
© The Author 2010. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on July 11, 2010 doi:10.1093/comjnl/bxq055

A Study of a Positive Fragment of Path
Queries: Expressiveness, Normal Form

and Minimization

Yuqing Wu
1
, Dirk Van Gucht

1
, Marc Gyssens

2,∗
and Jan Paredaens

3

1School of Informatics and Computing, Lindley Hall, Indiana University, Bloomington, IN 47405, USA
2Faculty of Sciences, Hasselt University & Transnational University of Limburg, Agoralaan, Bldg D,

3590 Diepenbeek, Belgium
3Department of Mathematics & Computer Science, University of Antwerp, Bldg. G, Middelheimlaan 1,

2020 Antwerpen, Belgium
∗Corresponding author: marc.gyssens@uhasselt.be

We study the expressiveness of a positive fragment of path queries, denoted Path+, on documents
that can be represented as node-labeled trees. The expressiveness of Path+ is studied from two angles.
First, we establish that Path+ is equivalent in expressive power to two particular subfragments, as
well as to the class of tree queries, a subclass of the first-order conjunctive queries defined over the
label, parent–child and child–parent predicates. The translation algorithm from tree queries to Path+
yields a normal form for Path+ queries. Using this normal form, we can decompose a Path+ query
into subqueries that can be expressed in a very small fragment of Path+ for which efficient evaluation
strategies are available. Second, we characterize the expressiveness of Path+ in terms of its ability
to resolve nodes in a document. This result is used to show that each tree query can be translated
to a unique, equivalent and minimal tree query. The combination of these results yields an effective

strategy to evaluate a large class of path queries on documents.

Keywords: XML; path query; normal form; expressiveness; minimization

Received 4 January 2010; revised 15 April 2010
Handling editor: Leonid Libkin

1. INTRODUCTION

Over the last decade, XQuery [1] has become a standard for
declarative querying of XML documents. For our purposes, an
XML document is a finite, unordered, node-labeled tree, and
a query is a function that associates to a document a set of
paths between its nodes, which we represent as pairs of the start
and end nodes. More in particular, we are interested in positive
XQuery queries in which only the self, parent and child axes are
used, and which constitute an important fragment of XQuery
(see, e.g. [2, 3]).An example of such a query is shown in Fig. 1.1

We can express such queries in an algebraic path query
language that we call Path+. Path+ allows returning the empty

1In the query of Fig. 1, the descendant axis is merely used to indicate that
the query may be evaluated at any node of the document under consideration,
and not only at the root. As mentioned, the descendant axis does not occur in
the actual query.

set, label examination, parent/child navigation, composition,
first and second projections, intersection and inversion. More
precisely, the expressions of Path+ are

E := ∅ | ε | �̂ | ↓ | ↑ |E; E | �1(E) | �2(E) | E ∩ E | E−1,

where the primitives ‘∅’, ‘ε’, ‘�̂’, ‘↓’, ‘↑’, respectively, return
the empty set, the set of paths of length 0, the set of paths
of length 0 conditioned by a specific label, the set of paths of
length 1 along the child axis, and the set of paths of length 1
along the parent axis, and the operations ‘;’, ‘�1’, ‘�2’, ‘∩’and
‘−1’, respectively, denote composition, first projection, second
projection, intersection and inversion of sets of paths. The
precise semantics of these operations is described in Fig. 4.
Projections allow for a clean expression of predication in
XQuery, which we do not explicitly add to our language. Path+
is fully capable of expressing the XQuery query in Fig. 1 in an

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1092 Y. Wu et al.

for $i in doc(...)//a/b[*/a]
for $j in $i/c/*/d[e]

for $k in $j/*/f
return ($i, $k)
intersect
for $i in doc(...)//a/b

for $j in $i/c/a/d
for $k in $j/c/f

return ($i, $k)

FIGURE 1. Example of a positive query in XQuery.

algebraic form as

�2(â; ↓); b̂; �1(↓; ↓; â); ↓; ĉ; ↓; ↓; d̂; �1(↓; ê); ↓; ↓; f̂

∩ �2(â; ↓); b̂; ↓; ĉ; ↓; â; ↓; d̂; ↓; ĉ; ↓; f̂ ,

in which we assume the intersection operation to have lower
priority than the composition operation.

Besides this algebraic formalism, we shall also consider a
declarative formalism, namely a particular class of tree queries.
Two examples of such tree queries are shown in Fig. 2. Just
like documents, tree queries are finite, unordered, labeled trees.
Unlike documents, tree queries may contain nodes labeled by
a wildcard that intuitively is supposed to be compatible with
any label. In addition, two nodes (which may coincide) are

d

d

11

8 10ce

f d

a 6

c 5

s2

a

1

b

4

a

3∗

b

1

a

2 s

3+5c

4+6a

7d

11

8 10ce

f

7

FIGURE 2. Two tree queries. The left one is the straightforward
translation of the Path+ expression most faithfully corresponding to
the positive XQuery query in Fig. 1. The right one is obtained by
reducing the left one to the unique minimal tree query equivalent to it.

marked as, respectively, s(ource) and d(estination). In general,
the source node need not be an ancestor of the destination node.
The semantics of a tree query given a document is as follows.
We consider all mappings of the nodes of the tree query to the
nodes of the document preserving labels and the parent–child
relationship. For each such mapping, the tree query returns the
pair of nodes of the document on which source and destination
have been mapped. Notice that the source node need not be
mapped to the root of the document. Both tree queries shown
in Fig. 2 can be seen to be actually equivalent to the XQuery
query in Fig. 1. The tree query in Fig. 2, left, is the one most
faithfully translating the XQuery query in Fig. 1, but the tree
query in Fig. 2, right, is obviously simpler.

In this paper, we study Path+ from the perspective of
query expressiveness, resolution expressiveness, minimization,
optimization and evaluation. More in particular, we discuss and
show the following.

In Section 2, we position our own work in the context of
related work. In particular, we position Path+ among related
languages considered in the literature.

In Section 3, we present formal definitions of our document
model, Path+, and tree queries, and of some related notions.

In Section 4, we establish that Path+ is equivalent in
expressive power to two of its fragments, notably Path+(∩)

and Path+(�1, �2). Besides the primitives and the composition
operation, the former fragment only contains the intersection
operation, whereas the latter only contains the projection
operations. For example, the Path+ expression above is
equivalent to the Path+(∩) expression

(↑; â; ↓ ∩ ε); b̂; (↓; ↓; â; ↑; ↑); ↓; ĉ; ↓; ↓; d̂; (↓; ê; ↑); ↓; ↓;
f̂ ∩ (↑; â; ↓ ∩ ε); b̂; ↓; ĉ; ↓; â; ↓; d̂; ↓; ĉ; ↓; f̂

and to the Path+(�1, �2) expression

�2(â; ↓); b̂; �1(↓; ↓; â); ↓; ĉ; ↓; â; ↓; d̂;
�1(↓; ê); ↓; ĉ; ↓; f̂ .

In the process, we also establish that Path+ is equivalent to
the class of tree queries we consider. In addition, we present
translation algorithms between any pair of languages studied.

In Section 5, we observe and prove that the translation of tree
queries into Path+(�1, �2) expressions yields a clean normal
form for general Path+ queries. In particular, the parent axis
only occurs at the outermost level of nesting with respect to
the projection operations. In addition, all parent axes precede
all child axes at this level, and the second projection can only
occur once, in between the subexpression with the parent axes
and the subexpression with the child axes. Notice that this is
indeed the case for the Path+(�1, �2) expression above, in
which the parent axis does not occur. Finally, we connect our
normal form with the structure of the tree query from which it
can be derived.

In Section 6, we study the resolution or distinguishability
expressiveness of Path+ applied to a particular document. We

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Study of a Positive Fragment of Path Queries 1093

propose the structural notions of perfect similarity and perfect
bisimilarity of nodes of a document, and show that two nodes
cannot be distinguished by a Path+ expression if and only if
they are perfectly similar or bisimilar, depending on the precise
meaning we give to distinguishability. We bootstrap this result
to the level of distinguishability of paths by Path+ expressions.
In particular, the result of a Path+ expression on a document
is the union of blocks of paths which are mutually perfectly
bisimilar. We also use these results to show that certain path
queries cannot be expressed in Path+.

In Section 7, we present an algorithm to reduce tree queries,
and show that this algorithm results in the unique minimal tree
query (with respect to the number of nodes) that is equivalent to
the given one. In particular, we relate the capability for reduction
of a tree query to (a generalization of) perfect similarity between
some of its nodes. We also show that the translation of a minimal
tree query into a Path+ expression is also minimal, this time
with respect to the number of parent and child axes occurring in
the expression. For example, the minimal tree query equivalent
to the tree query in Fig. 2, left, is shown in Fig. 2, right. The
corresponding minimal Path+ expression is

�2(â; ↓); b̂; ↓; ĉ; ↓; â; ↓; d̂; �1(↓; ê); ↓; ĉ; ↓; f̂ .

Finally, we establish a strong connection between minimal
Path+ expressions and the normal form presented in Section 5.

In Section 8, We also discuss the ramifications of our work on
query decomposition and evaluation of Path+ expressions and
more general path queries. On the one hand, we show that there
exist index-only evaluation plans to evaluate Path+ queries. On
the other hand, we argue that Path+ expressions can be regarded
as building blocks for more general path queries, such as those
involving set union and set difference, and the ancestor and
descendant axes. As such, Path+ can be viewed to path queries,
as select-project-join queries are viewed to relational queries.

In Section 9, we discuss some complexity-related issues
concerning the algorithms presented in this paper. We argue that
they all have low polynomial complexity, i.e. linear of quadratic.

In Section 10, we propose some directions for future work.

2. RELATED WORK

Many researchers have introduced algebraic and logical
abstractions in order to study formal aspects of XQuery [1]
or XPath [4] and several of its fragments [5–11]. Research
on XPath and its sublanguages has been focusing on the
expressiveness and the efficient evaluation of these languages.
Tree queries or pattern trees are also natural to XML. They
have been studied ever since XML and query languages
on XML were introduced. Such studies cover areas from
minimization [12, 14–18] to efficient evaluation of tree
queries [3, 19, 20]. Most of these papers use the standard

node-set semantics of XPath.2 In our work, we focus on the
path semantics which is more natural to XQuery, which has
already been considered previously in [8–10, 21]. To our
knowledge, Path+ as such has not been studied previously.
It is a strict subset of Core XPath under path semantics [8],
which allows negation in predication, and a strict superset of the
language X ↑

[] of Benedikt et al. [6]. In earlier work of some of
the present authors [9, 18], the languages under consideration
either allowed for some form of negation, or disallowed the
simultaneous occurrence of the child and parent axes.

Tree queries or tree patterns have been proposed as an
alternative paradigm to query XML documents, but most
of these proposals [6, 11–13], when interpreted in the path
semantics as we do, only consider tree queries where the context
or source node is the root, and, therefore, can only return
ancestor–descendant pairs. To our knowledge, only Kimelfeld
and Sagiv [16] and ten Cate [10] considered tree queries where
the source node need not be the root. However, Kimelfeld and
Sagiv did not link tree queries to fragments of XQuery or
XPath, whereas ten Cate considered tree queries that are a strict
generalization of ours, in that to each node a condition may be
associated that contains forms of negation.

Besides proving that Path+ is equivalent to the language of
tree queries, we also show that Path+ is equivalent to two of
its fragments, Path+(∩) (in which, besides the primitives and
composition, only intersection is allowed) and Path+(�1, �2)

(in which, besides the primitives and composition, only projec-
tions are allowed). The latter result can also be interpreted as a
closure property under intersection of Path+(�1, �2). Closure
under intersection has also been established for Core XPath
under both node-set and path semantics [8]. Our result, however,
does not follow from these results of Marx and de Rijke.

As far as we are aware, normal forms for XQuery or XPath
fragments are only considered by Benedikt et al. [6], but for a
language that does not consider the parent axis and predication,
and by ten Cate [10], for Regular XPath, a language strictly
richer than ours. It is interesting to observe that, in ten Cate’s
normal form, all outer-level parent axes precede all outer-level
child axes, as is the case in our normal form. The possible
presence of negation in the predicates, however, does not allow
ten Cate to extend his normal form to the level of predicates.
In contrast, the expressions that are the operands of projection
operations in our normal form are of a very restricted form
which, e.g. disallows the parent axis and the second projection.

With regard to tree queries, minimization results not unlike
ours have been obtained for the special case where the source is
the root [7, 12, 13]. Kimelfeld and Sagiv [16], on the other
hand, did consider the case where the source node is not
the root, and independently obtained the same minimization
results as we do [22], however, in a completely different way.
More specifically, Kimelfeld and Sagiv obtained their results

2The exception is the work of Amer-Yahia et al. [14], where tree structures
are returned as the result of a query.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1094 Y. Wu et al.

by a reduction to Boolean tree queries, whereas we obtain our
results by establishing a connection between (a generalization
of) perfect similarity, introduced to study the resolution
expressiveness of Path+ in Section 6, and the reducibility of
tree queries. In addition, we bootstrap the minimization results
for tree queries to minimization results for Path+ expressions
and establish a link between minimal Path+ expressions and the
normal form proposed in Section 5.

3. PRELIMINARIES

In this section, we give the definition of documents, a positive
fragment of path queries and the query language of tree queries.
Throughout the paper, we assume an infinitely enumerable set
L of labels.

3.1. Documents, paths and queries

Throughout this paper, all trees are assumed to be finite and
unordered, unless stated otherwise.

Definition 3.1. A document D is a labeled tree (V , Ed, λ),
with V the set of nodes, Ed ⊆ V × V the set of edges, and
λ : V → L a node-labeling function.

A query is a function that associates to a document a set of
pairs of its nodes. Now observe that, given an arbitrary pair
(m, n) of nodes of a document D, and ignoring the orientation
of the edges, there is a unique shortest path from m to n, which
we shall henceforth refer to as the path from m to n. Because
of this correspondence, we can interpret a query as associating
to a document the paths in the document that it allows.

Given arbitrary nodes m and n of a document D, the least
common ancestor of m and n is the ‘highest’ node on the path
from m to n. Therefore, this node will henceforth be denoted as
top(m, n).

Example 3.1. Figure 3 shows an example of a document
that will be used throughout the paper. In this document, e.g.
top(n8, n12) = n4.

3.2. The positive path algebra

Here, we give the formal definition of the Positive Path Algebra,
denoted Path+ and its semantics.

Definition 3.2. Path+ is an algebra which consists of the
primitives ∅, ε, �̂ (� ∈ L), ↓ and ↑, together with the
operations composition (E1; E2), first projection (�1(E)),
second projection (�2(E)), intersection (E1∩E2)and inversion
(E−1), the semantics of which is described in Fig. 4 (E, E1, and
E2 represent Path+ expressions).

With regard to bracketing, we assume that inverse takes
precedence over composition and that composition takes
precedence over intersection.

12

d

1

4

11

1098765

2 3

b

a

b

d

b

bccccc

c

13

FIGURE 3. Example document.

∅(D) = ∅ ,
ε(D) = {(n, n) | n ∈ V } ,
(̂D) = {(n, n) | n ∈ V & λ(n) = } ,

↓(D) = Ed ,
↑(D) = {(m, n) | (n, m) ∈ Ed} ,
E1; E2(D) = {(m, n) | ∃p : (m, p) ∈ E1(D)

& (p, n) ∈ E2(D)} ,
Π1(E)(D) = {(m, m) | ∃n : (m, n) ∈ E(D)} ,
Π2(E)(D) = {(n, n) | ∃m : (m, n) ∈ E(D)} ,
E1 ∩ E2(D) = E1(D) ∩ E2(D) ,
E−1(D) = {(m, n) | (n, m) ∈ E(D)} .

FIGURE 4. Recursive definition of the semantics of a Path+
expression, given a document D = (V , Ed, λ) (E, E1 and E2 represent
Path+ expressions).

In the remainder of the paper, equality signs between Path+
expressions must be interpreted in the semantic sense rather than
the syntactic sense, i.e. for two Path+ expressions E1 and E2,
we write E1 = E2 if, for each document D, E1(D) = E2(D).
For example, ↑2; ↓; ↑4; ↓3 = ↑5; ↓3. Here, and in the sequel,
exponentiation denotes repeated composition.3

By restricting the operations allowed in expressions, several
subalgebras of Path+ can be defined. The following are of
special interest to us:

(1) Path+(∩) is the subalgebra of Path+ where, besides
the primitives and the composition operation, only
intersection is allowed.

(2) Path+(�1, �2) is the subalgebra of Path+ where,
besides the primitives and the composition operation,
only the first and second projections are allowed.

(3) DPath+(�1) is the subalgebra of Path+ where, besides
the primitives ∅, ε, �̂, ↓ and the composition operation,
only the first projection is allowed.

3In particular, for a Path+ expression E, E0 = ε.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Study of a Positive Fragment of Path Queries 1095

Example 3.2. The following is an example of a Path+
expression:

�1(↓); �2(d̂; ↑; ĉ); �2(b̂; ↓; ĉ); ↑;
�2(�1((↓; b̂; ↓) ∩ (↓; ↓; ĉ)); ↓); ↓; �1(ĉ; ↓; d̂); ĉ; ↓.

