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Abstract

Provides a natural semantics for a subset of XACML, a language for the specification of
access-control policies. Presents the key algorithm of Margrave, a tool for analyzing XACML
policies. Proves the soundness and completeness of the algorithm with respect to the subset of
XACML.

1 Introduction

Multi-user and web applications necessitate controlling the actions a user may perform on a re-
source. Generally, some policy governs what each user is allowed to access. Applying ad hoc checks
spread through out the code to enforce such policies makes the policy hard to understand or mod-
ify. Thus, such informal policies should be formalized into a central access-control policy, which
is enforced through out the program. To allow for these policies to be shared across applications
and for APIs to aid in enforcement, standardized languages are arising for the specification of
access-control policies.

XACML is a language for the specification of such access-control policies [2]. XACML is an OASIS
standard with backing from Sun Microsystems and others. In this paper we are concerned with
the subset of XACML that is sufficient for role-based access control. In Section 3, we provide a
natural semantics for this subset of XACML.

After specifying a policy in a language like XACML, the policy administrator should verify that
the specification matches the intent of the policy. The policy verification tool Margrave aids in
this task [1]. Margrave analyzes XACML policies belonging to the subset of XACML modeled in
Section 3. Margrave uses an internal representation of an XACML policy called a multi-terminal
binary decision diagram (MTBDD). In Section 4, we formalize the algorithm that produces a
MTBDD from an XACML file. In Section 5, we prove the soundness and completeness of the
results of this algorithm with respect to the subset of XACML presented in Section 3.
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2 Syntax

For readability we will not use an XML style syntax for our subset of XACML, but rather a
scheme-like syntax.

XACML has two syntaxes: one for specifications of policies and one for requests. Since the former
has a key word “Policy”, we will call it the spec syntax. The latter is called the request syntax.

2.1 XACML Spec Syntax

The start nonterminal is S.
S ::= C
C ::= Ps | Pol

Ps ::= (PolicySet Ca T C∗)

Ca ::= First-Applicable | Deny-Overrides | Permit-Overrides
T ::= ( (Sub) (Res) (Act))

Sub ::= Any | Allow+

Res ::= Any | Allow+

Act ::= Any | Allow+

Allow ::= (AVC+)

AVC ::= (id val)

Pol ::= (Policy Ca T R∗)

R ::= (Rule T Effect)

Effect ::= Permit | Deny

The elements of the syntax catagory R are called “Rules”; Ps, “PolicySets”; Pol, “Policies”; and
T, “targets”. The elements of syntax catagories of Sub, Res, and Act are called the “subtargets”.
The elements of syntax catagories of Ps, Pol, and R are called the “laws”.

2.2 XACML request syntax

Q ::= ((S) (R) (A))

S ::= AVP∗

R ::= AVP∗

A ::= AVP∗

AVP ::= ( id val )

2.3 Parsing

To make the semantics more understandable, we assume the existence of a parser. Informally, we
assume that is parser can take a string generated by the grammar and produce denotational object
suggested by the strings form, mostly lists. Since the above syntax matches the list notation in
Scheme, this parser is equivalent to the Scheme command quote.
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3 Semantics

Let P be the set of all policies (members of the syntactic category C of the language Spec). P
includes both XACML Policies and PolicySets.1 Let Q be the set of all requests (members of the
syntactic category Q). Let D be the set of all decisions (D = {Permit,Deny,NotApplicable}). We
will use the symbol used for the nonterminal in syntax in the natural semantics to refer to any
element of the syntax category.

At the core of the semantics of XACML is the notation of a request matching the target of a rule,
policy, or policy set. We will denote this relation by q ∈∈ t where q ∈ Q and t is a target. We will
define ∈∈ using a natural semantics given below in Table 1.

The semantics of the Margrave subset of XACML is given in a natural semantics that makes use of
the relation ∈∈. The results of evaluating a Rule is given in Table 2 in terms of the |=r relationship.
The |=r relation is then used to define the |= relation, which gives the semantics of our subset of
XACML. The default behavior of |= is given in Table 3. The behavior of |= under each of the
combining algorithms are given in Table 4 for permit-overrides, in Table 5 for deny-overrides, and
in Table 6 for first-applicable.

4 Margrave

Margrave is a tool for the analysis of XACML policies. The key function in Margrave takes an
XACML policy and produces a function from requests to decisions. We model this function as
Mar:

Mar : P → (Q → D).

Below we define Mar as pseudo-Scheme program that consumes a parsed XACML file and produces
a data structure called a MTBDD that defines the returned function from requests to decisions.
First we describe MTBDDs and then we give a definition of Mar.

4.1 MTBDDs

Let f be a function from {T,F}n to a finite set of terminals M with the formal arguments called
~x. The function f can be represented as a binary tree called a binary decision tree. Each leaf of
the tree is labeled with an element of M . Each internal node represents a question of the form “is
the ith element of ordered n-tuple ~x true?”. Given ~x, one determines f(~x) by starting at the root
node and if the answer to the question at the current node is “yes”, recur on the right child (the
high branch); otherwise, recur on left child (the low branch). The base case is reached at a leaf.
The returned value is the label at the reached leaf.

