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ABSTRACT
Keyword search, the major means for Internet search en-
gines, has recently been explored in structured and semi-
structured data. What is yet to be explored thoroughly is
how optional and negative keywords can be expressed, what
the results should be and how such search queries can be
evaluated efficiently. In this paper, we formally define a new
type of keyword search query, ROU-query, which takes as in-
put keywords in three categories: required, optional and un-
wanted, and returns as output sets of nodes in the data graph
whose neighborhood satisfies the keyword requirements. We
define multiple semantics, including maximal coverage and
minimal footprint, to ensure the meaningfulness of results.
We propose query induced partite graph (QuIP), that can
capture the constraints on neighborhood size and unwanted
keywords, and propose a family of algorithms for evaluation
of ROU-queries. We conducted extensive experimental eval-
uations to show our approaches are able to generate results
for ROU-queries efficiently.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation

Keywords
Keyword Search; Graph Data; Negative; Optional; Clique
Enumeration

1. INTRODUCTION
Keyword search has been proven as an effective method

for information retrieval, most notably used in search en-
gines such as Google and Bing. While traditionally key-
word search was focusing on finding particular entities (doc-
uments, images, videos, etc.) [8], recently we witnessed sig-
nificant efforts on applying keyword search to structured
and semi-structured data, including relational data [7], XML
data [2] or general graphs [4], to find sets of data entries, in
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the form of Steiner trees [3, 4] and connected sub-graphs,
such as r-radius Steiner graphs [6], keyword community [9]
and r-cliques [5], that satisfy keyword and connectivity con-
straints. The common themes of most of these works are:
(1) one set of keywords are given as input and the AND se-
mantics is enforced (all keywords are required in each result);
and (2) scoring functions based on node and edge weights
are used to identify the top-k results.
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Figure 1: Example Graph

[4] and [6], while
still taking one key-
word set as in-
put, employed the
OR semantics, al-
lowing results to
contain some key-
words. But they
cannot demand cer-
tain keywords must
appear in every re-
sult. Other works
on such semantics
include [7] on re-
lational databases
and [2] on XML.
However, they all
assumed schema in-
formation, which is
not applicable to
general graphs. Mean-
while, negative pred-
icate, while a key

component in Boolean queries [8], has not been studied in
the landscape of keyword search queries on graphs.

The issues listed above strictly limit what a traditional
keyword search query can express. For example, consider
the example graph shown in Figure 1 and the contents of
the nodes shown in the table. All the content words can
potentially be keywords for different queries; keywords used
in our example queries throughout the paper are in Bold
and the abbreviation marked in the figure. It is reasonable
to ask questions such as:

Q.1 What correlated works by Molenaar and Jacobsen cover
at least two topics from intelligence, language and mind?

Q.2 How is the concept of artificial intelligence presented
in the context of language or mind, in current publica-
tions, without reference to articles about translation?

However, Existing works, even with ranking functions, can-
not easily specify these queries.
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Moreover, frequently users desire highly related results
that bear just the right amount of information, which means:

RQ.1 the result does not include non-relevant information;

RQ.2 the result carries as rich information as possible;

RQ.3 the result does not include redundant information.

These requirements are not fully reflected by the ranking
functions as proposed in [5–7,9].
We take a different stand to address the open problems

in both query specification and result definition as identified
above. In this paper:
• We propose the ROU query on graph data, which al-
lows users to specify three different keyword sets: Required,
Optional, and Unwanted to integrate AND, OR and NOT
semantics.
• We propose the maximal coverage and minimal footprint
semantics for ROU queries, which are also well suited to be
applied to other keyword search queries on graph data.
• We propose a novel data structure, called query induced
partite graph, and two algorithms inspired by the Bron-
Kerbosch algorithm [1] for efficient ROU query evaluation.

