
The Impact of Transitive Closure on the
Boolean Expressiveness of Navigational Query

Languages on Graphs

George H. L. Fletcher1, Marc Gyssens2, Dirk Leinders2?, Jan Van den
Bussche2, Dirk Van Gucht3, Stijn Vansummeren4, and Yuqing Wu3

1 Eindhoven University of Technology
g.h.l.fletcher@tue.nl

2 Hasselt University and Transnational University of Limburg
School for Information Technology

{marc.gyssens,dirk.leinders,jan.vandenbussche}@uhasselt.be
3 Indiana University

{vgucht,yuqwu}@cs.indiana.edu
4 Université Libre de Bruxelles
stijn.vansummeren@ulb.ac.be

Abstract. Several established and novel applications motivate us to
study the expressive power of navigational query languages on graphs,
which represent binary relations. Our basic language has only the oper-
ators union and composition, together with the identity relation. Richer
languages can be obtained by adding other features such as other set
operators, projection and coprojection, converse, and the diversity rela-
tion. In this paper, we show that, when evaluated at the level of boolean
queries with an unlabeled input graph (i.e., a single relation), adding
transitive closure to the languages with coprojection adds expressive
power, while this is not the case for the basic language to which none, one,
or both of projection and the diversity relation are added. In combina-
tion with earlier work [10], these results yield a complete understanding
of the impact of transitive closure on the languages under consideration.

1 Introduction

In previous work [10], the present authors studied the relative expressive power
of query languages on graphs (i.e., binary relations). They considered a basic
language, consisting of union, composition, and the identity relation, to which
one or more features can be added, such as intersection, set difference, projection,
coprojection, converse, and the diversity relation. We refer to the basic language
to which all the non-basic features have been added as the relation algebra.

A relation algebra expression can be seen as a function mapping the input
binary relation to a binary relation. We call such queries path queries because
the result can be interpreted as all the ways in which the input graph can be
? This author carried out most of his research as a Senior Research Assistant of the

Fund of Scientific Research – FWO Flanders.

2 Fletcher, Gyssens, Leinders, et al.

navigated in accordance with the expression. By identifying nonemptiness with
the boolean value true and emptiness with false, as is standard in database theory
[3], we can also express yes/no queries within this framework. To distinguish
them from general path queries, we shall refer to the latter as boolean queries.

The present authors were able to establish the complete Hasse diagram for
the relative expressive power of the various relation algebra fragments, and this
both at the levels of (1) path queries and (2) boolean queries, both for the
cases where the input graph is (1) labeled (i.e., may represent multiple binary
relations) and (2) is unlabeled (i.e., represents a single relation).

This study was motivated by similar work on the expressive power of XPath
fragments as query languages for navigating on trees, which is now well un-
derstood (e.g., [7, 13, 20, 21, 25]). Motivated by data on the Web [2, 11] and new
applications such as dataspaces [12], Linked Data [8, 15], and RDF [1], it is natu-
ral to look at similar navigational query languages for graphs. The languages we
study are very natural and similar to languages already considered in the fields
of description logics, dynamic logics, arrow logics, and relation algebras [6, 9, 14,
17, 19, 23]. Moreover, graph query languages have a rich history in database the-
ory, in particular in the context of object-oriented and semi-structured database
systems. We refer to Angles and Gutiérrez [5] for a comprehensive review.

In addition to what has been described above, we also investigated whether
adding transitive closure to a relation algebra fragment yields additional ex-
pressive power. At the level of path queries, this is obviously the case for all
fragments, as the transitive closure of a binary relation is not expressible in
FO [4], whereas the full relation algebra is known to be equivalent to FO3 [24].
We were also able to show [10] that adding transitive closure does not result in a
collapse at the level of boolean queries, provided the input graph is labeled (i.e.,
there may be several input relations). For boolean queries on unlabeled graphs
(i.e., on a single input relation), several cases remained open, however.

The purpose of the present paper is to solve these cases, and thus to com-
plete our understanding of whether or not the relation algebra fragments with
transitive closure collapse to their counterparts without transitive closure at the
level of boolean queries on unlabeled graphs.

To see the practical relevance of these results, consider the following example.
Facebook is a large social network which maintains a graph of people that are
connected via a friendship relationship. It is customary that people wish to com-
municate with their friends, navigate recursively to friends of friends etc. This
navigation can be expressed with path expressions in a suitable relation algebra
fragment, either with or without using transitive closure. In addition to naviga-
tion, certain topological properties of the Facebook graph can be discovered. For
example, one can discover whether there are people whose friends are all friends
of each other. Again, some of these topological properties can be formulated as
boolean queries in a suitably chosen relation algebra fragment, either with or
without using transitive closure. The proliferation of social networks is thus a
real-world phenomenon to which our theory applies.

From this perspective, the collapse results are very meaningful.

Boolean Expressiveness of Transitive Closure on Graphs 3

With regard to the possible collapse of the various relation algebra fragments
with transitive closure to their counterparts without transitive closure at the
level of boolean queries on unlabeled graphs, it was already established [10] that
adding transitive closure to a relation algebra fragment adds expressive power if
either intersection, or converse, or both, can be expressed in that fragment. In
particular, this is the case when set difference is in the fragment.

It thus remained to look at relation algebra fragments consisting of the basic
language built from union, composition, and the identity relation, to which a
subset of the features projection, coprojection, and the diversity relation has
been added. It was also established [10] that adding transitive closure to (1) the
basic language, (2) the basic language to which projection is added, and (3) the
basic language to which the diversity relation is added does not increase the
expressive power.

Taking into account that projection can be expressed as the coprojection of
the coprojection, three cases remained open, however. Does adding transitive
closure to (1) the basic language to which coprojection is added, (2) the basic
language to which both coprojection and the diversity relation are added, and
(3) the basic language to which both projection and the diversity relation are
added increase the expressive power?

In this paper, we show that there is no collapse for the first two fragments,
but that there is a collapse for the third fragment. The emphasis of this paper is
on the proof technique used for establishing the collapse for this last fragment,
which we think is interesting in its own right.

The paper is organized as follows. In Section 2, we define syntax and seman-
tics of the class of languages studied in the paper. In Section 3, we show that for
any relation algebra fragment in which coprojection can be expressed, adding
transitive closure yields additional expressive power at the level of boolean
queries, thus settling the previously open cases for (1) the basic language to
which coprojection is added and (2) the basic language to which both coprojec-
tion and the diversity relation are added. In Section 4, we describe a two-step
proof strategy to show that adding transitive closure to (3) the basic language to
which both projection and the diversity relation are added does not increase the
expressive power, and we deal with the first step. In Sections 5 to 8, we deal with
the much more elaborate second step. We conclude in Section 9 by summarizing
our understanding of the impact of adding transitive closure to relation algebra
fragments, which has now been completed.

