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Abstract
The Semantic Web, which represents a web of knowledge, offers
new opportunities to search for knowledge and information. To
harvest such search power requires robust and scalable data repos-
itories that can store RDF data and support efficient evaluation of
SPARQL queries. Most of the existing RDF storage techniques rely
on relation model and relational database technologies for these
tasks. They either keep the RDF data as triples, or decompose it
into multiple relations. The mis-match between the graph model
of the RDF data and the rigid 2D tables of relational model jeop-
ardizes the scalability of such repositories and frequently renders a
repository inefficient for some types of data and queries. We pro-
pose to decompose RDF graph into a forest of semantically cor-
related XML trees, store them in an XML repository and rewrite
SPARQL queries into XPath/XQuery queries to be evaluated in the
XML repository. In this paper, we discuss the basic idea of RDF-
to-XML decomposition and the criteria of such decomposition in
term of correctness, redundancy and query efficiency, then propose
two RDF-to-XML decomposition algorithms based on these crite-
ria. Our experimental evaluation results illustrate that our approach
is capable of improving both the storage efficiency and query pro-
cessing efficiency compared to the existing RDF techniques.

1. INTRODUCTION
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Figure 1: Example
RDF data/schema

RDF (Resource Description Frame-
work) [14] is a W3C recommended
language for describing linked data
of the Semantic Web in the form of
triples. RDFS (RDF schema) [7] ex-
tends RDF vocabularies to define the
structure of underlying RDF data, as
well as taxonomic hierarchies of con-
cepts and relations. Both RDF data
and schema can be represented as
graphs, as shown in Fig. 1. The flex-
ibility, simplicity and expressiveness of the Semantic Web evoke
extensive exploitation of RDF/RDFS in many areas such as bio-
informatics and social networks.
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SPARQL[17] is a W3C recommended RDF query language. A
SPARQL query contains a collection of triples with variables called
simple access patterns which form graph patterns for describing

SELECT ?t
WHERE {?p type Person. ?r ?x ?t.

?p name ?n. ?p write ?r}

query requirements. For
example, the SPARQL
query on the left re-
trieves all properties of

reviews written by a person whose name is known.
The needs to develop applications on the Semantic Web and sup-

port search in RDF graphs call for RDF repositories to be reliable,
robust and efficient in answering SPARQL queries. As in the con-
text of RDB and XML, the selection of storage models is critical to
a data repository as it is the dominating factor to determine how to
evaluate queries and how the system behaves when it scales up.

1.1 Related Works
Most of the existing RDF data repositories [1, 8, 9, 19] rely on

relational models for data storage and evaluate SPARQL queries
by rewriting them into SQL queries and then executing them in
the RDB engine. Among them there are two major directions:
(1) keeping the simple triple data model of RDF data, e.g. triple
store [8, 19]; and (2) decomposing RDF triples into relations, either
based on predicates, e.g. vertical partition or based on semantics,
e.g. property table [9].

The triple store does not scale well as the evaluation of a com-
plex SPARQL query invokes many self-joins. Various indexing
techniques [13, 15, 16, 21] were proposed as remedies, at the cost
of huge increase in storage space and decrease in the scalability
and update efficiency. The vertical partition [1] works well for
SPARQL queries when all predicates in the WHERE clause are
known. Otherwise, all tables have to be accessed and results unioned.
For example, the RDF data in Fig. 1(a) are stored in five tables. All
need to be accessed to evaluate the SPARQL query above. The
property table incurs small number of joins for some queries be-
cause a selection in one property table can match multiple simple
access patterns. However it suffers storage redundancy and large
overhead in query evaluation [1]. For instance, the RDF data in
Fig. 1 are stored in two tables, Person and Review. Both are ac-
cessed to evaluate the SPARQL query above because of the predi-
cate variable ?x and variable ?r whose class cannot be determined
in the time of query-rewrite.

An alternative approach [3] preserves the graph nature of RDF
data by storing RDF graphs in an object-relational database. How-
ever, this separates the RDF schema and RDF primary data, which
brings difficulties in evaluating queries containing both schema and
data instances.