2. PROBLEM DEFINITION
The data graphs we study in this paper are node-labeled

undirected graphs G = (VG, EG, λG), where VG is the set of
nodes, EG⊆ VG× VG is the set of edges, and λG : VG → 2L

is a labeling function that maps each node in VG to a set
of keyword terms in L. A node v contains a keyword k if
k ∈ λG(v). We overload the mapping function λG() so when
it is applied to a set of nodes V ⊆ VG, it returns the union of
the keyword sets of the nodes in V , i.e. λG(V ) =

∪
v∈V

λG(v).

2.1 Keyword-based Constraints
Given a set of nodes V in G, we measure the size of V by

the distance among the nodes in G.

Definition 2.1. [Bypass Distance & Diameter] Given
a keyword set K, for any nodes u, v ∈ VG, the distance be-
tween u and v, dis(u, v), is the length of the shortest path
between u and v in G; the K-bypass distance between u and

v, dis
K
(u, v), is the length of the shortest path between u

and v that does not pass through any node that contains a
keyword in K. The K-bypass diameter of V ⊆ VG is

d
K
(V ) = max

u,v∈V
dis

K
(u, v)

Please note that dis
K
(u, v) = ∞ if at least one keyword

in K appears on each path between u and v. Also observe

that dis
∅
(u, v) = dis(u, v).

Consider a set of nodes that are close to each other and
do not involve the unwanted keyword terms. We now con-
sider how to identify whether the set provides just the right
amount of information, given positive keyword constraints.

Definition 2.2. [Cover & h-cover] Given a set of nodes
V ⊆ VG, a set of keyword terms K (K ̸= ∅), and a threshold
h, 0 ≤ h ≤ 1, we say V h-cover K (denoted V ≻h K), if
|K∩λG(V )|

|K| ≥ h and for every v ∈ V , λG(v) ∩K ̸= ∅; when
V ≻1 K stands, we say V cover K (denoted V ≻ K).

Example 2.1. Consider the sample data graph in Fig-

ure 1. dis(v1, v5) = 2; dis
{T}

(v1, v5) = 3. Consider a key-
word set K={A, I, L,M}, then, {v3, v4, v5} ≻ K, {v3, v5} �
K, and {v1, v5} ≻

3
4 K, {v1, v3} �

3
4 K.

The“for every v ∈ V , λG(v)∩K ̸= ∅”clause in Def. 2.2 en-
sures the satisfaction of RQ.1. RQ.3 is fulfilled automatically
when |λG(v)| = 1 holds for all nodes in G. However, when
the label of a node contains multiple keyword terms, the sit-
uation becomes much more delicate. Existing works [5, 9],
under such circumstances, chose to take a vague stand on
how each node in the result represents the keywords. Here,
we will define the search results of the ROU queries in a
more precise manner.

2.2 ROU Keyword Search Query
In the ROU query we introduce, users can specify key-

word constraints in three different categories: the Required
set of keywords which they want to all appear in each re-
sult; theOptional set of keywords which they want to at least
partially appear in each result; and the Unwanted set of key-
words which should not be associated with the results. We
use Kr, Ko and Ku to represent them, respectively. In addi-
tion, associated with the optional keyword set is a threshold
h, a real number between 0 and 1. And a constraint disMAX

needs to be specified to regulate the size of each result mea-
sured in terms of node set diameter.

Definition 2.3. [ROU Keyword Search Query] Given
a data graph G = (VG, EG, λG), an ROU query is speci-
fied in the form of q = (Kr,Ko,Ku, h, disMAX), in which
Kr ∪Ko ̸= ∅; 0 ≤ h ≤ 1 when Ko ̸= ∅; and disMAX ≥ 0.

The result of evaluating q on G is a set of node sets, i.e.
q(G) ∈ 2VG . Each V ∈ q(G) must satisfy:

1. if Kr ̸= ∅, there exists Vr ⊆ V , such that Vr ≻Kr;

2. if Ko ̸= ∅, there exists Vo ⊆ V , such that Vo ≻h Ko;

3. V = Vr ∪ Vo;

4. d
Ku

(V ) ≤ disMAX .