Finally, notice that, in this extended abstract, most proofs have either been
omitted or only summarily sketched.

2 Graphs and languages

In this paper, we are interested in navigating over graphs. For our purposes, a
graph is a relational structure G, consisting of a set of nodes V and a binary
relation R ⊆ V × V , the set of edges of G. In what follows, both V and R may
be either finite or infinite.

4 Fletcher, Gyssens, Leinders, et al.

An extension of this model consists of allowing multiple binary relations, by
labeling the edges.5 For comparison, we shall sometimes refer to labeled graphs,
though the emphasis of this paper is on unlabeled graphs.

The most basic language for navigating over graphs we consider is the alge-
bra N whose expressions are built recursively from the edge set symbol R, the
primitive ∅, and the primitive id , using composition (e1◦e2) and union (e1∪e2).6

Semantically, each expression e ∈ N defines a path query. A path query takes
as input a graph G and returns a binary relation e(G) ⊆ adom(G)× adom(G),
where adom(G) denotes the active domain of G, which is the set of all entries
occurring in one of the relations of G, i.e.,

adom(G) = {v | ∃w : (v, w) ∈ R ∨ (w, v) ∈ R}.

In particular, the semantics of N is inductively defined as follows:

R(G) = R ;
∅(G) = ∅ ;
id(G) = {(v, v) | v ∈ adom(G)} ;
e1 ◦ e2(G) = {(v, w) | ∃z : (v, z) ∈ e1(G) & (z, w) ∈ e2(G))} ;
e1 ∪ e2(G) = e1(G) ∪ e2(G) .

The basic algebra N can be extended by adding some of the following features:
diversity (di), converse (e−1), intersection (e1∩e2), difference (e1\e2), projections
(π1(e) and π2(e)), coprojections (π1(e) and π2(e)), and transitive closure (e+).
We refer to the operators in the basic algebra N as basic features; we refer to the
extensions as nonbasic features. The semantics of the extensions is as follows:

di(G) = {(v, w) | v, w ∈ adom(G) & v 6= w} ;
e−1(G) = {(v, w) | (w, v) ∈ e(G)} ;
e1 ∩ e2(G) = e1(G) ∩ e2(G) ;
e1 \ e2(G) = e1(G) \ e2(G) ;
π1(e)(G) = {(v, v) | v ∈ adom(G) & ∃w : (v, w) ∈ e(G)} ;
π2(e)(G) = {(v, v) | v ∈ adom(G) & ∃w : (w, v) ∈ e(G)} ;
π1(e)(G) = {(v, v) | v ∈ adom(G) & ¬∃w : (v, w) ∈ e(G)} ;
π2(e)(G) = {(v, v) | v ∈ adom(G) & ¬∃w : (w, v) ∈ e(G)} ;
e+(G) =

⋃
k≥1 ek(G) .

Here, ek denotes e ◦ · · · ◦ e (k times).
If F is a set of nonbasic features, we denote by N (F) the language obtained

by adding all features in F to N . For example, N (∩) denotes the extension of N
with intersection, and N (∩, π, +) denotes the extension of N with intersection,
both projections,7 and transitive closure.
5 In this case, the number of relation names is always finite.
6 By abuse of notation, we shall use “R” both as a symbol in the algebra N and as

the name of the corresponding edge relation in G.
7 We do not consider extensions of N in which only one of the two projections, re-

spectively one of the two coprojections, is present.

Boolean Expressiveness of Transitive Closure on Graphs 5

We refer to the language N (\, di ,−1) as the relation algebra. For each set F
of nonbasic features considered above not containing transitive closure, all path
queries expressible in N (F) are also expressible in the relation algebra [17].

For the purpose of showing the main result, we also consider conditionals as
nonbasic atomic features in this paper. At the syntactic level, a conditional is
an expression denoted by some constant, say c. The semantics of c is given by
some (implicit) mapping that associates to each directed graph G a set c(G) of
identical pairs of G. Hence, c(G) ⊆ id(G). Informally, (v, v) ∈ c(G) means that
node v “satisfies” c in G. In this paper, we shall use conditionals to eliminate
projection subexpression temporarily, as explained in Section 5 and illustrated
in Example 2.

Language expressiveness can be considered at the level of path queries and
at the level of boolean queries.

Definition 1. A path query q is expressible in a language N (F) if there exists
an expression e ∈ N (F) such that, for every graph G, we have e(G) = q(G).
Similarly, a boolean query q is expressible in N (F) if there exists an expression
e ∈ N (F) such that, for every graph G, we have that e(G) is nonempty if and
only if q(G) is true. In both cases, we say that q is expressed by e.

In this paper, we are mainly interested in boolean queries. Compared to path
queries, this means that we are not interested in the precise set of pairs returned
by an expression on a given input graph, but rather in whether or not this set
is empty. Hence, if we can establish that adding transitive closure to a language
does not increase its expressive power at the level of path queries, this must
necessarily also be the case at the level of boolean queries. The converse, however,
need not be true. Therefore, studying expressiveness issues is considerably more
difficult at the level of boolean queries than at the level of path queries.

To conclude these preliminaries, we formally define what we mean by a subex-
pression of a given expression.

Definition 2. Let F be a set of nonbasic features, and let e be an expression in
N (F). The set of all subexpressions of e, denoted Sub(e), is defined recursively,
as follows:

1. if e is either R, ∅, id, di , or a conditional, then Sub(e) = {e};
2. if “�”is either composition or a set operation, and if, for some expressions

e1 and e2 in N (F), e = e1 � e2, then Sub(e) = Sub(e1) ∪ Sub(e2) ∪ {e}; and
3. if “θ” is either projection, coprojection, converse, or transitive closure, and

if, for some expression f in N (F), e = θ(f), then Sub(e) = Sub(f) ∪ {e}.

An atomic subexpression of an expression is a subexpression that is either
“R”, “id”, “di”, or a conditional. For an expression e in the relation algebra
with or without transitive closure, we denote by |e| the number of its atomic
subexpressions and by |e|R the number of occurrences of “R” in e.

6 Fletcher, Gyssens, Leinders, et al.

3 Relation algebra fragments with coprojection

In this Section, we show that adding transitive closure to a relation algebra
fragment in which coprojection can be expressed yields additional expressive
power at the level of boolean queries, thus settling the previously open cases for
(1) the basic language to which coprojection is added and (2) the basic language
to which both coprojection and the diversity relation are added.