The same procedure succeeds when the tree requirement is lifted and directed acyclic graphs (DAGs)
are allowed. Such a DAG is called a multi-terminal binary decision diagram (MTBDD). Given an
MTBDD, one can easily convert it to be an MTBDD in which at most one leaf node is labeled by

1The word “policy” when uncapitalized will refer to access-control policies in general. When “policy” is capitalized,

it will refer to the XACML tag Policy and the associated structure.
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S ∈∈S Sub R ∈∈R Res A ∈∈A Act

(S,R,A) ∈∈ (Sub,Res,Act)
(1)

X ∈∈ Any ∀X ∈ {S,R,A} (2)

∃i s.t. S ∈∈ Allowi

S ∈∈S (Allow1,Allow2, . . . ,Allown)
(3)

∃i s.t. R ∈∈ Allowi

R ∈∈R (Allow1,Allow2, . . . ,Allown)
(4)

∃i s.t. A ∈∈ Allowi

A ∈∈A (Allow1,Allow2, . . . ,Allown)
(5)

∀i X ∈∈X AVCi

X ∈∈X (AVC1,AVC2, . . . ,AVCn)
where X ∈ {S,R,A} (6)

∃j s.t. AVPj = AVC

(AVP1,AVP2, . . . ,AVPn) ∈∈X AVC
where X ∈ {S,R,A} (7)

Table 1: The Match Relationship

Q /∈∈ T

((Rule T Effect), Q) |=r NotApplicable
(8)

Q ∈∈ T

((Rule T Permit), Q) |=r Permit
(9)

Q ∈∈ T

((Rule T Deny), Q) |=r Deny
(10)

Table 2: The Rule Relationship |=r
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〈(Policy Ca T ), Q〉 |= NotApplicable (11)

〈(PolicySet Ca T ), Q〉 |= NotApplicable (12)

Q /∈∈ T

〈(Policy Ca T R∗),Q〉 |= NotApplicable
(13)

Q /∈∈ T

〈(PolicySet Ca T C∗),Q〉 |= NotApplicable
(14)

Table 3: Default NotApplicable Judgements

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |=r Permit

〈(Policy Permit-Overrides T C1, C2, . . . , Cn), Q〉 |= Permit
(15)

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |= Permit

〈(PolicySet Permit-Overrides T C1, C2, . . . , Cn), Q〉 |= Permit
(16)

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |=r Deny ∀j 6= i, 〈Cj , Q〉 6|=r Permit

〈(Policy Permit-Overrides T C1, C2, . . . , Cn), Q〉 |= Deny
(17)

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |= Deny ∀j 6= i, 〈Cj , Q〉 6|= Permit

〈(PolicySet Permit-Overrides T C1, C2, . . . , Cn), Q〉 |= Deny
(18)

Q ∈∈ T ∀i, 〈Ci, Q〉 |=r NotApplicable

〈(Policy Permit-Overrides T C1, C2, . . . , Cn), Q〉 |= NotApplicable
(19)

Q ∈∈ T ∀i, 〈Ci, Q〉 |= NotApplicable

〈(PolicySet Permit-Overrides T C1, C2, . . . , Cn), Q〉 |= NotApplicable
(20)

Table 4: Permit-Overrides Judgements
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Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |=r Deny

〈(Policy Deny-Overrides T C1, C2, . . . , Cn), Q〉 |= Deny
(21)

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |= Deny

〈(PolicySet Deny-Overrides T C1, C2, . . . , Cn), Q〉 |= Deny
(22)

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |=r Permit ∀j 6= i, 〈Cj , Q〉 6|=r Deny

〈(Policy Deny-Overrides T C1, C2, . . . , Cn), Q〉 |= Permit
(23)

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |= Permit ∀j 6= i, 〈Cj , Q〉 6|= Deny

〈(PolicySet Deny-Overrides T C1, C2, . . . , Cn), Q〉 |= Permit
(24)

Q ∈∈ T ∀i, 〈Ci, Q〉 |=r NotApplicable

〈(Policy Deny-Overrides T C1, C2, . . . , Cn), Q〉 |= NotApplicable
(25)

Q ∈∈ T ∀i, 〈Ci, Q〉 |= NotApplicable

〈(PolicySet Deny-Overrides T C1, C2, . . . , Cn), Q〉 |= NotApplicable
(26)

Table 5: Deny-Overrides Judgements

Q ∈∈ T 〈R1, Q〉 |= Permit

〈(Policy First-Applicable T R1, R2, . . . , Rn), Q〉 |= Permit
(27)

Q ∈∈ T 〈C1, Q〉 |= Permit

〈(PolicySet First-Applicable T C1, C2, . . . , Cn), Q〉 |= Permit
(28)