Example 2.2. Consider Q.1-2 presented in Introduction,
they can be specified as ROU queries:

Q.1: q1 = ({Mo, Ja}, {I, L,M}, ∅, 2
3
, 3)

Q.2: q2 = ({A, I}, {L,M}, {T}, 1
2
, 2)

Applying q2 to the data graph shown in Figure 1, we have

q2(G) = {{v1, v2, v4}, {v1, v2}, {v2, v4}, {v3, v5}, {v2}}.

We would like to bring readers’ attention to two types of
subset relationships among node sets in q2(G):
Case 1. {v1, v2} ⊂ {v1, v2, v4}, {v1, v2} ≻ {A, I, L}, and
{v1, v2, v4} ≻ {A, I, L,M}.
Case 2. {v2, v4} ⊂ {v1, v2, v4}, {v1, v2, v4} ≻ {A, I, L,M},
and {v2, v4} ≻ {A, I, L,M}.

As can be seen from the example above, some resultant
node sets are consumed by others: (1) a node set is by itself
not rich enough, as {v1, v2} in Case 1, violating RQ. 2; or (2)
a node set contains redundant information, as {v1, v2, v4} in
Case 2, violating RQ. 3.

Intuitively, when a set of keywords are partially covered
(h-cover), the result that covers more keywords is considered
to carry richer information comparing to the one that covers
less, hence should be favored over the latter.

Definition 2.4. [Coverage Comparison] Given a set
of keywords K, consider two node sets V, V ′ ⊆ VG. We say
that V’s coverage of K is consumed by V ′’s coverage of K,
denoted V <K

cv V ′, if V ⊂ V ′ and λG(V )∩K ⊂ λG(V
′)∩K.
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Definition 2.5. [Maximal Coverage Semantics] Given
a data graph G = (VG, EG, λG), an ROU query q = (Kr,Ko,
Ku, h, disMAX), the maximal coverage of the query result
q(G) is a subset of q(G), defined as︷ ︸︸ ︷

q(G) = q(G)− {V |∃V ′ ∈ q(G)(V <Kr∪Ko
cv V ′)}.

The maximal coverage semantics introduced above does
not guarantee that each resultant node set is the minimal
needed to cover the positive keywords (Kr ∪ Ko) in query
q. As a remedy, we introduce the minimal footprint seman-
tics, which ensures smallest resultant node set by favoring a
smaller node set over a bigger one, when the two sets cover
exactly the same sets of positive keyword terms. Formally,

Definition 2.6. [Footprint Comparison] Given a set
of keywords K, consider two node sets V, V ′ ⊆ VG which
cover the same subset of K, i.e. λG(V

′) ∩K = λG(V ) ∩K.
If V ⊂ V ′, we say that V has a smaller footprint than V ′ in
covering K, denoted V <K

fp V ′.

Definition 2.7. [Minimal Footprint Semantics] Given
a data graph G = (VG, EG, λG), an ROU query q = (Kr,Ko,
Ku, h, disMAX), the minimal footprint of the query result
q(G) is a subset of q(G), defined as

q(G)︸ ︷︷ ︸ = q(G)− {V |∃V ′ ∈ q(G)(V ′ <Kr∪Ko
fp V )}.

Taking the concepts defined above all into consideration,
we define the condensed semantics of ROU query, which
satisfy RQ. 1, RQ. 2 and RQ. 3, as follows:

Definition 2.8. [Condensed Semantics] Given a data
graph G, an ROU query q = (Kr,Ko,Ku, h, disMAX), the

condensed semantics computes q̂(G) =
︷ ︸︸ ︷
q(G)∩ q(G)︸ ︷︷ ︸ .

Example 2.3. Consider again query q2 on G, then︷ ︸︸ ︷
q2(G) = {{v1, v2, v4}, {v2, v4}, {v3, v5}}
q2(G)︸ ︷︷ ︸ = {{v2, v4}, {v3, v5}, {v2}}

q̂2(G) = {{v2, v4}, {v3, v5}}

Note that a node set does not have to cover all the keywords

in Kr

∪
Ko to qualify for q̂(G). {v3, v5} is one such example.