A node v of a graph G is a sink node if v has no outgoing edges, i.e., if
(v, v) ∈ π1(R)(G). We now present an expressibility and an inexpressibility
result for a particular graph property stated in terms of sink nodes.

Proposition 1. The boolean query “There is a non-sink node from which no
sink node can be reached” is expressible in N (π, +).

Proof. This query returns true if and only if π1((R+ ◦ π1(R)) ∪ π1(R)) 6= ∅. ut

Using an Ehrenfeucht-Fräıssé argument [16], we can show the following, how-
ever (proof omitted).

Proposition 2. The boolean query “There is a non-sink node from which no
sink node can be reached” is not expressible in FO.

From Propositions 1 and 2 we can now conclude the following.

Theorem 1. Let F be a set of nonbasic features not containing transitive closure
such that coprojection can be expressed in N (F). Then N (F, +) does not collapse
to N (F) at the level of boolean queries.

Proof. In Propositions 1 and 2, we identified a property of graphs that is ex-
pressible in N (F, +) but not in FO. It is well known [24] that the full relation
algebra is equivalent to FO3, both at the level of path queries and at the level
of boolean queries. Since FO3 is a fragment of FO, it follows that the aforemen-
tioned property is not expressible in N (F). ut

As an immediate corollary, two open cases are now settled.

Corollary 1. At the level of boolean queries, N (π, +) does not collapse to N (π)
and N (π, di , +) does not collapse to N (π, di).

4 Relation algebra fragments with at most projection
and diversity

This Section is devoted to demonstrating that N (π, di , +) collapses to N (π, di)
at the level of boolean queries. We start with an introductory example.

Boolean Expressiveness of Transitive Closure on Graphs 7

Example 1. Consider the expression e := π1(R3) ◦ R+ ◦ di ◦ π2(R) ◦ R2 in
N (π, di , +). Let G be a graph. For e(G) to be nonempty, the subexpressions
to the right of “di” must return nonempty. Hence, there must exist a chain
w0 → w1 → w2 → w3 in G. Unless, for each such chain, w1 = w2 = w3, it is
readily seen that this condition is also sufficient for e(G) 6= ∅. In the other case,
there must exist an edge v0 → v1 with a self-loop in v1 for which v1 6= w1 in
order for e(G) to be nonempty. It can now be readily verified that, in both cases,
e′(G) 6= ∅, with e′ := π1(R3) ◦ (R ∪R2) ◦ di ◦ π2(R) ◦R2 in N (π, di). As always
e′(G) ⊆ e(G), the converse implication also holds, so e′ ∈ N (π, di) is equivalent
to e ∈ N (π, di , +) at the level of boolean queries. ut

The argument used to show that transitive closure can be eliminated from
the expression in Example 1 is very ad-hoc. Moreover, the considered expression
is very simple. We therefore need a general technique to show that N (π, di , +)
collapses to N (π, di) at the level of boolean queries. In this section, we outline
this technique, and, in subsequent sections, we work it out in further detail.

The technique we are about to describe actually works more generally for
showing that N (F, +) collapses to N (F) for all sets of nonbasic features F for
which F ⊆ {π, di}. It consists of two steps. Given an expression e in N (F, +),

1. find an expression suffe in N (F) such that, for every graph G, suffe(G) 6= ∅
implies e(G) 6= ∅; and

2. find an expression e′ in N (F) that is equivalent to e at the level of boolean
queries on all graphs G for which suffe(G) = ∅.

It then follows immediately that, on all graphs, e is equivalent to suffe ∪ e′ at
the level of boolean queries, i.e., for every graph G, suffe ∪ e′(G) 6= ∅ if and
only if e(G) 6= ∅. Intuitively, suffe(G) 6= ∅ is a sufficient condition for e(G) to be
nonempty. It therefore suffices to show the collapse on graphs that do not satisfy
this condition, i.e., for which suffe(G) = ∅. If suffe is well-chosen, then the latter
condition will turn out to be sufficiently restrictive for our purposes.

The first step of the proof procedure is secured by the following result.

Theorem 2. Let F ⊆ {π, di}. Let e be an expression in N (F, +). Let suffF,e

in N (F) be as tabulated in Table 1, where me = max(1, |e|R). Then, for every
graph G, suffF,e(G) 6= ∅ implies e(G) 6= ∅.

Table 1. Expressions suffF,e in N (F) for which suffF,e(G) 6= ∅ implies e(G) 6= ∅,
F ⊆ {π, di}. In these expressions, me = max(1, |e|R).

F suffF,e

∅ Rme

{π} Rme

{di} Rme ◦ di ◦ Rme

{π, di} π1(R
me) ◦ π2(R

me) ◦ di ◦ π1(R
me) ◦ π2(R

me)

8 Fletcher, Gyssens, Leinders, et al.

Proof. Here, we only sketch the proof for F = {π, di}. So, let e be an expression
in N (π, di , +) and let G be a graph. We first observe that the condition π1(Rme)◦
π2(Rme) ◦ di ◦ π1(Rme) ◦ π2(Rme)(G) 6= ∅ is equivalent to the existence of two
sequences of not necessarily all different nodes v−me , . . . , v−1, v0, v1, . . . , vme and
w−me , . . . , w−1, w0, w1, . . . , wme in G such that, (1) for i = −me, . . . ,me − 1,
(vi, vi+1) ∈ R and (wi, wi+1) ∈ R and (2) v0 6= w0. By an inductive argument,
we show that, for any union-free expression f in N (π, di) with |f |R ≤ |e|R, f
is nonempty on the subgraph of G consisting of the nodes and edges singled
out above, as a consequence of which f(G) 6= ∅. Finally, from e, we construct a
union-free expression e′ in N (π, di) for which |e′|R ≤ |e|R and e′(G) ⊆ e(G). It
follows now that e(G) 6= ∅, as had to be shown. ut

For the second step, we first of all observe that, for any graph G, and for any
nonzero natural number m, Rm(G) = ∅ implies that Rm ◦ di ◦Rm(G) = ∅, and
that Rm ◦di ◦Rm(G) = ∅ implies that π1(Rm)◦π2(Rm)◦di ◦π1(Rm)◦π2(Rm) =
∅. Any necessary condition on the graph G for the last expression to return
the empty set on G is therefore also a necessary condition for the two other
expressions to return the empty set on G.

For our purpose, we extend the notion of directed acyclic graph (DAG).