The semantics of this expression given the document in
Fig. 3 is the following set of pairs of nodes of that
document: {(n9, n11), (n9, n12)}. The above expression is
equivalent to the much simpler Path+(�1, �2) expression
�1(↓; d̂); ĉ; ↑; �2(↓); b̂; ↓; �1(↓; d̂); ĉ; ↓. The subexpres-
sions �1(↓; d̂); ĉ and b̂; ↓; �1(↓; d̂); ĉ; ↓ are in DPath+(�1).

3.3. Signature expressions

A special Path+ expression, defined below, will be used
throughout this paper.

Definition 3.3. Let D be a document and let m and n be
arbitrary nodes of D. Then, the signature of the pair (m, n),
denoted sig(m, n), is the Path+ expression ↑k; ↓�, with k the
length of the path between top(m, n) and m, and � the length of
the path between top(m, n) and n.

The signature of a pair of nodes of a document can be seen
as a description of the unique path connecting these nodes, but
also as an expression that can be applied to the document under
consideration. We shall often exploit this duality.

Notice that, by definition, we have (m, n) ∈
sig(m, n)(D), for every document D. Also, sig(m, n) =
sig(m, top(m, n)); sig(top(m, n), n).

Now, let (m1, n1) and (m2, n2) be two pairs of nodes in a
document D. We say that (m1, n1) subsumes (m2, n2), denoted
(m1, n1) ≥ (m2, n2), if (m2, n2) is in sig(m1, n1)(D). We
say that (m1, n1) are (m2, n2) congruent, denoted (m1, n1) ≡
(m2, n2), if (m1, n1) ≥ (m2, n2) and (m2, n2) ≥ (m1, n1). It
can be easily seen that, in this case, sig(m1, n1) = sig(m2, n2).
Informally speaking, the path from m1 to n1 has then the same
shape as the path from m2 to n2.

Example 3.3. In the document in Fig. 3, sig(n5, n6) =
sig(n7, n8) = ↑2; ↓2, whereas sig(n8, n9) = ↑; ↓. Hence,
(n5, n6) ≡ (n7, n8), whereas (n5, n6) ≥ (n8, n9), but not the
other way around.

For later use, but also because they have some interest on
their own, we finally note the following fundamental properties
of subsumption and congruence.

Proposition 3.1. Let m, n, m1, n1, p1, m2, n2 and p2 be
nodes of a document D. Then the following properties hold.

(1) (m, m) ≥ (n, n).
(2) (m1, n1) ≥ (m2, n2) implies that (n1, m1) ≥ (n2, m2).
(3) If top(m1, p1) is also an ancestor of n1, then (m1, n1) ≥

(m2, n2) and (n1, p1) ≥ (n2, p2) imply that (m1, p1) ≥
(m2, p2).

(4) All properties above also hold when subsumption is
substituted by congruence.

Proof. All properties are straightforward, except for Property
(3). So, assume that (m1, n1) ≥ (m2, n2) and (n1, p1) ≥
(n2, p2). Hence, (m2, n2) ∈ sig(m1, n1)(D) and (n2, p2) ∈ sig
(n1, p1)(D), whence (m2, p2) ∈ sig(m1, n1) ; sig(n1, p1)

(D). For the sake of abbreviation, let t1 := top(m1, n1) and
u1 := top(n1, p1). Using these nodes, we can write sig(m1, n1);
sig(n1, p1) = sig(m1, t1); sig(t1, n1); sig(n1, u1); sig(u1, p1),
which is equal to sig(m1, q1); sig(q1, p1), where q1 =
top(t1, u1). Notice that q1 is a common ancestor of m1 and p1,
whence it is also an ancestor of top(m1, p1), the least common
ancestor of m1 and p1. By assumption, top(m1, p1) is a common
ancestor of m1, n1 and p1, whence also of top(m1, n1) and
top(n1, p1), one of which is q1. Thus, q1 = top(m1, p1), and,
therefore, sig(m1, q1); sig(q1, p1) = sig(m1, p1). In summary,
(m2, p2) ∈ sig(m1, p1)(D), whence (m1, p1) ≥ (m2, p2).

Example 3.4. Consider again the document in Fig. 3. There,
we have that (n6, n7) ≥ (n8, n8) and (n7, n8) ≥ (n8, n9). In
addition, top(n6, n8) is an ancestor of n7. By Proposition 3.1(3),
(n6, n8) ≥ (n8, n9), which is indeed the case. The additional
condition cannot be omitted, however.To illustrate this, consider
the subsumptions (n6, n5) ≥ (n7, n8) and (n5, n7) ≥ (n8, n9).
In this case, top(n6, n7) is not an ancestor of n5. Notice that
(n6, n7) �≥ (n7, n9).

3.4. Tree queries

Here, we define the tree query language, denoted T, and its
semantics.

Definition 3.4. A tree query is a 3-tuple (T , s, d), with T

a labeled tree, and s and d nodes of T , called the source and
destination nodes. The nodes of T are either labeled with a
symbol of L or with a wildcard denoted ‘∗’, which is assumed
not to be in L. To the set of all tree queries, we add ∅. The
resulting set of expressions is denoted T.

In order to define the semantics of a tree query, we need the
concept of a containment mapping between labeled trees, of
which we shall provide a slightly more general definition than
needed here, for later purposes.

Definition 3.5. Let L be a set of labels containing L, and
assume there is a partial order ‘≥’ on L which is the identity
on L. Let T1 = (V1, Ed1, λ1) and T2 = (V2, Ed2, λ2) be labeled
trees, with λ1 : V1 → L and λ2 : V2 → L. A containment
mapping of T1 into T2 is a mapping h : V1 → V2 such that

(1) ∀m, n ∈ V1 : (m, n) ∈ Ed1 ⇒ (h(m), h(n)) ∈ Ed2,
and

(2) ∀n ∈ V1 : λ1(n) ≥ λ2(h(n)).

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1096 Y. Wu et al.

d

1

∗

2

3

d

5

d

76

4c c

b

s

∗

FIGURE 5. Example tree query.

Observe that a containment mapping is in fact a
homomorphism with respect to the parent–child and label
predicates if the labeled trees do not contain labels outside L.

In general, two symbols �1, �2 ∈ L for which �1 ≥ �2

or �2 ≥ �1 are called comparable. Two nodes labeled with
comparable symbols are called compatible. Finally, if �1 and �2

are two comparable symbols of L, we denote by min(�1, �2) the
smaller of the two.

In the present context, L = L∪ {∗}. The partial order on this
set is defined as follows: for all �1, �2 ∈ L, �1 ≥ �2 if �1 = �2 or
�1 = ∗. This order enforces that, in the semantics of a tree query
defined below, the symbol ‘∗’ does indeed act as a wildcard.

Definition 3.6. Let P = (T , s, d) be a tree query, and let D

be a document. The semantics of P given D, denoted P(D), is
defined as the set

{(h(s), h(d)) | h is a containment mapping of T into D}.
The semantics of ∅ on D, i.e. ∅(D), is the empty set.

Example 3.5. Figure 5 shows an example of a tree query.
The semantics of this tree query given the document in Fig. 3
is the same as the semantics of the Path+ expressions given in
Example 3.2, i.e. the set of pairs of nodes {(n9, n11), (n9, n12)}.
We will show later in the paper that this tree query is actually
equivalent to the Path+ expressions given in Example 3.2.

4. EQUIVALENCES OF QUERY LANGUAGES

In this section, we show that Path+, Path+(∩), Path+(�1, �2)

and T are equivalent in expressive power by exhibiting
translation algorithms that translate an expression in one
language to an equivalent expression in one of the other
languages.

Proposition 4.1. The query languages Path+ and Path+(∩)

are equivalent in expressive power, and there exists an algorithm
translating an arbitrary Path+ expression into an equivalent
Path+(∩) expression.

Proof. We provide the translation algorithm, the correctness
of which is obvious. This translation algorithm consists of
two parts. The first part is a recursive translation of a Path+
expression E to an equivalent expression τ(E) in the subalgebra
Path+(∩, −1), where, besides the primitives and the composition
operation, only intersection and inverse are allowed. It consists
of the following rewriting rules:

τ(E) = E if E is a primitive expression,

τ(E1; E2) = τ(E1); τ(E2),

τ (�1(E)) = τ(E); τ(E)−1 ∩ ε,

τ (�2(E)) = τ(E)−1; τ(E) ∩ ε,

τ (E−1) = τ(E)−1,

τ (E1 ∩ E2) = τ(E1) ∩ τ(E2) .

The second part of the translation algorithm eliminates the
inversion operation using the following rewriting rules:

∅−1 = ∅,

ε−1 = ε,

�̂−1 = �̂ (� ∈ L),

↑−1 = ↓,

↓−1 = ↑,

(E1; E2)
−1 = E−1

2 ; E−1
1 ,

(E−1)−1 = E,

(E1 ∩ E2)
−1 = E−1

1 ∩ E−1
2 .

Example 4.1. As a first example, consider the Path+
expression ↑; �1(↑). Using the translation algorithm in the
proof of Proposition 4.1, we find that this expression is
equivalent to ↑; (↑; ↓ ∩ ε), an expression of Path+(∩).

As a second example, consider again the more complicated
Path+ expression

�1(↓); �2(d̂; ↑; ĉ); �2(b̂; ↓; ĉ); ↑;
�2(�1((↓; b̂; ↓) ∩ (↓; ↓; ĉ)); ↓); ↓; �1(ĉ; ↓; d̂); ĉ; ↓

of Example 3.2. Again using the translation algorithm in the
proof of Proposition 4.1 and applying some straightforward
simplifications, we find the above expression is equivalent to
the Path+(∩) expression

↓; ↑; ↓; d̂; ↑; ĉ; (↑; b̂; ↓; ĉ ∩ ε); ↑; ((↑; ↑;
(↓; b̂; ↓ ∩ ↓; ↓; ĉ) ∩ ε); ↑; ↑); ↓); ↓; ĉ; ↓; d̂; ↑; ĉ; ↓.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Study of a Positive Fragment of Path Queries 1097

Next, we are going to show that every Path+ expression can
be translated into a tree query (or the empty set). Thereto, we
need some preparatory work.

Using that containment mappings are edge-preserving, the
following result follows from a straightforward inductive
argument.

Lemma 4.1. Let T1 = (V1, Ed1, λ1), T2 = (V2, Ed2, λ2)

and T = (V , Ed, λ) be labeled trees. Let h1 : V1 → V

and h2 : V2 → V be containment mappings of T1 into T ,
respectively, T2 into T . Let m1 ∈ V1 and m2 ∈ V2 be nodes
of T1, respectively, T2, such that h1(m1) = h2(m2). Let n1 ∈ V1

be an ancestor of m1 and n2 ∈ V2 be an ancestor of m2 such
that sig(m1, n1) = sig(m2, n2). Then h1(n1) = h2(n2).

We next describe the algorithms Merge1 and Merge2,
exhibited in Figs 6 and 7. Merge1 tries to transform two given
labeled trees into a new one in which a given node from the first
tree is merged with a given node of the second tree. Merge2 is
similar to Merge1 and tries to transform one given labeled tree
into a new one in which two nodes of the given tree are merged
into a single node.

Example 4.2. Let T1 and T2 be the labeled trees in Fig. 8a and
b, respectively. Then, Merge1(T1, T2, n2, n6) results in ∅, since
n2 and n6 are not compatible. The nodes n4 and n8, however,
are compatible, as are their parents and grandparents. Therefore,
Merge1(T1, T2, n4, n8) results in a labeled tree, which is shown
in Fig. 8c. Notice that there are ‘canonical embeddings’ i1 and
i2 of T1, respectively, T2 into the resulting labeled tree. In our

Algorithm Merge1

Input : two disjoint labeled trees
T1 = (V1, Ed1, λ1); T2 = (V2, Ed2, λ2);
nodes m1 ∈ V1; m2 ∈ V2.

Output : a labeled tree or ∅.

Method :
let d1 = depth of m1 in T1;
let d2 = depth of m2 in T2;
let d = min(d1, d2);
for k = 0, . . . , d,

if the level-k ancestors of m1 and m2
are incompatible return ∅;

let T = T1 ∪ T2;
for k = 0, . . . , d,

in T , merge the level-k ancestors mk
1

of m1 and mk
2 of m2 into a node

mk labeled min(λ1(mk
1), λ2(mk

2));
return T .

FIGURE 6. Algorithm Merge1.

Algorithm Merge2

Input : a labeled tree T = (V, Ed, λ);
nodes m1, m2 ∈ V ;

Output : a labeled tree or ∅.

Method :
let n = top(m1, m2);
if dist(n, m1) = dist(n, m2)

return ∅;
let d = dist(n, m1) = dist(n, m2);
for k = 0, . . . , d − 1,

if the level-k ancestors of m1 and m2
are incompatible return ∅;

let T = T ;
for k = 0, . . . , d − 1,

in T , merge the level-k ancestors mk
1

of m1 and mk
2 of m2 into a node

mk labeled min(λ1(mk
1), λ2(mk

2));
return T .

FIGURE 7. Algorithm Merge2.

c

6

c

3

4

3+4 c

c

3+4 c

3

∗

6

c

e

5

2

d

7

c

e

5

∗

d

7

1

e

5

∗

d

6+7

5

(d) (e)

∗

6

(f)

∗

5

(c)(b)(a)

4+8

c

3

c

c2+7

b

1

∗

1+6

1

∗

8

1

∗

∗

b

2

c

2 b

7

2 b

b

4

FIGURE 8. Example applications of the algorithms Merge1 and
Merge2. Details are provided in Example 4.2.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1098 Y. Wu et al.

example, i1 is defined by the following correspondences of node
numbers: 1 ↔ 1+6, 2 ↔ 2+7, 3 ↔ 3 and 4 ↔ 4+8; i2 is
defined by the following correspondences of node numbers:
5 ↔ 5, 6 ↔ 1+6, 7 ↔ 2+7 and 8 ↔ 4+8.

Next, let T be the labeled tree in Fig. 8d. Then,
Merge2(T , n2, n6) results in ∅, since n2 and n6 are at
different depths in the tree, or equivalently, have different
distances to their least common ancestor, top(n2, n6) = n2.
Also, Merge2(T , n5, n7) results in ∅, since n5 and n7 are
incompatible. The nodes n3 and n4, however, are at the same
depth and compatible. Therefore, Merge2(T , n3, n4) results
in a labeled tree, which is shown in Fig. 8e. Notice that
there is a ‘canonical covering’ by T of the resulting labeled
tree, defined by the following correspondences between node
numbers: 1 → 1, 2 → 2, 3 → 3+4, 4 → 3+4, 5 → 5, 6 → 6
and 7 → 7. Similarly, the nodes n6 and n7 are at the same depth
and compatible, and so are their parents, and, therefore, also
Merge2(T , n6, n7) results in a labeled tree, which is shown in
Fig. 8f. In this case, the canonical covering by T of resulting
labeled tree is defined by the following correspondences
between node numbers: 1 → 1, 2 → 2, 3 → 3+4, 4 → 3+4,
5 → 5, 6 → 6+7 and 7 → 6+7. Finally, notice that the labeled
tree in Fig. 8f, can also be obtained by applying Merge2 to the
nodes n6 and n7 of the labeled tree in Fig. 8e.

Suppose Merge1(T1, T2, m1, m2) in Fig. 6 is a labeled tree
T . In Example 4.2, we already illustrated informally that there
is a canonical embedding i1 of T1, respectively, i2 of T2 into T .
In general, these canonical embeddings are defined as follows,
using the notation in Fig. 6. For j = 1, 2, and, for m in Vj ,

⎧⎨
⎩

ij (m) = m if m �= mk
j , for k = 0, . . . , d,

ij (m
k
j) = mk for k = 0, . . . , d.

From a straightforward argument, it follows that the image of T1

under i1, respectively, the image of T2 under i2 is a subtree4

of T isomorphic to T1, respectively, T2, justifying the term
‘embedding’. Together, these isomorphic images of T1 and T2

cover T . We are now ready to prove the following key property
of Merge1.

Lemma 4.2. Let T1 = (V1, Ed1, λ1), T2 = (V2, Ed2, λ2)

and T ′ = (V ′, Ed′, λ′) be labeled trees, and let m1 ∈ V1 and
m2 ∈ V2 be nodes.

(1) Merge1(T1, T2, m1, m2) is either the empty set or a
labeled tree.

(2) If there exists a containment mapping h1 : V1 →
V ′ of T1 into T ′ and a containment mapping h2 :
V2 → V ′ of T2 into T ′ such that h1(m1) =
h2(m2), then Merge1(T1, T2, m1, m2) is a labeled tree,

4In this paper, a subtree of a tree is a connected subgraph of that tree, which
is weaker than the standard definition. To make the distinction clear, we shall
refer to a subtree containing all descendants of some node of the tree as a
complete subtree.

say T = (V , Ed, λ), and there exists a containment
mapping h : V → V ′ of T into T ′ such that, for
each node p ∈ V1, h(i1(p)) = h1(p), and, for each
node p ∈ V2, h(i2(p)) = h2(p), with i1 : V1 → V

and i2 : V2 → V the canonical embeddings from T1,
respectively, T2, into T .

(3) If Merge1(T1, T2, m1, m2) is a labeled tree, say T =
(V , Ed, λ), and there exists a containment mapping
h : V → V ′ of T into T ′, then the mappings h1 :
V1 → V ′ : p �→ h(i1(p)) and h2 : V2 → V ′ : p �→
h(i2(p)), with i1 : V1 → V and i2 : V2 → V the
canonical embeddings of T1, respectively, T2 into T , are
containment mappings of T1 into T ′, respectively, T2

into T ′, such that h1(m1) = h2(m2).