3. QUERY INDUCED PARTITE GRAPH

 

A M 

I L 

Figure 2: QuIP of q2 on G

We propose Query
Induced Partite Graph
(QuIP) as an interme-
diate data structure for
efficient answering of
ROU queries. One
key notion introduced
in QuIP is shadowing.
Given a data graph and
a query q, for each node
that covers a positive
keyword in q, we cre-
ate a copy of it for
each positive keyword
it covers, and label the
copy with the keyword.

These copies are the nodes in QuIP. (We refer to the nodes
and edges in QuIP as t-nodes and t-edges.) Two t-nodes are

adjacent in QuIP if their labels are different and (1) they are
copies of the same original data node; or (2) the Ku-bypass
distance between the two original data nodes they represent
are within the size constraint (i.e. disMAX) in G. Formally,

Definition 3.1. [Query Induced Partite Graph] Given
a data graph G = (VG, EG, λG) and an ROU query q =
(Kr,Ko,Ku, h, disMAX), the Query Induced Partite Graph
of q on G, denoted GT (q,G) = (VT , ET , λT ) is constructed
as follows:

• VT = {vk|v ∈ VG ∧ k ∈ (Kr ∪Ko) ∩ λG(v)};
• λT (v

k) = k, for all vk ∈ VT ;

• (vk, ul) ∈ ET if k ̸= l and (1) v = u; or (2) v ̸=
u ∧ dis

Ku
(v, u) ≤ disMAX .

Given a node v in data graph G, we call all t-nodes vk ∈
VT the shadows of v. And for each such vk ∈ VT , we say that
v is its base. We define the base() and shadow() functions
to represent the mapping:

shadow(v) = {vk|k ∈ (Kr ∪Ko) ∩ λG(v)}
base(vk) = v

base(V ′
T ) =

∪
vk∈V ′

T

base(vk)

base(G′
T ) = base(V ′

T ) where G′
T is a subgraph of GT

base(S) = {base(G′
T )|G′

T ∈ S}
where S is a set of subgraphs of GT

In a QuIP, given a keyword k, we call the set of all t-nodes
labeled k the k-cluster, denoted V k

T = {vk|vk ∈ VT }.
Example 3.1. Again consider query q2 and sample graph

G. GT (q2, G) is shown in Figure 2. There are two shadow
nodes of v3: v3

A and v3
I , i.e. shadow(v3)= {v3A, v3I}.

There are four k-clusters, shown in dotted circles.

The following properties of query induced partite graph
can be established naturally from its definition.

Observation 3.1. Given a QuIP GT (q,G) = (VT , ET , λT )
of ROU query q on G, the following statements hold:

• VT =
∪

k∈Kr∪Ko

V k
T ;

• V k
T ∩ V k′

T = ∅ if k ̸= k′;

• for any uk, vk ∈ V k
T , (uk, vk) /∈ ET .

• given a t-node set V ′
T ⊆ VT , if the induced graph of V ′

T

is a clique, then,

– for any two t-nodes vk, ul ∈ V ′
T , v

k, ul cannot be-
long to the same keyword cluster, i.e. k ̸= l;

– |V ′
T | ≤ |Kr ∪Ko|;

We now show how to take advantage of the information
represented in a QuIP to efficiently answer an ROU query.

Example 3.2. From Example 2.3, we know q̂2(G) = {{v2,
v4}, {v3, v5}}. In GT (q2, G,), we find that the two node sets
are both bases of maximal cliques, with base({v5A, v3I , v5L})
= {v3, v5} and base({v2A, v2I , v2L, v4M}) = {v2, v4}.

Note that different sets of t-nodes can be mapped to the
same base. For example, consider V ′

T = {v5A, v3I , v5L} and
V ′′
T = {v3A, v3I , v5L}, base(V ′

T ) = base(V ′′
T ) = {v3, v5}.

However, not all the maximal cliques in GT (q2, G) cor-

respond to members of q̂2(G). For instance, {v3A, v1I} is
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a maximal clique, but it does not contain enough keywords
so its base {v1, v3} does not even belong to q2(G). Another
example is {v2A, v1I , v2L, v4M}. Its base is {v1, v2, v4} and
satisfies maximal coverage semantics, but it does not sat-
isfy the minimal footprint semantics as it covers no more
keywords than {v2, v4} does.

