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Abstract

Estimating the sizes of query results, and intermediate results, is crucial to many aspects of query processing. In
particular, it is necessary for effective query optimization. Even at the user level, predictions of the total result size can
be valuable in “‘next-step” decisions, such as query refinement. This paper proposes a technique to obtain query result
size estimates effectively in an XML database.

Queries in XML frequently specify structural patterns, requiring specific relationships between selected elements.
Whereas traditional techniques can estimate the number of nodes (XML elements) that will satisfy a node-specific
predicate in the query pattern, such estimates cannot easily be combined to provide estimates for the entire query
pattern, since element occurrences are expected to have high correlation.

We propose a solution based on a novel histogram encoding of element occurrence position. With such position
histograms, we are able to obtain estimates of sizes for complex pattern queries, as well as for simpler intermediate
patterns that may be evaluated in alternative query plans, by means of a position histogram join (pH-join) algorithm that
we introduce. We extend our technique to exploit schema information regarding allowable structure (the no-overlap
property) through the use of a coverage histogram.

We present an extensive experimental evaluation using several XML data sets, both real and synthetic, with a variety
of queries. Our results demonstrate that accurate and robust estimates can be achieved, with limited space, and at a
minuscule computational cost. These techniques have been implemented in the context of the TIMBER native XML
database (available at http://www.eecs.umich.edu/db/timber) at the University of Michigan.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

XML data [1] is becoming ubiquitous, and an
XML document (or database) is naturally mod-
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department
faculty faculty lecturer
name RA name name secretary RA RA RA name TA TA TA
faculty research scientist
name secretary TA RA RA TA name secretary RA RA RA RA
Fig. 1. Example XML document.
the hierarchical data. Such queries form an Tag = department

integral component of query languages proposed
for XML (for example, [2]), and for LDAP
directories [3].

Example 1.1. The XQuery expression

FOR $f IN document(“personnel.xml”)
//department/faculty
WHERE count($f/TA) >0
AND count($f/[RA) > 0
RETURN $f

matches all faculty members that has at least one
TA and one RA, in the example data set shown in
Fig. 1. This query can be represented as a node-
labeled tree, with the element tags department and
faculty as labels of non-leaf nodes in the tree, and
the element tags TA and RA as labels of leaf nodes
in the tree, as shown in Fig. 2.

A fundamental problem in this context is to
accurately and quickly estimate the number of
matches of a twig query pattern against the node-
labeled data tree.

An obvious use is in the cost-based optimization
of such queries: knowing selectivity of various
subqueries can help in identifying cheap query
evaluation plans.

Example 1.2. The query of Fig. 2 can be evaluated
by identifying all faculties with RAs, and joining
this set with the set of departments, then joining
the result of this with the set of all the TAs. An
alternative query plan is to join the faculties and
RAs first, and then join the result set with TAs,
then, departments. Depending on the cardinalities

Tag = faculty

Tag=TA Tag = RA

Fig. 2. Example pattern tree.

of the intermediate result set, one plan may be
substantially better than another.

Accurate estimates for the intermediate join
result are essential if a query optimizer is to
pick the optimal plan. Furthermore, if there
are multiple join algorithms, the optimizer will
require accurate estimates to enable it to choose
the more efficient algorithm. Similar choices
must be made whether the underlying implemen-
tation is a relational or a native XML data-
base.

Result size estimation has additional uses in an
Internet context. For instance, there may be value
in providing users with quick feedback about
expected result sizes before evaluating the full
query result. Even when the query involved is an
on-line query where only partial results are
requested, it is helpful to provide an estimate of
the total number of results to the user along with
the first subset of results, to help the user choose
whether to request more results of the same query
or to refine the query. Similarly, result size
estimation can be very useful when space alloca-
tion or parallelism are involved.
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Histograms are by far the most popular
summary data structures used for estimating query
result sizes in (relational) databases. When used in
the XML context, they could indeed be used to
estimate accurately the number of nodes satisfying
a specified node predicate. One could build a
histogram for the predicate associated with each
node in a query pattern, and obtain individual
estimates for the number of occurrences of each.
However, structural relationship information is
not captured in traditional histograms, and it is
not obvious how to combine estimates for
individual nodes into estimates for the whole
query tree pattern.

The central contribution of this paper is the
introduction of position histograms to capture
this structural information. A position histogram
is Dbuilt over ‘“base” predicates, such as
“elementtag = faculty”. The position histograms
on two base predicates, P; and P,, can be used to
accurately estimate the selectivity of queries with
the pattern P;//P,, which matches all “P,” nodes
that are descendants of all “P;” nodes in the data
tree. Some special features of predicates, such as
no-overlap property, which dramatically affects
the selectivity of the pattern matching, are also
considered. Even though these histograms are two-
dimensional, they behave like one-dimensional
histograms for many purposes, including in their
storage requirements.

We formally define our problem in Section 2,
and summarize our overall solution approach in
Section 3. We also establish various properties of
this new summary data structure, and show how
to use this to obtain query result sizes estimates
efficiently in Section 3. Schemata often impose
constraints on allowed structural relationships. In
Section 4, we show how, at least in some key cases,
such schema information can be exploited to
obtain better estimates. Variants of the position
histogram technique, leveled histogram for par-
ent—child matching and estimation with non-uni-
form histogram, will be exploited in Sections 6 and
7. We experimentally demonstrate the value of our
proposal in Section 5, considering not just the
quality of the estimate, but also issues such as
computation time and storage requirement. And
related work is discussed in Section 8. Conclusions

and directions for future work are outlined in
Section 9.

2. Problem definition

We are given a large rooted node-labeled tree
T = (Vr, Er), representing the database.

We are given a set of boolean predicates, P: {v :
ve Vr}—{0,1}. For each predicate o€ P, for each
node ve T, we have either a(v) is true or a(v) is
false. (See Section 3.6 for a discussion of how to
obtain this set P for a real database.)

A query is a smaller, rooted, node-labeled
tree Q= (Vp,Ep). The goal is to determine
the number of “matches” of Q in T. The labels
at the nodes of Q are boolean compositions of
predicates from P.

A match of a pattern query Q in a 7 is a total
mapping /: {u:ueQ}— {x: xeT} such that:

® For each node ue Q, the predicate node label of
u is satisfied by A(u) in T.

® For each edge (u,v) in Q, h(v) is a descendant of
h(u) in T.

Fig. 1 shows a very simple XML document. The
personnel of a department can be faculty, staff,
lecturer or research scientist. Each of them has a
name as identification. They may or may not have
a secretary. Each faculty may have both TAs and
RAs. A lecturer can have more than one TAs, but
no RA. A research scientist can have numerous
RAs, but no TA. Consider a simple twig pattern
with only two nodes, faculty and TA, with parent—
child relationship among them. There are three
faculty nodes and five TA nodes in the XML
document. The schema says that a faculty can have
any number of TAs. Without any further schema
information, the best we can do in estimating the
result size is to compute the product of the
cardinality of these two nodes, which yields 15.
Consider the fact that faculty nodes are not nested,
one TA can only be the child of one faculty node,
we can tell that the upper-bound of the result
number is the cardinality of TA nodes, which is 5.
But as we can see from the figure, the real result
size is 2. The question we address in this paper is
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how to capture the structure information of the
XML document to get a better estimation.
Our problem can be stated succinctly as follows:

Define a summary data structure 7’ corre-
sponding to a node-labeled data tree 7', and
a set of primitive predicates of interest P,
such that the size of 7’ is a small percentage
of the size of T; and for any query Q, defined
as a structural pattern of nodes satisfying
combinations of predicates from P, correctly
estimate the total number of matches of Q in
T, using only Q@ and the summary data
structure 77.

3. Our proposal
3.1. The basic idea

We associate a numeric start and end label
with each node in the database, defining a
corresponding interval between these labels.
We require that a descendant node has an
interval that is strictly included in its ancestors’
intervals.

This numbering scheme is inspired by, and quite
similar to, the node numbering based on document
position frequently used in information retrieval
and adopted for XML database use by University
of Wisconsin researchers in the course of the
Niagara [4] project.

We obtain these labels as follows. First, we
merge all documents in the database into a single
mega-tree with a dummy element as the root, and
each document as a child subtree. We number
nodes in this tree to obtain the desired labels—the
start label by a pre-order numbering and the end
label of a node is assigned to be at least as large as
its own start label and larger than the end label of
any of its descendant.

Example 3.1. Fig. 3 shows the same example
XML date as shown in Fig. 1. There are
two numbers in the parenthesis following each
element tag. The first one is the start label
and second one is the end label. We can see that
for all nodes, the end label is larger or equal to the

department (1,36)

faculty (1,4) steff 8,7) [ faculty (30,35)
name RA name name TA TA TA
2,2) 3.3) (6,6) (31,31) (32,32) (33,33) (34,34)

Fig. 3. Example XML data with numbering schema.

start label. For leaf nodes, the two labels have the
same value.