Definition 3. An extended directed acyclic graph (EDAG) is a (not necessarily
connected) DAG to which self-loops may be added provided each path in the DAG
contains at most one node with a self-loop. The DAG obtained from an EDAG
by removing all self-loops (but not the nodes in which these self-loops occur) is
called the underlying DAG. The depth of an EDAG is the depth of the underlying
DAG, i.e., the maximal length of a path in that DAG.

We now have the following.

Lemma 1. Let m be a nonzero natural number, and let G be a graph such that
π1(Rm) ◦ π2(Rm) ◦ di ◦ π1(Rm) ◦ π2(Rm)(G) = ∅. Then G is an EDAG of depth
at most 2m.

Proof. If π1(Rm)◦π2(Rm)◦di ◦π1(Rm)◦π2(Rm)(G) = ∅, then it is the case that,
for any two sequences of nodes v−m, . . . , v−1, v0, v1, . . . , vm and w−m, . . . , w−1,
w0, w1, . . . , wm in G such that, for i = −m, . . . ,m − 1, (vi, vi+1) ∈ R and
(wi, wi+1) ∈ R, we have that v0 = w0 (cf. the proof of Theorem 2). Clearly,
this is not the case if G contains either one loop of length at least two; or two
self-loops; or a non-selfintersecting path of length at least 2m + 1. Hence, G is
an EDAG of depth at most 2m. ut

Notice that G being an EDAG of depth at most 2m is not a sufficient condi-
tion for the expression in Lemma 1 to evaluate to the empty set. For instance,
an EDAG may contain more than one self-loop in total (at most one on each
path in the underlying DAG). Also, a DAG (which is a special case of an EDAG)
of depth 2m may contain two paths of length 2m of which the middle nodes do
not coincide. Hence, G being an EDAG of depth at most 2m is only a necessary

Boolean Expressiveness of Transitive Closure on Graphs 9

condition for π1(Rm)◦π2(Rm)◦di ◦π1(Rm)◦π2(Rm)(G) = ∅. For our purposes,
however, this is all we need.

Using our earlier observation, we can bootstrap Lemma 1 as follows.

Proposition 3. Let F ⊆ {π, di}, and let e be an expression in N (F, +). Let G
be a graph such that suffF,e(G) = ∅. Then G is an EDAG of depth at most 2me.

Assume that we are given an expression e in N (π, di , +) and an EDAG G of
depth at most m, with m some nonzero natural number. The remainder of this
paper is concerned with proving that there exists a nonzero natural number s
depending only on m and e such that e(G) = ∅ if and only e′(G) = ∅, where e′

is obtained from e by exhaustively replacing each subexpression of the form f+

by
⋃s

i=1 f i.
To achieve this, we intend to show (Proposition 12) that there exists a nonzero

natural number s such that, for any node v of G, there exists a subgraph Gv of
G containing v which has at most s nodes and satisfies the following property:
there exists a node w for which (v, w) ∈ e(G) if and only if there exists a node
w′ in Gv for which (v, w′) ∈ e(Gv). To see that this is sufficient for our purposes,
assume first that e(G) = ∅. Then e′(G) = ∅, since e′(G) ⊆ e(G). Therefore,
assume next that e(G) 6= ∅. Then, for some nodes v and w of G, (v, w) ∈ e(G).
Hence, there exists a node w′ in Gv such that (v, w′) ∈ e(Gv). Since Gv has at
most s nodes, e(Gv) = e′(Gv). It follows that e′(Gv) 6= ∅. Since e′(Gv) ⊆ e′(G),
it also follows that e′(G) 6= ∅.

In the remaining sections, we shall establish that such subgraphs Gv exist.
Finally, notice that, whenever e is in N (F, +) with F ⊆ {π, di}, then e′ is in

N (F). Hence, our efforts in the context of N (π, di , +) also serve to show that
any of the languages N (F, +) with F ⊆ {π, di} collapses to N (F) at the level of
boolean queries.

5 Expressions with conditionals

To facilitate achieving the goals set at the end of the previous section, we shall
first simplify the expressions under consideration. In Section 2, we introduced
conditionals, which are constants at the syntactical level, representing at the se-
mantic level functions that associate to each graph a set of identical pairs of that
graph. Now, notice that any subexpression of the form π1(f) or π2(f) of an ex-
pression in N (π, di , +) can be interpreted as a function defining the semantics of
some conditional. Given an expression in N (π, di , +), we shall therefore as a first
step replace all projection subexpressions which themselves do not occur within
a projection subexpression by a conditional with the same semantics. In this
way, projection is formally eliminated, which simplifies the further development
considerably. Once we have a partial result for this case, we will reintroduce the
projections and bootstrap the initial result to the desired result.

Example 2. Consider the expression (R ◦ π1((R3 ◦ di ◦ π2(R2) ◦R)+))+ ◦R2. If
we associate a conditional c to π1((R3 ◦ di ◦ π2(R2) ◦ R)+), the expression can
be rewritten as (R ◦ c1)+ ◦R2, i.e., the projection has formally been eliminated.

10 Fletcher, Gyssens, Leinders, et al.

L(f2)

L(id) =

L(R) =

L(di) =

if L(f1) =

and L(f2) =

then L(f1 ◦ f2) =

L(ci) =

t

ts

t

C2

C1 ∪ C2

s, t

{ci}

R

s t

di

s, t

s

s

s

t

∅

C1L(f1)

L(f2)

L(f1)

Fig. 1. Definition of the line pattern L(f) of a union-free expression in N (Γ, di).

Therefore, we introduce a finite set of conditionals Γ = {c1, . . . , cp}, and
consider the language N (Γ, di , +), as well as some of its sublanguages. Later on,
we will choose p as a function of the number of projection subexpressions in the
expression under consideration.

A useful property is that, for union-free expressions in N (Γ, di), the presence
of a particular pair of nodes of a graph in the output of the expression applied
to the graph can be rephrased as the existence of a particular homomorphism
from a chain-like directed graph, representing the expression, into the graph.

More concretely, let f be a union-free expression in N (Γ, di). We shall asso-
ciate a line pattern L(f) with f . This line pattern is a chain-like directed graph
in which each edge is labeled with either “R” or “di” and each node is labeled
by a (possibly empty) set of conditionals. In addition, each line pattern has one
source node, labeled s, and one target node, labeled t, which may coincide. The
precise, inductive, definition is given in Figure 1.

Line patterns are special cases of graph patterns. A graph pattern is a directed
graph in which each edge is labeled with either “R” or “di” and each node is
labeled by a (possibly empty) set of conditionals. At least one node is marked
as source, and at least one node is marked as target.

