
ASIC: Algebra-based Structural Index Comparison

Yuqing Wu, Sofía Brenes, Tejas Totade, Shijin Joshua, Dhaval Damani, Michel Salim
Indiana University, Bloomington, USA

{yuqwu, sbrenesb, ttotade, sjoshua, ddamani, msalim}@cs.indiana.edu

ABSTRACT
Structural indices play a significant role in improving the
efficiency of XML query evaluation. Being able to compare
various structural indexing techniques is critical for a DBMS
to select which indices to support, for the query optimizer
to choose an index to use in query evaluation, and for DBAs
to configure a database application. We present ASIC, an
Algebra-based Structural Index Comparison framework that
aids users in understanding the ability of different types of
structural indices in answering XPath queries which have
been characterized using the XPath algebra. ASIC allows
users to select, configure and construct structural indices for
comparison, guides users to compare the selected indices by
evaluating queries of a particular XPath sub-algebra, and vi-
sually displays the index structures, query evaluation plans,
and performance results for analysis and comparison.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-

sures, performance measures

General Terms
Index

Keywords
Structural index, XPath algebra

1. INTRODUCTION
The structural nature of XML data and the tree-pattern

matching features of XML queries require the existence of
good structural indices that assist in the efficient evaluation
of XML queries, particularly XPath [7] queries. Being able
to compare various structural indexing techniques is critical
for a DBMS to select the indices to support, for the query
optimizer to choose an index to use in query evaluation, and
for DBAs to configure a database application. In particular,
it is important to determine: (1) for each type of structural
index, what are the queries it is suitable for; (2) for each class

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

of queries, what are the structural indices that are suitable
to answer them; (3) how do the indices scale with respect to
the data size and data distribution; and (4) which index can
be updated efficiently when the data, workload and available
space change.

Over twenty major structural indices have been proposed,
including DataGuides [4], A[k]-index [6], and APEX [2].
However, it is not clear how these indices fare when directly
compared to each other. More specifically, there lacks a
framework in which structural indices can be compared with
respect to the aforementioned key questions.

Our recent research [3] on XML query languages and their
correlation with data partitions sheds light on this problem.
In particular, we studied a set of sub-algebras of XPath and
identified the coupling between the partition induced by the
structure of an XML document and the partition induced
by certain sub-algebras. The results led to the introduction
of a family of Trie indices for XML, including the N [k]-Trie
and P [k]-Trie indices [1], and the more recent workload-
aware Trie indices [8]. This study opens the door for us-
ing sub-classes of queries to understand the performance of
structural indices for XML. In this demo, we present ASIC
- an Algebra-based Structural Index Comparison framework
that interprets the organization of the structural indices of
an XML document, as well as their ability to answer differ-
ent types of queries, in terms of XPath algebras.

2. XPATH ALGEBRA AS THE INDEX COM-
PARISON TOOL

An XML document X is a node-labeled tree, formally, a
4-tuple (V, Ed, r, λ). We define the label-path of nodes m

and n as the unique path between m and n, denoted as
LP (m, n). We also define DownPaths(X , k) = {LP (m, n)
| m is an ancestor of n and length(m,n) ≤ k}. We can
define the label-path based equivalence relationship (≡N [k])
among data nodes and say that n ≡N [k] m iff the downward
label-path of length k into nodes n and m is exactly the
same. Similarly, we can define the label-path based equiv-
alence relationship (≡P[k]) among node pairs. Node (node
pair) partitions can be induced by such equivalence relation-
ships, and we call them the N [k]-partition (P [k]-partition).
A partition class in the N [k]-partition (P [k]-partition) can
be identified by the label-path shared by the nodes (node
pairs) in the class.