Given a limited set P of predicates of interest,
one should expect that there will be index
structures that identify lists of nodes satisfying
each predicate in P. For many, even most,
predicates, these lists can be very long.
While queries may be answered through manip-
ulating such lists, the effort involved is far
too great for an answer size estimation task.
The standard data structure for maintaining
summary data in a database is a histogram.
We compress each such list into a two-dimensional
histogram summary data structure, as we describe
next.

We take the pairs of start and end pair of values
associated with the nodes that satisfy a predicate o,
and construct a two-dimensional histogram Hisz,
with them. Each grid cell in the histogram
represents a range of start position values and a
range of end position values. The histogram Hisz,
maintains a count of the number of nodes
satisfying o that have start and end positions
within the specified ranges. We call such a data
structure a position histogram.

Position histograms, even though defined over a
two-dimensional space, have considerable struc-
ture, as shown in Fig. 4.

Since the start position and end position of a
node always satisfies the formula that start < =
end, none of the nodes can fall into the area below
the diagonal of the matrix. So, only the grid cells
to the upper left of the diagonal can have count of
more than zero.

Given a point A with coordinates (x,y), the
regions marked I and II are guaranteed to be
empty, since the start and end ranges of any two
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“ End
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Start Position

Fig. 4. Forbidden regions in a position histogram due to one
node.

nodes can either have no overlap, or the range of
one node fully contained within the range of
the other node. This leads to the following
Lemma:

Lemma 3.1. In a position histogram for any
predicate, a non-zero count in grid cell (i,j) implies
a zero count in each grid cell (k,I) with (a) i<k<j
and j<lI, or (b) i<l<j and k<.

Proof. Assume grid cell (i,j) is non-zero. Then,
there is at least one point (x,y) in this grid cell,
such that x[i — l]<x<x[i], and y[j — 1]<y <[],
where x[i — 1] and x[i] are the boundary of the grid
cell (i,j) on x-axis.

The Diagonal line is y = Xx, so, in Fig. 4, we have
X =)1=X,X2=)2=).

Assume that a grid cell (k,/) that satisfies
condition (a) is non-zero. There is at least one
point (x',)') in this grid cell such that x; <x[k —
1< x' <x[k]<x2, and y, <y[l — 1]<)y <y[l]. With
condition (a), we have x = x;<x[k— 1]<x
<x[k]l<x; =y<x[j— 1<)y = x<xX'<y<)y.

In a well-formed XML document, the intervals
defined by the start position and end position of
nodes cannot interleave with each other. So, an
XML document with nodes on both points (x,y)
and (x/,)’) is not well-formed. [

3.2. Primitive estimation algorithm

Each document node is mapped to a point in
two-dimensional space (in each position histogram
corresponding to a predicate satisfied at the node) .
Node u is an ancestor of node v iff the start
position of u is less than the start position of v and
the end position of u is no less than the end
position of v. In other words, u is to the left of and
above every node v that it is an ancestor of, and
vice versa.

Consider the grid cell labeled A in Fig. 5. There
are nine regions in the plane to consider, marked A
(Rg), R; through Rg in Figure. All points v in
region R, are descendants of each point u in the
grid cell A. All points v in region R4 are ancestors
of each point u in grid cell A. No point in region
R4 and Ry is a descendant or ancestor of any point
in the grid cell A. Points in region R; and R; may
be descendants of points in grid cell A. Similarly,
points in region Rs and R; may be ancestors of
points in grid cell A. To estimate how many, we
exclude the forbidden region, and then assume a
uniform distribution over the remainder of each
grid cell. For this purpose, we overlap Fig. 4 with
Fig. 5 to get Fig. 6, assuming that the forbidden
ranges are based on node (x,y), which is the
bottom-right node in grid cell A.

Given predicates P; and P,, both in P, we show
how to estimate the number of pairs of nodes u, v

End
Position

Empty Grid Cells

—

0 Start Position

Fig. 5. Layout of position histogram.



38 Y. Wu et al. | Information Systems 28 (2003) 33-59

4 End
Position

Start Position

X —_———_—

0

Fig. 6. Estimating join counts with position histogram.

in the database such that u satisfies Py, v satisfies
P, and u is an ancestor of v, using two position
histograms, one for predicate P; and one for
predicate P,.

When computing the estimate of a join, we can
compute the estimate based on either the ancestor
or the descendant. When computing an ancestor-
based estimate, for each grid cell of the ancestor we
estimate the number of descendants that join with
the ancestor grid cell. Similarly, for the descendant-
based estimate, for each grid cell of the descendant
we estimate the number of ancestors that join with
the grid cell.

The formulae for these two types of estimation
are different, and are derived in the next two
subsections. But first, we need the following
definition:

Definition 3.1. A grid cell in a position histogram
is said to be on-diagonal if the intersection of the
start-position interval (X-axis) and end-position
interval (Y-axis) is non-empty. Otherwise, the grid
cell is said to be off-diagonal.

3.2.1. Ancestor-based join estimation

If A is off-diagonal, as shown in Fig. 6, all
points in the grid cells in region B are descendants
of all points in grid cell A. Using the position
histogram for predicate P, we can simply add up
the counts of all grid cells in this region. Now

consider region E. Each point in grid cell A
introduces two forbidden regions. No points
in region E can fall in the forbidden regions of
the right-most point in A (as shown in Fig. 6),
so all points in region E must be descendants of
all points in grid cell A. Similarly, for a given point
in grid cell A, part of region F is forbidden;
the points that fall in the right triangle of F
are descendants of A, and the points in the left
triangle are not. Integrating over the points in
region F, we estimate that half the points in F,
on average, are descendants of any specific point in
grid cell A. Similar discussions apply to regions C
and D. For the points in the same grid cell
(grid cell A) in the histogram for predicate P,
for each point in grid cell A of the histogram for
the predicate P;, only the points in the bottom-
right region can be descendants. Assuming
a uniform distribution and performing the
necessary integrals in each dimension, we derive
on average a quarter chance (see the following
proof). Putting all these estimates together, the
ancestor-based estimation for each off-diagonal
grid cell can be expressed as the first formula in
Fig. 7.

When grid cell A is on-diagonal, regions B, C,
D, E, F do not exist. Since a diagonal grid cell is a
triangle rather than a rectangle, the chance that a
descendant point can join with an ancestor point is
1/12 (see the following proof).

3.2.2. Descendant-based join estimation

Referring to Fig. 6, no matter whether A is on-
diagonal or off-diagonal, all ancestors of a point in
the grid cell A will be in regions A, G, H or L.
Following argument similar to those in the
ancestor-based estimation above, all points in
region G, H and I are guaranteed to be ancestors
of all points in grid cell A. For the points in the
same grid cell (grid cell A), the chance is 1/4 for an
off-diagonal grid cell, while it is 1/12 for an on-
diagonal grid cell.

Proof. Assume that P, is the predicate associated
with the ancestor node, and P, is the predicate
associated with the descendant node. H; and H,
are the position histograms built on P; and P,
respectively.
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Primitive Estimation: ancestor-based
For off-diagonal grid cell A:
For on-diagonal grid cell A:

Primitive Estimation: descendant-based
For off-diagonal grid cell A:

For on-diagonal grid cell A:

Estp,,[A] = Histp, [A] x {% x Histp,[A] + Histp,[B] + Histp,[C] + Histp,[E]
+1 x (Histp,|D] + Histp,[F])}

Estp,,[A]l = & x Histp, [A] x Histp,[A]

Estp,,[A] = Histp,[A] x {Histp, [G] + Histp, [H] + Histp, [I] + 1 x Histp, [A]}

Estp,,[A] = Histp,[A] x {Histp, [G] + Histp,[H] + Histp, [I| + &5 x Histp, [A]}

Notation:
Histp: position histogram for predicate P
Estp,,: estimation histogram of a twig pattern, where the ancestor satisfies
P, and the descendant satisfies Ps.
H[A] : summation of the grid cells in region A in histogram H.

Fig. 7. Formulae for primitive join estimation.

Taking a grid cell 4 in Hj, and the grid cell at
the same position in H, let us denote the node
count of the grid cell in H; is 41, and that in H, is
Ap. We will estimate how many node pairs (Es?)
are to be generated from the ancestor—descendant
join, with the nodes fallen in the grid cell A in both
the ancestor and the descendant.

Assume that the boundary of grid cell 4 is

(X1, X2, Y1, 12).

® when A is not on-diagonal
Est= [7 [* (2 = x)(2 — »)
=1/4 x (x2 = x))(r2 — y1) X (x2 = x)(2 — y1)
® when A is on-diagonal
Est= [ [ 1/2% (y—x)
= 1/12 X 1/2>< (X2 —xl)(yz _,Vl) X 1/2><
(2o —=x))(2—y1) O

Example 3.2. Let us have a look at the example
XML document in Fig. 1 again, with the query
pattern we discussed in Section 2. The 2 x 2
histograms of predicates “‘element tag = faculty”
and ‘“element tag = TA” are shown in Fig. 8.
Using the primitive estimation algorithm intro-
duced above, we estimate the result size to be 0.6,
much closer to the real result size. Note that the

faculty | 0 | 1 TA |0 |3

Fig. 8. Example position histograms.

position histograms we used here are 2 x 2. By
refining the histogram to use more buckets, we can
get a more accurate estimate.