Observation 3.2. Given GT (q,G) = (VT , ET , λT ):

• If node set V ∈ q̂(G), then, there must exist a maximal
clique c in GT (q,G), such that base(c) = V .

• There may exist maximal clique c in GT (q,G), base(c) /∈
q(G).

• There may exist maximal cliques c, c′ in GT (q,G), such
that base(c) <K

fp base(c′), where K = λT (base(c)) =
λT (base(c

′)).

We can see that finding all maximal cliques in QuIP is
not enough for answering an ROU query. We introduce the
h-cover clique to address these issues.

Definition 3.2. [h-cover clique] Given GT (q,G), G′
T =

(V ′
T , E

′
T , λT ) is a subgraph of GT induced by t-node set V ′

T .
We say that G′

T is a h-cover clique of q if

• G′
T is a clique;

• there exists V ′
rT ⊆ V ′

T and V ′
rT ≻ Kr, if Kr ̸= ∅;

• there exists V ′
oT ⊆ V ′

T and V ′
oT ≻h Ko, if Ko ̸= ∅; and

• V ′
T = V ′

rT ∪ V ′
oT .

Given a QuIP GT (q,G), we use hcClq(GT )
1 to represent

the set of all h-cover cliques in GT .

Theorem 3.1. Given GT (q,G), which is the QuIP of q
on G, the following holds:

q̂(G) ⊆ base(hcClq(GT )) ⊆ q(G).

Theorem 3.1 establishes QuIP as a suitable vehicle for an-
swering ROU queries. We are interested in following subsets
of hcClq(GT ):︷ ︸︸ ︷

hcClq(GT ) = hcClq(GT )
−{c|c ∈ hcClq(GT ) ∧ ∃c′ ∈ hcClq(GT )

(Vc ⊂ V ′
c ∧ λT (Vc) ∩K ⊂ λT (V

′
c ) ∩K)}

is a subset of hcClq(GT ) that guarantees maximal coverage.

̂hcClq(GT ) =
︷ ︸︸ ︷
hcClq(GT )

−{mc|mc ∈
︷ ︸︸ ︷
hcClq(GT )∧∃c ∈ hcClq(GT )

(base(c) ⊂ base(mc) ∧ λT (c) ∩K = λT (mc) ∩K)}

is a subset of
︷ ︸︸ ︷
hcClq(GT ) that guarantees minimal footprint.

Corollary 3.1. Given GT (q,G), the following holds:

base(
︷ ︸︸ ︷
hcClq(GT (q,G))) =

︷ ︸︸ ︷
q(G)

base( ̂hcClq(GT (q,G))) = q̂(G).

Example 3.3. Consider query q2 and four sets of t-nodes:
VT1 = {v3A, v1I}, VT2 = {v2A, v1I , v2L}, VT3 = {v2A, v1I , v2L,
v4

M}, and VT4 = {v2A, v2I , v2L, v4M}, each inducing a clique
in GT (q2, G), we call them c1 . . . c4, respectively.
c1 /∈ hcClq(GT (q2, G)) as VT1 does not cover adequate

keywords, and base(V ′
T ) = {v1, v3} /∈ q(G).

1
We abbreviate GT (q,G) as GT when there is no ambiguity about

the parameters q and G.

c2 ∈ hcClq(GT (q2, G)), however c2 /∈
︷ ︸︸ ︷
hcClq(GT (q2, G))

as c2 is a sub-graph of c3, which covers more keywords.

c3 ∈
︷ ︸︸ ︷
hcClq(GT (q2, G)), however, c3 /∈ ̂hcClq(GT (q2, G)),

as c3 and c4 covers the same set of keywords, and base(c4) ⊂
base(c3).

c4 ∈ ̂hcClq(GT (q2, G)), and base(c4) ∈ q̂(G).

