even, which
contradicts that the parity query on linear chains is not expressible in first-order
logic.

The reduction in the proof of the proposition above is based on the reduction
of parity to connectivity [14].

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. We first take care of the case where + ∈ F1 and + 6∈
F2. For the ‘if’ direction we may then suppose that the third condition holds
since conditions one and two cannot hold. Since F1 ⊆ {di , π,+}, we have
N (F1) ≤bool

unl N (F1 \ {+}) by Theorem 7.1. Additionally, because we assumed
that F1 \ {+} ⊆ F2, we have N (F1 \ {+}) ≤path N (F2) due to Theorem 3.2,
whenceN (F1\{+}) ≤bool

unl N (F2). ThereforeN (F1) ≤bool
unl N (F2) by transitivity.

For the ‘only if’ direction we consider its contrapositive. Since we are
in the case where + ∈ F1 and + 6∈ F2, we may then clearly assume that
F1 * {π, di ,+} or F1 \ {+} * F2 is true. First, suppose that F1 * {π, di ,+}.
Then F1 ∩ {\,∩,−1, π} 6= ∅. If \ or ∩ is present in F1, the result follows di-
rectly from Proposition 7.2(1). On the other hand, if −1 ∈ F1, it follows from
Proposition 7.2(2). In the remaining scenario where π ∈ F1, it follows from
Proposition 7.4.

To finish the ‘only if’ direction in this case suppose that F1 ⊆ {π, di ,+} and

F1 \ {+} * F2. Then, ̂F1 \ {+} = F1 \ {+} * F2 since −1 is not present in F1.
Therefore N (F1 \ {+}) 6≤bool

unl N (F2) by Proposition 5.5, whence N (F1) 6≤bool
unl

N (F2).
In the remaining cases, our theorem coincides with Proposition 5.5. Indeed

condition three is never true, and the presence of transitive closure in F1 implies
its presence in F2.

8 Conclusion

The main results of this paper have shown that, even in a setting where one
focuses on expressing boolean queries on unlabeled graphs in rather weak frag-
ments of the calculus of relations, the transitive closure operator can still add

34

expressiveness. These results provide a counterpart to the cited Theorem 7.1
where, for other fragments, transitive closure was shown not to add expressive-
ness.

In the direction of further research it would be interesting to consider the
interplay between transitive closure and the residuals [21]. Residuation is a de-
rived operator of the calculus of relations, and interesting to consider separately,
as we have done for projection and coprojection. Residuation is interesting from
a database perspective because it corresponds to the set containment join [16].

Acknowledgment

We thank the referees for their constructive criticism on an earlier draft of this
paper. We also thank one of the referees for suggesting that Theorem 6.3 could
be proven from our bisimulation result.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From relations
to semistructured data and XML. Morgan Kaufmann, 2000.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[3] R. Angles, P. Barceló, and G. Rios. A practical query language for graph
dbs. In L. Bravo and M. Lenzerini, editors, Proceedings 7th Alberto Mendel-
zon International Workshop on Foundations of Data Management, volume
1087 of CEUR Workshop Proceedings, 2013.

[4] R. Angles and C. Gutierrez. Survey of graph database models. ACM
Computing Surveys, 40(1):article 1, 2008.

[5] M. Benedikt, W. Fan, and G. Kuper. Structural properties of XPath frag-
ments. Theoretical Comput. Sci., 336(1):3–31, 2005.

[6] C. Bizer, T. Heath, and T. Berners-Lee. Linked data—the story so far.
International Journal on Semantic Web and Information Systems, 5(3):1–
22, 2009.

[7] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
University Press, 2001.

[8] G. Fletcher, M. Gyssens, D. Leinders, D. Surinx, J. Van den Bussche,
D. Van Gucht, S. Vansummeren, and Y. Wu. Relative expressive power of
navigational querying on graphs. Information Sciences, 298:390–406, 2015.

[9] G. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht,
and S. Vansummeren. Similarity and bisimilarity notions appropriate for

35

characterizing indistinguishability in fragments of the calculus of relations.
Journal of Logic and Computation, 2014. Published online, 24 March.

[10] G. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht,
S. Vansummeren, and Y. Wu. Relative expressive power of navigational
querying on graphs. In Proceedings 14th International Conference on
Database Theory, 2011.

[11] G. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht,
S. Vansummeren, and Y. Wu. The impact of transitive closure on the
expressiveness of navigational query languages on unlabeled graphs. Annals
of Mathematics and Artificial Intelligence, 73(1–2):167–203, 2015.

[12] D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the
World-Wide Web: A survey. SIGMOD Record, 27(3):59–74, 1998.

[13] A. Halevy, M. Franklin, and D. Maier. Principles of dataspace systems.
In Proceedings 25th ACM Symposium on Principles of Database Systems,
pages 1–9, 2006.

[14] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[15] L. Libkin, W. Martens, and D. Vrgoč. Quering graph databases with
XPath. In Proceedings 16th International Conference on Database The-
ory. ACM, 2013.

[16] N. Mamoulis. Efficient processing of joins on set-valued attributes. In
Proceedings ACM SIGMOD International Conference on Management of
Data, pages 157–168, 2003.

[17] M. Marx. Conditional XPath. ACM Trans. Database Syst., 30(4):929–959,
2005.

[18] M. Marx and M. de Rijke. Semantic characterizations of navigational
XPath. SIGMOD Record, 34(2):41–46, 2005.

[19] M. Marx and Y. Venema. Multi-Dimensional Modal Logic. Springer, 1997.

[20] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language
for RDF. Journal of Web Semantics, 8(4):255–270, 2010.

[21] V. Pratt. Origins of the calculus of binary relations. In Proceedings 7th
Annual IEEE Symposium on Logic in Computer Science, pages 248–254,
1992.

[22] RDF primer. W3C Recommendation, Feb. 2004.

36