Let P be a graph pattern, and let G be a directed graph. A mapping h from
the nodes of P to the nodes of G is called a homomorphism from P to G if

1. for each node v of P, all the conditionals by which v is labeled are satisfied
by h(v) in G;

2. for each edge (v,w) of P labeled by “R”, (h(v), h(w)) is an edge of G; and
3. for each edge (v,w) of P labeled by “di”, h(v) 6= h(w).

Boolean Expressiveness of Transitive Closure on Graphs 11

Notice that we use boldface characters for the nodes of line and graph pat-
terns to distinguish them clearly from the nodes of the input graph.

General graph patterns will be put to use in Section 6 to construct, given
an expression e in N (Γ, di , +), a natural number m, an EDAG G of depth at
most m, and a node v of G, a sequence of subgraphs of G. The number of nodes
of these subgraphs can be bounded by a natural number depending only on m
and e. This last property is essential for our proof strategy to work, as explained
at the end of Section 4.

Turning back to line patterns for now, the following result is obvious.

Proposition 4. Let G be a directed graph and let f be a union-free expression
in N (Γ, di). Let L(f) be the line pattern of f . Let v and w be nodes of G. Then
(v, w) ∈ f(G) if and only if there exists a homomorphism h from L(f) to G with
h(s) = v and h(t) = w.

In order to put line patterns to use, we must link expressions in N (Γ, di , +)
to union-free expressions in N (Γ, di). Thereto, we introduce trace expressions.

Definition 4. Let e be an expression in N (Γ, di , +). Then, T (e), the set of
trace expressions of e, is defined recursively, as follows:

– if e is an atomic expression, then T (e) = {e};
– T (e1 ∪ e2) = T (e1) ∪ T (e2);
– T (e1 ◦ e2) = {τ1 ◦ τ2 | τ1 ∈ T (e1) & τ2 ∈ T (e2)}; and
– T (e+) =

⋃
n>0{τ1 ◦ · · · ◦ τn | ∀i = 1, . . . , n : τi ∈ T (e)}.

Notice that trace expressions do not contain “∪” and “+”.
By a straightforward structural induction, one can show the following.

Proposition 5. Let e be an expression in N (Γ, di , +). Let G be a graph and
v and w nodes of G. Then, (v, w) ∈ e(G) if and only if there exists a trace
expression f ∈ T (e) such that (v, w) ∈ f(G).

The problem with trace expressions is that they may contain a lot of redun-
dancy. Therefore, we define the following notions.

Definition 5. Let n be a nonzero natural number. An expression g in N (Γ)
is n-normal if (1) g is union-free, (2) |g|R ≤ n, and (3) a subexpression of g
consisting only of “id” conditionals, and composition has at most one occurrence
of “id” and at most one occurrence of every conditional.

Observe that, for all n, “id” is always n-normal. We denote the n-normal
expressions of N (Γ) by N norm

n (Γ).

Definition 6. Let n be a nonzero natural number. An expression f in N (Γ, di)
is n-normal if it is of the form g1◦di ◦g2◦di ◦· · ·◦gk−1◦di ◦gk, with g1, . . . , gk ∈
N norm

n (Γ).

12 Fletcher, Gyssens, Leinders, et al.

In particular, all n-normal expressions of N (Γ) are also n-normal expressions
of N (Γ, di). We denote the n-normal expressions of N (Γ, di) by N norm

n (Γ, di).
The interest of normal expressions lays in the following proposition.

Proposition 6. Let Γ = {c1, . . . , cp} be a set of conditionals, and let n be a
nonzero natural number. Then,

1. the number of atomic subexpressions of an expression of N norm
n (Γ) can be

bounded by a number depending only on n and p; and
2. the number of expressions in N norm

n (Γ) is finite, and can be bounded by a
number depending only on n and p.

Given a nonzero natural number n, we now define the set T norm
n (e) of n-

normal trace expressions as the set of all expressions N norm
n (Γ, di) for which

there exists an equivalent expression in T (e) at the level of path queries.
The following result states that trace expressions can be normalized provided

the input graph is an EDAG of bounded depth.

Proposition 7. Let m be a nonzero natural number, and let e be an expression
in N (Γ, di , +). Then, there exists a nonzero natural number n depending only on
m and e such that, for every EDAG G of depth at most m, and for every pair of
nodes v and w of G, (v, w) ∈ e(G) if and only if there exists an n-normal trace
expression f in T norm

n (e) for which (v, w) ∈ f(G).

6 Canonical subgraphs

Given a set of conditionals Γ = {c1, . . . , cp}, a natural number n, a directed
graph G, and a node v of G, we shall now define a sequence of so-called n-
canonical subgraphs Gv

0, G
v
1, G

v
2, . . . of order 0, 1, 2, (In the notation, we shall

leave Γ and n implicit.)
Important for our purpose is that it will turn out that the number of nodes

of each of these n-canonical subgraphs depends only on its order and on p and n,
but not on the particular graph G or the particular node v under consideration.

We start by defining Gv
0.

Thereto, let g be an expression in N norm
n (Γ). We define P(g) to be the set

of graph patterns that can be obtained from L(g) in the following way:

1. Start with one, two, three, or four pairwise disjoint copies of L(g).
2. Optionally, merge some of the source nodes of these copies.
3. Optionally, merge some of the target nodes of these copies.
4. Optionally, connect some of the remaining source nodes by “di” edges.
5. Optionally, connect some of the remaining target nodes by “di” edges.

Observe that the line pattern L(g) itself is always in P(g).
Figure 2 shows a more representative example of a graph pattern that belongs

to P(g).
Now, let P be a graph pattern in P(g), and let v be a node of G. With P,

we associate a minimal (in number of elements) set Hv(P) of homomorphisms
from P to G satisfying the following conditions:

Boolean Expressiveness of Transitive Closure on Graphs 13

di

L(g) t3

di
L(g)

s3 t4

s2

di

L(g)

s1

L(g)

t1

t2
di

Fig. 2. Example of a graph pattern in P(g).

1. if there exists a homomorphism from P to G, then Hv(P) 6= ∅;
2. if, for an arbitrary node v of P, there exist two homomorphisms from P to G

mapping v to different nodes of G, then Hv(P) contains two homomorphisms
from P to G mapping v to different nodes of G;

3. if P has a single source node s and there exists a homomorphism from P to
G mapping s to v, then Hv(P) contains such a homomorphism;

4. if P has a single target node t and there exists a homomorphism from P to
G mapping t to v, then Hv(P) contains such a homomorphism;

For a good understanding, we first observe the following:

– Given P, G, and v, we choose a minimal set of homomorphisms Hv(P)
satisfying the above conditions. In other words, it is to be expected that, in
general, several sets of homomorphisms satisfy the above conditions. From
these, we pick one arbitrarily, and denote it by Hv(P).