Proof. (1) Suppose it has already been established that, for k =
0, . . . , d, the level-k ancestors of m1 and m2 are compatible,
i.e. that Merge1(T1, T2, m1, m2) is not the empty set. Then,
Merge1 will output a graph T . Initially, T = T1 ∪ T2. In this
disconnected graph, every node has indegree 1, except for the
two roots, which have indegree 0. If d = 0, then it is immediate
that, after merging m1 and m2, T becomes connected and the
number of nodes with indegree 0 has been reduced to one. If

d > 0, let T
k

be the value of T after the kth iteration of the for-
loop. If 0 ≤ k < d , it follows from a straightforward induction

that T
k

is a connected graph in which all nodes have indegree 1,
except for the roots of T1 and T2, which have indegree 0, and
mk , which has indegree 2. In particular, this holds for k = d−1.
Now, by assumption, at least one of md

1 and md
2 has indegree 0,

say, md
1 . Hence, merging md

1 and md
2 into md will decrease the

indegree of md−1 by one, whereas the indegree of md will equal

the indegree of md
2 . Hence, also in this case, T

d
, the final result of

Merge1, is connected, and all its nodes have indegree 1, except
for one node, which has indegree 0. Such a graph is necessarily
a tree.

(2) Suppose there exist a containment mapping h1 : V1 → V ′
of T1 into T ′ and a containment mapping h2 : V2 → V ′ of T2

into T ′ such that h1(m1) = h2(m2). By Lemma 4.1, it follows
that, for k = 0, . . . , d, h1(m

k
1) = h2(m

k
2). This is only possible

if mk
1 and mk

2 are compatible. Hence, the result of Merge1 is
non-empty, and, therefore, by Lemma 4.2(1), a labeled tree, say
T = (V , Ed, λ). We now define a mapping h : V → V ′, as
follows. For p ∈ V ,

h(p) =
⎧⎨
⎩

h1(i
−1
1 (p)) if p ∈ i1(V1),

h2(i
−1
2 (p)) if p ∈ i2(V2),

with i1 : V1 → V and i2 : V2 → V the canonical embeddings
from T1, respectively, T2 into T . First, notice, that i1(V1) ∪
i2(V2) = V . Now, if p ∈ i1(V1) ∩ i2(V2), then, for some k,
0 ≤ k ≤ d, p = mk , i−1

1 (p) = mk
1 and i−1

2 (p) = mk
2. Since

we have established that h1(m
k
1) = h2(m

k
2), h is well defined.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Study of a Positive Fragment of Path Queries 1099

It remains to show that h is a containment mapping. Since i1 and
i2 map T1, respectively, T2, to subtrees of T , and both subtrees
together cover T , every edge of T is in at least one of these
subtrees. So, let p, q ∈ V such that (p, q) ∈ Ed. If this edge
is, e.g. in the embedding of T1 into T , then (i−1

1 (p), i−1
1 (q)) ∈

Ed1. Hence, (h(p), h(q)) = (h1(i
−1
1 (p)), h1(i

−1
1 (q))) ∈ Ed′,

since h1 is a containment mapping of T1 into T ′. Finally,
consider p ∈ V . If p ∈ i1(V1) − i2(V2), it follows that
λ(p) = λ1(i

−1
1 (p)). Since h1 is a containment mapping of T1

into T ′, λ(p) = λ1(i
−1
1 (p)) ≥ λ′(h1(i

−1
1 (p))) = λ′(h(p)). The

case where p ∈ i2(V2) − i1(V1) is completely analogous, of
course. So, consider the case where p ∈ i1(V1) ∩ i2(V2). By
construction, λ(p) = min(λ1(i

−1
1 (p)), λ2(i

−1
2 (p))). Without

loss of generality, assume that the minimum equals the first
component. As before, we then reach the desired conclusion.

(3) Suppose that the result of Merge1 is non-empty and,
therefore, a labeled tree, say T = (V , Ed, λ), and that there
exists a containment mapping h : V → V ′ of T into T ′.
For j = 1, 2, define hj : Vj → V ′ : p �→ h(ij (p)), with
ij : Vj → V the canonical embedding of Tj into T . Notice that
ij is a containment mapping, by construction. Hence, hj , as a
composition of containment mappings is again a containment
mapping, of Tj into T ′. Since i1(m1) = i2(m2) = m0, h1(m1) =
h2(m2).

Suppose Merge2(T , m1, m2) in Fig. 7 is a labeled tree T . In
Example 4.2, we already illustrated informally that there is a
canonical covering, say f , by T of T . In general, this canonical
covering is defined as follows, using the notation in Fig. 7. For
m in V ,

⎧⎨
⎩

f (m) = m if m is not an ancestor of m1 or m2,

f (mk
j) = mk for j = 1, 2, and k = 0, . . . , d.

From a straightforward argument, it follows that the image of T

under f is precisely T , justifying the term ‘covering’. Finally,
we are now ready to prove the analog of Lemma 4.2 for Merge2.

Lemma 4.3. Let T = (V , Ed, λ) and T ′ = (V ′, Ed′, λ′) be
labeled trees, and let m1, m2 ∈ V be nodes.

(1) Merge2(T , m1, m2) is either the empty set or a labeled
tree.

(2) If there exists a containment mapping h : V →
V ′ of T into T ′ such that h(m1) = h(m2), then
Merge2(T , m1, m2) is a labeled tree, say T =
(V , Ed, λ), and there exists a containment mapping
h : V → V ′ of T into T ′ such that, for each node p ∈ V ,
h(f (p)) = h(p), with f : V → V the canonical
covering by T of T .

(3) If Merge2(T , m1, m2) is a labeled tree, say T =
(V , Ed, λ), and there exists a containment mapping
h : V → V ′ of T into T , then the mapping h : V → V ′ :
p �→ h(f (p)), with f : V → V the canonical covering

by T of T , is a containment mapping of T into T ′ such
that h(m1) = h(m2).

Proof. (1) Suppose it has already been established that the
distance between m1 and n = top(m1, m2) equals the distance
between m2 and n, say d, and that, for k = 0, . . . , d − 1,
the level-k ancestors of m1 and m2 are compatible, i.e. that
Merge2(T , m1, m2) is not the empty set. Then, Merge2 will
output a graph T . Initially, T = T , a tree, in which every node
has indegree 1, except for the root, which has indegree 0. If
d = 0, T = T . If d = 1, then it is immediate that, after
merging m1 and m2, the indegree of the new node remains 1,

whence T remains a tree. If d > 1, let T
k

be the value of T after
the kth iteration of the for-loop. If 0 ≤ k < d − 1, it follows

from a straightforward induction that T
k

is a connected graph
in which all nodes have indegree 1, except for the root of T ,
which has indegree 0, and mk , which has indegree 2. Finally,
merging md−1

1 and md−1
2 into md−1 will decrease the indegree of

md−2 by one, whereas the indegree of md−1 will be 1 (as in the

case d = 1). Hence, also in this case, T
d−1

, the final result of
Merge2, is connected, and all its nodes have indegree 1, except
for one node, which has indegree 0. Such a graph is necessarily
a tree.

(2) Suppose there exists a containment mapping h : V → V ′
of T into T ′ such that h(m1) = h(m2). Let d be the minimum of
the depth of m1 and the depth of m2 in T . For k = 0, . . . , d, let
mk

1 and mk
2 be the level-k ancestors of m1 and m2, respectively.

By Lemma 4.1, it follows that, for k = 0, . . . , d, h(mk
1) =

h(mk
2). Since containment mappings preserve distance along

directed paths in a tree, this is only possible if m1 and m2 have
the same distance to n = top(m1, m2). Additionally, mk

1 and
mk

2 must be compatible. We may thus conclude that the result
of Merge2 is non-empty, and, therefore, by Lemma 4.3(1), a
labeled tree, say T = (V , Ed, λ). We now define a mapping
h : V → V , as follows. For p ∈ V , let p ∈ V be such that
p = f (p). (Such a node always exists, since f is surjective.)
Then, h(p) = h(p). Now assume p = f (p1) = f (p2).
Then, clearly, either p1 = p2, or, for some k, 0 ≤ k <

d, p1 = mk
1 and p2 = mk

2, or vice-versa. In both cases,
h(p1) = h(p2), whence h is well defined. It remains to show
that h is a containment mapping. Thus, let p, q ∈ V such that
(p, q) ∈ Ed. By construction, there exist p, q ∈ V such that
f (p) = p, f (q) = q and (p, q) ∈ Ed. Hence, (h(p), h(q)) =
(h(p), h(q)) ∈ Ed′, since h is a containment mapping of T

into T ′.
Finally, consider p ∈ V . If p /∈ {m0, . . . , md−1}, let p ∈ V

the unique node such that f (p) = p. Since h is a containment
mapping of T into T ′, λ(p) = λ(p) ≥ λ′(h(p)) = λ′(h(p)).
If, for some k, 0 ≤ k < d, p = mk , then, by construction,
λ(p) = min(λ(mk

1), λ(mk
2)). Without loss of generality, assume

that the minimum equals the first component.As before, we then
reach the desired conclusion.

(3) For the other direction, suppose that the result of Merge2
is non-empty and, therefore, a labeled tree, say T = (V , Ed, λ),

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1100 Y. Wu et al.

Algorithm Path-T

Input: a Path+ expression E;
Output: a tree query P = (T , s, d) or ∅.

Method:
if E = ∅ return ∅;
if E is another primitive of Path+

return the appropriate tree query of Figure 10;
if E = E1; E2

if Path-T(E1) = ∅ return ∅;
if Path-T(E2) = ∅ return ∅;
let P1 = (T1, s1 , d1) = Path-T(E1);
let P2 = (T2, s2 , d2) = Path-T(E2);
if Merge1(T1, T2 , d1, s2) = ∅ return ∅;
let T = Merge1(T1 , T2, d1, s2);
let i1 be the canonical embedding of T1 in T ;
let i2 be the canonical embedding of T2 in T ;
return P = (T , i1(s1), i2(d2));

if E = Π1(E)
if Path-T(E) = ∅ return ∅;
let P = (T , s, d) = Path-T(E);
return P = (T , s, s);

if E = Π2(E)
if Path-T(E) = ∅ return ∅;
let P = (T , s, d) = Path-T(E);
return P = (T , d, d);

if E = E1 ∩ E2
if Path-T(E1) = ∅ return ∅;
if Path-T(E2) = ∅ return ∅;
let P1 = (T1, s1 , d1) = Path-T(E1);
let P2 = (T2, s2 , d2) = Path-T(E2);
if Merge1(T1, T2 , s1 , s2) = ∅ return ∅;
let T = Merge1(T1 , T2, s1 , s2);
let i1 be the canonical embedding of T1 in T ;
let i2 be the canonical embedding of T2 in T ;
if Merge2(T , i1(d1), i2(d2)) = ∅ return ∅;
let T = Merge2(T , i1(d1), i2(d2));
let f be the canonical covering by T of T ;
return P = (T , f(i1(s1)), f(i1(d1)))

= (T , f(i2(s2)), f(i2(d2)));
if E = E 1

if Path-T(E) = ∅ return ∅;
let P = (T , s, d) = Path-T(E);
return P = (T , d, s).

FIGURE 9. Algorithm Path-T.

and that there exists a containment mapping h : V → V ′
of T into T ′. Define h : V → V ′ : p �→ h(s(p)), with
s : V → V the canonical covering by T of T . Notice that
s is a containment mapping, by construction. Hence, h, as a
composition of containment mappings is again a containment
mapping of T into T ′. Since s(m1) = s(m2) = m0, h(m1) =
h(m2).

We are now ready to translate Path+ into tree queries (or
the empty set). The actual algorithm is exhibited in Fig. 9.
Notice that, by Proposition 4.1, it would have sufficed to
exhibit the translations of the primitives, and the composition
and intersection operations. However, we preferred to consider
all Path+ operations in order to provide a direct translation
algorithm from Path+ expressions into expressions of T, thus
avoiding a costly translation from Path+ to Path+(∩) as a
preprocessing step.

Proposition 4.2. Algorithm Path-T correctly translates an
arbitrary Path+ expression into an equivalent expression of T
(i.e. a tree query or ∅).

Proof. It is readily seen that Algorithm Path-T correctly
translates ∅ and the other primitives of Path+ into equivalent
expressions of T (Fig. 10). Also, the cases for the projection
and inverse operations are straightforward. We therefore focus
on composition and intersection.

Composition. Let E1 and E2 be Path+ expressions for
which P1 and P2 are the equivalent expressions in T. If
one of P1 or P2 equals ∅, then, obviously, E1; E2 must be
translated into ∅. Otherwise, let P1 = (T1, s1, d1) and P2 =
(T2, s2, d2) be the corresponding tree queries. Now, consider
Merge1(T1, T2, d1, s2). If the result is ∅, so is the translation
of E1; E2, since, in this case, E1(D) and E2(D) can never
contain matching node pairs, whatever the document D under
consideration. If the result of the algorithm is a labeled tree,
say T , then Lemma 4.2 states precisely that the tree query
P = (T , i1(s1), i2(d2)) is the correct translation of E1; E2,
where i1 and i2 are the canonical embeddings of T1, respectively,
T2 into T .

Intersection. Let E1 and E2 be Path+ expressions for
which P1 and P2 are the equivalent expressions in T. If one
of P1 or P2 equals ∅, then, obviously, E1 ∩ E2 must be
translated into ∅. Otherwise, let P1 = (T1, s1, d1) and P2 =
(T2, s2, d2) be the corresponding tree queries. Now, consider
Merge1(T1, T2, s1, s2). If the result is ∅, so is the translation
of E1 ∩ E2, since, in this case, E1(D) and E2(D) can never
contain node pairs that match on their first components—
let alone share node pairs—whatever the document D under
consideration. Thus, let the result of the algorithm be a labeled
tree, say T . Given an arbitrary document D = (V ′, Ed′, λ′), we
have that E1 ∩ E2(D) = E1(D) ∩ E2(D) equals

{(p, q) | (p, q) ∈ E1(D) & (p, q) ∈ E2(D)}
= {(h1(s1), h1(d1)) | h1 is a c.m.5 of T1 into D

& there exists a c.m. h2 of T2 into D

& h1(s1) = h2(s2) & h1(d1) = h2(d2)}
= {(h(i1(s1)), h(i1(d1))) | h is a c.m. of T

into D & h(i1(d1)) = h(i2(d2))},

where i1 and i2 are the canonical embeddings of T1, respectively,
T2, in T . In the first step, we used that P1 and P2 are correct
translations of E1, respectively, E2, and in the second step, we
relied on Lemma 4.2. Next, consider Merge2(T , i1(d1), i2(d2)).
If the result is ∅, so is the translation of E1 ∩ E2, since, in
this case, the above set is always empty, as i1(d1) and i2(d2)

can never be mapped onto the same node of D, whatever the
document D under consideration. If the result of the algorithm

5Containment mapping.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Study of a Positive Fragment of Path Queries 1101

is a labeled tree, say T , it follows from Lemma 4.3 that

{(h(i1(s1)), h(i1(d1))) | h is a c.m. of T into D

& h(i1(d1)) = h(i2(d2))} =
{(h(f (i1(s1))), h(f (i1(d1)))) |

h is a c.m. of T into D},

FIGURE 10. Translation of the primitives of Path+ into tree queries.

Π ()

Π ()Π ()

Π ()

Π () ^b; ;c

2

c s

d

s=d

13

∗

c

^

s

d

10b

∗

c

s

d

∗

d

∗

c

ss=d

c

c

11

c

11

∗

9

s=d

∗

c

s=d s

∗

d

∗ b

2
^ ^d; ;c

s=d

c

10b

∗

∗

s

d

∗
s=d s

∗

d

∗

s

∗

∗

d

∗

d

s

∗

9

11

12 9

14 11

9 15

16 16

17

18 19 21

22

17

22

1 3 6

7 5

18

b

5

10b10b

; ;c;b;^

^

1

∗

d

4

d

4

d

4

1

E2

E1

E3

1 c; ;d^ ^ ĉ;
d

20

d

20

18c

E4

∗

2

d

4

E2

∗

22 d

E3

c

11

E4

d

4

d

4

d

4

E1

d

20

18c

d

20

18c

∗

22 d

1c s1c s

E ;E ;E1 3 4

d

4

∗

9

d

2

d

∗

16

c

11

∗

9

s=d s

∗

17

∗

2

b

5 10b 5b10b

2

FIGURE 11. Translation of the Path+ expression considered in
Example 4.3.

FIGURE 12. Algorithm T-Path.

where f is the canonical covering by T of T . Hence, the
translation of E1 ∩ E2 proposed in Algorithm Path-T is
correct.

Example 4.3. Consider again the Path+ expression given in
Example 3.2:

�1(↓); �2(d̂; ↑; ĉ); �2(b̂; ↓; ĉ); ↑;
�2(�1((↓; b̂; ↓) ∩ (↓; ↓; ĉ)); ↓); ↓; �1(ĉ; ↓; d̂); ĉ; ↓.

We will now translate this expression into a tree query. This
translation is illustrated in Fig. 11. Merged nodes are identified
with the lowest of the numbers involved in the merging and
intermediate results are labeled with the subexpressions to
which they correspond. In particular,

E1 = �1(↓); �2(d̂; ↑; ĉ); �2(b̂; ↓; ĉ); ↑,

E3 = �2(�1(E2); ↓),

with

E2 = (↓; b̂; ↓) ∩ (↓; ↓; ĉ),

E4 = ↓; �1(ĉ; ↓; d̂); ĉ; ↓ .