3.3. Analysis

The primary concern with any estimation
technique, of course, is how good the estimates
are. We will perform an extensive evaluation in
Section 5. However, there are two other metrics of
concern: the storage required and the time to
compute the estimate. We address these issues
next.

3.3.1. Storage requirement

There can only be O(g) non-zero grid cells in a
g x g grid, unlike the O(g®) one might expect in
general. Therefore, the storage requirements are
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quite modest. We establish this result as a theorem
here, and verify experimentally in Section 5.

Lemma 3.2. Inag X g position histogram, there are
at most g 2-off-diagonal non-zero grid cells.

Proof. Given a g x g histogram, H,, we call the
grid cell (i,7) “2-off-diagonal” if j — i>2. They are
the grid cells that are not on-diagonal and not 1
from diagonal. Let us denote the number of non-
zero grid cells amongst all 2-off-diagonal cells in
histogram H, as Na(H,).

We prove it by induction.

® Base case:
When n = 1 or 2, there are no 2-off-diagonal
cells.
Noosr(Hy) = Naoy(Hz) = 0.
When n = 3, there is one 2-off-diagonal cell
and it can be non-zero.
Nzoﬁf(H3) =1<3=n.
o Inductive case:
Assume that the lemma holds for all grid
sizes up to g x g. For (n+ 1) x (n+ 1) histo-
gram,
o If there are no non-zero 2-off-diagonal
cells, Nyjr(Hyt1) = 0<n+1
o If there are m non-zero 2-off-diagonal
cells (i1,j1)...(im,jm). Pick the grid cell
(iz»ju) such that i, + j, = minimum(i; +
Ji)k = 1..m).

As shown in Fig. 6, the whole histo-
gram can be divided into six ranges. For
the two forbidden regions, all grid cells
that fall into these ranges have zero
count. Due to the way (i,,j,) is chosen,
all the grid cells in the rectangle to the up-
left of the two forbidden regions have
zero count. The three triangles are of size
igy ja—ig+ 1, and n+1—j,+ 1, respec-
tively. Each of them can be regarded as a
smaller histogram itself. The non-zero
grid cell (i, j,) is included in the second
small histogram. So,

Noogr (Hp11)

= Nooy(H;,) + Noggr(Hj,—i,11)
+Naogr (Hin 1)—j,+1)
<@l —D+Ga—ia+1-1)

H(m+1)—ja+1-1)
:ia_1+ja_ia+(n+l)_ja
=n<n+1 O

Theorem 3.1. In a g x g grid, the number of
position histogram grid cells with non-zero counts
is O(g).

Proof. Use Lemma 3.2, in an g X g position
histogram, the number of 2-off-diagonal non-zero
grid cells is at most g.

For a g x g position histogram, in the worst case
when all the grid cells that are not 2-off-diagonal
are non-zero, the total number of non-zero grid
cells is at most 3g. [

3.3.2. Time required

Based on the formulae for both ancestor-based
estimation and descendant-based estimation, the
procedure to compute the expected size of result
for a simple 2-node pattern is to loop through all
grid cells for counts of nodes satisfying the outer
predicate, and for each grid cell loop through the
histogram for the inner predicate, adding up the
regions as described in the preceding section, and
multiplying by the count of the outer grid cell. The
grand summation of all these is the desired result.
We have a choice of which of the two nodes in the
pattern is the inner loop, and the other is the outer.

The summation work in the inner loop is
repeated several times in the simple nested loop
algorithm outlined above. A small amount of
storage for intermediate results can result in the
much more efficient algorithm shown in Fig. 9.

Algorithm pH-Join is a three-pass algorithm. In
the first pass, column partial summations (as on
region E and columns in region B in Fig. 6) are
obtained. In the second pass, row partial summa-
tions (as in region C), as well as region partial
summations (as in region B using column partial
summations) are obtained. In the third pass, these
partial summations are used, along with the matrix
entries themselves, to obtain the necessary multi-
plicative coefficients derived from the inner matrix
operand and these can be multiplied by the
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Mgorithm pH Join (histA, histB)
// Inputs: Two histograms histA and histB,
// Output: Estimation of answer of A join with B .

for (i=0; i<grid_size; i++)
for (j=i; j<grid_size; j++)

{

pSum[il [j].self = HistB[il[j];

if (j == i) pSum[il[j].down = 0; // column summation

else if (j == i+1) pSum[il[j].down = pSum[i] [j-1].self;

else pSum[i] [j].down = pSum[i] [j-1].self + pSum[i] [j-1].down;
}

for (j=grid_size-1; j>=0; j--)
for (i=j; i>=0; i--)

{
if (i == j)
{
pSum[i] [j].right = 0;
pSum[i] [j]1.desc = 0O;
}
else if (1 == j-1)
{
pSum[i] [j].right = pSum([i+1] [j].self; // row summation
pSum[i]l [j].desct = pSum[i+1][j].down; // region summation
}
else
{
pSum[i] [j].right = pSum[i+1][j].self + pSum[i+1][j].right;
pSum[i] [j].desc = pSum[i+1] [j].down + pSum[i+1] [j].desc;
}
}

for (i=0; i<grid._size; i++)
for (j=i; j<grid_size; j++)

if (i==j) rHist[il[j] = HistA[i][j] * pSum[il[j].self / 12;
else rHist[il[j1 = HistA[il[j] * (pSum[i][j].desc
+ pSum[i] [j].self / 4 + pSum[i] [j].down - pSum[i] [i].self / 2
+ pSum[i]l [j].right - pSum[j][j].self / 2 );
total+=rHist [i] [j]

}

output (total);

Fig. 9. Algorithm pH-Join for computing the join estimate.

41
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corresponding elements of the outer operand
matrix and the summation taken.

Algorithm pH-Join, as stated, computes coeffi-
cients assuming that the inner operand is the
descendant node in the pattern. Obvious minor
changes are required if the inner operand is the
ancestor node.

Observe also that all of Algorithm pH-Join,
except for the final multiplication, deals with the
histogram of only one predicate in the join
operation. In consequence, it is possible to run
the algorithm on each position histogram matrix
in advance, pre-computing the multiplicative
coefficients at each grid cell. The additional
storage required is approximately equal to that
of the original position histogram. So such pre-
computation may provide a useful space—time
tradeoff in some situations. In any event, the time
required for the computation is simply O(g) for a
g X g grid.

3.4. Complex patterns

Thus far we have dealt with a simple query
pattern involving a single ancestor—-descendant
pair.

In general, of course, one can have query
patterns that are much more complex. The
technique presented above can be adapted for this
purpose using the intermediate estimates, in the
form of histograms. The basic idea is to construct
the complex query pattern as a sequence of nodes
added to a simple pattern. In other words, one can
choose any one edge in the complex query pattern,
estimate how many times that simple query
pattern occurs, and then use the result to estimate
how many times a slightly less simple query
pattern, with two edges and three nodes occurs,
and so on, adding one node at a time.

The only catch in being able to do this correctly
is that the final summation to compute the total
estimate should not be carried out. Instead, one
should obtain a grid cell by grid cell estimate for
the simpler query pattern, in effect constructing a
histogram for the occurrence of this pattern, and
then use this histogram in the next step. The
question that arises is what is the start and end
position for a pattern. These are concepts defined

for a node, or an element in the XML document.
The answer is that the positions we choose are
exactly the positions at which a selected distin-
guished node in the pattern, which is the node used
in the following estimation, occurs. It is to this
distinguished node that the next node added to the
pattern, in the sequential expansion of the pattern,
must join.

There are many different ways in which a
complex pattern can be decomposed, leading to
different estimation formulae. However, careful
algebraic manipulations can be used to establish
the following reassuring theorem:

Theorem 3.2. The count estimate for any pattern of
predicates is independent of the join order for
algorithm pH-join.

Proof. Let us denote a tree pattern as (V,E),
where V is the set of nodes in the pattern, and E is
the set of edges. Each element in E is represented
by a pair of nodes in V. Hist, is the position
histogram of node v (in V). Let Est(V, E) be the
count estimation of the pattern (V, E). Prove that
for any pattern (V, E), Est(V, E) obtained in any
order can be written in one formula.

Randomly choose one grid cell (i,j;) from
Hist,,, the position histogram of node vy in V. Let
Chy = {(i1,j1)-+- (in,jn)} denote the set of grid cells
chosen in this manner, one cell for each node from
node set V. The estimation of the selected grid cells
joined with respect to the pattern (V, E) is denoted
by E(Chy). Est(V,E) =Y E(Chy) for all combi-
nation of ij,j...iy,j,. We are going to prove that
for the selected grid cells Chy,

E(Chy) =[] Histylip)Ljp)
pel..n

X H FaCtOr(eq’ i(’qu 7j8,]“ s i()‘hl ’j()‘hl)’
gel...n—1

regardless of the order in which the estimation is
computed and the node on which the result
histogram is based.