Based on Theorem 3.1 and Corollary 3.1, we can use QuIP
to answer an ROU query in two steps: (1) constructing QuIP

based on an incoming query; and (2) identifying ̂hcClq(GT )

whose base is member of q̂(G).
Neighborhood index is often used to answer whether two

nodes are connected within a distance threshold [5]. The
technique can be extended to include labels to deduce whether
two nodes are connected, bypassing Ku. Such extension
works for small Ku, but is not practical when |Ku| is large.
Designing better data structures and algorithms for QuIP
construction is left for future work, and we consider cases
where |Ku| ≤ 1 in our experiments. Here we focus on step

(2), using QuIP to compute q̂(G).

4. q̂(G) GENERATION
4.1 Base Algorithm

Enumerating maximal cliques in a graph is a well stud-
ied problem in discrete mathematics [1, 11]. We adapt
the Bron-Kerbosch algorithm [1] to find maximal cliques in
QuIP. The details of the recursive algorithm is shown in

Algo. 2. The process of generating the full set of q̂(G) starts
by triggering the cdsCliqueEnum() function, with P initial-
ized to be VT , and R and X empty set, is shown in Algo. 1.

Algorithm 1: q̂(G) Generation

Data: GT (q,G)

Result: q̂(G)
1 R← ∅ ; P ← VT ; X ← ∅ ;
2 cdsCliqueEnum (R, P , X) ;

cdsCliqueEnum(), whose details are presented in Algo. 2,
is amended with two pruning functions:

• satisfyQ() handles positive keyword constraints. Given
a set of t-nodes V ⊆ VT , satisfyQ(V)=TRUE if for some
Vr ⊆ V , Vr ≻ Kr (if Kr ̸= ∅) and for some Vo ⊆ V , Vo ≻h

Ko (if Ko ̸= ∅). It guarantees that all the maximal cliques
enumerated by the algorithms are h-cover cliques.

• notMnfp() checks if there exists a node v ∈ base(R) such
that λG(base(R))∩(Kr∪Ko) = λG((base(R)−{v}))∩(Kr∪
Ko). If so, the base of R cannot possibly be a subset of any
results that satisfy the minimal footprint requirement as we
can always remove v for a more “concise” result.

In Algo. 2, P is a set holding potential t-nodes that can
be added to the current partial clique R. In the recursion
process, t-nodes in P will always be neighbors to all the t-
nodes in R. Thus whenever P is not empty, we can always
pick a t-node from it to add to R to make a bigger clique.
A t-node v is added to X only after all the maximal cliques
containing R ∪ {v} are explored (line 12). Thus when P is
empty and X is not, it implies that a clique that contains
t-nodes in R ∪X has already been considered before. So a
clique that contains only t-nodes in R is not maximal, and
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Level R P X R’ P’ X’ Action

0 ∅ VT ∅ {v3
I} {v3

A, v5
A, v5

L} ∅ recursive call

1 {v3I} {v3
A, v5

A, v5
L} ∅ {v3

I , v5
A} {v5

L} ∅ recursive call

2 {v3I , v5
A} {v5

L} ∅ {v3
I , v5

A, v5
L} ∅ ∅ recursive call

3 {v3I , v5
A, v5

L} ∅ ∅ report result, backtrack

2 {v3I , v5
A} ∅ {v5L} backtrack

1 {v3I} {v3
A, v5

L} {v5A} {v3
I , v3

A} {v5
L} ∅ recursive call

2 {v3I , v3
A} {v5

L} ∅ . . . . . . . . . . . .

Table 1: Evaluating q2 Using Algo 2

our algorithm needs to backtrack. When both P and X are
empty, a maximal clique in GT (q,G) has been formed; and

it belongs to ̂hcClq(GT ) because of notMnfp(). So we can

report its base, which belongs to q̂(G), as a query result. An
execution example of the algorithm can be found in Table 1.