The proposal of serializing RDF graph into XML trees to utilize
existing XML technologies [4, 10, 20] focuses on representing all
RDF features such as blank node in XML, but pays less or no at-



tention to the efficiency of RDF data storage and query evaluation.
It either leads to XML data [20] with large redundancy or flat XML
data [10] that cannot take full advantage of XML query evaluation
techniques. For example, [10] would serialize the RDF graph in
Fig. 1 into a 3-level xml tree and the evaluation of our example
query requires eight structural joins and one value join.

1.2 Our Proposal
We summarize the desired properties of an RDF storage model

to be as follows: (1) preserving semantics to facilitate efficient
evaluation of RDF queries; (2) high performance in evaluating all
SPARQL queries rather than only some types of SPARQL queries;
(3) high scalability powered by no or small storage redundancy;
and (4) small overhead in query rewrite and query optimization.

Semi-structured data model organizes data entries in a tree struc-
ture and represents the semantic relationships among them via con-
tainment relationships. Tree pattern matching is at the core of the
query languages for XML, e.g. XPath[12] and XQuery[11]. We
observe the similarity between RDF and XML, in terms of data
representation (e.g. using links to represent relationships among
data instances) and query (e.g. tree pattern matching in XML and
graph pattern matching in RDF), and propose to leverage the so-
phisticated storage management and query evaluation techniques
of XML data repositories, such as [2, 6], to store and query RDF
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Figure 2: System Ar-
chitecture

data. Specifically we propose to de-
compose RDF data into XML doc-
uments guided by RDF schema and
summary information of RDF data ex-
tracted from the RDF data, store the
XML documents in an XML reposi-
tory and rewrite SPARQL queries into
XPath/XQuery queries to be evaluated
against the XML data using the lat-
est XML query evaluation techniques.
Fig. 2 shows the system architecture

that reflects our proposal.
Please consider the example RDF data in Fig.1. If we decompose

it into the XML documents as shown in Fig. 3, the storage require-
ment is comparable to the relational approaches. Then, the example
SPARQL query can be rewrote into an XPath query //.[name]/write/*/*/*
and be evaluated efficiently due to the high data locality, efficient
structural joins and small overhead. ���������	�
����� ��
��	����	��	�	����

��	�
����������	� ��
�����	��	�������
��	��� �����	��� ��
����	��	�������

��	��� ��	����� �������
����������	� � ��������!�
�

Figure 3: Example XML data and schema

RDF data are significantly different from XML data in syntax
and data model: RDF data and schema are directed graphs with
both nodes and edges labeled, while XML data are trees with only
nodes labeled. Although our work, as other RDF storage approaches
[1, 3, 8, 9, 19], is syntax independent, the difference between the
data models brings substantial challenges to storing and query-
ing RDF data using XML techniques, in transforming graphs into
trees, preserving ontology semantics, keeping storage efficiency
and mapping graph pattern queries into tree pattern queries.

Our contribution can be summarized as follows:

• We propose an XML-based RDF storage and query evalu-
ation approach which is scalable and capable of supporting
various types of SPARQL queries.

• We define the RDF-to-XML decomposition and identify the
criteria for measuring the goodness of a decomposition.

• We propose two RDF-to-XML algorithms for decomposing
RDF data into XML documents, with the second algorithm
taking workload into consideration to further improve the
query performance.

• We discusse the query rewrite strategies for rewriting SPARQL
queries into XPath/XQuery queries.

• We report on experiments to better understand the storage
footprint of our approach, as well as the query performance
for various types of SPARQL queries.

2. RDF-TO-XML DECOMPOSITION
2.1 RDF data and queries

We represent RDF data in the form of a node and edge labeled
graph: R = (VR, EdR, λR) where λR is a labeling function that
maps items in VR ∪ EdR into a finite set of labels and literals.
We further distinguish RDF schema Rs from RDF data Rd, with
Rs = (VRs , EdRs , λR) representing the class nodes and proper-
ties between classes, and Rd = (VRd , EdRd , λR) representing the
data instances and properties between instances. In particular, in
Rs, we call labels associated with nodes the class labels such as
Person and Review in Fig. 1(b), and labels associated with edges
the predicate labels such as Write and Rate in Fig. 1(b). Please
note that VRs ∪ VRd = VR, but EdRs ∪ EdRd 6= EdR as there
exist edges between class nodes and instance nodes in R indicating
the types of the instances.