Here, Factor(ey, e, Jegas Tey,» j%) is defined as
following:

e ¢,cF, is an edge in the pattern, with ancestor
node ¢,, and descendant node e,.
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® (e, sJe, )EChy, it is a grid cell randomly
chosen from Hist,, ; and (i% , j%)e Chy,
it is a grid cell randomly chosen from
Histeqd.
e The value of Factor(e, iy, ja, i4,J4) 1s defined as:
o value= 0, when i, <iy or j,<j;
o value = 1/4, when i, =iy, j, =js, and
Iy #Ja
o value = 1/12, when i, = j, = iy = ju
o value = 1, otherwise.
We prove by induction.

® Base case: For a two-node twig join pattern,
the result of ancestor-based estimation is the
same as descendant-based estimation.
(V,E) is a two-node twig pattern, where the
V ={v,n}, E={e}, e=(v,v). Two grid
cells are randomly chosen from Hist, and
Hist,,, they are Hist, [i1,j1] and Hist,[iz, /2]
So, Chy = {(i1,j1),(i2,j2)}. Based on the
formulas for pH-Join, we have: for ancestor-
based estimation, E_A(Chy) = Hist, [i1][ji]
x Hist,, [ix][ j2] x Factor(e, iy, j1,i2,j2) for descen-
dant-based estimation, E_D(Chy) = Hist,,[i2][ j2]
x Histy, [1][ /1] x Factor(e, i1, j1, 12, )2) s0,
E_A(ChV) = E_D(ChV) = E(ChV)

® [nductive case: Assume that for any tree pattern
(V,E) with t (<n) nodes, Chy is the set of
randomly selected grid cells, then,

E(Chy) = H Hiszp[ip][jp]
pel...t

X H Faczor(eqa leqa 7‘]6’,[” B le‘id 7.]651{1)
qgel...t—1

regardless of the join order and the node on
which the result histogram is based.

For a pattern (V, E) with n nodes, Chy is
the set of selected grid cells. Given a join plan, e
is the edge on which the last join operation
is based on. e divides the pattern into two
subpatterns (V, E1) and (V>, E;), both of them
have less than »n nodes, and Viul =V,
E,UE,ue=E. Assume that the two
nodes at the end of edge e are v,(et)),
vp(€ V).

With the assumption, the estimation of
the subpattern (V1, E), based on v,, regardless

of the join order, is

E(Chy)= [ Hist,[ill)]
(i, )€ Chy,
X H Factor(e,ic,, Je,» les»Je,)-

€EE1
Similarly, the estimation of the subpattern
(V3, E;), based on vy, regardless of the join
order, is

E(Chy) = ]]
(i)€ Chy,

X H FaclOV(e, iea sj€a5 ie,/ 9j€,1)'

eeky

Histy[i][]]

Join the intermediate result above on edge e, the
final result of this set of join plan is

E' = E(Chy,) x E(Chy,)
x Factor(e, ie,, Je,» leysJey)

= [ Hist,li))lin)

pel...t

X H Factor(eg, ic,, > e, Ie,, » jeqd)
gel.t—1

=E(Chy)

as we defined at the very beginning. [

3.5. Compound predicates

Often, the predicates applied at a node may
not belong to the set of basic predicates P. In
such a case, there may be no precomputed position
histogram of start and end positions for
nodes satisfying the specified predicate. How-
ever, if the specified predicate can be expressed
as a boolean combination of basic predicates,
we can estimate a position histogram assuming
independence (between basic predicate compo-
nents of the compound predicate) within a
grid cell. Note that the basic predicates do not
have to be independent over the entire data set—
their respective position histograms will capture
any correlation. Our independence assumption
here is within a single grid cell, and is justifiable
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in exactly the same way as a uniformity assump-
tion within a single histogram bucket is justified
without requiring that the entire data set be
uniform globally.

To be able to manipulate counts, we need
to convert these into the appropriate probabilities.
What we require is the probability of a node
satisfying some basic predicate, given that it is in
a specific histogram grid cell (start and end
position). For this purpose, we can compute a
position histogram for the predicate “TRUE”,
including all elements in the database, and simply
using their start and end positions to obtain the
needed grid cell counts. For each grid cell, this
count is the appropriate normalization constant.
Now, given a specific grid cell, we can “normalize”
the count associated with any basic predicate,
dividing by the normalization constant, to obtain
the probability of the basic predicate being
satisfied by a point in that grid cell. For a
compound predicate, we can manipulate probabil-
ities assuming independence (taking the product
for intersection, the sum minus the product for
union, and one minus the original for negation).
The final probability for the compound predicate
can be “denormalized” by multiplying it with the
normalization constant.

For example, consider two histograms for the
predicates P; and P, corresponding to the
predicates “‘author contains ‘Jane’” and ‘‘author
contains ‘Doe’”, respectively. To compute the
position histogram for a predicate ‘“‘author con-
tains ‘Jane’ or author contains ‘Doe’ ”’, we use the
position histograms on P; and P,, and the position
histogram on the predicate “TRUE”, as shown in
Fig. 10.

3.6. Predicate set selection

Compound predicates can arise not only be-
cause the query expression has a compound

predicate in it, but also because of the choices
made in defining the set P of basic predicates.
Predicates in XML queries fall into two general
categories:

3.6.1. Element-tag predicates

These predicates are defined on the element tags.
An example of such predicate is elementtag =
faculty. Element-tag predicates are likely to be
common in XML queries, and are good candidates
for building position histograms on. Usually, there
are not many element tags defined in an XML
document, so it is easy to justify the storage
requirement of one histogram for each such
predicate and build a histogram on each one of
these distinct element tags.

3.6.2. Element-content predicates

These predicates specify either an exact or
partial match on the contents of element. For
example, text nodes with a parent node year are
numerical values (integer) within a small range. It
is not unreasonable to build a histogram for each
of these values. In some cases, some part of the
content has some general meaning, and tends to be
queried extensively. It would be helpful to set a
predicate that evaluates to true if the prefix (suffix)
of the content of a text element matches to a
certain value. We will see some examples of both
in Section 5.

It is likely that such predicates far outnumber
the element-tag predicates, and position histo-
grams will only be built on element-content
predicates that occur frequently. In any event,
minimizing error in the estimation of these values
is likely to be more important than errors in
estimates of less frequent items. The value of this
general concept has been amply demonstrated in
the context of end-biased histograms [5].

Also, in cases where the predicate is over an
attribute that takes a large number of values,

Histp,[i][j] = Histp,up,[i][j]
Histp [i][4]

Formula for Computing Histogram of Compound Predicate:

Hist p, [i][5] _ [ Histp, [i][5]

- HiStTRUE [Z] b] X { Histrrur [z] [j Histrrug [’L] [j]

Hist p, [][5] ] }

H’istq'RUE[i][j] HiStTRUE[Z'][j]

Fig. 10. Formula for computing histogram of compound predicate.
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standard histogram bucketizing techniques can be
used to capture the number of elements that posses
attributes in appropriate regions of values, and
these can be used to estimate the number that
satisfy any chosen range. In our case, each such
histogram bucket becomes a ‘“‘basic predicate”.
Given any predicate over values of this attribute,
standard histogram estimation techniques can be
used to evaluate the necessary ‘“‘compound pre-
dicate”. As an example, consider a bibliography
database where each book element has an attribute
for the number of pages in the book. We may
bucketize this attribute value into disjoint adjacent
ranges, such as 0-100, 101-200, 201-300, and so on.
Now, given a query predicate that asks for books
that have between 180 and 350 pages, we know how
to estimate this number. For the position histo-
grams introduced in this paper, we build one for
each attribute value range bucket above. For any
position histogram grid cell in question, the
appropriate value histogram numbers can be
combined to produce an appropriate estimate for
the specific compound predicate position histogram.

4. Factoring in schema information

Up to this point, we assumed that the data was
uniformly distributed within any grid cell, and this
is indeed a reasonable thing to do if no other
information is available. However, we may fre-
quently have information from the schema that
can substantially modify our estimate.

For instance, if we know that no node that
satisfies predicate P, can be a descendant of a node
that satisfies Py, then the estimate for the number
of results for a query that asks for P; satisfied at a
node that is an ancestor of P, is simply zero—
there is no need to compute histograms. Similarly,
if we know that each element with tag author must
have a parent element with tag book, then the
number of pairs with book as ancestor and author
as descendant is exactly equal to the number of
author elements.

We recommend that such schema information
be brought to bear when possible. Our work here
concerns itself with the vast majority of the cases
where schema information alone is insufficient.

4.1. No overlap

We frequently know, for a given predicate, that
two nodes satisfying the predicate cannot have any
ancestor—descendant relationship. For instance, in
Fig. 11, a faculty node cannot contain another
faculty node. It follows that there can be no node
that is a descendant of two distinct faculty nodes.
(For instance, a particular TA node can appear
under at most one faculty node). In such
situations, the uniformity assumption within a
histogram grid cell can lead to erroneous esti-
mates. We present, in this section, an alternative
estimation technique appropriate when the ances-
tor node predicate in a primitive two-node pattern
has the no-overlap property. It turns out that there
is no impact on the estimation of the descendant
node in the pattern having a no-overlap property
since multiple descendants could still pair with the
same (set of nested) ancestor node(s).