– The definition of Hv(P) refers explicitly to v only if P has either a single
source node, or a single target node, or both. In all other cases, we may
therefore choose Hv(P) independent of v.

We are now ready to define Gv
0, the basic n-canonical subgraph of order 0:

Gv
0 =

⋃
g∈Nnorm

n (Γ)

⋃
P∈P(g)

⋃
h∈Hv(P)

h(P).

In the above formula, h(P) must be understood as the subgraph of G the set
of nodes of which is {h(v) | v is a node of P} and the set of edges of which
is {(h(v), h(w)) | (v,w) is an R-labeled edge of P}. The basic n-canonical sub-
graph of order 0 is then defined as a union of some of these subgraphs, where

14 Fletcher, Gyssens, Leinders, et al.

this union must be interpreted componentwise, i.e., the set of nodes and the set
of edges of this union are the union of the sets of nodes and the union of the
sets of edges of the subgraphs involved.

We point out at this stage that if a node v of G satisfies a conditional c, and
G′ is a subgraph of G containing v, then a priori v does not have to satisfy c
in G′. We shall therefore avoid evaluating expressions over subgraphs of G (in
particular, the canonical ones), until we reinterpret conditionals as the projection
subexpressions for which they actually stand, in Section 8.

At this point, several aspects of the definition of the basic n-canonical sub-
graph of order 0 have been left unexplained, in particular,

– the definition of the set of graph patterns P(g) for g ∈ N norm
n (Γ), and, more

specifically, why up to four copies of the line pattern L(g) are allowed in
such a graph pattern; and

– the definition of the set of homomorphisms Hv(P) for P ∈ P(g).

These definitions are tailored to make the key results Propositions 10 and 11
in Section 7 work, as is explained in that section. The essence is that, given
an n-normal trace expression f in T norm

n (e) and a homomorphism h from L(f)
to G, we wish to show via an inductive process that there also exists such a
homomorphism of which the image is fully contained in one of the n-canonical
subgraphs of order 0. On the one hand, we must ensure that the n-canonical
subgraphs of order 0 are sufficiently large for this process to work, but, on the
other hand, we must also ensure that their size can be bounded by a bound not
depending on the size of G (see Proposition 9, below). Obtaining this delicate
balance is what lead to the definition above.

However, Propositions 10 and 11 are but the first albeit important step in
proving the collapse ofN (π, di , +) toN (π, di). Indeed, the conditionals represent
projection conditions, and the operands of these projections may in turn contain
projection conditions.

To accommodate this, we next define Gv
1, G

v
2, . . ., the n-canonical subgraphs

of G of order 1, 2, . . ., with the following inductive rule. For i > 0,

Gv
i = Gv

0 ∪

 ⋃
w node of Gv

0

Gw
i−1

 .

The following property of n-canonical subgraphs is straightforward.

Proposition 8. Given a set of conditionals Γ = {c1, . . . , cp}, a nonzero natural
number n, and a directed graph G, we have, for every node v of G and for
i = 0, 1, 2, . . ., that Gv

i is a subgraph of Gv
i+1.

The n-canonical subgraphs of G of higher order are put to use in Section 8,
more in particular in Proposition 12.

Boolean Expressiveness of Transitive Closure on Graphs 15

For the remainder of the exposition, it is important that we can also provide
bounds on the sizes of the n-canonical subgraphs of G.

Proposition 9. Given a set of conditionals Γ = {c1, . . . , cp}, a nonzero natural
number n, and a directed graph G, we have, for every node v of G and for
i = 0, 1, 2, . . ., that the number of nodes in Gv

i can be bounded by a number
depending only on n, p, and i.

7 The key result

Let Γ = {c1, . . . , cp} be a set of conditionals. The key results on which the
second step in our proof strategy for the collapse of N (Γ, di , +) to N (Γ, di) at
the boolean level (cf. item 2 on p. 7 and the concluding paragraphs of Section 4)
rely, are the following.

Proposition 10. Let m be a nonzero natural number, and let e be an expression
in N (Γ, di , +). Then, there exists a nonzero natural number n depending only on
m and e such that, for every EDAG G of depth at most m, and for every node
v of G, if there exists a node w in G such that (v, w) ∈ e(G), then there exists
an n-normal trace expression f in T norm

n (e) and a homomorphism h from L(f)
to G such that h(s) = v and h(L(f)) is contained in Gv

0, with s the source node
of the line pattern L(f) and Gv

0 the basic n-canonical subgraph of G.

Proposition 11. Let m be a nonzero natural number, and let e be an expression
in N (Γ, di , +). Then, there exists a nonzero natural number n depending only on
m and e such that, for every EDAG G of depth at most m, and for every node
w of G, if there exists a node v in G such that (v, w) ∈ e(G), then there exists
an n-normal trace expression f in T norm

n (e) and a homomorphism h from L(f)
to G such that h(t) = w and h(L(f)) is contained in Gw

0 , with t the target node
of the line pattern L(f) and Gw

0 the basic n-canonical subgraph of G.

It is important to notice here that the homomorphism h in Propositions 10
and 11 need not be a homomorphism from L(f) to Gv

0, respectively Gw
0 . If this

were the case, then, by Proposition 4, (v, w) ∈ e(Gv
0), respectively (v, w) ∈

e(Gw
0), and we would have found the subgraphs Gv of G we set out to find at

the end of Section 4 to achieve the second step of our proof strategy. However,
this is in general not the case, the reason being that conditionals are in general
not preserved under taking subgraphs. Indeed, if z is a node of G such that
(z, z) ∈ ci(G), 1 ≤ i ≤ p, then it does not follow that, necessarily, (z, z) ∈ ci(Gv

0).
As mentioned, the case that we are interested in is the case where the conditionals
are in fact projection conditions. These have the property of being monotone. To
guarantee the above implication, we will therefore have to extend the subgraph
Gv

0, and that is where the normal subgraphs of higher order come in play, at a
later stage of our development, in Section 8.

Because of the strong analogy between both Propositions, we shall focus here
on the proof of Proposition 10. It can be easily seen that Proposition 10 follows
from Propositions 7 and 4, provided we can prove the following lemma.

16 Fletcher, Gyssens, Leinders, et al.

Lemma 2. Let G be a directed graph, let n be a nonzero natural number, and let
f be an n-normal expression in N norm

n (Γ, di). Let v be a node of G. If there exists
a homomorphism h from L(f) to G such that h(s) = v, with s the source node of
L(f), then there exists a homomorphism h′ from L(f) to G such that h′(s) = v
and h′(L(f)) is contained in Gv

0, with Gv
0 the basic n-canonical subgraph of G.