A SPARQL [17] query is frequently represented as graph pat-
terns that are formed by connecting a collection of simple access
patterns in the query’s WHERE clause. The connection between
two simple access patterns with the same variable on their sub-
jects is usually referred to the SS join. Similarlly, there are other
types of joins, such as SO join, OO join, PP join, etc. Evaluating
a SPARQL query can be regarded as mapping the graph patterns
against an RDF graph to locate all matches.

2.2 Decomposing RDF graphs into XML trees
We propose to decompose RDF graphs into a set of XML trees.

We distinguish the decomposition in two steps: (1) the schema-
level decomposition which maps an RDF schema to a set of XML
schemas; and (2) the data-level decomposition which maps RDF
data to a set of XML documents conforming to the XML schemas
obtained from step 1.

We use a directed labeled tree (V ∪{root}, Ed, λX), where λX

is a labeling function that maps nodes in V to a finite set of labels,
to represent an XML schema, and define a mapping from an RDF
schema Rs to a set of XML schemas Xs as follows:

DEFINITION 2.1. Given an RDF schema Rs and a set of XML
schemas Xs = {Xs,1, . . . , Xs,n}, the mapping from Rs to Xs is
a function Ms : Rs → Xs such that

• for a node v ∈ VRs , Ms(v) = {u|u ∈ ⋃
i=1...n

VXs,i ∧
λX(u) = λR(v)}.

• for an edge e = (v1, v2) ∈ EdRs , Ms(e) = {((u1, u),
(u, u2))| (u1, u), (u, u2) ∈ ⋃

i=1...n

EdXs,i∧ (λX(u1) =

λR(v1) ∧ λX(u2) = λR(v2) ∧ λX(u) = λR(e))}.

Given a mapping Ms, we distinguish class node and predicate
node in Xs based on what RDF schema element (class or predi-
cate) is mapped into it.

Based on the RDF schema decomposition, RDF data Rd can be
transformed into a set of XML documents conforming to Xs by a



mappingMd : Rd → Xd. We say that an XML schema class node
hosts a data instance in Rd if the instance is mapped to an XML
node conforming to the XML schema class node by Md. For a
node v ∈ VRs , if a class node u ∈ Ms(v) can host all instances
of the RDF class λR(v) in Rd, we call it a full node. Further if
u can preserve the immediate local structure, e.g, v’s all outgoing
edges corresponding to all predicates of the class λR(v), we call u
an expanded full node of v.

Given any class node u in Xs, it is desirable to find out whether
u is a full node without computing the mapping Md. In fact, such
knowledge can be obtained by analyzing Rd and summarizing the
participation constraint among the classes in Rs.

DEFINITION 2.2. Given RDF data Rd, its schema Rs and two
classes c1, c2 connected by a predicate p in Rs, we say c1 (c2) is
totally participated in a relation (c1, p, c2) (denoted as c1 `p c2

(c2 `p c1)) , if in Rd any instance of type c1(c2) connects to at
least one instance of type c2(c1) by an edge labeled p.

We observe that u must be a full node if u is a child of a root in
Xs. In addition, if there are two edges (u′, e), (e, u) ∈ ⋃

i=1...n

EdXs,i

and u′ is a full node, u is a full node only if λX(u) `λX (e) λX(u′).

3. DECOMPOSITION CRITERIA
The notions of Xs and Xd and the mappings Ms and Md are

very loosely defined. There are multiple ways to decompose an
RDF schema into XML schemas, and therefore multiple ways to
decompose RDF data into XML documents. Therefore we propose
the prerequisites for the data transformation from RDF to XML to
be correctness, low redundancy and high semantic clustering.