Definition 4.1. A predicate P is said to have the
no-overlap property if for all elements x, y such
that P(x) and P(y) are TRUE, we have:
endpos(x) < startpos(y) or endpos(y) <startpos(x).

4.2. Summary data structure for predicates
with no-overlap

For a primitive pattern with a no-overlap
ancestor node a, the number of occurrences is

“ End
Position

Grid cell on focus

I Coverage = 1

[ Coverage =0
ZZZ2 0<Coverage<I

L
-

Start Position

0

Fig. 11. Coverage histogram for no-overlap predicate.
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upper-bounded by the count of the descendant
node d in the pattern. (Since each descendant node
may join with at most one ancestor node). The
question is how to estimate the fraction of the
descendant nodes that participate in the join
pattern. Within any one grid cell, the best one
can do is to determine what fraction of the total
nodes in the cell are descendants of g, and assume
that the same fraction applies to d nodes. We call
this fraction, the coverage of a in that particular
cell. Thus, our technique for dealing with the no-
overlap situation is to keep additional informa-
tion, in the form of coverage. Formally, we define
the coverage histogram for predicate P:
Cogp[i][ /llm][n] to be the fraction of nodes in grid
cell (i,j) that are descendants of some node that
satisfies P and fall in grid cell (m, n).

At first glance, it may appear that the storage
requirements here are exorbitant—rather than
store counts for each grid cell, we are keeping
information for cell pairs. However, for a given
grid cell r in the position histogram, and consider
its coverage in grid cell s, the coverage fraction is
guaranteed to be one whenever cell s is both to the
right of and below r. And the coverage fraction is
obviously zero for cells that cannot include
descendants of elements in r. As such, it is only
the cells s along the “border” for which one is
required explicitly to keep coverage information.
In fact, one can establish the following theorem:

Lemma 4.1. In a position histogram for a no-
overlap predicate, every off-diagonal grid cell has
count at most one.

Proof. Let [Smin, Smax) and [emin, €max) be the start
and end position ranges, respectively. For an off-
diagonal grid cell, we must have emiy = Smax.
Suppose there are two nodes u and v in this cell,
with position (s,, ¢,) and (s,, e,), respectively. Due
to the no-overlap property, we must have s, > e,.
But we cannot then have both s,<sm.x and
e, = emin. Hence proved by contradiction. [

Theorem 4.1. In a g x g grid, the number of
coverage histogram cell pairs with partial (non-zero
and non-one) coverage is O(g). In other words, the
coverage histogram requires only O(g) storage.

Proof. For a non-zero grid cell (i,), we say that it
covers the grid cells (p,q) if p=i,¢<j. Among all
the grid cells covered by (i,j), let us denote the
number of on-diagonal grid cells covered by (i,/)
as D(i,j).

D@, j) = {(p, 9)l(p, g) 1s covered by (i,/)}]
=j—i+1.

Consider a non-zero grid cell (4,7) in the position
histogram. In the coverage histogram,

® Cug[pliqllil[j] count zero, when p<i or g > j.

® Cug[pliqllil[j] count one, when p >i and ¢g<j.

® Partial coverage can happen only in the
remaining grid cells (that is, p=1i,q9<j
or p=i,q=j), the number of these cells is
2(G — 1) + 1<2 x D(i,j).

With the no-overlap property, the on-diagonal
grid cells covered by two non-zero grid cell cannot
over lap, except on the boundary. That is, for any
two non-zero grid cells (iy, 1), (i2,/2),

I{(p, ql(p, q) is covered by (i1, /1) A (p, q) is covered
by (2,2} < 1.

From this, we have: for any two non-zero grid
cells (i1, /1), (i2,/2),

L < = i<bh.

In a g x g position histogram,

D(i,j)<4n.

nonzerogridcell(i.j)

> 2xDG)H<8=0(). O
H ist[(ll]l[]}] #0

P(Cug) =

4.3. Estimation algorithm for no-overlap predicates

Consider descendant-based estimation (with the
descendant node as the outer loop) first. For each
grid cell s in the grid with a non-zero count of
nodes satisfying P;, as determined from the
position histogram, we must determine the frac-
tion of these nodes that have an ancestor that
satisfies P;. (Since P; has the no-overlap property,
there can be no more than one such ancestor.) This
is casily obtained as the sum of the coverage
histograms for cell pairs (r,s) and nodes in r
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satisfying P, for all the grid cell r’s to the up left of
grid cell s. The assumption here is that for any
node in grid cell r, the fraction of P, satisfying
nodes in s that are descendants of a P, satisfying
node in r is the same as the fraction of all nodes in
s that are descendants of a P; satisfying node in r.
This gives us a position histogram of joined pairs
for the two predicates, with counts of joined pairs
attributed to the grid cell in which the descendant
node occurs.

Turn now to ancestor-based estimation (with
the ancestor node as the outer loop), where the
counts of joined pairs in the result histogram are to
be attributed to the grid cell in which the ancestor
occurs. For a grid cell r, this is obtained by
summing over each s the predicate P; coverage
histogram for cell pairs (r,s) multiplied by the
count in grid cell s of the predicate P, position
histogram, for all the grid cell s’s to the right and
below grid cell r. Once again, this gives us a
position histogram of joined pairs for the two
predicates, but this time with counts of joined
pairs attributed to the grid cell in which the
ancestor node occurs.

To be able to evaluate estimates for complex
patterns, by building up the patterns one edge at a
time, we need to create as intermediate results, not
just estimates of position (count) histograms but
also of coverage histograms. In addition, we now
have a further complication having to do with
multiplicity of the join node versus the count of the
(intermediate) pattern as a whole. These two are
not necessarily the same, and their ratio is called
the Join Factor.

Consider a simple three-node twig join query,
with node A, B and C shown in Fig. 14(a)
and node A has no-overlap property. Assume that
we compute the A—B pair estimate first. After
we get the estimate for the count of A—B pairs, we
need to estimate the answer size of the
join between the result of the A-B pair and C.
Here, what we need is the number of distinct
A’s participating in A-B join (Histyp_4, called
participation histogram), the number of B’s
(on average) that join with each distinct A node
in A-B pair(Ju_Fct4p_4), and the coverage infor-
mation of the distinct A’s participating in A—B join
(Cvg4p_4), all at grid cell level. An ancestor-based

position histogram estimation, described two
paras above, would merely compute the product
of Histyp 4 and Jn_Fct4p 4. We can divide this
product by Hist,p 4, estimated using a binomial
distribution, to get the needed join factor value, to
be used in the subsequent (A—C) join. These ideas,
modulo a few messy details, lead to the estimation
formulae presented in Fig. 12.

In the formulae in Fig. 12, what we are dealing
with is not just a three-node twig as stated above,
but a more general one where two subpatterns
named A and B are joined, with ancestor—
descendent relationship between nodes satisfying
Py in subpattern 4 and nodes satisfying P, in
subpattern B. What we have are the participation
histogram, join factor and coverage histogram for
the node that satisfy P; in the subpattern A, as well
as those histograms for nodes that satisfy P, in the
subpattern B. All of them come from previous
estimation computation. What we are estimating
here is the estimation histogram of AB (subpattern
A join B), the participation histogram of P, (x in
1,2), and the join factor and coverage histogram of
P, in AB.

Example 4.1. Let us go back to the example XML
document again, and estimate the result size for
the same query pattern. This time, the no-overlap
estimation algorithm is used. The Coverage
Histogram of predicate “‘element tag = faculty”
is shown in Fig. 13. The estimate we get is 1.9,
almost the same as the real result size.

5. Experimental evaluation

We tested our estimation techniques extensively
on a wide variety of both real and synthetic data
sets. First, we report on the accuracy of the
estimates obtained. Later, we present results on
the storage size and the impact of storage size on
the accuracy of the estimate.