If we write f = g1◦di ◦g2◦di ◦· · ·◦gn−1◦di ◦gn, with g1, . . . , gn ∈ N norm
m (Γ),

a sensible way to prove Lemma 2 is to consider the expressions fi = g1 ◦ di ◦ g2 ◦
di ◦· · ·◦gi−1 ◦di ◦gi, for i = 1, . . . , n, and to prove the Lemma by induction on i.
The basis of the induction, i = 1, is straightforward from the construction of the
subgraph Gv

0. Thus suppose that, for 1 < i ≤ n, we have established the existence
of a homomorphism h′i−1 from L(fi−1) to G such that h′i−1(s) = v (s being the
source node of L(fi−1)) and h′i−1(L(fi−1)) is contained in Gv

0. We would like
to extend h′i−1 to a homomorphism h′i from L(fi) to G such that h′i(L(fi))
is contained in Gv

0. Thus, consider L(gi), which is a subpattern of L(fi). The
restriction of h to the nodes of L(gi) is a homomorphism from L(gi) to G. Hence,
Hv(L(gi)) contains a homomorphism hL(gi) from L(gi) to G, and, by construction
of Gv

0, hL(gi)(L(gi)) is contained in Gv
0. Now, let ti−1 be the target node of

L(fi−1) and si the source node of L(gi). If h′i−1(ti−1) 6= hL(gi)(si), the extension
is straightforward. However, we cannot exclude that h′i−1(ti−1) = hL(gi)(si). If
this is the case, it may even be so that hL(gi) is the only homomorphism mapping
L(gi) to G. Then, we cannot even consider an alternative homomorphism from
L(gi) to G to make our extension strategy work.

However, we can avoid this pitfall by proving a slightly stronger statement.

Lemma 3. Let G be a directed graph, let n be a nonzero natural number, and
let f be an n-normal expression in N norm

n (Γ, di). Let v be a node of G, and let
Gv

0 be the basic n-canonical subgraph of G. Then,

1. if there exist homomorphisms h1 and h2 from L(f) to G such that h1(s) =
h2(s) = v and h1(t) 6= h2(t), with s and t the source and target nodes of
L(f), then there exist homomorphisms h′1 and h′2 from L(f) to G such that
h′1(s) = h′2(s) = v, h′1(t) 6= h′2(t), and h′1(L(f)) and h′2(L(f)) are both
contained in Gv

0;
2. otherwise, if there exists a homomorphism h from L(f) to G such that h(s) =

v, with s the source node of L(f), then there exists a homomorphism h′ from
L(f) to G such that h′(s) = v and h(L(f)) is contained in Gv

0.

The proof goes along the lines of the sketch we gave of the (failed) proof for
Lemma 2. In the induction step, we may be in Case 1 or Case 2 of Lemma 2, and
to carry out the inductive argument, we may be in Case 1 or Case 2 as far as
the induction hypothesis is concerned, giving rise to four possible combinations
we need to consider. However, when we are in Case 2 as far as the induction
hypothesis is concerned, then, compared to our naive attempt to prove Lemma 2
directly, we can make use of the additional information that all homomorphisms
from the line pattern under consideration map the target node to the same node
of G, for, otherwise, we would be in Case 1. This additional information will
prevent us from getting stuck in this case.

Boolean Expressiveness of Transitive Closure on Graphs 17

Each time we get a conflict of the sort described in the failed direct proof for
Lemma 2, we will create a graph pattern by combining the given information on
the existence of homomorphisms from the line segment under consideration to
G with the (not directly usable) homomorphisms from this line segment to G of
which the image is fully contained in Gv

0. We will reflect our knowledge on the
equality or distinctness of nodes in the images of the various homomorphism by
merging the corresponding nodes in the graph pattern (in the case of equality)
or connecting these nodes by “di” edges (in the case of distinctness). This will
result in a graph pattern such as the one shown in Figure 2. As, by construction,
this graph pattern can be mapped homomorphically to G, it can also be mapped
homomorphically to G in such a way that the image is contained in Gv

0, provided
the graph pattern does not contain more than four pairwise disjoint copies of the
line segment under consideration. It turns out that, in each of the cases we must
consider, this is indeed so. The richer information we obtain from the existence
of a homomorphism mapping the graph pattern within Gv

0 as opposed to the
existence of a homomorphism just mapping the line pattern within Gv

0 turns out
to be sufficient to carry out the inductive step successfully.

8 The collapse

We are now ready to deal with expressions in N (π, di , +) and bootstrap Proposi-
tions 10 and 11 by considering that conditionals stand for projection subexpres-
sions. We recall that the homomorphism h in the statements of these propositions
is a homomorphism from L(f) to G such that h(s) = v and h(L(f)) is contained
in Gv

0, but not necessarily a homomorphism from L(f) to Gv
0, the reason being

that a node of Gv
0 satisfying a particular conditional within G does not have to

satisfy the same conditional within Gv
0. Using that the conditionals stand for

projection subexpressions, and using the monotonicity of the projection opera-
tor, we are able to establish that Gv

0 can be extended to a higher-order canonical
subgraph of G, say Gv

i , such that h is also a homomorphism from L(f) to Gv
i .

Only then will we be able to conclude that (v, h(t)) ∈ e(Gv
i), with t the target

node of L(f) and can we complete our argument.
For this purpose, we first define the π-nesting depth depthπ(e) of an expres-

sion e in N (π, di , +) as follows, inductively:

– if e is in N (di , +), then depthπ(e) = 0;
– depthπ(π1(e)) = depthπ(π2(e)) = depthπ(e) + 1;
– depthπ(e1 ∪ e2) = max(depthπ(e1),depthπ(e2));
– depthπ(e1 ◦ e2) = max(depthπ(e1),depthπ(e2)); and
– depthπ(e+) = depthπ(e).

With every subexpression πi(f), i = 1, 2, of e, we can associate a conditional
the semantics of which is precisely described by this subexpression πi(f). We
denote the set of all these conditionals by Π(e).

We can now show the following.

18 Fletcher, Gyssens, Leinders, et al.

Proposition 12. Let m be a nonzero natural number, and let e be an expression
in N (π, di , +). Let ` := depthπ(e). Then, there exists a nonzero natural number n
depending only on m and e such that, for every EDAG G of depth at most m, and,
for every node v of G, if there exists a node w in G such that (v, w) ∈ e(G), then
there exists a node w′ in Gv

` such that (v, w′) ∈ e(Gv
`), with Gv

` the n-canonical
subgraph of G of order ` for the set of conditionals Γ := Π(e).