While the first criterion must be satisfied, the second and third
indeed reflect the trade-off between storage efficiency and query
efficiency that is traditional to database system design.

Most RDF schemas have hierarchies where a class has all in-
stances in its subclass and inherits all predicates of its superclasses.
However, by analyzing the data, it is always possible to find the
finest level of classes whose instances together with relations among
them cover the entire dataset but are not overlapped. Therefore,
without loss of generality, we only consider such classes and rela-
tions among them in the rest of the paper.

Correctness
The correctness of the decomposition is determined by the schema

decomposition. We say that a set of XML schemas Xs structurally
covers a given RDF schema Rs if any node or edge in Rs has at
least one mapping in Xs. We say Xs can fully cover Rd if there
exists an Xd conforming to Xs such that any node or edge in Rd

has at least one mapping in Xd.
Instead of taking all possible Xs fully covering Rd into con-

sideration, we are interested in a subset that is a straightforward
translation of Rs.

DEFINITION 3.1. Given Rs, Rd, Xs, Rd and the mappings
Ms and Md, Xs is a full XML schema if for any node v ∈ VRs

there exists at least one entry in Ms(v) that is an expanded full
node.

Redundancy
We summarize two types of redundancy: Schema Level Redun-

dancy (SLR) where an RDF schema node is mapped to more than
one XML schema node; and Instance Level Redundancy (ILR) where
an RDF data node is mapped to more than one XML data node that
conforms to the same XML schema node.

SLR can be reduced by removing redundant nodes from Xs un-
der the condition that Xs still fully covers Rs. However SLR can-
not be fully avoided if Rs contains circles. It is possible to map any

edge in Rs to exactly one fragment in Xs but at least one node in
the cycle has to be repeated in Xs.

The existence of ILR is tied to the cardinality relationship be-
tween classes and the predicate connecting them.

DEFINITION 3.2. Given RDF data Rd, its schema Rs and two
classes c1, c2 connected by a predicate p in Rs, we say (c1, p, c2) is
a 1-1 relation (c1 ↔p c2), if in Rd any instance of c1 is connected
to at most one instance of c2 by p and vice versa. Similarly, we
define 1-n relation (c1 →p c2) and m-n relation (c1 −p c2).

ILR exists if (1) there exists at least one m-n relation in Rs; or
(2) two nodes c1 and c2 in Rs with c1 →p c2 maps to two class
nodes c′1 and c′2 in Xs where c′2 is an ancestor of c′1. ILR in case
(1) cannot be eliminated. However ILR caused by case (2) can be
eliminated by avoiding such schema mappings.

We say that a decomposition has minimum redundancy if no
node in Xs can be removed without losing its full coverage over
Rd and no two XML schema trees in Xs can be combined into one
schema tree without introducing ILR.

Query efficiency
We propose to rewrite SPARQL queries into XPath/XQuery queries

that are evaluated on XML documents in XML engines. Well-
designed RDF-to-XML decomposition strategy can improve the ef-
ficiency of query evaluation by increasing data locality, decreasing
join evaluation complexity and minimizing the number of joins.

With respect to the data locality we would expect that minimum
amount of data needs to be accessed to evaluate a query and the
accessed data should be physically stored together. With respect to
the joins, value joins can not be avoided when nodes in different
XML documents have to be accessed. However, structural joins
are much more efficient than value joins [2] and multiple structural
joins along a linear pattern can be replaced by a single index access
when structural indices are available [6]. Therefore, we strongly
favor structural joins over value joins, e.g. favor deeper XML doc-
uments than shallower ones, even though it may sacrifice data lo-
cality to a certain degree.

4. DECOMPOSITION ALGORITHMS
In this section we describe algorithms for decomposing an RDF

schema and data into XML schemas and documents that satisfy the
criteria in Sec. 3.