5.1. The DBLP data set

We ran experiments on several well-known
XML data sets, including the XMark Benchmark
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Ancestor-based pattern count estimate:
Estaplillj] = Jn-Feta_p[i[j] x 3 (Cvga_p [ml[n][i]ls] x Histp_p, [[m][n]

m=i..j
n=m..j

xJn_Fctg p,[m][n])
Descendant-based pattern count estimate:
Estaplillj] = Histp_p,[i][j] X JnFetp_p[i]lj] x 3 (Cvga_p[d[5][m][n]

m=0..7
n=j.max-y

xJn_Fcta_p, [m][n])
Join factor estimate:

Jn_Fetap_p,li|lj] = gaztasllil — 5¢ Histap_p,[i][j] >0, =0 otherwise

T Histap_py [d[]
Participation Estimation:
casel: the node (P,) that the estimation is based on can overlap
Histap_p, = Estar
case2: P; is no-overlap, estimation is ancestor-based
N[i)[j] = Hista_p, i][j]
M[[j] = > Histp_p,[[m][n]
m=i..j

n=m..j . -
Histap_p,[i[j] = N[i][j] x (1 — (7N]£;][ng_]l)M[l][J])

case3: item P, is no-overlap, estimation is descendant-based
Histap p,[i[j] = Hists p,[i][J] % Y. (notzero(Hists_p,[m)n])

xCvga_p, [i][5][m][n])
Here, function notzero(z) =1 if z#0, =0 otherwise

Coverage Estimation:

casel: P; is no-overlap, the join is ancenstor-based
Hist aop_p, [m][n]

Cugap_p, [i][j][m][n] = Cvga_p, [il[[j][m][n] X i, 5 mymr

case2: P, is no-overlap, and the join is descendant-based
A ATT Histap_p, [i]lj
Cogap_p [illjllm[n] = Cvgs_p, [i)[[j][m]n] x Frere=ssiid]

xnotzero(Hista p,[m][n])

* Notation:

Estap: estimation histogram of the pattern obtained by joining
subpattern A,B

Histsp_p,: number of nodes that satisfy P, and participate in
the join of A and B.

Jn_Fctap_p,: number of nodes satisfying P, that join with each
distinct node, that satisfy P;, in the join of subpattern A and B.

Cvgap_p,: the coverage histogram of the distinct nodes that
satisfy P; and participate in the join of subpattern A and B.

Fig. 12. Estimation formulae for no-overlap predicates.

[6] and the Shakespeare play data set [7]. Results set is 9 M bytes in size and has approximately

obtained in all cases were substantially similar. In 0.5 M nodes.
the interests of space, we present results only for For the DBLP data set, we picked a mix of
the DBLP data set [8] that is probably most element-tag and element-content predicates and

familiar to readers of this paper. The DBLP data built histograms on exact matching of all the
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element tags, the content value of years, and
the prefix matching of the content of “cite” (e.g.
conf, journal, etc.). A few of these predicates,
along with the count of the nodes that match each
predicate, and the overlap property of the pre-
dicate is summarized in Table 1. Note that the
predicates 1990’s and 1980’s are compound
predicates, obtained by adding up 10 correspond-
ing primitive histograms for element-content pre-
dicate (e.g. 1990, 1991,...,). In all, there are 63
predicates; and the total size of all the correspond-
ing histograms added up to about 6K bytes in
all—roughly 0.7% of the data set size. (We used

Coverage
for (0.0)

Coverage 0.3
for (1,1)

05

Fig. 13. Example coverage histogram for faculty.

Table 1
Characteristics of some predicates on the DBLP data set

10 x 10 histograms in all experiments, except
where explicitly stated otherwise.)

5.1.1. Estimating simple query answer sizes

We tested the effectiveness of position histo-
grams on a number of queries using a combina-
tions of predicates from Table 1. In the interest of
space, we only present results for a few represen-
tative queries in Table 2. The first row of this table
considers a query pattern where an element with
author tag appears below an element with article
tag. Other rows consider similar other simple
queries.

Without the position histograms, and without
any schema information, a (very) naive estimate
for the answer size is the product of the
cardinalities of the node counts for the two
predicates (i.e., article and author). The naive
estimate is far from the real result, since it does not
consider the structural relationship between nodes.

Pred name Predicate Node count Overlap property

article element tag = “article” 7366 No overlap

author element tag = “author” 41,501 No overlap

book element tag = ““book” 408 No overlap

cdrom element tag = “cdrom” 1722 No overlap

cite element tag = “cite” 33,097 No overlap

title element tag = “title” 19,921 No overlap

url element tag = “url” 19,542 No overlap

year element tag = “‘year” 19,914 No overlap

conf text start-with “conf” 13,609 N/A

journal text start-with “‘journal” 7834 N/A

1980’s compound 13,066 N/A

1990’s compound 3963 N/A

Table 2

Result size estimation for simple queries on DBLP data set

Ance Desc Naive estimate Desc num Overlap No-overlap Real result
Estimate Est time Estimate Est time

article author 305,696,366 41,501 2,415,480 0.000344 14,627 0.000263 14,644

article cdrom 12,684,252 1722 4379 0.000290 112 0.000261 130

article cite 243,792,502 33,097 671,722 0.000229 3958 0.000261 5114

book cdrom 702,576 1722 179 0.000142 4 0.000259 3
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With the schema information and no position
histogram, if the ancestor node has no-overlap
property, the best (upper-bound) estimate of the
result size is the number of descendants involved in
the join. When position and coverage histograms
are available, overlap or no-overlap estimation
algorithms can be used. When no schema informa-
tion is available, using position histograms and the
primitive pH-Join estimation algorithm brings the
estimate closer to the real answer size. In some
cases, the primitive estimation is better than the
upper-bound estimation using only the schema
information, while the no-overlap estimation using
position histogram and coverage histogram gives
almost exactly the right answer size.

Finally, the time spent on estimating the result
size of a simple twig query pattern, in all cases,
using both the overlap algorithm and the no-
overlap algorithm, is only a few tenths of a
millisecond, which is very small compared to most
database operations.

5.2. Answer size estimation for complex queries

For complex queries the final answer size
estimation is computed by building the complex
pattern one edge at a time and computing the
estimates as we keep adding new edges. A set of

5.2.1. Three-node twig queries

A three-node twig query pattern, as shown in
Fig. 14(a), is an archetype for more complex
patterns. We are required to compute at least
one ancestor-based estimate, and use this in
conjunction with the other descendant to obtain
the final estimate. When that ancestor node has the
no-overlap property, we not only estimate the
number of answers of the subquery, but also
estimate the required supporting information. A
number of three node twig queries were run
against the DBLP data set. The results for a few
representative queries are shown in Table 3. The
node names A, B, C refer to positions in Fig. 14(a).
Results are presented not just for the entire
pattern, but also for the intermediate results
obtained if the AB edge or the AC edge is
evaluated first. As expected, the final estimates
obtained are virtually identical irrespective of how
they were obtained: the (AB)C estimate first
computes AB and then joins C to the result,
whereas the (AC)B estimate first computes AC.
The time to obtain these estimates is once again
very small (approximately 1 ms each).

supporting information (histogram for the joined A A

nodes, join factor, etc.) is estimated and carried on

from one simple join to another. In order to B c D E

understand how the structure and the size of the B C

pattern may affect the outcome of the estimation, F

we designed a set of queries with three-node-twig (8 Three-Node (5 A Complex Query

pattern, and a more complex pattern (with six Pattern Pattern

nodes). The results of these cases are presented Fig. 14. Example query pattern.

below.

Table 3

Result size estimation for three node twig queries on the DBLP data set

Node Node Node AB AC (AB)C (AC)B ABC

A B C 3 3 est est real
Estimate Real Estimate Real

article author cite 14,627 14,644 3960 5114 11,619 11,619 14,259

article title author 7323 7366 14,627 14,644 15,321 15,341 14,644

book title year 610 408 607 408 470 471 408

book url cdrom 493 33 5 3 3 3 3

proc title url 19 32 11 28 11 11 28
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Table 4

Result size estimation for complex query on DBLP data set

Query A B C D F Estimate Real size Est time
Queryl article title author year conf 2421 5826 0.003232
Query?2 book title author url year 1990’s 52 44 0.002540

5.2.2. Complex queries

Intuitively, when the number of nodes in the
query pattern increases, the accuracy of the answer
size estimation is expected to decrease since errors
propagate multiplicatively. We ran a number of
complex queries on the DBLP data set. Surpris-
ingly, we found that even with very complex
queries, the estimation error is not bad (within a
factor of two). The reason is that each simple join
brings in some additional selectivity factors. If the
data nodes for a specific predicate are clustered in
a small region of the histogram space (e.g. element
book appears only in the first 1/10 of the DBLP
data set), then the histogram produced after
joining with this predicate will have many empty
grid cells. Any predicate in the complex pattern
that has this property brings about not just a
numeric reduction but also a “focussing” on the
region of interest. In the queries that we present,
the article predicate in Queryl and the book
predicate in Query?2 exhibit this behavior.

In the interest of space, the results of only two
complex queries are shown in Table 4. The
structure of the query pattern is shown in
Fig. 14(b). Note that the computation time for
the entire complex estimate is still only about 3 ms.

5.3. Synthetic data set

Whereas our tests on real data give us con-
fidence, real data sets like DBLP are limited in size
and complexity. We wanted to understand how
our techniques would do given a more complex
situation, with deeply nested and repeating ele-
ment tags. For this purpose we used the IBM
XML generator [9] to create synthetic data using a
realistic DTD involving managers, departments
and employees, as shown in Fig. 15.

<!ELEMENT manager (name, (manager |
department | employee)+)>

<!ELEMENT department (name, email?,
employee+, department*)>

<!ELEMENT employee (name+, email?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT email (#PCDATA)>

Fig. 15. DTD used in generating synthetic data set.

The predicates that we consider for this DTD
are summarized in Table 5.