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1102 Y. Wu et al.

*

b

c

s=db

C
ase 1

C
ase 5

d

s

d *

c

s=dc

* d

s=dc

s=d*

d *

c

d

C
ase 5

Π1(

C
ase 3C

ase 5

* s=d

C
ase 3

ε

C
ase 5

s=d*

d s=d

C
ase 2

ε
C

ase 3

C
ase 2

ε

C
ase 4

Π1(* s s=dc

C
ase 3

C
ase 5

C
ase 3

C
ase 2

ε

C
ase 5

C
ase 2

ε

C
ase 4

s*

c d

Π1(

C
ase 3

C
ase 5

C
ase 2

ε

C
ase 3

* s=d

c

s=db

s=db

s=d*

c s=d

b

*

*

s

d

c

b

c

* d d

c

d

s=dc

*

b

c

b s

Case 6

Case 4

s*

d* d

s=d*

d

s*

b

c

s=db

s=d*

s=d*

b

* s

c

db

d d

* s=d

d s=d

d*Π2(

C
ase 3

c

C
ase 2

ε

Π1(s=d*

C
ase 2

ε

C
ase 4

C
ase 5

C
ase 4

Π1(* s=ds*

d d

C
ase 2

ε

) ;

) ;

b̂

; ;

; ;

; ;

) ;

ĉ

; ;

) ;

; ;

; ;

^

d̂

c

b̂

) ;

) ;

ĉ

d̂

; ;

; ;

; ;

FIGURE 13. Schematic illustration of the translation of the rightmost tree query in Fig. 11 into an equivalent Path+(�1, �2) expression by
Algorithm T-Path in Fig. 12.

Notice that the Path+ expression under consideration equals the
composition E1; E3; E4. Its translation is exhibited as the last
tree in Fig. 11.

Now that we have shown that a Path+ expression can be
translated into an expression of T, i.e. ∅ or tree query, and also

exhibited an algorithm to perform this translation, we are next
going to show that it is also possible to translate every expression
of T into a Path+ expression in an algorithmic fashion.
Moreover, the translation algorithm, exhibited in Fig. 12, always
returns expressions in Path+(�1, �2). We will analyze these

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Study of a Positive Fragment of Path Queries 1103

expressions further in Section 5, where we shall propose a
normal form for Path+ expressions.

Proposition 4.3. Algorithm T-Path correctly translates an
arbitrary T expression (i.e. a tree query or ∅) into an equivalent
expression of Path+(�1, �2).

Proof. Clearly, the T expression ∅ is correctly translated into
the Path+ expression ∅. Therefore, we may assume for the
remainder of this proof that the input expression is a tree query
P = (T , s, d).

First, we prove that Algorithm T-Path always terminates.
Cases 2 and 3 are base cases in which no recursive call occurs.
In Cases 5 and 6, the labeled trees T1 and T2 both contain
fewer nodes than T . This is also true in Case 1, except when
s is a leaf, in which case T2 and T have the same number of
nodes.6 However, the recursive call T-Path(T2, r, s

′) is dealt
with in Case 5, where the resulting labeled trees have strictly
fewer nodes. Finally, in Case 4, the recursive call involves
(a variation of) T . However, T-Path(T ′, s ′, s1) is again dealt
with in Case 5, as above. We may therefore conclude that the
recursion must stop.

The correctness of Algorithm T-Path follows from a
structural inductive argument. For the two base cases, Cases 2
and 3, this is obvious. For the other cases, the proposed
translation of the tree query P = (T , s, d) under consideration
consists of a composition of one up to three subexpressions.
Assume in each of these cases that, for each tree query P ′ =
(T ′, s ′, d ′) in one of these subexpressions, T-Path(T ′, s ′, d ′)
is a correct translation of P ′. If the subexpression is of
the form �1(T-Path(T ′, s ′, d ′)) (Case 4), it follows from
Proposition 4.2 that this subexpression is a correct translation
of P ′′ = (T ′, s ′, s ′). If the subexpression is of the form
�2(T-Path(T ′, s ′, d ′)) (Case 1), it follows from Proposition 4.2
that this subexpression is a correct translation of P ′′ =
(T ′, d ′, d ′). Finally, if the subexpression is ↓ (Case 5) or ↑ (Case
6), it follows from Proposition 4.2 that this subexpression is a
correct translation of the corresponding tree query in Fig. 10.All
other subexpressions are of the form T-Path(T ′, s ′, d ′). Thus,
we have established that, in each of the Cases 1, 4, 5 and 6, the
proposed translation of P is a composition of one up to three
subexpressions, each of which is the translation of a particular
tree query. By applying Algorithm Path-T (Fig. 9) to these
subexpressions, we obtain the tree query P back in each of these
cases, whence the proposed translation of P is correct.

Example 4.4. Consider the tree query obtained for

�1(↓); �2(d̂; ↑; ĉ); �2(b̂; ↓; ĉ); ↑;
�2(�1((↓; b̂; ↓) ∩ (↓; ↓; ĉ)); ↓); ↓; �1(ĉ; ↓; d̂); ĉ; ↓

in Example 4.3, i.e. the final tree query in Fig. 11. If we translate
this tree query into an equivalent Path+(�1, �2) expression

6Actually, T2 equals T in which the source node is relabeled by a wildcard.

T
riv

ia
l

Proposition 4.2

+Path +Path ()

,Π2
+Path 1(Π)

Proposition 4.1

T
Proposition 4.3

FIGURE 14. Schematic diagram illustrating how the equivalence of
Path+, Path+(∩), Path+(�1, �2) and T in Theorem 4.1 has been
established.

using Algorithm T-Path in Fig. 12, we obtain

�1(�1(↓); ↓; d̂); ↑; �2(�1(↓; �1(↓; ĉ); b̂); ↓); b̂; ↓;
�1(↓; d̂); ĉ; ↓.

In Fig. 13, we exhibit the detailed steps of this translation.

We can now summarize Propositions 4.1–4.3.

Theorem 4.1. The query languages Path+, Path+(∩),
Path+(�1, �2) and T are all equivalent in expressive power,
and there exist translation algorithms between any two of them.

The diagram in Fig. 14 illustrates graphically how the
equivalences in Theorem 4.1 have been established.

5. NORMAL FORM FOR EXPRESSIONS IN THE
PATH+ ALGEBRA

Normalization is frequently a critical step in rule-based query
optimization. It serves the purpose of unifying queries with the
same semantics, detecting containment among subqueries and
establishing the foundation for cost-based query optimization,
in which evaluation plans are to be generated. As it will turn out,
using this normal form, we can decompose a Path+ query into
subqueries that can be expressed in DPath+(�1), a very small
fragment of Path+ for which efficient evaluation strategies are
available [18]. The full query can then be evaluated by joining
the results of these DPath+(�1) expressions.

When we revisit Section 4, where the translation algorithm
T-Path from expressions in T to expressions in Path+(�1, �2)

is described, notably in Fig. 12, we observe that the result
of the translation is an expression E which conforms to the

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1104 Y. Wu et al.

following grammar:

E = ∅ | Eup Etop Edown,

Eup = (�1(F)?�̂?↑)∗,
Etop = �2(F)?,

Edown = F,

F = �̂?(↓�̂?)∗ | �1(F)?�̂?(↓�1(F)?�̂?)∗ .

For clarity, composition signs have been omitted in the regular
expressions above. Also, notice that some subexpressions
may equal ε and may therefore be omitted. Finally, notice
that the base case for the recursive definition of F , i.e.
�̂?(↓�̂?)∗, is actually subsumed by the general case, i.e.
�1(F)?�̂?(↓�1(F)?�̂?)∗.

Obviously, the only non-primitive operations that occur in a
formula that conforms to the above grammar are composition
and the projections. Moreover, the subexpressions which
conform to F are all in DPath+(�1). Hence, the second
projection occurs at most once, and, if so, at the outer level.
Also, the ↑ primitives occur only at the outer level. In addition,
all ↑ primitives occur to the left of the �2 operation, if present,
and of all ↓ primitives. We say that a Path+ expression which
conforms to the above grammar is in normal form.

Example 5.1. Consider again Example 3.2. Clearly, the Path+
expression

�1(↓); �2(d̂; ↑; ĉ); �2(b̂; ↓; ĉ); ↑;
�2(�1((↓; b̂; ↓) ∩ (↓; ↓; ĉ)); ↓); ↓; �1(ĉ; ↓; d̂); ĉ; ↓

is not in normal form. In particular, notice that this expression
contains an intersection and multiple occurrences of the second
projection. In Example 4.3, we exhibited how this expression
is translated into the final tree query shown in Fig. 11. In
Example 4.4, we exhibited how this tree query is translated
into the Path+(�1, �2) expression

�1(�1(↓); ↓; d̂); ↑; �2(�1(↓; �1(↓; ĉ); b̂); ↓); b̂; ↓;
�1(↓; d̂); ĉ; ↓.

This expression can indeed be written as Eup; Etop; Edown, with
Eup = �1(F1); ↑, Etop = �2(F2) and Edown = F3, where

F1 = �1(F4); ↓; d̂, F4 = ↓, F7 = ↓; ĉ.

F2 = �1(F5); ↓, F5 = ↓; �1(F7); b̂,

F3 = b̂; ↓; �1(F6); ĉ; ↓, F6 = ↓; d̂.

Hence, the expression is in normal form. It can be seen as the
normalization of the original Path+ expression in Example 3.2.

We formalize the above in the following theorem and
corollary.

Theorem 5.1. The translation of a T expression into an
equivalent Path+(�1, �2) expression by Algorithm T-Path of
Fig. 12 is always in normal form.

Proof. The T expression ∅ is translated into the Path+(�1, �2)

expression ∅, which is assumed to be in normal form. Therefore,
we may assume that the T expression under consideration
is a tree query P = (T , s, d). We shall trace Algorithm T-
Path, and, in doing so, obtain that the generated translation
is in normal form. Thereto, let s = s0, . . . , sk−1, sk = t =
dl, dl−1, . . . , d0 = d be the path from s to d in T , with
t = top(s, d). Notice that, possibly, k = 0, or l = 0, or both.

If k > 0, we are in Case 6 of the translation algorithm. There,
in the last factor of the composition, the source is the parent of
the source of P . For this last factor, we will remain in Case 6,
until t is reached. We will then have obtained the following
partial translation of P :

Eup︷ ︸︸ ︷
T-Path(T0, s0, s0); ↑; . . .T-Path(Tk−1, sk−1, sk−1); ↑;

T-Path(Tt , t, d).

Here, T0 is the complete subtree of T rooted at s0 = s; for
i = 1, . . . , k − 1, Ti is the complete subtree of T rooted at si

from which si−1 and all its descendants are removed. Finally, Tt

is the tree T from which sk−1 and all its descendant are removed.
If k = 0, then s = t , and the above expression is still applicable,
provided we put Eup = ε.

If l > 0, we are now in Case 5 of the translation algorithm
for the translation of Pt = (Tt , t, d). There, in the last factor of
the composition, the source is the child of the source of Pt on
the path to d. For this last factor, we will remain in Case 5, until
d is reached. We will then have obtained the following partial
translation of Pt :

T-Path(T t , t, t); ↓;
T-Path(T l−1, dl−1, dl−1); . . . : ↓;T-Path(T 0, d0, d0)︸ ︷︷ ︸

E′

.

Here, T 0 is the complete subtree of Tt rooted at d0 = d; for
j = 1, . . . , l − 1, T j is the complete subtree of Tt rooted at dj

from which dj−1 and all its descendants are removed. Finally,
T t is the tree Tt from which dl−1 and all its descendants are
removed. If l = 0, then d = t , and the above expression is still
applicable, provided we put E′ = ε.

Two possibilities may now occur.

(1) The node t is the root of T t . Then, Etop = ε and Edown

equals T-Path(T t , t, t); ↓; E′.
(2) The node t is not the root of T t . Then, for the translation

of P t = (T t , t, t), we are in Case 1, and the following
partial translation of P t will result:

�2(T-Path(T t
2 , r, t ′));T-Path(T t

1 , t, t).

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Study of a Positive Fragment of Path Queries 1105

Here, t ′ equals t relabeled by a wildcard, T t
1 is the complete

subtree of T t rooted at t , and T t
2 is the tree T t from which the

strict descendants of t are removed and in which t is replaced
by t ′. Then, Etop = �2(T-Path(T t

2 , r, t ′)) and Edown equals

T-Path(T t
1 , t, t); ↓; E′.

Observe that the further translation of P t
2 = (T t

2 , r, t) is
analogous to the translation of P if k = 0 and t is the root of T .
It has therefore the same form as Edown above. This concludes
our treatment of the second possibility.

From the above analysis, we may conclude that the translation
of P is of the form Eup; Etop; Edown, in which, omitting
composition signs for clarity, these subexpressions have the
general form Eup = (G↑)∗, Etop = �2(F)? and Edown = F ,
where F stands for a DPath+(�1) expression of the form
G(↓G)∗ and G stands for the translation of a pattern of the form
Pr = (T , r, r), with r the root of the labeled tree T . (Superfluous
ε primitives may of course be omitted.)

Hence, we have reduced the translation of a general tree query
to the translation of a tree query of the form Pr = (T , r, r), with
which we shall deal next. If T is a single-node tree, we are in
one of the base cases, i.e. Case 2, if r is labeled by a wildcard
(in which case the translation is ε), or Case 3, if r is labeled by
a symbol � ∈ L (in which case the translation is �̂). Otherwise,
we are in Case 4, whence the partial translation of Pr is of the
form

�1(T-Path(T ′, r ′, r1));T-Path(Tr , r, r),

where Tr is the single-node-labeled tree consisting of the node r ,
r1 is a child of r in T , r ′ is r relabeled by a wildcard and T ′ is the
tree T in which r is replaced by r ′. For the further translation of
Pr ′ = (T ′, r ′, r1), we are again in the case where the source is
a strict ancestor of the destination, whence its translation is of
the general form of F . For the translation of the second factor
above, we are again in a base case. We may therefore conclude,
again omitting composition signs, that G is of the general form
�1(F)?�̂?, as was to be shown.

An analysis of the proof of Theorem 5.1 reveals that, in the
translation of the tree query P = (T , s, d), the factors Eup,
Etop and Edown can actually be identified with subtrees of T .
Figure 15 shows T in its most generic form. In this figure,
t = top(s, d), and r is the root of T . Furthermore, Tr is the
subtree of T obtained by removing all strict descendants of t ,
Ts is the subtree of T rooted at t which contains precisely all
strict descendants of t on the path from t to s, as well as all their
descendants, and, finally, Td is the subtree of T rooted at t which
contains all strict descendants of t not in Ts . (Notice that some or
all of Tr , Ts and Td may be single-node labeled trees). Let T ′

r be
Tr in which t is replaced by a wildcard-labeled node t ′, and let T ′

s

be Ts in which t is replaced by t ′. Then, Eup = T-Path(T ′
s , s, t

′),
Etop = �2(T-Path(T ′

r , r, t
′)) and Edown = T-Path(Td, t, d).

Tr

Ts Td

r

t

s
d

FIGURE 15. General structure of a tree query.

Corollary 5.1. There exists an algorithm to translate
an arbitrary Path+ expression into an equivalent one in
normal form.

Proof. The algorithm first translates the given Path+ expression
into an equivalent T expression using the algorithm Path-T
described in Fig. 9. By Theorem 5.1, the subsequent application
of the algorithm T-Path described in Fig. 12 yields a Path+
expression in normal form, equivalent to the original one.

6. RESOLUTION EXPRESSIVENESS

So far, we have viewed Path+ as a query language in which
an expression associates to every document a binary relation
on its nodes representing all paths in the document defined
by that expression. We have referred to this view as the
query expressiveness of Path+. Alternatively, we can study the
language’s ability to distinguish a pair of nodes or a pair of paths
in a given document, which we will refer to as the resolution
expressiveness of Path+.

Given a Path+ expression E, a document D and a node m

of D, we denote by E(D)(m) the set {n | (m, n) ∈ E(D)}.
We say that two nodes m and n in a document D cannot be
resolved by a Path+ expression if, for every Path+ expression E,
E(D)(m) and E(D)(n) are both empty or both nonempty. In
this section, we first establish7 that two nodes in a document
cannot be resolved by a Path+ expression if and only if the
paths from the root of that document to these nodes have equal
length, and corresponding nodes on these paths are perfectly
bisimilar (Definition 6.4). For example, we will find that nodes
n2 and n3 in the document D in Fig. 3 are perfectly bisimilar,
whereas n2 and n4 are not. Consequently, by our results, we
cannot find a Path+ expression for which E(D)(n2) �= ∅ and
E(D)(n3) = ∅, or vice-versa, whereas an analogous conclusion
does not hold for n2 and n4. Indeed, ↓2(D)(n2) = ∅, whereas
↓2(D)(n4) �= ∅.

7The proof has the same structure as the proofs of similar properties for
other fragments of the XPath Algebra in [9].

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1106 Y. Wu et al.