4.1 Schema Decomposition
We propose two algorithms, greedy decomposition (gR2X) and

workload-based decomposition (wR2X), for decomposing an RDF
schema into XML schemas. Both algorithms take as inputs an RDF
schema Rs and the summary information reflecting the total par-
ticipation relations and cardinality relations as discussed above and
return XML schemas Xs as the output. Both are carried out in the
following steps:
Step 1. Initialization. We create node lists V and F . V contains the
class nodes to be assigned to XML schema trees and is initialized
to the set of nodes in Rs. For each class node c in V , we create a
list Lc that contains relations (c, p, c′) where c `p c′ ∧ c′ →p c. F
contains the root nodes of the XML schema trees and is initialized
to be an empty set.
Step 2. Tree root selection. For all nodes c in V where Lc is empty,
we create a dummy root node r in F , make c the child of r, and
remove it from V .
Step 3. Class node placement. We maintain a prioritized list of the
class nodes in V . Each time, we pick the node c at the head of the
list, call chooseRelation(Lc) function to pick a relation in Lc that
is to be mapped in the XML schema. If there is no such relation,



we create a dummy root node r in F , and make c the child of r.
Otherwise for each relation (c, p, c′), we create a predicate node up

with label p, make it the child of c′ and make c the child of up. In
both case we remove c from V .
Step 4. Node expansion. We expand the class nodes to expanded
full nodes so that all predicates that have not been mapped into
the XML schema are mapped now and the resultant XML schemas
structurally cover Rs.

Please note that the design of the key of the prioritized list and
chooseRelation function is the core of the decomposition, as it re-
flects the strategy on when/where/how a class node is placed.

Greedy Decomposition (gR2X)
The greedy decomposition uses a greedy approach in chooseRe-

lation to construct full XML schemas (Def 3.1) with minimum re-
dundancy and deep tree structures. The class nodes with smallest
Lc have higher priority in the prioritized list. Given a class node,
the chooseRelation function chooses a relation from Lc, such that
the relation (c, p, c′) satisfies the following conditions: 1) c′ is not
a decendant of c; and 2) c′ is in a tree that is deepest among all
the class nodes that have a relation with c in Lc. The widest tree is
chosen in need of breaking a tie.

Workload-based Decomposition (wR2X)
It is frequently the case that logical and physical storage models

are designed to support efficient evaluation of frequent (sub)queries,
which improves the overall throughput. Since every path in the
query graph pattern can be mapped to a path in the RDF schema by
replacing the nodes along the path by their classes, we use a set of
weighted paths in the RDF schema to represent the frequent paths
in a workload where weights reflect frequencies. Our workload-
based schema decomposition algorithm (wR2X) is to ensure that
every frequent path in the workload is represented by a path in the
resultant XML schemas.

The wR2X algorithm utilizes the general framework discussed
above and takes one extra parameter, a set of weighted paths Le,
as input. For the prioritized list of class nodes, the key of a class
node is the sum of the weights associated with the paths in Le con-
taining the node. The chooseRelation function chooses relations
that are heavily covered by the paths in Le to be placed first. More
specifically, the chooseRelation function chooses a relation from
Lc , so that the relation (c, p, c′) satisfies the following conditions:
1) c′ is not a descendant of c; and 2) the sum of the weights asso-
ciated with paths containing the relation in Le is the highest. The
deepest tree is chosen in need of breaking a tie.
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Figure 4: Example RDF
schema

After we generate the minimum
full XML schemas in step 4, we ex-
pand the XML schemas to include
all frequent paths in the step as de-
scribe below:
Step 5. Path expansion. We remove
paths in Le that are already repre-
sented in the XML schemas. We

pick the longest path lp with the highest weight from the remain-
ing paths in Le. We then identify the candidate paths in the XML
schemas that are rooted at full nodes and contain some fragments
of lp. For each candidate path, we estimate the redundancy that
may be introduced if we expand the path to represent lp and pick
the one with the minimum estimated redundancy. We expand the
selected path to represent lp and remove lp from Le. We keep the
remove-pick-expand process until Le is empty.

EXAMPLE 4.1. Consider the example RDF schema shown in
Fig. 4. The numbers on the edges are the cardinality information
between the corresponding classes. Assume that Person is the

only class that does not total participate in any relation, while the
other classes total participate in all relations associated with them.
Fig. 5 illustrates how the gR2X and wR2X algorithms decompose
this RDF schema into corresponding XML schemas 1. We use the
shades of the nodes (light to dark) to indicate in which steps they
are added to the resultant schemas.