On the synthetic data set, we ran all types of
queries we presented above. Here, for lack of
space, we present only the results of some
representative simple queries in Table 6.

In this data set, some of the nodes have the no-
overlap property, some do not. We obtain the
estimate with the pH-Join algorithm for all the
queries, and use no-overlap estimation algorithm
whenever possible. From Table 6, we can see that
whenever there is no-overlap property, the no-
overlap estimation algorithm gives an estimate
that is much closer to the real answer size than
those obtained by using the primitive pH-Join
algorithm. For joins where the ancestor node does
not have the no-overlap property, the primitive
pH-Join algorithm computes an estimate that is
very close to the real answer size. In spite of the
deep recursion, the time to compute estimates
remains a small fraction of a millisecond.

5.4. Storage requirements

In this section, we present experimental results
for the storage requirements of both position
histograms and coverage histograms (recall as per
Theorem 4.1, we expect the storage requirement to
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Table 5
Characteristics of predicates on the synthetic data set

Pred name Predicate Node count Overlap property
manager element tag = “‘manager” 44 Overlap
department element tag = “department” 270 Overlap
employee element tag = “employee” 473 No overlap
email element tag = “email” 173 No overlap
name element tag = “‘name” 1002 No overlap
Table 6
Synthetic data set: result size estimation for simple queries
Ancestor Des- Naive Overlap No-overlap Real

cendant estimate B - - - result

Estimate Est time Estimate Est time
manager dept 11,880 656 0.000070 N/A N/A 761
manager employee 20,812 1205 0.000054 N/A N/A 1395
manager email 7612 429 0.000052 N/A N/A 491
dept employee 127,710 2914 0.000050 N/A N/A 1663
dept email 46,710 1082 0.000054 N/A N/A 473
employee name 473,946 8070 0.000062 559 0.000082 688
employee email 81,829 1391 0.000054 96 0.000080 99
be O(n)). We also consider the impact of storage Storage Requirement
space on the accuracy of the estimates. & ggg
Fig. 16 shows the effect of increasing grid size %é a0p | L— - emal
on the storage requirement and the accuracy of the ’g? o
estimate, for the department-email query on the 52 w0
%] 0~ T T T T T T T T T T

synthetic data set. Since the predicate department
does not have the no-overlap property, the
department-email pair join does not require any
coverage information, therefore, only position
histograms are built on predicate department
and predicate email. The storage requirement for
the two predicates are all linear to the grid size,
with a constant factor close to 2. The result
estimate is not very good when the histogram is
very small. However, the ratio of the estimate to
the real answer size drops rapidly and is close to 1
for grid sizes larger than 10-20.

Article-cdrom join is an example of query with
no-overlap property. Here, both predicates (arti-
cle, cdrom) have the no-overlap property, and
consequently, we store both a position histogram
and a coverage histogram for each of them. The

0 5 10 15 20 25 30 35 40 45 50
grid size

Estimation Accuracy

— estimate/read answer size

estimate/real
answer size

0 5 10 15 20 25 30 35 40 45 50
grid size

Fig. 16. Storage requirement and estimation accuracy for
overlap predicates (department-email).

storage requirement of these two predicates, as
well as the accuracy of the estimation is shown in
Fig. 17. Note that the storage requirement for



Y. Wu et al. | Information Systems 28 (2003) 33-59 53

Storage Requirement
1200

' pHist article

2 - 1000 4| 4 Coverage aritcle

g_ O 800 4 — — pHist Cdrom

@ § 600 — - — Coverage Cdrom

Q= -

g S 400 4

=] £ 200 A

17 S EE=——— === == = — =~ 7 =

0 5 10 15 20 25 30 35 40 45 50
grid size

Estimation Accuracy

4 — estimate/read answer size

estimate/real
answer size

0 5 10 15 20 25 30 35 40 45 50
grid size

Fig. 17. Storage requirement and estimation accuracy for no-

overlap predicates (article-cdrom).

both the position histogram and the coverage
histogram are linear to the grid size, which results
in the total storage requirement grow linearly with
a constant factor between 2 and 3. Another
observation is that the estimate is not good when
the grid size is very small, but it very quickly
converges to the correct answer. Starting from the
point where the grid size is larger than 5, the ratio
of estimate to the real answer size is within
1+0.05, and keeps in this range thereafter. The
reason is that more information is caught by the
coverage histogram than by only the position
histogram.

6. Parent—child queries

With the node numbering scheme used so far,
ancestor—descendant relationships can be deter-
mined, but one cannot be sure if any given pair of
nodes have a direct parent—child relationship or
have an intervening other node. To be able to
answer this question, we introduce a level number
with each node. The root is level 0, each of its
children is level 1, and so on. Every child of any
parent node is at a level exactly one greater than
the parent. Thus, we associate a triple, rather than
a pair, of values with each node.

For each predicate selected, a separate two-
dimensional histogram is created for each level.
The number of parent—child relationships is
determined by computing the number of ances-
tor—descendant relationships between a node at
level k and a node at level k + 1, for all possible
values of k. Since there is a different histogram for
each value of k, this is easy to be accomplished,
using exactly the techniques discussed above.

The storage required now could increase by a
factor equal to the number of levels in the XML-
tree. However, in practice, many predicates are
satisfied only (or mostly) at a few levels in the tree,
so that the storage blow-up is much smaller.
Furthermore, since the number of entries in each
level is fewer, one can use coarser grid cells to
obtain the same accuracy. As a consequence, the
storage required to handle parent—child queries,
while larger than for ancestor—descendant queries
with the same estimate error, is not larger by a
huge factor, as the experiments below demon-
strate.

Finally, a couple of observations regarding
accuracy. Irrespective of the schema, it is not
possible for two nodes at the same level ever to
overlap. As such, the non-overlap criteria apply to
all predicates in the parent—child case, and must be
used to get good estimates. Also, for ancestor—
descendant queries, since level numbers are avail-
able, they can be used to prune out many
candidate nodes. Making an estimate by summa-
tion across levels, each paired only with higher (or
lower, as the case may be) levels of the other
predicate, one can frequently obtain ancestor—
descendant estimates superior to those obtained
with a single level-unaware structure.

For the level histogram, experiments were run
on the synthetic data set only, since the DBLP
data set is never more than 5-level deep. The result
of the answer size estimation is shown in Table 7,
and the storage requirement for the histograms is
shown in Table 8. When a parent—child query is
asked, without the level histogram, one can only
compute the ancestor—descendant estimation. The
result of this estimation is shown under the column
“A-D Estimation”. As shown in this table, with
the level histogram we can compute a parent—child
estimation more accurately. The extra storage
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Table 7
Synthetic data set: result size estimation for simple queries.
Histogram size 5 x §

Node A Node B A-D P-C P-C

estimate  estimate  real size
manager department 1355 15 24
manager employee 2509 20 31
department  employee 3858 199 442
department  email 1452 73 74
department  name 8137 348 270
Table 8

Storage requirement for leveled histogram and level-wise
coverage

Predicate pHist LvHist Cvg
manager 9 30 43
department 8 38 72
employee 6 37 79
name 6 46 87
email 5 25 87

cost, however, is linear (with a factor smaller than
the number of levels in the database) to the grid
size and level.

7. Estimation using non-uniform histograms

From the experiments on different data set, we
observe that nodes satisfy a certain predicate tends
to be clustered in a small portion of the XML
document. If uniform histograms are built for all
predicates selected, (that is, the grid cell boundary
settings are the same for all the histogram), the
result is that most of the histograms have only a
few non-zero-count grid cells (or even one such
grid cell).

In relational databases, there is considerable
literature on the construction of good histogram in
a one-dimensional case. There is even some
literature on the construction of good histograms
in the multi-dimensional case. While the specifics
of these techniques are unimportant for our
purpose here, being able to build a non-uniform

histogram and estimate answer size using non-
uniform histograms (histograms with unequal grid
cells) would be helpful to obtain estimates that are
closer to the real answer sizes.

7.1. Summary data structure

In a uniform histogram, the scale is defined by
the number of grid cells boundaries on both X-
and Y-axis. It is much more complex for a non-
uniform histogram.

Definition 7.1. The scale of a non-uniform histo-
gram Hist is (Ny, Vecy, Ny, Vecy), where N, is the
number of grid cell boundaries on the start
position (X-axis), and Vec, is the list of boundary
value. N, and Vec, represent the same scaling
value for end position (Y-axis).

A histogram is a uniform histogram when N, =
N,, and Vec,[i] = Vec,[i], for all 0<i< N,

When the two histograms involved in estimating
the answer size for a pair join are both uniform
histograms, but their scales are not exactly the
same, the technique for estimation using non-
uniform histogram is still in need.

Example 7.1. The histogram shown in Fig. 18(a) is
a non-uniform histogram. The numbers of bound-
aries on start position and end position are not the
same. And the intervals between the boundaries
are not uniform. Note that with non-uniform
boundaries, the shapes of the off-diagonal grid
cells are no longer square, but rectangular, and the
shapes of the on-diagonal grid cells are no longer
triangular.