Algorithm 2: cdsCliqueEnum(R,P,X)

Data: R,P,X
Result: bases of cliques that contain all t-nodes in R,

some t-nodes in P and no t-nodes from X,
satisfy condensed semantics

1 if notMnfp (R) then
2 return
3 end
4 if P is empty and X is empty then
5 output base(R) as a result; return
6 end
7 for each t-node v in P do
8 R′ ← R ∪ {v}; P ′ ← P ∩N(v); X ′ ← X ∩N(v);
9 if satisfyQ (R′ ∪ P ′) then

10 cdsCliqueEnum (R′, P ′, X ′)
11 end
12 P ← P − {v} ; X ← X ∪ {v} ;
13 end

4.2 Optimization
Though cdsCliqueEnum generates exactly q̂(G), it may

consider cliques that consist of different t-nodes but share
the same base, generating duplicated results. For example,
applying the algorithm to GT (q2, G), it will generate result
{v3, v5} twice, one from clique {v5A, v3I , v5L}, another from
{v3A, v3I , v5L}.

Algorithm 3: cdsCliqueEnumGreedy(R,P,X)

// Lines 1-6 same as Lines 1-6 in cdsCliqueEnum

7 for each t-node v in P do
8 R′ ← R; P ′ ← P ; X ′ ← X;
9 for each t-node v′ in P∩ shadow(base(v)) do

10 R′ ← R′ ∪ {v′}; P ′ ← P ′ ∩N(v′);
X ′ ← X ′ ∩N(v′);

11 end
12 if satisfyQ (R′ ∪ P ′) then
13 cdsCliqueEnum (R′, P ′, X ′)
14 end
15 for each t-node v′ in P∩ shadow(base(v)) do
16 P ← P − {v′} ; X ← X ∪ {v′} ;
17 end

18 end

To address this issue, we introduce cdsCliqueEnumGreedy,

presented in Algo. 3, which can generate q̂(G) without con-
sidering duplicated cliques. The basic idea is that when a t-
node v is picked from P and put into R, we also put all shad-
ows of the base of v that are in P , i.e. P ∩shadow(base(v)),
into R (lines 9-11), and adjust P and X accordingly. When
the search is done on the current level, all these t-nodes
will be moved to X to prevent cliques with same base from
being considered in the future (lines 15-17). Thus if we
apply cdsCliqueEnumGreedy, assuming at the beginning in
Table 1 that we pick v3

A from P at level 0, then both v3
A

and v3
I will be added to R. When the execution terminates,

only clique induced by {v3A, v3I , v5L} will be generated, and
{v5A, v3I , v5L} will be skipped.

4.3 Discussion
Theoretically the complexity of enumerating maximal cliques

in a graph with n nodes is O(3
n
3 ), as stated in [10]. How-

ever, the complexity of our algorithms is much lower. In the
worst case, the complexity is O(( max

k∈Kr
∪

Ko

|V k
T |)|Kr

∪
Ko|),

where |V k
T | ≪ |VG| and |Kr

∪
Ko| is small. Moreover, due

to the partite nature and sparsity of GT (q,G), it is often the
case that in GT (q,G) each node is adjacent to only a few
nodes. Under such circumstance, the recursion tree is shal-
low and subtrees are small below the first level of recursion.
Hence, the average complexity is very close to O(|VT |).

5. EXPERIMENTAL EVALUATIONS
We conduct our experimental evaluation on the Proximity

DBLP database, which is based on data from the DBLPs.
The data contain 1.1M nodes and 1.8M edges, and the total
number of node pairs (u, v) that satisfies dis(u, v) ≤ 3 is
111M. Based on term closeness and keyword frequency, we
organize keywords in groups to form queries that are repre-
sentative enough to better interpret the impact of various of
input parameters. We will present results of ROU queries
whose keywords are picked from those in the table below.

Keywords

1 bayesian, inference, statistical,

polynomial, propagation, belief, graphical

2 artificial, intelligence, reasoning,

vision, learning, robotics

3 compiler, type, programming, semantics, grammar

4 database, query, optimization, sql, datalog

5 operating, system, parallel, distributed, memory

Our algorithms are written in Java and our experiments
are run on a laptop running Windows 7 with IntelrCoreTM

i5-2450M CPU @ 2.50GHz and 8GB memory, in which a
maximum of 4GB memory are dedicated to the JVM.