Producer Person

Produce

Product

ReviewFor

NameWrite Rate

avgRate Text

Label Price

Review String Review

CurrencyReviewString

Int String

R1 R2

(a) XML Schema Generated by gR2X
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(b) XML Schema Generated by wR2X
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Figure 5: Schema Decomposition

4.2 Data Decomposition
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Figure 6: Data Decomposition

Our data decomposition al-
gorithm (R2D) transforms an
RDF data Rd into XML docu-
ments conforming to Xs gen-
erated using gR2X or wR2X.
Intuitively the transformation
process is based on a depth-
first traversal of the Rd graph guided by a depth-first traversal of
each XML schema in Xs. The exact type information is added to
an XML node whose type is in a class hierarchy or undeterminable
by only refering to the XML schema. Details are omitted due to the
space limitation.

EXAMPLE 4.2. Please consider a small fragment of the RDF
data shown in Fig. 6(a) whose schema is shown in Fig 4. Fig. 6(b)
and (c) show the XML data generated based on the resultant XML
schemas in Fig. 5 (a) and (b), respectively.

5. QUERY REWRITE
Query Rewrite Algorithm

We propose to rewrite SPARQL queries into XPath/XQuery queries
based on generated XML schemas and the mapping from the RDF
schema to these XML schemas. Given a SPARQL query, the rewrite
is carried out in three steps.
Step 1. Class/predicate identification. We derive the possible
classes of each node and predicate variable in the query using the
information in the RDF schema, such as the possible predicates of
a known class and the range and domain of a known predicate.
Step 2. Query decomposition. We decompose the SPARQL query
graph into pattern trees that can be matched to subtrees rooted at
full nodes in the XML schema. Among many ways of such de-
composition we choose the one that satisfies the following criteria:
1) the number of pattern trees are small; 2) the pattern trees fea-
ture long paths; and 3) the roots of the pattern trees match to XML
schema nodes that are close to the root. We annotate each node in
the pattern tree with following information: 1) the role of the node
in the query (e.g. variable, optional variable, return variable, URI,
or literal), and 2) filtering conditions. In addition, we keep track of
the overlapping nodes in these pattern trees as they are the points
of join to reconstruct the graph pattern from the tree patterns.
Step 3. XML query construction. We construct an XPath expres-
sion for each pattern tree and assign a variable to it in a for clause;
1The workload consists of three paths: a. (Producer product Product reviewFor
Review avgRate Int) with w=30; b. (Person rate Review avgRate Int) with
w=10; and c. (Person write Review ReviewFor Product label String) with w=15



we use the where to take care of the joins among the pattern trees
and the filtering conditions; we then put all return variables into the
return clause. Hence an XQuery query is constructed.

The rewrite process of the following query is illustrated in Fig. 7.
Stratigical construction methods can facilitate query evaluation. For
example, XPath2 likely leads to more efficient evaluation plans than
XPath1 does by replacing */reviewFor/*/text to *//text.

Q1 : Select ?l From ...
Where {?r text “nice” . pd produce ?pt .

?r ?p ?pt . ?pt label ?l}
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Figure 8: Example Pat-
tern Matching

Matched Patterns
A simple access pattern in a

query is matched to a path in an
XML document as in Fig. 8(a),
which is evaluated by structural
joins. A simple access pat-
tern containing a variable nei-
ther to be joined nor returned
can be matched to an edge like
Fig. 8(a)(2).

Two simple access patterns
connected by SS/SO/OO join are
matched to either a path or twig(s)

in the XML document as in Fig. 8(b). Simple access patterns con-
nected by an SS join are always matched to a twig as Fig. 8(b)(2)
and evaluated by structural joins, while those connected via SO/OO
joins are matched to path or twig(s) as in Fig. 8(b) and may get
value-join involved in the evaluation.

A graph pattern consists of many simple access patterns is matched
to tree(s) in the XML documents as a natural extension to the above
situations.