Next, we extend this result to the resolving power of Path+
on pairs of paths in a document. Given a document and a pair
of nodes, we will characterize which other pairs of nodes are
always present in the output of a Path+ expression returning
the given pair upon input the given document. For example,
this characterization will entail that every Path+ expression
returning the pair (n6, n7) upon input the document in Fig. 3
will also return the pair (n6, n6). Finally, we use these results
to show that certain path queries cannot be expressed in Path+.
The previous example, e.g. implies that the query that returns
all pairs of non-identical siblings in a document cannot be
expressed in Path+.

We first make precise what we mean by two nodes that cannot
be resolved by a Path+ expression.

Definition 6.1. Let m1 and m2 be nodes of a document D.

(1) m1 is expression-related to m2, denoted m1 ≥exp m2, if,
for each Path+ expression E, E(D)(m1) �= ∅ implies
E(D)(m2) �= ∅.

(2) m1 and m2 are expression-equivalent, denoted m1 ≡exp

m2, if m1 ≥exp m2 and m2 ≥exp m1.

In fragments of the XPath Algebra containing a negation
operator (e.g. set difference), expression-relatedness implies
expression-equivalence. Unfortunately, this is not the case
for Path+. Clearly, expression-equivalence is an equivalence
relation, but expression-relatedness is not.

Example 6.1. Consider again the document D in Fig. 3.
Clearly, n4 �≥exp n3, as ↓2(D)(n4) �= ∅, whereas
↓2(D)(n3) = ∅. In particular, n3 �≡exp n4. It will follow from
the results of this section, however, that n3 ≥exp n4. It will also
follow from these results that, e.g. n6 ≡exp n7.

Clearly, we need an instrument to establish expression-
relatedness and expression-equivalence. Thereto, we intend to
show that the semantic notions of expression-relatedness and
expression-equivalence coincide with the syntactic notions of
perfect similarity and perfect bisimilarity, respectively. Before
we can give the formal definitions of perfect similarity and
perfect bisimilarity of nodes, we need to define similarity of
nodes.

Definition 6.2. Similarity on the nodes of a document D

is the smallest relation satisfying the following property. Let
m1 and m2 be nodes of D. Then m1 is similar to m2, denoted
m1 ≥↓ m2, if λ(m1) = λ(m2) and either

(1) m1 is a leaf, or
(2) m1 is not a leaf and, for each child n1 of m1, there exists

a child n2 of m2 such that n1 ≥↓ n2.

(Two nodes are called bisimilar, denoted by the symbol ‘≡↓’,
if they are similar in both directions.)

Alternatively, Definition 6.2 can be interpreted as a recursive
definition on the height of the nodes involved.

We now bootstrap Definition 6.2 to perfect similarity of
nodes.

Definition 6.3. Perfect similarity on the nodes of a
document D is the smallest relation satisfying the following
property. Let m1 and m2 be nodes of D. Then m1 is perfectly
similar to m2, denoted m1 ≥� m2, if m1 ≥↓ m2 and either

(1) m1 = m2 is the root, or
(2) m1 and m2 are both not the root, and p1 ≥� p2, with p1

the parent of m1 and p2 the parent of m2.

Alternatively, Definition 6.3 can be interpreted as a recursive
definition on the depth of the nodes involved.

Finally, we can define perfect bisimilarity of nodes.

Definition 6.4. Let m1 and m2 be nodes of a document D.
Then m1 and m2 are perfectly bisimilar, denoted m1 ≡� m2, if
m1 ≥� m2 and m2 ≥� m1.

Example 6.2. Consider again the document in Fig. 3.
Of course, two identical nodes trivially satisfy all the

relationships defined above in the present section. We therefore
focus on relationships between different nodes.

For perfect bisimilarity, we have n2 ≡� n3, n5 ≡� n6 ≡� n7

and n11 ≡� n12, and, for bisimilarity, we have n2 ≡↓ n3 ≡↓
n10, n5 ≡↓ n6 ≡↓ n7 ≡↓ n8 ≡↓ n13 and n11 ≡↓ n12.
(Perfect) bisimilarity implies (perfect) similarity. In addition,
the following perfect similarity relationships hold: n2 ≥� n4;
n3 ≥� n4; n5 ≥� n8; n6 ≥� n8; n7 ≥� n8; n5 ≥� n9; n6 ≥� n9;
n7 ≥� n9 and n8 ≥� n9. All of these are also similarity
relationships. Besides these, also the similarity relationships
n10 ≥↓ n4 and n13 ≥↓ n9 hold.

We mention the following useful properties of perfect
(bi)similarity.

Proposition 6.1. Let m1 and m2 be nodes of a document D

such that m1 ≥� m2 (respectively, m1 ≡� m2).

(1) If m1 has an ancestor n1, then m2 has an ancestor n2

such that (m1, n1) ≡ (m2, n2) and n1 ≥� n2

(respectively, n1 ≡� n2).
(2) If m1 has a descendant n1, then m2 has a descendant n2

such that (m1, n1) ≡ (m2, n2) and n1 ≥� n2

(respectively, n1 ≡� n2).

Proof. The case for perfect bisimilarity follows immediately
from the case for perfect similarity, by Definition 6.4. We
will therefore only consider the latter case. The proof goes
by induction on the length of the path between m1 and n1. In
the base case, we have n1 = m1, whence n2 = m2, and both
statements follow trivially.

We next consider the induction step.
To show the first statement, let n1 be a strict ancestor of m1.

Then n1 is also an ancestor of p1, the parent of m1. By
Definition 6.3, m2 has a parent, say p2, and p1 ≥� p2. The
statement now follows from the induction hypothesis.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Study of a Positive Fragment of Path Queries 1107

To show the second statement, let n1 be a strict descendant
of m1. Then n1 is also a descendant of some child of m1, say p1.
By Definition 6.3, m1 ≥� m2 implies m1 ≥↓ m2. Hence, by
Definition 6.2, m2 has a child p2 such that p1 ≥↓ p2. By
Definition 6.3, p1 ≥� p2. The statement now follows from
the induction hypothesis.

For the purpose of abbreviation, we extend perfect similarity
and perfect bisimilarity to paths, i.e. pairs of nodes. Thereto,
we need the notions of subsumption (‘≥’) and congruence
(‘≡’) between pairs of nodes introduced in Section 3. Thus,
let m1, m2, n1 and n2 be nodes of a document D. We say that
(m1, n1) ≥� (m2, n2) (respectively, (m1, n1) ≡� (m2, n2))
whenever (m1, n1) ≥ (m2, n2) (respectively, (m1, n1) ≡
(m2, n2)), m1 ≥� m2 (respectively, m1 ≡� m2) and n1 ≥� n2

(respectively, n1 ≡� n2).

Example 6.3. Consider again Example 6.2. There, we
established that n5 ≥� n8 and n6 ≥� n9. In addition, (n5, n6) ≥
(n8, n9). None of these relationships can be reversed. Hence,
(n5, n6) ≥� (n8, n9), but not the other way around. Also,
n5 ≡� n5 and n6 ≡� n7, and (n5, n6) ≡ (n5, n7) yield that
(n5, n6) ≡� (n5, n7).

The abbreviation we have introduced is justified by the
following property.

Proposition 6.2. Let m1, m2, n1 and n2 be nodes of a
document D such that (m1, n1) ≥� (m2, n2) (respectively,
(m1, n1) ≡� (m2, n2)). Now, let p1 be any node on the
path between m1 and n1. Let p2 be the unique node that
is either on the path between m2 and n2 or an ancestor of
top(m2, n2) such that (m1, p1) ≥ (m2, p2) and (p1, n1) ≥
(p2, n2)

8 (respectively, (m1, p1) ≡� (m2, p2) and (p1, n1) ≡�
(p2, n2)

9). Then p1 ≥� p2 (respectively, p1 ≡� p2).

Proof. Clearly, p1 is either an ancestor of m1 or an ancestor of n1

(or both). First, consider the case where p1 is an ancestor of m1.
Then, (m1, p1) ≥ (m2, p2) implies that (m1, p1) ≡ (m2, p2).
Since p2 is obviously the only node with this property, it follows
immediately from Proposition 6.1(1), that p1 ≥� p2. The case
where p1 is an ancestor of n1 is completely analogous.

Example 6.4. Continuing with Example 6.3, Proposition 6.2
states that, for the perfect similarity (n5, n6) ≥� (n8, n9), that
n5 ≥� n8, n2 ≥� n4, n1 ≥� n1, n3 ≥� n4 and n6 ≥� n9, which
is indeed the case.

If one path subsumes another (respectively, if two paths
are congruent), then each node encountered when navigating
along the first path is perfectly similar (respectively, perfectly
bisimilar) to the corresponding node encountered when doing
the same navigation between the two nodes of the second path.

8Actually, one of these two conditions suffices; the first if p1 is an ancestor
of m1, and the second if p1 is an ancestor of n1.

9Actually, one of these two conditions suffices.

Using the abbreviation, we can restate the condition such that
(m1, n1) ≡ (m2, n2) and n1 ≥� n2 (respectively, n1 ≡� n2)
in the statement of Proposition 6.1(1) and (2), as such that
(m1, n1) ≥� (m2, n2) (respectively, (m1, n1) ≡� (m2, n2)).
Actually, Proposition 6.1 can be generalized, as follows.

Proposition 6.3. Let m1, m2 and n1 be nodes of a
document D such that m1 ≥� m2 (respectively, m1 ≡� m2).
Then there exists a node n2 such that (m1, n1) ≥� (m2, n2)

(respectively, (m1, n1) ≡� (m2, n2)).

Proof. Obviously, it suffices to prove the case for perfect
similarity. Ifn1 is an ancestor ofm1, then Proposition 6.3 follows
immediately from Proposition 6.1(1). Otherwise, consider
top(m1, n1), the least common ancestor of m1 and n1. Again
by Proposition 6.1(1), there is an ancestor t2 of m2 such that
(m1, top(m1, n1)) ≥� (m2, t2). Since n1 is a descendant of
top(m1, n1), we have by Proposition 6.1(2), that there exists
a descendant n2 of t2 such that (top(m1, n1), n1) ≥� (t2, n2).
Using Proposition 3.1(3), it readily follows that (m1, n1) ≥�
(m2, n2).

Example 6.5. Continuing with Example 6.4, Proposition 6.3
states that, given the perfect similarity n6 ≥� n8 and the node n7,
there exists a noden such that (n6, n7) ≥� (n8, n). This is indeed
the case; all possible choices for n are n8 itself and n9.

We are now ready to establish the link between the
semantic properties of expression-relatedness and expression-
equivalence on the one hand, and perfect similarity and perfect
bisimilarity on the other hand. First, we will show that a Path+
expression cannot distinguish a path from one that is perfectly
similar to it. To make the case for composition, we need the
following technical lemma.

Lemma 6.1. Let m1, m2, n1, n2 and p1 be nodes of a
document D such that (m1, n1) ≥� (m2, n2). Then, there exists
a node p2 such that (m1, p1) ≥� (m2, p2) and (p1, n1) ≥�
(p2, n2).

Proof. Let q1 be top(m1, p1) or top(p1, n1), whichever is closer
to p1. Without loss of generality, assume the former.10 By
Proposition 6.1(1), m2 has an ancestor q2 such that (m1, q1) ≥�
(m2, q2). By Proposition 6.1(2), q2 has a descendant p2 such
that (q1, p1) ≥� (q2, p2). Using Proposition 3.1(3), it readily
follows that (m1, p1) ≥� (m2, p2), whence also (p1, m1) ≥�
(p2, m2) (Proposition 3.1(2)). By assumption, (m1, n1) ≥�
(m2, n2).Also by assumption, top(p1, n1) is an ancestor of q1 =
top(p1, m1), whence also of m1. Hence, using once more
Proposition 3.1(3), it follows that (p1, n1) ≥� (p2, n2), which
concludes the proof.

Example 6.6. Continuing with Examples 6.2 and 6.5,
consider the perfect similarity (n5, n6) ≥� (n8, n9). Given

10The proof of the other case is completely analogous, with the roles of m1
and n1, respectively, m2 and n2, interchanged.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1108 Y. Wu et al.

node n7, Lemma 6.1 states that there exists a node p such that
(n5, n7) ≥� (n8, p) and (n7, n6) ≥� (p, n9). In addition, the
proof provides a method to find such a node. Thereto, we must
consider top(n5, n7) = n1 and top(n7, n6) = n3, and select the
one which is closer to n7, which is n3. Since n3 is an ancestor
of n6, we must consider the ancestor of n9 at the same distance,
which is n4. Finally, we must choose a descendant p of n4

such that (n3, n7) ≥� (n4, p). Two choices for p satisfy this
requirement: p = n8 or p = n9. It is readily verified that
(n5, n7) ≥� (n8, n8) (respectively, (n5, n7) ≥� (n8, n9)) and
that (n7, n6) ≥� (n8, n9) (respectively, (n7, n6) ≥� (n9, n9)).

Lemma 6.2. Let E be a Path+ expression, and let m1, m2,
n1 and n2 be nodes of a document D such that (m1, n1) ≥�
(m2, n2). If (m1, n1) ∈ E(D), then (m2, n2) ∈ E(D).

Proof. By Theorem 4.1, we may assume without loss of
generality that E is a Path+(∩) expression. The proof now
proceeds by structural induction. For the primitives ∅, ε, �̂

(� ∈ L), ↓ and ↑, it is straightforward that the lemma holds.
This settles the base case. We now turn to the inductive step:

Composition. Let E := E1; E2, with E1 and E2 satisfying
the lemma. Assume (m1, n1) ∈ E(D). Then there exists a
node p1 such that (m1, p1) ∈ E1(D) and (p1, n1) ∈ E2(D).
By Lemma 6.1, there exists a node p2 such that (m1, p1) ≥�
(m2, p2) and (p1, n1) ≥� (p2, n2). By the induction
hypothesis, (m2, p2) ∈ E1(D) and (p2, n2) ∈ E2(D). Thus,
(m2, n2) ∈ E(D).

Intersection. Let E := E1 ∩ E2, with E1 and E2 satisfying
the lemma. Assume (m1, n1) ∈ E(D). Then, (m1, n1) ∈ E1(D)

and (m1, n1) ∈ E2(D). Then, by the induction hypothesis,
(m2, n2) ∈ E1(D) and (m2, n2) ∈ E2(D). Thus, (m2, n2)

∈ E(D).

Notice that Lemma 6.2 implies, for every Path+ expression
E and document D, that E(D) is a union of equivalence classes
on the set of pairs of nodes of D under perfect bisimilarity.

We are now ready to develop an argument that shows that the
semantic property of expression-equivalence and the syntactic
property of perfect bisimilarity coincide. The argument is
divided into the following three lemmas.

Lemma 6.3. Let m1 and m2 be nodes of a document D. If
m1 ≥� m2, then m1 ≥exp m2.

Proof. Assume that m1 ≥� m2. We show that m1 ≥exp

m2. Thereto, let E be a Path+ expression. Suppose that
E(D)(m1) �= ∅. Hence, there exists a node n1 such that
(m1, n1) ∈ E(D). By Proposition 6.3, there exists a node n2

such that (m1, n1) ≥� (m2, n2). By Lemma 6.2, (m2, n2)

∈ E(D). Hence, E(D)(m2) �= ∅.

Lemma 6.4. Let m1 and m2 be nodes of a document D. If
m1 ≥exp m2, then m1 ≥↓ m2.

Proof. The proof is by induction on the height of the complete
subtree rooted at m1. First observe that m1 ≥exp m2 implies

that λ(m1) = λ(m2). Otherwise, ̂λ(m1)(D)(m1) �= ∅ and
̂λ(m1)(D)(m2) = ∅, a contradiction. This settles the base case,
in which m1 is a leaf.

Thus, assume that m1 is not a leaf. Let n1 be a child of m1.
Then m2 cannot be a leaf, for, otherwise, ↓(D)(m1) �= ∅ and
↓(D)(m2) = ∅, a contradiction. Let n1

2, . . . , n
k
2 be all children

of m2. Suppose that, for all i, 1 ≤ i ≤ k, n1 �≥exp ni
2.

Hence, for all i, 1 ≤ i ≤ k, there exists a Path+ expression
Ei such that Ei(D)(n1) �= ∅ and Ei(D)(ni

2) = ∅. Let
F := �1(E1) ∩ . . . ∩ �1(Ek). Then, ↓; F(D)(m1) �= ∅ and
↓; F(D)(m2) = ∅, a contradiction. Hence, there exists a child
ni

2 of m2, 1 ≤ i ≤ k, such that n1 ≥exp ni
2. By the induction

hypothesis, n1 ≥↓ ni
2. By Definition 6.2, m1 ≥↓ m2.

Lemma 6.5. Let m1 and m2 be nodes of a document D. If
m1 ≥exp m2, then m1 ≥� m2.

Proof. The proof is by induction on the depth of m1. First,
observe that m1 ≥exp m2 implies that m1 ≥↓ m2, by Lemma 6.4.
Now assume that m1 is the root. Let d be the height of D. Then
↓d(D)(m1) �= ∅. Hence, ↓d(D)(m2) �= ∅, which implies that
m2 is also the root, i.e. m1 = m2. This settles the base case.

Thus, assume that m1 is not the root. Hence ↑(D)(m1) �= ∅,
which implies in turn that ↑(D)(m2) �= ∅. It follows that m2 is
not the root either. Let p1 be the parent of m1 and p2 the parent
of m2. Let E be a Path+ expression such that E(D)(p1) �= ∅.
Then ↑; E(D)(m1) �= ∅, which implies that ↑; E(D)(m2) �= ∅.
Hence E(D)(p2) �= ∅. We have thus shown that p1 ≥exp p2.
By the induction hypothesis, p1 ≥� p2. By Definition 6.3,
m1 ≥� m2.

