
Storing XML (with XSD) in SQL Databases:
Interplay of Logical and Physical Designs

Surajit Chaudhuri Zhiyuan Chen
Microsoft Research

{surajitc, zhchen}@microsoft.com

Kyuseok Shim
Seoul National University

shim@ee.snu.ac.kr

Yuqing Wu
University of Michigan
yuwu@eecs.umich.edu

XML is becoming the standard for exchanging
and querying information across enterprises. Further-
more, much of e-business XML data increasingly re-
lies on accompanying XSD schema specifications
(http://www.w3.org/XML/Schema) to ensure semanti-
cally meaningful exchanges of information. Languages
such as XPath and XQuery have been proposed for query-
ing XML data. One approach towards supporting query
over such XML data is that of building native XML stor-
age and query engine [3]. Alternatively, in many scenarios,
“shredding” XML data (with its associated XSD specifica-
tion) into a relational database is an attractive alternative
for storage as it can take the full advantage of mature re-
lational database technology. The latter approach requires
us to accomplish the following two tasks to ensure ef-
ficient execution of XPath queries over XML data: (1)
design the logical mapping from XML schema to rela-
tional schema; (2) select physical design structures (i.e.,
indexes, materialized views, and partitioning) of the rela-
tional database where XML is shredded.

Although efficiency of mapping depends on both of the
steps above, past work such as [1] exclusively focus on
the logical design step. In this paper, we examine the in-
terplay of logical and physical design, and experimentally
demonstrate that: (1) solving the logical mapping and the
physical design problem independently leads to a subop-
timal solution; (2) taking into account the physical design
space impacts the space of logical mapping. Specifically,
well-known outlining and inlining mapping options [1] are
rendered unnecessary because they are functionally sub-
sumed by two physical design options: indexes and verti-
cal partitioning. On the other hand, we identified mapping
options that are important to leverage when a XSD spec-
ification includes “choice”, “optional”, and maxOccurs.
This is because the above constructs imply complex con-
straints that are difficult to capture solely via physical de-
sign in relational databases. For example, an “optional” ele-
ment (minOccurs = 0 and maxOccurs = 1) in XSD
specifies that itself, its subelements, and attributes are ei-
ther all null or not null. This corresponds to a complex con-

straint in relational database that specifies whether a set of
columns (possibly from different tables) is null at the same
time. This constraint is difficult for user to specify in rela-
tional databases (although user can easily specify whether a
single column may have null values or not), and can not be
inferred from the relational schema mapped from the XML
schema. However, we can exploit this constraint by splitting
the table for that element into two tables, one storing those
with the optional elements and the other stores those with-
out. As a result, queries only accessing one partitioned table
may have better performance.

Our decision to take into account the interplay of logical
and physical design for mapping XML documents requires
us to solve a difficult search problem as the the combined
space of logical and physical design is extremely large. We
propose a search algorithm that judiciously explores the ex-
treme large combined space of logical and physical design.
The algorithm only searches the XSD-specific logical de-
sign options and uses heuristics to further prune the search
space. We experimentally compare the quality (in terms of
the time to execute the query workload on resulting design)
and efficiency (in terms of the search time) of our algorithm
with known algorithms as well as a default XSD based map-
ping and an Edge-Table Mapping [2] that does not use XSD
on both real and synthetic data. The results demonstrate the
quality and efficiency of our solution is significantly bet-
ter than previously known techniques.

References

[1] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML
schema to relations: A cost-based approach to XML storage.
In ICDE, 2002.

[2] D. Florescu and D. Kossmann. Storing and querying XML
data using an RDBMS. IEEE Data Engineering Bulletin,
1999.

[3] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Laksh-
manan, A. Nierman, S. Paparizos, J. M. Patel, D. Srivastava,
N. Wiwatwattana, Y. Wu, and C. Yu. Timber: A native XML
database. VLDB Journal 11(4), 2002.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