QuIP Size. The QuIP sizes of some example queries are
shown in Figure 3 (with disMAX= 3). In general, QuIP is
significantly smaller than the data graph, both in terms of
node number and edge number. In addition, the presence of
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Query Kr ∪ Ko Ku Nodes Edges

size groups sizegroups

Q1 6 G1 0 13743 61538

Q′
1 6 G1 1 G1 13498 58208

Q2 5 G2 0 13576 35713

Q′
2 5 G2 1 G2 13464 35362

Q3 5 G3 0 12037 132K

Q4 5 G4 0 13764 2.5M

Q′
4 5 G4 1 G4 12853 1.8M

Q5 5 G5 0 56976 1.2M

Q6 5 G1-5 0 8262 79K

Figure 3: QuIP Size
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negative keyword constraint, even when the size of the key-
word set is 1, can reduce the size of QuIP (and subsequently
lead to decrease of enumeration time). In the following, we
are presenting results on a variety of graphs that are of dif-
ferent size, i.e. graphs generated by Q1 to Q5.

Algorithm Performance Comparisons. We compare
the performance of algorithm cdsCliqueEnum and algorithm
cdsCliqueEnumGreedy, with the baseline algorithm, which
uses the Bron-Kerbosch algorithm to generate all maximal
cliques on the QuIP, then verifies the keyword constraints
and the condensed semantics. The performance comparison
of a selected set of queries is shown in Figure 4. Please note
that log-scale is used for y-axis. For Query 3-5, we cut off
the computation at 100K results as the potential result size
can be huge.
As can be seen, the cdsCliqueEnumGreedy algorithm gen-

erally outperforms the baseline algorithm, cutting execu-
tion time by half, while the cdsCliqueEnum algorithm has
comparable performance as the baseline. In cases, such
as Q4, where very few among large number of maximal
cliques in the QuIP satisfy the keyword constraints and con-
densed semantics, the pruning in both our algorithms are ef-
fective, and cdsCliqueEnumGreedy particularly outperforms
the baseline algorithm by two orders of magnitude. Theo-
retically, cdsCliqueEnum algorithm may outperform
cdsCliqueEnumGreedy when the overhead of the additional
pruning employed by the latter overshadow the benefit of
such pruning, however, such cases are extremely rare ac-
cording to our experimental study.

Impact of Positive Keyword Constraints. To measure
the impact of the distribution of the keywords amongKr and
Ko on result size and query performance, we introduce the
notion of valid keyword combinations count, which is a func-
tion of Ko and h, i.e. Ct(Ko, h) =

∑
n=⌈|Ko|×h⌉...|Ko|

Cn
|Ko|.

We randomly pick sets of keyword terms, and for each set,
vary the distribution of these keywords among Kr and Ko,
and the h value, then, compare the result sizes and query
evaluation time among the queries that share the same Kr∪
Ko. Figure 5 shows the results on a set of 6 keywords picked
from group 2.
Please note that when the valid keyword combinations

count increases, the evaluation time increases at a much
slower pace than the result size. This is due to the fact that
the cliques exploited in the evaluation process share com-
mon sub-clique, and the recursive nature of our algorithms
are able to absorb the extra computational cost.

6. CONCLUSION AND FUTURE WORK
In this paper we initialized a research topic by introduc-

ing ROU, a new type of keyword search queries on graph
data, which allows user to specify both positive and nega-
tive keyword constraints. We formally defined the seman-
tics in terms of maximal coverage and minimal footprint.
We proposed Query Induced Partite Graph (QuIP) for rep-
resenting candidate data entries and their relationships, and
algorithms that take advantage of information collected in
QuIP to efficiently answer ROU queries efficiently. However,
the problem of ROU is far from solved. Natural extension to
the work presented in this paper may include: (1) inventing
new summary data structures and indexing techniques to
handle negative keyword conditions; (2) introducing rank-
ing schemes to identify results that are most interesting and
develop approximation semantics and algorithms for iden-
tifying top-k results; (3) exploring parallel implementations
for scalability; and (4) extending query semantics for other
types of interesting keyword queries.
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