Lemmas 6.3 and 6.5 now immediately yield the following.

Theorem 6.1. Let m1 and m2 be nodes of a document D.
Then, m1 ≥exp m2 if and only if m1 ≥� m2.

Theorem 6.1 now immediately yields the desired result.

Corollary 6.1. Let m1 and m2 be nodes of a document D.
Then, m1 ≡exp m2 if and only if m1 ≡� m2.

In words, two nodes in a document cannot be resolved by
a Path+ expression if and only if these nodes are perfectly
bisimilar.

Next, we extend this result to the resolving power of Path+ to
pairs of paths in a document. The following theorem now states
the main result about the resolution expressiveness of Path+.

Theorem 6.2. Let m1, m2, n1, n2 be nodes of a document D.
Then, the property that, for each Path+ expression E, (m1, n1)

∈ E(D) implies (m2, n2) ∈ E(D) is equivalent to the property
(m1, n1) ≥� (m2, n2).

Proof. We only need to show the equivalence from left to
right, as the other direction was already shown in Lemma 6.2.
Thus, assume that, for each Path+ expression E, (m1, n1)

∈ E(D) implies (m2, n2) ∈ E(D). In particular, (m1, n1)

∈ sig(m1, n1)(D) implies (m2, n2) ∈ sig(m1, n1)(D), whence

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Study of a Positive Fragment of Path Queries 1109

(m1, n1) ≥ (m2, n2). Next, assume that, for some Path+
expression E, E(D)(m1) �= ∅. Then, necessarily, (m1, n1)

∈ �1(E); sig(m1, n1)(D). From the assumption, it follows that
(m2, n2) ∈ �1(E); sig(m1, n1)(D), whence E(D)(m2) �= ∅.
Thus, we have shown that m1 ≥exp m2, or, by Theorem 6.1, that
m1 ≥� m2. Finally, assume that, for some Path+ expression E,
E(D)(n1) �= ∅. Then, (m1, n1) ∈ sig(m1, n1); �1(E)(D),
whence (m2, n2) ∈ sig(m1, n1); �1(E)(D). Again, this is only
possible if E(D)(n2) �= ∅. As before, it follows that also
n1 ≥� n2, which concludes the proof.

The theorem states that, whenever we find a pair (m1, n1) in
the result of a query in Path+, then we are guaranteed that any
pair (m2, n2) such that (m1, n1) ≥� (m2, n2), will also be in the
result of the query, and vice-versa.

We illustrate some of the concepts and results introduced
above.

Example 6.7. Let D be the document shown in Fig. 3.
In Example 6.2, we established that n2 ≡� n3, whence, by
Corollary 6.1, n2 ≡exp n3. Hence, there is no Path+ expression
that can distinguish these two nodes. In Example 6.3, we
established that (n5, n6) ≥� (n8, n9), but not vice-versa. By
Theorem 6.2, there is no Path+ expression E such that (n5, n6)

∈ E(D), but (n8, n9) /∈ E(D). Also by Theorem 6.2, there
does exist a Path+ expression F such that (n8, n9) ∈ F(D),
but (n5, n6) /∈ F(D). An example of such an expression is
F := ↑; ↓. As a last example, we established in Example 6.2
that n5 ≡� n7. Hence, (n5, n6) ≥� (n7, n9), but not vice-
versa. By Theorem 6.2, there is no Path+ expression E such
that (n5, n6) ∈ E(D), but (n7, n9) /∈ E(D), although there
does exist a Path+ expression F such that (n7, n9) ∈ F(D),
but (n5, n6) /∈ F(D). An example of such an expression is
F := ↑; ↑; ↓; ↓; �1(↓).

To conclude this section, we observe that some of the results,
which strictly speaking deal with the resolution expressiveness,
can be lifted to the level of query expressiveness. We illustrate
this in a final example.

Example 6.8. We give some examples of queries that cannot
be expressed in Path+.

(1) Return all pairs of non-identical siblings in a document.
Let D be a document in which the nodes m and n are
non-identical siblings such that m ≥� n. Obviously,
(m, n) ≥� (n, n). So, by Theorem 6.2, the output of any
Path+ query returning (m, n) must also contain (n, n),
an identical pair.

(2) Return all pairs of different nodes in a document. It
follows from the previous example that this is in general
not possible in Path+.

(3) Return all identical pairs of nodes having at least
two children. In a document in which all nodes have
the same label, two nodes at the same height and
depth in the document are perfectly bisimilar, regardless

of how many children these nodes have. Hence, by
Theorem 6.1, they cannot be separated by a Path+ query.

We also invite the reader to establish the inexpressibility in
Path+ of the proposed queries by analyzing the perfect similarity
relations in our running example document (Fig. 3).

7. MINIMIZATION OF TREE QUERIES AND PATH+
EXPRESSIONS

Minimizing algebraic expressions aimed at optimizing query
evaluation is a practice used extensively in relational database
systems. It is natural that the same principle and procedure is
followed in XML query processing and optimization.

7.1. Minimization of tree queries

The results on minimization of tree queries are derived using the
theory developed in Section 6. In particular, we show that each
tree query can be translated into an equivalent unique minimal
tree query.

In order to achieve these results, we first extend the notion
of containment mapping (Section 3.4). Thereto, let P1 =
(T1, s1, d1) and P2 = (T2, s2, d2) be tree queries, with T1 =
(V1, Ed1, λ1) and T2 = (V2, Ed2, λ2). A query containment
mapping of P1 into P2 is a mapping h : V1 → V2 such that

(1) h is a containment mapping of T1 into T2,
(2) h(s1) = s2,
(3) h(d1) = d2.

We observe the following, which is a variation on a well-known
result by Chandra and Merlin [23].

Proposition 7.1. Let P1 and P2 be tree queries. Then P2 is
contained11 in P1 if and only if there is a query containment
mapping of P1 into P2.

Proof. Let P1 = (T1, s1, d1) and P2 = (T2, s2, d2). First,
assume that P2 is contained in P1. Let D2 be the document
obtained from T2 by replacing every wildcard by some fixed
label of L that is neither in T1 nor in T2. The canonical
embedding i2 of T2 in D2 is a containment mapping, and,
therefore, P2 contained in P1 implies that there is a containment
mapping h from T1 into D2 mapping s1 to s2 and d1 to d2.
Clearly, i−1

2 ◦ h is the desired query containment mapping.12

Finally, assume that there exists a query containment mapping
h1 of P1 into P2. Let D be a document and let h2 be a
containment mapping of P2 into D. Then h2◦h1 is a containment
mapping of P1 into D satisfying h2 ◦ h1(s1) = h2(s2) and
h2 ◦ h1(d1) = h2(d2), yielding the desired containment.

11In the sense that, for each document D, P2(D) ⊆ P1(D).
12For two mappings f : X → Y and g : Y → Z, the composition

g ◦ f : X → Z is the mapping for which, for all x in X, g ◦ f (x) = g(f (x)).

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1110 Y. Wu et al.

(,)

(,)(,)

(,{ })(,)

(∗,)

76

4

b φ

1

∗

d φ d φ

c φ

1

φ

sc

(∗,{ })d∗

2

3

d

5

d

76

4c c

b

d

s

2

3

5

FIGURE 16. A tree query and its encoding as a labeled tree.

We are now going to describe an algorithm that reduces an
arbitrary tree query to an equivalent minimal tree query. In order
to do so, we must introduce some terminology and concepts.
Given a tree query P = (T , s, d) with T = (V , Ed, λ), we
wish to encode P as a labeled tree, i.e. incorporate the source
and destination information into T . This encoding, denoted TP ,
is a relabeling of T , i.e. TP = (V , Ed, λP) with λP : V → L.
Here13, L = (L ∪ {∗}) × 2{s,d}. It remains to define λP . For
n ∈ V ,

λP (n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λ(n), {s, d}) if n = s = d,

(λ(n), {s}) if n = s and s �= d,

(λ(n), {d}) if n = d and s �= d,

(λ(n), ∅) if n �= s and n �= d.

The encoding of the tree query in Fig. 5 in shown in Fig. 16.
We now define an order on L (cf. Section 3.4), which is the

reflexive–transitive closure of the following:

(1) For all � ∈ L∪{∗}, and for all S1, S2 ∈ 2{s,d}, if S1 ⊆ S2,
then (�, S1) ≥ (�, S2).

(2) For all � ∈ L, and for all S ∈ 2{s,d}, (∗, S) ≥ (�, S).

This order on L is the one we use when talking
about containment mappings between tree query encodings
(Definition 3.5). The following result is straightforward.

Lemma 7.1. Let P1 and P2 be two tree queries, and let TP1

and TP2 be their respective encodings. A query containment
mapping of P1 into P2 is also a containment mapping of TP1

into TP2 , and vice-versa.

This result actually justifies the term ‘encoding’.
We now interpret labeled tree encodings of tree queries as

documents and consider a variation on the similarity (Definition
6.2) and perfect similarity (Definition 6.3) relation between
nodes, respectively, denoted as ‘≥↓’and ‘≥�’. Notably, we relax
the condition that the first node has the same label as the second

13By 2{s,d}, we mean the set of all subsets of {s, d}, i.e., {∅, {s}, {d}, {s, d}}.

node to the condition that the fist node has a label that is at least
the second label with respect to the order defined above. We will
call this variation on (perfect) similarity generalized (perfect)
similarity and denote it by ‘�↓’ (respectively, ‘��’). Most of
the results proved for (perfect) similarity extend to generalized
(perfect) similarity, in particular Proposition 6.1. The following
lemma links tree query containment with generalized perfect
similarity.

Lemma 7.2. Let T = (V , Ed, λ) be a labeled tree, with
λ : V → L, and let i : V → V be a containment mapping of
T into itself. Then, for all n ∈ V , n��i(n).

Proof. We first show, by induction on the height of n, that
n�↓i(n). For all n ∈ V , λ(n) ≥ λ(i(n)), because i is a
containment mapping. This settles the base case where n is a
leaf. Now let n be an interior node, and let m be a child of n.
Then i(m) is a child of i(n), because i is a containment mapping.
By the induction hypothesis, m�↓i(m). By Definition 6.2, we
may now conclude that n�↓i(n).

We next bootstrap this result, and show, by induction on
the depth of n, that n��i(n). First observe that, if n is the
root, then i(n) = n. Indeed, let d be the height of T , and let
n = n1, . . . , nd be a path from n to a leaf at maximal length.
Then, i(n) = i(n1), . . . , i(nd) is in turn a path in T , because i is
a containment mapping. Hence, i(n) must be the root, whence
i(n) = n. This settles the base case. Now suppose that n is not
the root, and that p is the parent of n. Then, i(p) is the parent
of i(n), because i is a containment mapping. By the induction
hypothesis, p��i(p). By Definition 6.3, we may now conclude
that n��i(n).

If we combine Lemmas 7.1 and 7.2, we may conclude that,
given a query containment mapping of a tree query into itself,
each node of that tree query is generalized perfectly similar to
its image, provided these nodes are interpreted in the context of
the labeled tree encoding of the tree query.

Finally, notice that Algorithm Merge2, described in Fig. 7,
also works if ‘comparability’ and ‘compatibility’ are defined
with respect to the label order defined above.

We are now ready to prove the following key lemma.

Lemma 7.3. Let P be a tree query and let TP be its
encoding as a labeled tree. Let m and n be different nodes
of TP such that m��n. Let Merge2(TP , m, n) be the result of
applying Algorithm Merge2 to TP , m and n. Then, the following
statements hold.

(1) Merge2(TP , m, n) is again a labeled tree.
(2) There exists a tree query P ′ such that TP ′ =

Merge2(TP , m, n).
(3) The tree queries P and P ′ are equivalent.

Proof. (1) By definition, perfectly similar nodes are
compatible. Also, different perfectly similar nodes both
have a parent, and these parents are again perfectly
similar (Definition 6.3). From this, it follows in

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Study of a Positive Fragment of Path Queries 1111

particular that the two nodes have the same distance to
their least common ancestor. By Lemma 4.3, Algorithm
Merge2 will return a tree under these conditions.

(2) Let P = (T , s, d), T = (V , Ed, λ), TP =
(V , Ed, λP), Merge2(TP , m, n) = T ′ = (V ′, Ed′, λ′)
and f : V → V ′ be the canonical covering by T of T ′
(cf. Lemma 4.3). First notice that, if s = d , then this
node is labeled in TP by (λ(s), {s, d}), whereas all other
nodes in TP will have a label of the form (�, ∅) with
� ∈ L∪{∗}. Obviously, all labels in T ′ also occur in TP .
Moreover, f (s) in T ′ is still labeled by (λ(s), {s, d}).
This is trivially so, if s is neither m nor n; in the
other case, f (s) will be labeled by min(λP (m), λP (n)),
which is (λ(s), {s, d}). Now, let T ′′ = (V ′, Ed′, λ′′)
with λ′′ : V ′ → L ∪ {∗} be defined by λ′′(f (s)) = λ(s)

and λ′′(p′) = λ′(p′) for all other nodes p′ ∈ V ′. Clearly,
T ′ = TP ′ , with P ′ = (T ′′, f (s), f (s)). If s �= d, then,
in TP , s is labeled by (λ(s), {s}) and d is labeled by
(λ(d), {d}), whereas all other nodes in TP will have a
label of the form (�, ∅) with � ∈ L ∪ {∗}. The existence
of a tree query P ′ for which T ′ = TP ′ can now be
established by an argument completely analogous to the
one in the case s = d .

(3) By Lemma 7.1, it suffices to establish the existence of
containment mappings in both directions between TP

and T ′, using the notation introduced in the proof of the
previous item. Obviously, the canonical covering f by
TP of T ′ is a containment mapping of TP into T ′. For
the reverse direction, we will show by induction on the
height of TP that there exists a containment mapping
h′ : V ′ → V of T ′ into TP satisfying the following
conditions:

(1) if n′ = f (m) = f (n), then h′(n′) = n, and
(2) for all p ∈ V : p��h′(f (p)).

We observe in this context that TP and T ′ always
have the same depth, as Merge2 is depth-preserving.
The existence of the desired containment mapping is
trivial in the base case, where TP and T ′ are both single-
node trees. Now consider the inductive case. Let T P and
T

′
be the subtrees of TP , respectively, T ′, obtained by

cutting of all leaves at maximal depth. Since generalized
perfectly similar nodes have the same depth, m and n

are either both in T P or both not in T P . In the first case,
it readily follows that T

′ = Merge2(T P , m, n). In the
second case, let pm and pn be the parents of m and n,
respectively. By definition, pm��pn. It readily follows

that T
′ = Merge2(T P , pm, pn). From the induction

hypothesis, it follows in both cases that there exists
a containment mapping h′ of T

′
into T P satisfying

conditions (1) and (2) above.14 Thereto, we extend h′

14Notice in this regard that the canonical covering by T P of T
′

is the
restriction of f to the nodes of T P .

to a containment mapping of T ′ into TP , as follows. Let
p′ be a node of T ′ not in T

′
, and let q ′ be its parent. We

distinguish two cases.

(a) p′ = f (m) = f (n). By Condition (1), we must
put h′(p′) := n. Since, in this case, q ′ = f (pm) =
f (pn), it follows, again by Condition (1), that
h′(q ′) = pn. Hence, there is an edge between
h′(p′) and h′(q ′), so the proposed extension of h′ is
consistent with the first condition of the definition
of containment mapping (Definition 3.5). Since,
by assumption, m��n, and, trivially, n��n, m

and n satisfy Condition (2) above. From m��n,
it follows that λP (m) ≥ λP (n). By construction,
λ′(p′) = min(λP (m), λP (n)) = λP (n). It follows
that λ′(p′) = λP (h′(p′)), whence the proposed
extension of h′ is also consistent with the second
condition of Definition 3.5.

(b) p′ �= f (m) = f (n). In this case, there is a
unique node p ∈ V such that f (p) = p′.
Let q be the parent of p in TP . Since f is a
containment mapping of TP into T ′, f (q) = q ′. By
Condition (2) above, q��h′(q ′). By Proposition 6.1
(2), h′(q ′) has a child, say c, such that p��c. We
put h′(p′) := c. In doing so, we ensure that p

satisfies Condition (2) above. In particular, there is
an edge between h′(p′) and h′(q ′), so the proposed
extension of h′ is consistent with the first condition
of the definition of Definition 3.5. From p��h′(p′),
it also follows that λP (p) ≥ λP (h′(p′)). Hence,
λ′(p′) = λP (p) ≥ λP (h′(p′)), whence the proposed
extension of h′ is also consistent with the second
condition of Definition 3.5.

We are now ready to present our minimization algorithm
Reduce. It is described in Fig. 17. Notice that this algorithm is
non-deterministic, as, in each pass of the while loop, an arbitrary
pair of generalized perfectly similar nodes must be chosen. The
end result, however, turns out to be unique up to isomorphism,
as is shown in Theorem 7.1.

We say that a tree query is minimal if there is no equivalent
tree query with fewer nodes. The T expression ∅ is also assumed
to be minimal. We now have the following.

Theorem 7.1. Let P be a T expression.

(1) Applying Algorithm Reduce to P always results in a T
expression equivalent to P .

(2) Let Pred be a possible output of Algorithm Reduce upon
input P . Then, Pred is isomorphic to any minimal T
expression equivalent to P .