6. EXPERIMENTAL EVALUATION
Experimental Setup We conducted extensive experiments to com-
pare the XML-based approach we proposed, with the well-know
existing approaches, including triple store (TS) [13], vertical par-
tition (VP) [1] and property class table (PT) [9]. We implemented
(g/w)R2X, e.g. gR2X and wR2X, on MonetDB/XQuery v4.20.0
and the RDB-based approaches on MonetDB server v4.34.2. We
rewrote SPARQL queries into SQL queries for TS, VP and PT fol-
lowing the examples in the Berlin benchmark[5] and the discussion
in [18]. We generated XPath/XQuery queries based on the ap-
proach in Sec. 5. We timed the hot run [19] of each query. The ex-
periments were carried out on a desktop PC running Ubuntu v8.10

linux (32-bit) with Intel Pentium4 2.80GHz CPU, 3GB memory,
and SAMSUNG SP2004C hard drive with 8MB Cache.

Dataset and Queries We used the Berlin Benchmark to generate
RDF datasets in Turtle format that used compact in-scope Base
URI. For each dataset, We used gR2X and R2D algorithms to
generate a set of XML documents based on the greedy approach
and used wR2X and R2D with workload that consists of four fre-
quent paths of lengths between 1 and 5 to generate another set of
XML documents. In triple store, we sorted triples by PSO and cre-
ated indices on all permutations of S,P,O; in vertical partition, we
sorted tuples by SO and created an index on OS in each table. We
report results on seven datasets with 100K, 400K, 1M, 5M, 10M,
15M and 20M2 triples.

We classified queries in two sets, unbound-variable (UV) queries
and extensive-join (EJ) queries. The queries in the UV query set
have simple access patterns with variables on nodes or predicates.
We report results on four UV queries: UVs1/s2 that only have sub-
ject variables and UVp1/p2 that contain predicate variables. The
predicate in UVs1 is associated to only one class while the one in
UVs2 is associated to many. UVp1 returns the predicate variable
while UVp2 returns the object variable. Their results are all less
then 12 triples.

Query #SS/OO/SO #DP #UC OP DC NR
EJB1 4/0/0 4 0 N N 187
EJB2 0/0/3 14 2 Y N 20
EJU1 4/0/0 5 0 N Y 44
EJU2 2/0/3 6 1 N N 134
EJU3 3/1/1 5 0 N Y 13875

Table 1: EJ Query Characteristics
The EJ queries feature various number and types of joins. We

included various benchmark queries as well as queries we gener-
ated to reflect some special features not available in the bench-
mark queries. We identify the following characteristics of SPARQL
queries as factors that have significant impact on the query evalua-
tion: (1) the number of SS/OO/SO joins; (2) the number of distinct
properties in the query (#DP); (3) the number of subjects whose
classes are neither explicitly indicated by RDF:type nor determined
by predicates directly associated with them (UC); (4) whether the
query contains OPTIONAL operators (OP); (5) whether the query
contains variables neither to be joined nor returned (DC); and (6)
the cardinality of results (RN). We report results on two benchmark
queries (EJB1 , EJB2 ) and three queries (EJU1 ,EJU2 ,EJU3 ) of our
own. Their characteristics are summarized in Tab. 6. The values
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Figure 9: Storage Size

in the NR column reflect the
cardinalities of the query re-
sults when the queries are
evaluated against the dataset
with 5M triples.

Storage Size We examined
the size of physical storage
of data with indices and show
the results in Fig. 9. PT
is most compact since predi-
cates are stored only once in

the database catalog. Compared to PT and TS with indices, our
(g/w)R2X approaches require slightly less storage and scale in the
similar manner.