Proposition 12 is shown by proving that an extended version of it holds for
every subexpression of e, by induction on its π-nesting depth. Propositions 10
and 11 play a key role in this, where the former is needed to deal with the first
projection and the latter to deal with the second projection. Notice that, for the
expression e itself, Proposition 10 already yields that, for some n-normal trace
expression f in T norm

n (e), there exists a homomorphism h from the line pattern
L(f) to G such that h(s) = v and h(L(f)) is contained in Gv

0, with s the source
node of L(f) and Gv

0 the basic n-canonical subgraph of G. It now turns out
that the Gv

` , the n-canonical subgraph of G of order `, is an extension of Gv
0 for

which each node of Gv
0 satisfying some conditional of Π(e) in G also satisfies this

conditional in Gv
` , but not necessarily in Gv

0! Hence, h, while in general not a
homomorphism from L(f) to Gv

0, is a homomorphism from L(f) to Gv
` , and we

can then invoke Propositions 7 and 4 to obtain the conclusion of Proposition 12.
Now, from Proposition 9, it immediately follows that we can bound the num-

ber of nodes in Gv
` by a number s depending only on m and e. Hence, we have

all the ingredients needed to complete the second step of our proof strategy as
explained at the end of Section 4, and we may thus conclude the following.

Theorem 3. Let m be a nonzero natural number, and let e be an expression in
N (π, di , +). Then, there exists a nonzero number s depending only on m and e
such that, for every EDAG G with depth at most m, e(G) 6= ∅ if and only if
e′(G) 6= ∅, where e′ is the expression in N (π, di) obtained from e by exhaustively
replacing each subexpression of the form f+ by

⋃s
i=1 f i.

Since the parameter s, the bound on the size of the graphs Gv
` in Propo-

sition 12, is of very high complexity in m, it may require very large graphs G
before the difference between G and its subgraphs Gv

` becomes significant.8

Combining Theorems 2 and 3, we see that N (π, di , +) collapses to N (π, di)
at the level of boolean queries. Furthermore, if F is a subset of {π, di} and e is
more specifically an expression of N (F, +), then it follows that the expression
e′ defined in Theorem 3 is more specifically in N (F). From our proof, we may
therefore also conclude the following.

Corollary 2. Let F ⊆ {π, di}. Then N (F, +) collapses to N (F) at the level of
boolean queries.

8 For the same reason, it was not possible to “discover” Proposition 12 and the ensuing
Theorem 3 by looking at simple examples.

Boolean Expressiveness of Transitive Closure on Graphs 19

9 Conclusions and future work

We now have a complete understanding of the impact of adding transitive closure
to the relation algebra fragments considered. While it is well-known that transi-
tive closure adds expressive power to all fragments at the level of path queries [4],
and the same was established in previous work of the present authors [10] at the
level of boolean queries on labeled graphs (multiple input relations), we have
now established, in contrast, that, while adding transitive closure adds expres-
sive power to most relation algebra fragments at the level of boolean queries on
unlabeled graphs (a single input relation), it does not add expressive power to
N (F), with F a set of nonbasic features, if and only if F ⊆ {π, di}.

Towards future work, one may investigate similar problems for other logics.
An operation we did not consider, for instance, is residuation. Residuation [22]
is similar to the standard relational division operation in databases, and corre-
sponds to the set containment join [18].

References

1. RDF primer (2004), http://www.w3.org/TR/rdf-primer/

2. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann (1999)

3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley,
Reading, MA (1995)

4. Aho, A.V., Ullman, J.D.: The universality of data retrieval languages. In: Confer-
ence Record of the Sixth Annual ACM Symposium on Principles of Programming
Languages, San Antonio, Texas, January 1979. pp. 110–120 (1979)

5. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1–39 (2008)

6. Baader, F., Calvanese, D., McGuiness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook. Cambridge University Press (2003)

7. Benedikt, M., Fan, W., Kuper, G.M.: Structural properties of XPath fragments.
In: ICDT. pp. 79–95 (2003)

8. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic
Web Inf. Syst. 5(3), 1–22 (2009)

9. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2001)

10. Fletcher, G.H.L., Gyssens, M., Leinders, D., Van den Bussche, J., Van Gucht, D.,
Vansummeren, S., Wu, Y.: Relative expressive power of navigational querying on
graphs. In: Milo, T. (ed.) ICDT. pp. 197–207. ACM (2011)

11. Florescu, D., Levy, A., Mendelzon, A.: Database techniques for the World-Wide
Web: A survey. SIGMOD Record 27(3), 59–74 (1998)

12. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new
abstraction for information management. SIGMOD Record 34(4), 27–33 (2005)

13. Gyssens, M., Paredaens, J., Van Gucht, D., Fletcher, G.H.L.: Structural char-
acterizations of the semantics of XPath as navigation tool on a document. In:
Vansummeren, S. (ed.) PODS. pp. 318–327. ACM (2006)

14. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)

20 Fletcher, Gyssens, Leinders, et al.

15. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space,
Synthesis Lectures on the Semantic Web: Theory and Technology, vol. 1. Morgan
& Claypool Publishers, 1st edn. (February 2011)

16. Libkin, L.: Elements of Finite Model Theory. Springer, Berlin (2004)
17. Maddux, R.D.: Relation Algebras. Elsevier, Amsterdam (2006)
18. Mamoulis, N.: Efficient processing of joins on set-valued attributes. In: Proceedings

ACM SIGMOD International Conference on Management of Data. pp. 157–168
(2003)

19. Marx, M., Venema, Y.: Multi-Dimensional Modal Logic. Springer (1997)
20. Marx, M.: Conditional XPath. ACM Trans. Database Syst. 30(4), 929–959 (2005)
21. Marx, M., de Rijke, M.: Semantic characterizations of navigational XPath. SIG-

MOD Record 34(2), 41–46 (2005)
22. Pratt, V.R.: Origins of the calculus of binary relations. In: Proceedings 7th Annual

IEEE Symposium on Logic in Computer Science. pp. 248–254 (1992)
23. Tarski, A.: On the calculus of relations. J. of Symbolic Logic 6(3), 73–89 (1941)
24. Tarski, A., Givant, S.: A Formalization of Set Theory without Variables. American

Mathematical Society (1987)
25. Wu, Y., Van Gucht, D., Gyssens, M., Paredaens, J.: A study of a positive fragment

of Path queries: Expressiveness, normal form and minimization. Comput. J. 54(7),
1091–1118 (2011)