Proof. Obviously, Pred = ∅ if and only if P = ∅, and the
theorem holds trivially in this case. For the remainder of the
proof, we therefore assume that both P and Pred are tree queries.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1112 Y. Wu et al.

FIGURE 17. Algorithm Reduce. (The module Merge2 is described in Fig. 7.)

The first statement immediately follows from a repeated
application of Lemma 7.3.

As to the second statement, let Pred = (Tr, sr, dr) with
Tr = (Vr, Edr, λr). Let Pmin = (Tm, sm, dm) with Tm =
(Vm, Edm, λm) any minimal tree query equivalent to P . By the
first statement, Pred and Pmin are equivalent. By Proposition 7.1,
there is a query containment mapping hr : Vr → Vm of Pred into
Pmin and a query containment mapping hm : Vm → Vr of Pmin

into Pred.
First notice that the image under hr of Tr is a subtree of Tm

containing both sm and dm, because hr is a query containment
mapping. Let Thr be this subtree. Then Phr = (Thr , sm, dm)

is also a tree query. Clearly, hr can also be seen as a query
containment mapping of Pred into Phr . Now, the image of Thr

under hm is a subtree of Tr containing both sr and dr, because hm

is a query containment mapping. Clearly, the restriction of hm

to the nodes in Thr is a query containment mapping of Phr into
Pred. By Proposition 7.1, Phr is equivalent to Pred, and hence
also to Pmin. Since Pmin is minimal by assumption, it follows
that Phr = Pmin and that hr is surjective.

Now, let i = hm ◦hr. As a composition of query containment
mappings, i : Vr → Vr is a query containment mapping of Pred

into itself. Let n ∈ Vr. Then, by Lemma 7.2, n��i(n) in TPred .
Since Pred is an output of Algorithm Reduce, it follows that
n = i(n). Hence, i is the identity on Vr. This is only possible if hr

is injective. Since it was already established that hr is surjective,
it follows that hr is bijective. Hence, hm, as its inverse, is also
bijective. In particular, Tr has the same number of nodes as Tmin,
and, therefore, Pred is minimal.

We must conclude that hr and hm are bijective query
containment mappings between Pred and Pmin that are each
other’s inverses. As query containment mappings, hr and hm

preserve edges and match sources, respectively, destinations. To
establish that hr and hm are actually isomorphisms between Pred

and Pmin, it remains to show that corresponding nodes (through
hr and hm) have the same label. So let n ∈ Vr. Then, because

1c s 11c

∗

22 d

d

20

dd

2

d

4

d

4

∗

9

∗

2

10b 5b

P

c

11 1c s 18c

∗

22 d

d

20

d

4

Reduce()P

∗

9

5b

FIGURE 18. A tree query and its reduction.

hr and hm are containment mappings, λr(n) ≥ λm(hr(n)) ≥
λr(hm(hr(n))) = λr(n). Hence, λr(n) = λm(hr(n)).

We may thus conclude that, up to isomorphism, there is a
unique tree query equivalent to a given one, and that we obtain
it by applying Algorithm Reduce to it. For a given tree query P ,
the equivalent minimal tree query will henceforth be called the
reduction of P and denoted as Reduce(P).

Example 7.1. Consider again the final tree query in Fig. 11.
Figure 18 exhibits this tree query, P , and its reduction,
Reduce(P). The latter is the (up to isomorphism) unique
minimal tree query equivalent to P . Observe that Reduce(P)

is isomorphic to the tree query in Fig. 5.

7.2. Minimization of Path+ expressions

While minimization works out fine in the declarative framework
of tree queries, it is not obvious how to go about this strictly
within the algebraic framework of Path+ expressions. However,
we can deal with the problem indirectly, as follows. First, we

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Study of a Positive Fragment of Path Queries 1113

translate the Path+ expressions under consideration into a tree
query, using Algorithm Path-T. Then, we apply Algorithm
Reduce to obtain the unique equivalent minimal tree query.
Finally, we use Algorithm T-Path to re-translate this tree
query into a Path+ expression.15 It is, of course, the hope
that the minimization of the intermediate tree query will result
in a significant reduction in the size of the original Path+
expressions, and, in particular, in the amount of navigation
required to evaluate it on a document.

Example 7.2. By translating the Path+ expression

�1(↓); �2(d̂; ↑; ĉ); �2(b̂; ↓; ĉ); ↑;
�2(�1((↓; b̂; ↓) ∩ (↓; ↓; ĉ)); ↓); ↓; �1(ĉ; ↓; d̂); ĉ; ↓

of Example 3.2 into the final tree query of Fig. 11, and then
re-translating this tree query, we obtained

�1(�1(↓); ↓; d̂); ↑; �2(�1(↓; �1(↓; ĉ); b̂); ↓); b̂; ↓;
�1(↓; d̂); ĉ; ↓

as an equivalent, normalized Path+ expression in Example 5.1.
In Example 7.1, we minimized the final tree query of Fig. 11 to
the tree query shown in Fig. 18, (right), which is isomorphic to
the tree query in Fig. 5. Re-translating the minimal query with
Algorithm T-Path yields the normalized Path+ expression

�1(↓; d̂); ĉ; ↑; �2(↓); b̂; ↓; �1(↓; d̂); ĉ; ↓ ,

which was already claimed to be equivalent to the original one
in Example 3.2.

We claim that normalized Path+ expressions obtained in this
way are minimal in the sense that any equivalent expression has
at least as many ‘↑’ or ‘↓’ primitives combined.16 However, our
analysis will also show that there is no unique such minimal
Path+ expression, unless we further restrict our normal form.

The proof of this claim relies on the following lemma.

Lemma 7.4. (1) The combined number of ‘↑’ and ‘↓’
primitives in a Path+ expression E is at least as large
as the number of edges in Path-T(E).

(2) The number of edges in a T expression P is precisely
equal to the combined number of ‘↑’ and ‘↓’ primitives
in T-Path(P).

Proof. For both statements, the proof is a straightforward
structural induction argument. As to Statement 1, the possible
inequality stems from the fact that the translation of composition
and intersection may result in the merging of some edges of
the partial translation of the subexpressions involved in the
composition, respectively, intersection.

We now have the following.

15This is effectively a variation on the normalization algorithm of
Corollary 5.1.

16Of course, ∅ is also a minimal Path+ expression.

Theorem 7.2. (1) If P is a minimal T expression, then
T-Path(P) is a minimal Path+ expression.

(2) If E is a minimal Path+ expression, then Path-T(E) is
a minimal T expression.

Proof. (1) Obviously, the Path+ expression ∅, as the
translation of the minimal T expression ∅, is minimal.
So, consider a minimal tree query P , and let E be
any Path+ expression equivalent to T-Path(P), whence
also to P , of course. Then, by Proposition 4.2 and
Theorem 7.1, Reduce(Path-T(E)) is isomorphic to P .
By Lemma 7.4(1), the combined number of ‘↑’ and ‘↓’
primitives in E is at least as large as the number of
edges in P . By Lemma 7.4(2), the number of edges in
P is precisely equal to the combined number of ‘↑’ and
‘↓’ primitives in T-Path(P), from which the statement
now follows.

(2) Obviously, the T expression ∅, as the translation of the
minimal Path+ expression ∅, is minimal. So, consider
a Path+ expression E which is not equivalent to ∅. The
combined number of ‘↑’ and ‘↓’ primitives in E is at
least as large as the number of edges in Path-T(E)

(Lemma 7.4(1)), which is at least as large as the
number of edges of Reduce(Path-T(E)), which is
precisely equal to the combined number of ‘↑’ and ‘↓’
primitives in T-Path(Reduce(Path-T(E))) (Lemma
7.4(2)), which is at least the combined number of ‘↑’
and ‘↓’ primitives in the minimal Path+ expression E.
Hence, all the above inequalities are actually equalities.
In particular, Path-T(E) and Reduce(Path-T(E)) have
the same number of edges, implying that the former one
is minimal, since the latter one is (Theorem 7.1).

The following corollary is now immediate.

Corollary 7.1. If E is a Path+ expression, then
T-Path(Reduce(Path-T(E))) is a minimal Path+ expression
equivalent to E.

Example 7.3. From Example 7.2, it follows that

�1(↓; d̂); ĉ; ↑; �2(↓); b̂; ↓; �1(↓; d̂); ĉ; ↓
is a minimal Path+ expression equivalent to

�1(↓); �2(d̂; ↑; ĉ); �2(b̂; ↓; ĉ); ↑;
�2(�1((↓; b̂; ↓) ∩ (↓; ↓; ĉ)); ↓); ↓; �1(ĉ; ↓; d̂); ĉ; ↓.

We conclude this subsection with some general remarks
on the uniqueness of minimal Path+ expressions. We discard
expressions equivalent to ∅ from our discussion, as, in
this case, ∅ is obviously the unique minimal expression
equivalent to such an expression. First of all, intersections
in minimal Path+ expressions can only occur between
subexpressions that return identical pairs of nodes, whatever

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1114 Y. Wu et al.

the document under consideration. Otherwise, the merging
involved in translating this intersection into the formalism
of tree queries will eventually yield a tree query with fewer
edges than the combined number of ‘↑’ and ‘↓’ primitives
in the original expression, which, upon re-translation, would
contradict the minimality of the original Path+ expression.
An intersection between subexpressions that always return
identical pairs of nodes, however, is equivalent to the
composition of these subexpressions. Thus, in a minimal Path+
expression, intersection can always be replaced syntactically
by composition, and, therefore, we only consider minimal
Path+ expressions without intersection. Also, inversion can
be eliminated, and this elimination reduces the number of
operations involved in the expression, while not affecting the
combined number of ‘↑’ and ‘↓’ primitives. For this reason,
it also makes sense not to consider minimal Path+ expressions
with explicit occurrences of the inversion operator. In summary,
it makes good sense to consider only minimal expressions that
are in Path+(�1, �2).

In a minimal Path+(�1, �2) expression, it is not possible
that an ‘↑’ primitive follows a ‘↓’ primitive, for, otherwise, its
translation into a tree query would require merging of edges,
contradicting the minimality of the expression. So, in a minimal
Path+(�1, �2) expression, all ‘↑’ primitives precede all ‘↓’
primitives. For the same reason, the second projection operation
can occur only once, and only after the last ‘↑’ primitive, if
any, and before the first ‘↓’ primitive, if any. Next, notice
that subexpressions of minimal Path+ expressions must be
minimal, too. In particular, all ‘↑’ primitives in the argument
of a projection operation must precede all ‘↓’ primitives. Since
translating a minimal Path+ into a tree query may not result
in the merging of edges, we must conclude that ‘↑’ primitives
cannot occur inside projections.

In conclusion, equivalent minimal Path+(�1, �2) expres-
sions are nearly isomorphic, except that

(1) multiple occurrences of ‘�1’ operations in between ‘↑’
and/or ‘↓’ primitives in one minimal expression may
have been nested in another one; and

(2) there is some freedom in the precise location of label
primitives.

Therefore, if we impose as additional restrictions onto minimal
Path+(�1, �2) that

(1) the number of ‘�1’ operations at each level of nesting
(with respect to the projections) is minimal, and

(2) the number of label primitives is minimal, and label
conditions occur at the outermost level possible, and,
there, as far to the right as possible,

then, minimal Path+(�1, �2) expressions are (i) unique and (ii)
in normal form.

8. DECOMPOSITION AND EVALUATION

From the results in [2, 3], it follows that DPath+(�1) queries can
be answered using an index-only plan with a P(k)-trie index for
k > 1. We now discuss how to take advantage of this result and
the normal form for Path+ expressions established in Section 5
to come up with an efficient query evaluation plan for queries
in Path+.

Consider again a tree query P = (T , s, d) in its most general
form, as shown in Fig. 15. Let T ′

r be Tr where t is replaced by
the wildcard-labeled t ′, and T ′

s be Ts where t is replaced by t ′.
Let E := T-Path(P), which, by Theorem 5.1, is in normal form.
We retain from the discussion in Section 5 that

E = Eup; Etop; Edown

= T-Path(T ′
s , s, t

′); �2(T-Path(T ′
r , r, t

′));
T-Path(Td, t, d)

= T-Path(T ′
s , t

′, s)−1; �2(T-Path(T ′
r , r, t

′));
T-Path(Td, t, d).

Here, T-Path(T ′
s , t

′, s), T-Path(T ′
r , r, t

′) and T-Path(Td, t, d)

are all translations of tree queries in which the source is
an ancestor of the destination, and, therefore, they are in
DPath+(�1). Hence, for these subexpressions, an efficient
query evaluation with an index-only plan is available.

In conclusion, every Path+ query can be evaluated efficiently
with an index-only plan provided a P(k)-trie index [3] with
k > 1 is available, and this with no more than two natural join
operations, as guaranteed by the normal form. Indeed, for every
document D, we have that E(D) equals

T-Path(T ′
s , t

′, s)−1(D) �� π2(T-Path(T ′
r , r, t

′)(D))

�� T-Path(Td, t, d)(D),

where π2 is defined on binary relations (as opposed to �2, which
operates on Path+ expressions), and, for a binary relation R,
π2(R) = {(n, n) | ∃m : (m, n) ∈ R}.

We now consider more general path queries by adding
the set union and difference operations to Path+. The set
union operation alone does not fundamentally alter the query
expressiveness results presented in this paper, since set union
operations can be pushed out through algebraic transformation,
resulting in a union of Path+ expressions. On these
subexpressions, the normalization and minimization results of
this paper are still applicable. The set difference operation,
however, significantly increases the query expressiveness of the
language. In fact, it can be shown that adding set union, set
difference and diversity17 to Path+ allows the formulation of
all path queries that can be expressed with first-order formulas
wherein at most three variables can occur [24]. Obviously,
the presence of set difference allows the expression of non-
monotonic path queries. Moreover, it also allows the expression

17The semantics of the diversity operator δ given a document D =
(V , Ed, λ) is the set δ(D) = {(m, n) | m, n ∈ V & m �= n}.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Study of a Positive Fragment of Path Queries 1115

of certain monotonic path queries that cannot be expressed
in Path+. To see this, consider again the monotonic queries
that return all pairs of non-identical siblings in a document,
respectively, all identical pairs of nodes having at least two
children, of which it was shown in Example 6.8 that they cannot
be expressed in Path+. When the set difference operator is
available, these queries can be expressed, however, as ↑; ↓− ε,
respectively, �2((↑; ↓ − ε); ↑). Consequently, path queries
containing set difference can in general no longer be expressed
as tree queries, whence our minimization and normalization
algorithms are no longer applicable. However, notice that, at the
core of these queries is a set difference of two Path+ queries,
each of which is in minimized normal form.

Ancestor–descendant relationships can be expressed in most
of the semi-structured query languages, and have been included
in the XPath languages in various studies (e.g. [5, 6, 8]). In
this paper, we have regarded these relationships merely as
the transitive closure operation of the primitive parent–child
relationships, whose characteristics have been studied in the
relational context. Furthermore, with proper encoding of the
data—which represent the structural relationship of a semi-
structured document—the ancestor–descendant relationship
can be resolved via structural join [3, 19], which is a value
join on the structural encoding.

In conclusion, the results developed for Path+ can be used
to process more general path queries. In this regard, one can
view the Path+ algebra to the Path algebra as one can view the
project-select-join algebra to the full relational algebra.

9. COMPLEXITY-RELATED ISSUES

Although not the main concern of this paper, we briefly discuss
some complexity-related issues with respect to the algorithms
we presented.

A first concern we wish to address is the size of Path+(∩)

expressions. The focus of the paper has been on (normalized)
Path+(�1, �2) expressions, and we have shown that it is
possible to minimize such expressions in terms of the combined
number of ‘↑’ and ‘↓’ primitives (Theorem 7.2). However,
we also showed that Path+, Path+(�1, �2) and Path+(∩)

are equivalent in expressive power (Proposition 4.1). Now,
the naive translation algorithm from Path+ expressions to
Path+(∩) expressions provided in the proof of Proposition 4.1
is exponential, because of the rules for translating projections.
This may suggest that minimal Path+(∩) expressions can
in general be exponentially larger than their minimal
Path+(�1, �2) counterparts. We will argue that this is not
the case, however, by proposing an alternative translation
algorithm. This translation algorithm first translates the given
expression in a normalized, minimal Path+(�1, �2) expression
as discussed in Subsection 7.2. The latter expression, say E, can
be written as Eup; Etop; Edown. Let �1(F) be a subexpression
of E at the outer level, i.e. occurring at the outer level in

Eup or Edown. Since E is in normal form, we know that F

is of the form18 �1(F1)
l1 �̂l2(↓�1(F2)

l3 �̂l4)k , with F1, F2 ∈
DPath+(�1), l1, l2, l3, l4 ∈ {0, 1} and k ∈ {0, 1, 2, . . .}. Clearly,
�1(F) is equivalent to F ; ↑k . By applying this rewriting rule
top-down, we can entirely eliminate first projection from Eup

and Edown. If Etop �= ∅, we know it is of the form �2(F),
with F as above. Clearly, �2(F) is equivalent to ↑k; F ∩ ε.
Occurrences of the first projection in F can then be removed
as above. In conclusion, we find that the resulting Path+(∩)

expression contains at most one intersection operator and the
combined number of ‘↑’ and ‘↓’ operators occurring in it is at
most twice the minimal number possible.19

We illustrate this on our running example.