Query Evaluation We conducted experiments on various queries
on all data sets we created. Due to the space limitation, we only
2MonetDB failed to load 20M dataset into a single table for TS approach. When an
XML file exceeded the capacity of the MonetDB/XQuery, we broke it into smaller
files. We issued queries against them and unioned the results.



present the query times on the dataset with 5M triples in Fig. 10.
We summarize our observations in the following aspects:
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Figure 10: Query Performance Comparison

1. (g/x)R2X and TS are capable of evaluating all types of queries
purely based on primary data, while PT and VP have to rely on the
corresponding database catalog (as in UVP2 ) or cannot handle such
queries without further information (as in UVP1 )3.
2. (g/w)R2X delivers good performance in evaluating various queries
from simple selection to ones with many joins. TS, VP and PT all
favor certain types of queries while having difficulties with others:
PT has significant performance retrogression caused by uncertain
subject class (UVS2 , EJB2 ) and predicate variables (UVP1 ); VP is
sensitive to the number of predicates (EJB2 ) and predicate variables
(UVP2 ); and TS does not favor complex queries (EJ queries).
3. (g/w)R2X perform very well on path matching queries (EJB2/U2 )
and outperform RDB-based approaches because of the efficient struc-
tural joins and high data locality.
4. (g/w)R2X access less data than RDB-based approaches, be-
cause our query rewrite algorithm restricts the data to be touched
in the evaluation process to a small fragment that corresponds to
only few classes as discussed in Sec. 5. Only PT has similar fea-
ture, but is less precise than our approach in terms of restricting
classes (EJB2/U2 ). Our approach is also capable of skipping cer-
tain matches as the information about the structures is preserved in
the mapping and is available to the rewrite algorithm (EJU1 ).
5. (g/w)R2X can efficiently support queries with OPTIONAL op-
erators because XQuery naturally supports the operator while PT
and VP have to involve additional left-outer-join (EJB2 ).

Frequently, SPARQL queries feature many simple patterns and
mixed types of joins. It is very challenging to evaluate such queries
(e.g. EJU3 ) against massive data on the Semantic Web. The eval-
uation of EJU3 is very costly for TS and VP due to the loss of
the advantage of sort-merge join. Compared to them, PT performs
better because of the transformation from SS joins to selections.
Structural joins are used in our approaches to evaluate SS and SO
joins, while value-join is used here to evaluate OO joins. wR2X
performs best among all because of its high data locality. gR2X
does not perform well since the deep tree structure chosen by the
greedy approach results in lower data locality, but it still outper-
forms TS and PV significantly.
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Figure 11: Scalability Study

Scalability We studied the
scalability of our approaches
as well as the RDB-based
approaches by comparing
the evaluation time of the
same query on data of var-
ious sizes. We observed
that TS scales poorly which
is consistent with what was
pointed out in the literature.
VP scales badly when the
query is complex and contains many SO joins. PT scales the best

3[18] relies on an additional table that stores all predicates to handle such queries.

among the RDB-based approaches but its high parsing and opti-
mization time is too big an overhead for it to be suitable for small
datasets. Compared to them, gR2X and wR2X are able to resist
the impacts from the complexity of the data. wR2X scales better
than gR2X because wR2X preserves data locality in the XML doc-
uments even when the dataset scales up. The test result of query
EJU2 is shown in Fig. 11 to illustrate our observations.

7. SUMMARY
To answer the increasing demands on RDF repository, especially

high query processing efficiency and scalability, we carefully stud-
ied the existing RDF data management systems, identified the pre-
ferred properties of an RDF repository and proposed to take ad-
vantage of the latest XML data storage and query evaluation tech-
niques by decomposing an RDF graph into XML trees for storage
and query evaluation. We identified correctness, low redundancy
and high query efficiency as the criteria for a good RDF-to-XML
decomposition and proposed two algorithms for decomposing an
RDF graph into XML trees. Our experiments demonstrated that
compared to other existing RDF storage and query evaluation tech-
niques, our proposed approach requires small storage space, is ca-
pable of evaluating SPARQL queries more efficiently and scales
better. In addition, our approach is indifferent to the complexity
of data and type of queries, making it suitable for supporting the
Semantic Web applications in various domains. To further under-
stand, evaluate and improve the approach we proposed, we will
compare our approach to the relational approaches at both algo-
rithm and system levels. We will also study how indices and the
availability of workload information affect the performance of var-
ious systems.
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