7.2. Transformation technique

Given two histograms with different scales, the
estimation technique we stated above cannot be
applied directly, since the grid cells from different
histogram no longer exactly overlap. To be able to
estimate the answer size of the pair join, we need to
transform both histograms into histograms with
same scale. Then, the estimation techniques
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Fig. 18. Transforming non-uniform histograms to uniform histograms: (a) Original histogram A; (b) derived histogram A’; (c) original

histogram B; and (d) derived histogram B'.

introduced in the sections above can be used to
obtain the answer size estimate.

Definition 7.2. The intersection scale (sc) of a set of
histogram setHist is a vector (N, Vecy, Ny, Vecy),
which  satisfies: for each  HistesetHist,
Hist.Vec, <= Vecy n Hist.Vec, =sc.Vec,.

Definition 7.3. For a given predicate P, the
position histogram associated with the predicate,
which is stored as the summary information of the

data in the database, is called original histo-
gram (oHist(P)). A histogram which is equivalent
to the original histogram, but in some inter-
section scale, is called a derived histogram
(dHist(P)).

Given a set of original histograms, intersection
scale can be found easily by merging their
respective scales. Now, the problem is how to find
the derived histogram of a given histogram, such
that the derived histogram is at the intersection
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scale, and is an approximation of the original
histogram.

Lemma 3.1 states that appearance of nodes in
one grid cell leads to zero count of some other grid
cells. Here, we generalize the lemma to a non-
uniform scenario.

Theorem 7.1. In a position histogram for any
predicate, with scale (N, Vec.,N,, Vec,), a non-
zero count in grid cell (xy,y1,X2,y2) implies a zero
count in each grid cell (x}, y}, X5, 5) with (a) X3 <x,
Yy > x1 and Yy <y, or (b) x| > x2, Xy <y, and y| >
2.

This theorem can be further generalized to a set
of histogram built on the same XML database.

Theorem 7.2. Given a set of position histograms
built on an XML database, a non-zero count in grid
cell (x1,y1,Xx2,y2) implies a zero count in each grid
cell (x|,y),x5,5) with (a) xh<xi, yy>x and
Vs <y1, or (b) Xy > x2, Xy <y and y| > ya, in all the
histograms in the set.

Given a set of original histogram, The derived
histograms of the intersection scale could be found
recursively, following the pseudo-code as shown in
Fig. 19.

This algorithm takes two histogram with differ-
ent scale definition, find the minimum-common
scale and transform them into derived histogram
of that scale. It can be generalized to handle more
histograms, just by going through the same
process for each histogram in the loop.

The following is a very simple example, which
illustrates how this transformation is done using
the algorithm in Fig. 19.

Example 7.2. Given Histograms 4 and B, in
different scale definition, as shown in Fig. 18(a)
and (c). Assume that there are two grid cells in
Histogram A having non-zero count, A; and Aj.
The grid cell with non-zero count in Histogram B
is Bl.

First, the minimum-common scale is computed
by combining the scale definition of Histogram A
and B. The derived histogram should be in this
new scale, as shown in Fig. 18(b) and (d). We map

the non-zero grid cells in both original histograms
into new scale.

In Histogram A’, non-zero grid cell 4; intro-
duces one forbidden-region F — 4;. We map F —
A to Histogram B’ and shrink the non-zero block
to B.

In Histogram B', the new non-zero block B
introduce two forbidden regions. Each of these
two forbidden regions intersects with one of the
non-zero blocks in Histogram A’. Cutting off the
zero-count grid cells, the two non-zero blocks in
Histogram A’ also shrink.

8. Related work

In [10], estimation techniques have been sug-
gested for “twig” pattern queries in a hierarchical
database, including XML. These techniques gen-
eralize the work on pruned suffix trees, presented
in [11,12], and the notion of set hashing [13,14].
These techniques, while powerful where they
apply, suffer from some limitations. For one thing,
the techniques only apply to fully specified twig
patterns, involving only parent—child links. How-
ever, one expects many, perhaps even the majority,
of XML queries to involve patterns with ancestor—
descendant links. For another thing, the computa-
tion techniques only provide the selectivity esti-
mate for the entire query pattern. If estimates are
required for subpatterns, representing intermedi-
ate results in a potential query plan, these have to
be computed separately. Finally, the entire tech-
nique relies on notions of pruning in suffix trees,
and on maintaining small hashes for set similarity.
These space-saving solutions obviously lose in-
formation, and much ingenuity is used to minimize
this loss. In contrast, our techniques are insensitive
to depth of tree, and require no pruning and do
not admit the possibility of a non-local informa-
tion loss. (However, our techniques are sensitive to
the size of “symbol alphabet”, and the techniques
in the reference are probably more appropriate if a
large number of basic node predicates are
required).

McHugh and Widom [15] describe Lore’s cost-
based query optimizer, which maintains statistics
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Algorithm HistogramTransform(HistA, HistB, HistA’, HistB’)
// Inputs: Two original histograms HistA and HistB,
// Output: Two derived histogram HistA’ and HistB’

Combine the scale of HistA and HistB, define intersection scale sc.
Initialize HistA’ and HistB’ with scale sc.

For each non-zero grid cell in HistA (HistB)
Mark the set of grid cells in HistA’ (HistB’) that are covered by the
grid cell in HistA. (we call such a set a block here.)

while (1)
{
Bool no_change = true;
for each none-zero block blky in HistA’
{
find its forbidden regions F blka;
for each non-zero block blkp in HistB’
{
find the intersection of blkp with F_blka;
if the intersection is not empty
mark the grid cells in the intersection zero.
if the range of blkp can be shrinked
shrink the range of blkp;
set no_change = false;
}
}
for each none-zero block blkp in HistB’
go through similar process as above.
if no_change
break from the loop;

}

for each none-zero block blk4 in HistA’
{
if blks contains more than one grid cell
divide the node count associated with blk4 to those grid cells
according to their area.
otherwise, set the node count of the grid cell to be the node account
associated with blky4

return HistA’, HistB’;

Fig. 19. Algorithm for transforming two non-uniform histograms to histograms with same scale.

57
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about subpaths of length <k, and uses it to infer
selectivity estimates of longer path queries. Esti-
mating selectivity of path queries has also been the
focus of a recent paper by Aboulnaga et al. [16], in
which the authors propose two techniques for
estimating the selectivity of path expressions. The
first technique called path trees are similar to the
pruned suffix trees of [10], but are more accurate
for estimating the selectivity of certain path
expressions. The second technique uses a Markov
table to maintain statistics about all paths up to a
certain length. The Markov table approach is
similar to [15], but can be aggressively summar-
ized, thereby reducing the amount of memory used
to maintain statistics. The techniques presented in
these two papers do not maintain correlations
between paths, and consequently, these techniques
do not allow them to accurately estimate the
selectivity of tree query patterns, which are very
natural in XML query languages.

Histograms of various types, including multi-
dimensional histograms, have been used for query
estimation in databases [5,17-20]. However, XML
queries often involve an ancestor—descendant or
parent—child relationships among nodes. Tradi-
tional one dimensional histograms are not enough
to catch the position information of each single
node, relationship among nodes, as well as other
structure information of the XML data. There-
fore, a novel histogram is introduced here which
can capture the structure information native to
XML data and estimate the result size effectively
and accurately.

9. Conclusions and future work

As XML continues to grow in popularity, large
repositories of XML documents are likely to
emerge, and users are likely to pose complex
queries on these data sets. Efficient evaluation of
these complex queries will require accurate esti-
mates. Queries in XML frequently specify struc-
tural patterns that specify specific relationships
between the selected elements. Obtaining accurate
estimates for these is not easy, by traditional
means. In this paper, we have proposed a novel
histogram technique called position histogram, and

estimation algorithms using the position histo-
grams, that can be used for accurately estimating
the answer size for arbitrarily complex pattern
queries. While the histograms we develop are two-
dimensional, they are sparse and only require
storage that grows linearly (rather than quadrati-
cally) with grid size. The estimation algorithms are
computationally efficient and require only a very
small running time.

In many cases, schema information may be
available, and frequently can be used to set an
estimate to zero or (through uniqueness) equal to
some other simpler estimate. We identify one
specific schema restriction that occurs frequently
in XML, namely the no-overlap property. We
exploit this property in a modified estimation
algorithm, which produces estimates that are more
accurate than the estimates produced without
factoring in this schema information. An open
question is which other schema information can be
considered together with the position histogram to
further improve the accuracy.

Extensive experimental evaluation using both
real and synthetic data sets demonstrates the
effectiveness of the proposed techniques, for
different type of queries, simple or complex, and
on XML documents of different structure, shallow
or deep and nested. The summary data structures
and estimation techniques developed in this paper
are an important piece of the query optimizer in
the TIMBER [21] native XML database system
under development at the University of Michigan.

Theoretical and experimental studies have also
be done on how to exploit the estimation
technique, using both position histograms and
coverage histogram, to estimate the answer size for
query patterns that are arbitrarily complex. Issues
on estimation for queries with ordered semantics
and queries with value-based join operations are
also looked into.
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