Example 9.1. Consider again the Path+ expression given in
Example 3.2:

�1(↓); �2(d̂; ↑; ĉ); �2(b̂; ↓; ĉ); ↑;
�2(�1((↓; b̂; ↓) ∩ (↓; ↓; ĉ)); ↓); ↓; �1(ĉ; ↓; d̂); ĉ; ↓.

In Example 7.3, we established that

�1(↓; d̂); ĉ; ↑; �2(↓); b̂; ↓; �1(↓; d̂); ĉ; ↓
is an equivalent minimal Path+(�1, �2) expression in normal
form. Eliminating the projection as explained above yields the
Path+(∩) expression

↓; d̂; ↑; ĉ; ↑; (↑; ↓ ∩ ε); b̂; ↓; ↓; d̂; ↑; ĉ; ↓.

The number of combined occurrences of the ‘↑’ and ‘↓’
primitives in the latter expression is 9, compared with 6 in the
minimal Path+(�1, �2) expression. Also notice that the latter
expression contains only one intersection operator.

The algorithms Merge1 (Fig. 6) and Merge2 (Fig. 7) are
auxiliary algorithms used in some of the main algorithms in
this work. Obviously, Merge1(T1, T2, m1, m2) is linear in the
smaller of the depth of m1 in T1 and the depth of m2 in T2.
Similarly, Merge2(T , m1, m2) is linear in the smaller of the
distance between m1 and n and the distance between m2 and n,
where n is the least common ancestor of m1 and m2.

We next turn to the two central translation algorithms of
this paper, Path-T, for translating Path+ expressions into
tree queries, and T-Path, for translating tree queries into
Path+(�1, �2) expressions. We shall argue that both algorithms
run in linear time.

We start with Algorithm Path-T (Fig. 9). Suppose that E is
a Path+ expression, and that the result of the translation is non-
empty, i.e. a tree query. One can easily see that, at each time
during the execution of the algorithm, the combined number

18Ignoring composition signs for simplicity.
19Notice that if we omit the minimization step in the translation algorithm

described above, the combined number of ‘↑’ and ‘↓’ operators occurring in
the Path+(∩) expression is of course still at most twice the combined number
of ‘↑’ and ‘↓’ operators in the Path+(�1, �2) expression.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1116 Y. Wu et al.

of ‘↑’ and ‘↓’ operators occurring in the parts of E that have
already been translated is equal to the total number of edges in
the tree queries generated as partial translations plus the total
number of node pairs that were compared in all applications
of Merge1 and Merge2 combined. In other words, this is an
invariant of the algorithm. If we also consider the case where the
result is∅, the invariant still holds, provided ‘equal to’is replaced
by ‘greater than’. Now, the total number of cases encountered
when Algorithm Path-T is applied to E is equal to the number
of symbols in E. The total contribution to the time complexity
of Path-T of the execution of steps that require constant time is
therefore linear in the number of symbols in E. The steps which
require time dependent on the size of the input for the case in
which they occur are precisely the applications of Merge1 and
Merge2. Because of the linearity of these auxiliary algorithms
and the invariant, we may conclude that their total contribution
to the time complexity of Path-T is linear in the combined
number of ‘↑’ and ‘↓’ operators occurring in E. Adding these
up, we see that the time complexity of Path-T(E) is linear in
the total number of symbols in E.

We now turn to Algorithm T-Path (Fig. 12). Suppose that P

is a T expression. To compute the time complexity, we trace
T-Path(P). Since the amount of work required in between
consecutive nested calls of any pair of the six cases is input-
independent, we may suffice with estimating the total number
of recursive calls to these six cases. In doing so, we may of
course ignore Case 0, which is only encountered if P = ∅, and
therefore does not contribute to the overall time complexity
of the algorithm. Therefore, we assume from now on that
P = (T , s, d) is a tree query. By Theorem 5.1, the normalized
Path+(�1, �2) expression that results fromT-Path(P) contains
at most one occurrence of the second projection. As Case 1 is
the only place in the algorithm where the second projection
is generated, we may conclude that Case 1 is encountered at
most once during the execution of T-Path(P). We also know
that the subexpression contained within a first projection in
the resulting expression contains at least one occurrence of
the ‘↓’ primitive at the outer level. It is easily seen that each
‘↓’ primitive generated during the translation corresponds in
a one-to-one fashion with an edge of P . Therefore, Case 4,
the only place in the algorithm where the first projection is
generated, is encountered at most |T | − 1 times during the
execution of T-Path(P), where |T | represents the number of
nodes of T . Hence, Cases 1 and 4 combined are encountered
at most |T | times. Next, notice that, in each of the cases, the
number of nodes in the input tree equals the total number of
nodes in the output trees, except for Cases 1 and 4, in which
one node is duplicated. Hence, Cases 2 and 3 combined are
encountered at most 2|T | times. Finally, Cases 5 and 6 are the
only cases in which ‘↑’ and ‘↓’ primitives are generated. As
a consequence, these cases combined are encountered exactly
|T |−1 times. Hence, at most 4|T |−1 recursive calls to any of the
six cases are encountered during the execution of T-Path(P).
We may thus conclude that the time complexity of T-Path(P),

with P = (T , s, d), is also linear, this time in the number of
nodes of T .

Example 9.2. Consider the translation effectuated in
Example 4.4, and visualized in Fig. 13. In this example, the
tree query to be translated has 10 nodes. We count the number
of recursive calls to each of the six cases in Algorithm T-Path
and compare them with the estimates obtained above. There is
1 call to Case 1, and there are 5 calls to Case 4, or 6 to Cases 1
and 4 combined (or not more than 10, the maximal number
estimated). There are 8 calls to Case 2, and there are 8 calls
to Case 3, or 16 to Cases 2 and 3 combined (or not more than
20, the maximal number estimated). Finally, there are 8 calls
to Case 5, and there is 1 call to Case 6, or 9 to Cases 5 and 6
combined (precisely the number estimated). In total, there are
31 recursive calls to one of the six cases (or not more than 39,
the maximal number estimated).

As a consequence, we can translate an arbitrary Path+
expression into an equivalent Path+(�1, �2) or Path+(∩)

expression in a time linear in the total number of symbols of the
original expression.

Finally, we discuss the minimization algorithm Reduce
(Fig. 17). We will argue that this algorithm is quadratic in the
number of nodes of the input. Ignoring the irrelevant case that
the input is empty, let P = (T , s, d) be the tree query to be
reduced. We relabel T to obtain TP , the encoding of P as a
labeled tree. Let |T | = |TP | be the number of nodes in T or TP .
We assume that, for every node of TP , we have direct access to
its leftmost child, next sibling and parent.20 We also assign to
each node its depth in the tree, and number these nodes from
top to bottom, level per level, from left to right, i.e. such that
the following conditions are satisfied:

(1) the number of a node is always larger than the number
of any of its children,

(2) the children of a node are consecutively numbered and
(3) if the number of a first node is smaller than the number

of a second node, then the number of any child of the
first node is smaller than the number of any child of the
second node.

Below, ni denotes the node numbered i. All this preparatory
work can be achieved in linear time. We create a |T |×|T | matrix
in which cell (i, j) refers to the pair (ni, nj). Clearly, this matrix
can be created in quadratic time. It will be used to compute all
pairs of nodes (ni, nj) such that ni��nj . First, we will mark as
deleted all cells that correspond to nodes that are not at the same
depth in the tree, as a node can never be generalized perfectly
similar to a node at another depth. Obviously, this can be done in
quadratic time. Next, we compute generalized similarity (‘�↓’)
and mark all remaining pairs (ni, nj) such that ni�↓nj as
deleted.We do that by going through the pairs of nodes in reverse

20In any implementation, we may assume the children of a node to be
ordered.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A Study of a Positive Fragment of Path Queries 1117

lexicographic order, with two pointers. The first one is used to
examine whether a pair (ni, nj) satisfies the required condition
on the labels. If this is the case, we check if, for each child
nk of ni , there exists a child n� of nj such that nk�↓n�. Since
i < k, all such pairs (nk, n�) have already been dealt with, and,
therefore, it suffices to check whether there is such a pair that
has not yet been marked as deleted. For that purpose, we use the
second pointer. Since the numbering of parent nodes is always
reflected in the ordering of their children, we will never have to
backtrack with the second pointer. Therefore, we can compute
generalized similarity on the node pairs that are at the same
depth in the tree in quadratic time as well. In a very similar way,
we can compute generalized perfect similarity from generalized
similarity. This time, we traverse the node pairs in the regular
lexicographic order. Each time we encounter a pair of different
nodes, we check whether their parents are generalized similar,
and mark the pair as deleted if the condition is not satisfied. For
that purpose, we use the second pointer, and, because of the way
we numbered nodes, we shall never have to backtrack with this
second pointer. Hence, we may conclude that we can compute
generalized perfect similarity in quadratic time. Finally, we can
reduce the tree query, again by traversing the node pairs in the
regular lexicographic order. In this way, we ensure that each
time a pair (ni, nj) is encountered for which ni��nj , ni and nj

share the same parent. Indeed, parent nodes are encountered
before their children, and are generalized perfectly similar as
soon as a child of one parent is generalized perfectly similar to
a child of the other parent, and therefore would already have
been merged to a single node. To effectuate the merging, mark
the node ni as deleted in the tree query, and make the children of
ni children of nj . This operation does not affect the generalized
perfect similarity relationship on the remaining nodes. In the
course of traversing the node pairs, any pair in which one or
both of the nodes has been marked as deleted in the tree should
be ignored, of course. Since a node can change parent at most |T |
times, this final step in the algorithm is quadratic, too. Finally,
we need to effectively remove the deleted nodes in the labeled
tree and decode the result into the tree query that is the result of
applying Algorithm Reduce to P . Clearly, this postprocessing
step requires linear time. Hence, we may indeed conclude that
the time complexity of Reduce(P), with P = (T , s, d), is
quadratic in the number of nodes of T .

As mentioned in Section 2, Ramanan [13] only considered
tree queries in which the source equals the root. It is noteworthy,
however, that the techniques he used in his minimization
algorithm for the case he considered are not quite unlike ours.
He also obtained quadratic time complexity, and suggests this
is optimal.

10. FUTURE WORK

The work presented in this paper on Path+ and the languages
shown to be equivalent to it begs several other questions.Among
the most interesting ones are those that have to do with forms

of negation. One possible direction is investigating under which
conditions tree queries are closed under set union, set difference
and/or diversity.

In particular, we note that adding all three operators to Path+
yields precisely the Relation Algebra of Tarski [25]. Another
possible direction is studying extensions of Path+ which allow
weak forms of negation in the predication operations, but which
are not necessarily as powerful as Core XPath [8]. Another
direction to go is applying these languages to richer data
structures such as various types of graphs, which would make
the results particularly relevant for querying the semantic web.
The present authors are currently investigating these issues.

ACKNOWLEDGEMENTS

The authors wish to thank the anonymous reviewers for their
helpful comments on a previous version of this paper.

REFERENCES

[1] Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D.,
Robie, J. and Siméon, J. (2007) XQuery 1.0: An XML
query language. W3C Recommendation 23 January 2007,
http://www.w3.org/TR/xquery.

[2] Fletcher, G.H.L., Van Gucht, D., Wu, Y., Gyssens, M., Brenes, S.
and Paredaens, J. (2008)A Methodology for Coupling Fragments
of XPath with Structural Indexes for XML Documents. In
Arenas, M., Schwartzbach, M.I. (eds) Database Programming
Languages, 11th Int. Symp., DBPL, September 23–24, 2007,
Vienna, Austria, Revised Selected Papers. Lecture Notes in
Computer Science 4797, pp. 48–65. Springer, Berlin.

[3] Brenes, S., Wu, Y., Van Gucht, D. and Cruz, P.S. (2008) Trie
Indexes for Efficient XML Query Evaluation. Proc. 11th Int.
Workshop on the Web and Databases, WebDB, Vancouver, BC,
June 13.

[4] Clark, J. and DeRose, S. (1999) XML Path Language
(XPath) version 1.0, W3C Recommendation 16 November 1999,
http://www.w3.org/TR/xpath.

[5] Gottlob, G., Koch, C. and Pichler, R. (2005) Efficient algorithms
for processing XPath queries. ACM Trans. Database Syst., 30,
444–491.

[6] Benedikt, M., Fan, W. and Kuper, G.M. (2005) Structural
properties of XPath fragments. Theor. Comput. Sci., 336, 3–31.

[7] Miklau, G. and Suciu, D. (2004) Containment and equivalence
for a fragment of XPath. J. ACM, 51, 2–45.

[8] Marx, M. and de Rijke, M. (2005) Semantic characterizations of
navigational XPath. SIGMOD Rec., 34, 41–46.

[9] Gyssens, M., Paredaens, J., Van Gucht, D. and Fletcher, G.H.L.
(2006) Structural Characterizations of the Semantics of XPath
as Navigation Tool on a Document. Proc. 25th ACM SIGACT-
SIGART-SIGMOD Symp. Principles of Database Systems, PODS
2006 Chicago, IL, June 26–28, 2006, pp. 318–327. ACM Press,
New York.

[10] ten Cate, B. (2006) The Expressivity of XPath with Transitive
Closure. Proc. 25th ACM SIGACT-SIGART-SIGMOD Symp.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

1118 Y. Wu et al.

Principles of Database Systems, PODS, Chicago, IL, June 26–28,
pp. 328–337. ACM Press, New York.

[11] Benedikt, M. and Koch, C. (2008) XPath leashed. ACM Comput.
Surv., 41, 1–54.

[12] Wood, P.T. (2001) Minimising Simple XPath Expressions. Proc.
4th Int. Workshop on the Web and Databases, WebDB, Santa
Barbara, CA, May 24–25, pp. 13–18.

[13] Ramanan, P. (2002) Efficient Algorithms for Minimizing
Tree Pattern Queries. Proc. 2002 ACM SIGMOD Int. Conf.
Management of Data, Madison, WI, June, 3–6, pp. 299–309.
ACM Press, New York.

[14] Amer-Yahia, S., Cho, S., Lakshmanan, L.V.S. and Srivastava,
D. (2002) Tree pattern query minimization. VLDB J., 11,
315–331.

[15] Paparizos, S., Patel, J.M. and Jagadish, H.V. (2007) SIGOPT:
Using Schema to Optimize XML Query Processing. Proc. 23rd
Int. Conf. Data Engineering, ICDE, Istanbul, Turkey, April 15–
20, pp. 1456–1460. IEEE.

[16] Kimelfeld, B. and Sagiv, Y. (2008) Revisiting Redundancy and
Minimization in an XPath Fragment. In Kemper, A., Valduriez,
P., Mouaddib, N., Teubner, J., Bouzeghoub, M., Markl, V.,
Amsaleg, L. and Manolescu I., (eds.), EDBT 2008, 11th Int. Conf.
Extending Database Technology, Nantes, France, March 25–29,
Proceedings, ACM International Conference Proceedings Series
261, pp. 61–72. ACM Press, New York.

[17] Flesca, S., Furfaro F. and Masciari E. (2008) On the minimization
of XPath queries. J. ACM, 55, article no. 2.

[18] Fletcher, G.H.L., Van Gucht, D., Wu, Y., Gyssens, M., Brenes, S.
and Paredaens, J. (2009) A methodology for coupling fragments
of XPath with structural indexes for XML documents. Inf. Syst.,
34, 657–670.

[19] Al-Khalifa, S., Jagadish, H.V., Patel, J.M., Wu, Y., Koudas, N.,
and Srivastava, D. (2002) Structural Joins: a Primitive for
Efficient XML Query Pattern Matching. Proc. 18th Int. Conf.
Data Engineering, ICDE, San Jose, CA, February 26–March 1,
pp. 141–152. IEEE.

[20] Kaushik, R., Shenoy, P., Bohannon, P. and Gudes, E. (2002)
Exploiting Local Similarity for Indexing Paths in Graph-
Structured Data. Proc. 18th Int. Conf. Data Engineering, ICDE,
San Jose, CA, February 26–March 1, pp. 129–140. IEEE.

[21] Marx, M. (2005) Conditional XPath. ACM Trans. Database Syst.,
30, 929–959.

[22] Wu, Y., Van Gucht, D., Gyssens, M. and Paredaens, J. (2008)
A Study of Positive XPath with Parent /Child Navigation. IUCS
Technical Reports 660, Indiana University, Bloomington, IN.

[23] Chandra, A.K. and Merlin, P.M. (1977) Optimal Implementation
of Conjunctive Queries in Relational Data Bases. Conf. Record of
the 9th Annual ACM Symp. Theory of Computing, STOC, Boulder,
CO, May 2–4, pp. 77–90. ACM Press, New York.

[24] Tarski, A. and Givant, S. (1987) A Formalization of Set
Theory Without Variables. American Mathematical Society,
Providence, RI.

[25] Tarski, A. (1941) On the calculus of relations. J. Symb. Log., 6,
73–89.

The Computer Journal, Vol. 54 No. 7, 2011

 at Indiana U
niversity Libraries T

echnical S
ervices/S

erials A
cquisitions on A

ugust 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Documents, paths and queries
	3.2 The positive path algebra
	3.3 Signature expressions
	3.4 Tree queries

	4 Equivalences of query languages
	5 Normal form for expressions in the Path+ algebra
	6 Resolution expressiveness
	7 Minimization of tree queries and Path+ expressions
	7.1 Minimization of tree queries
	7.2 Minimization of Path+ expressions

	8 Decomposition and evaluation
	9 Complexity-related issues
	10 Future work