XPath [7], which is at the core of other more complicated
XML query languages, relies on node and path navigation
to retrieve results, allowing for path expressions to con-
tain branching conditions. The XPath algebra, as presented

(a) Structural Index Selection (b) Query Evaluation Plan Comparison (c) Performance Comparison

Figure 1: ASIC User Interface

in [3], expresses these navigation expressions as:

E := ǫ | φ | bl | ↑ | ↓ | E1 ◦ E2 | E1[E2] | E1 ∗ E2
1

In [3] we identified a few sub-algebras of the XPath al-

gebra, including the D[] algebra which consists of the ex-
pressions in the XPath algebra without occurrences of the
set operators and the ↑ primitive; and the D algebra, which
further removes the predicate ([]) operator from D[]. We

also singled out the length-restricted version of the D[] and
D algebras - the D[][k] algebra and the D[k] algebra. Fol-
lowing the concept of distinguishability of a query language,
we say that two pairs of nodes are D equivalent (≡D) if they
can not be distinguished by any query in D. Similarly, we
can define equivalence relationships ≡

D[] , ≡D[k] and ≡
D[][k].

Coupling a partition A of an XML document induced by
its label-paths and a partition B induced by an XML query
language L, we claim in [3] that if A is a refinement of B,
any query expression in L can be answered using index-only
plans when an index based on A is available. Armed with
this coupling theorem, we can analyze structural indices for
XML by examining the classes of queries they can evaluate
using index-only plans. We summarize the analysis we can
perform on a combination of structural indices and XPath
sub-algebras in the table below. A X indicates that the
index is capable of answering all queries in the query class
with an index only plan, and × indicates the lack of such an
ability.

D[1] D[3] D D[][1] D[]

DataGuides X X X × ×
A[2]-index X × × × ×
A[3]-index X X × × ×
P [1]-index X X X X X

P [3]-index X X X X X

3. DEMONSTRATION PROPOSAL
We will demonstrate the tight coupling of label-path based

partitions and XPath algebra based partitions of XML data
and how it is reflected on various XML indexing techniques.
We will also demonstrate how such data partitions and the
organization of the partition classes in the index structures
affect the query evaluation plan and the type of queries an
index is suitable for. ASIC was implemented on top of the
TIMBER [5] native XML database system, focusing on the
following functionalities:
Index Structures The index configuration interface allows
users to select among all structural indices implemented in

1Where ∗ is ∩, ∪ or −

ASIC. Users can further configure the indices by providing
the degree of local similarity, e.g. the k value for bi-similarity
based indices, (i.e. the A[k]-index or the P [k]-Trie index)
or a workload to further impact the workload-aware indices
(i.e. APEX or the AW[k]-Trie index). The structure of the
selected indices will be displayed side by side, as shown in
Figure 1(a). Additionally, users can click on the nodes in
the index to see their label-paths and extents.
Query Evaluation The core functionality of ASIC is its
comparison of structural indices based on their capability
in assisting certain types of queries. ASIC classifies queries
into algebraic classes to assist the users in understanding the
comparison results. When users select a group of indices to
compare and a query to be evaluated in these indices, ASIC
will generate and display physical evaluation plans for the
query and for each selected index configuration, as shown in
Figure 1(b). Users can select the plans they want to execute
and compare their performance.
Performance Comparison Users can compare the indices
based on a rich set of criteria supported by ASIC including
index size, construction time, maintenance time, and query
evaluation time. They may select the indices they want
to compare, the criteria on which they should be compared,
and how the figures are plotted. They may also select a com-
prehensive view of the comparison, in which the indices are
compared on all important criteria, as shown in Figure 1(c).

4. REFERENCES
[1] S. Brenes, et al. Trie Indexes for Efficient XML Query

Evaluation. In WebDB, 2008.

[2] C.-W. Chung, et al. APEX: An Adaptive Path Index
for XML Data. In SIGMOD, 2002.

[3] G. H. L. Fletcher, et al. A Methodology for Coupling
Fragments of XPath with Structural Indexes for XML
Documents. In DBPL, 2007.

[4] R. Goldman, et al. DataGuides: Enabling Query
Formulation and Optimization in Semistructured
Databases. In VLDB, 1997.

[5] H. Jagadish, et al. TIMBER: A Native XML Database.
VLDB J. 11(4): 274-291 (2002).

[6] R. Kaushik, et al. Exploiting Local Similarity for
Indexing Paths in Graph-Structured Data. In ICDE,
2002.

[7] W3C Consortium. XML Path Language (XPath) 2.0.
http://www.w3.org/TR/xpath20, 2007.

[8] Y. Wu, et al. Workload-aware Trie Indices for XML. In
CIKM, 2009.