Q ∈∈ T 〈R1, Q〉 |= Deny

〈(Policy First-Applicable T R1, R2, . . . , Rn), Q〉 |= Deny
(29)

Q ∈∈ T 〈C1, Q〉 |= Deny

〈(PolicySet First-Applicable T C1, C2, . . . , Cn), Q〉 |= Deny
(30)

Q ∈∈ T
〈R1, Q〉 |= NotApplicable 〈(Policy First-Applicable T R2, . . . , Rn), Q〉 |= D

〈(Policy First-Applicable T R1, R2, . . . , Rn), Q〉 |= D
∀D ∈ D

(31)

Q ∈∈ T
〈C1, Q〉 |= NotApplicable 〈(PolicySet First-Applicable T C2, . . . , Cn), Q〉 |= D

〈(PolicySet First-Applicable T C1, C2, . . . , Cn), Q〉 |= D
∀D ∈ D

(32)

Table 6: First-Applicable Judgements
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Figure 1: An example MTBDD. The low branches are shown as dashed lines and the high branches
as solid lines.

each terminal: for each m ∈ M , make a new node n labeled with m; for each edge going from an
internal node n′ to a leaf labeled with m, make an edge going from n′ to n; remove all the leaves
labeled with m except n and all the edges going to them. Henceforth, we assume that all MTBDDs
discussed have this property. If f̂ is an MTBDD representation of f , we will let f̂(~x) = f(~x).

A Binary Decision Diagram (BDD) is an MTBDD in which the set of terminals is {T,F}. A BDD
may be viewed as a set where all elements that are mapped to T are in the set and all mapped to
F are not in the set. Each element of the set formed from a BDD is itself a set of answers to the
questions in the BDD. We let ∈bdd represent: an element is “in” the BDD. That is, if b̂ is a BDD
representing a set B with a characteristic function of b, then

x ∈bdd b̂ ⇐⇒ b̂(x) ⇐⇒ b(x) ⇐⇒ x ∈ B (33)

Given a policy, Margrave constructs a MTBDD that represents that policy. The terminals of this
MTBDD are elements of the set {Permit,Deny,NotApplicable}. During this process Margrave uses
BDDs. For both the three-terminal MTBDDs and the BDDs. ~x is a representation of a request.

The algorithm makes use of the following constants: deny-term, permit-term, na-term, true-term,
and false-term are the leaf node labeled the Deny, Permit, NotApplicable, T, and F, respectively.

The algorithm makes use of a few basic operations on MTBDDs given below2:

(define (make-bdd subtarget-name attribute-id attribute-value)

2Although many of the following algorithms are given a Scheme like notation, we intend for these algorithms to

given in the meta-language and not an additional object language. Thus, no distinction is made between variables

in the Scheme notation and meta-variables.
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creates a BDD with one internal node which corresponds to the question “Does the attribute-id in
the subtarget-name have the value attribute-value?” and has the terminal T on its high bench and
the terminal F on its low branch. Formally, (make-bdd n i v) returns a BDD that represents a
function f from Q to {T,F} such given a request q = (S,R,A)

f = λ(S,R,A) ∈ Q[(i, v) ∈ X] (34)

where X = S if n = “Subject”, X = R if n = “Resource”, X = A if n = “Action”.

(bdd-and l-bdd r-bdd)

returns the BDD that represents the function f = λ~x[fl(~x) ∧ fr(~x)] where fl is the function repre-
sented by l-bdd , and fr by r-bdd . This function is extended to a list of BDDs as

(define (bdd-and∗ bdd-list)
(if (empty? bdd-list)

true-term
(bdd-and (first bdd-list) (bdd-and∗ (rest bdd-list)))))

(bdd-or l-bdd r-bdd)

returns the BDD that represents the function f = λ~x[fl(~x) ∨ fr(~x)] where fl is the function repre-
sented by l-bdd , and fr by r-bdd . This function is extended to a list of BDDs as

(define (bdd-or∗ bdd-list)
(if (empty? bdd-list)

false-term
(bdd-or (first bdd-list) (bdd-or∗ (rest bdd-list)))))

(replace-terminal terminal replacing-mtbdd in-mtbdd)

returns a BDD that is identical to in-mtbdd except that the terminal terminal is replaced by the
whole MTBDD replacing-mtbdd . (After the replacement all the leaf nodes labeled with the same
value are combined as above.)

4.2 The Algorithm of Margrave

Rather than give the transition rules and axioms as in the normal semantics, we give pseudo-Scheme
code so as to follow the actual implementation discussed in section 4.3 more closely.

The algorithm consists of two major parts: creating a BDD representations of targets and combining
these to represent Rules, Policies, and PolicySets.

4.2.1 Representing Targets

The target of a policy may be viewed as a representation of the set of requests to which this policy
applies. The Margrave algorithm creates these sets using BDDs. The algorithm process-target takes
a (parsed) target and converts it to such a BDD.
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The algorithm for creating and representing these sets as BDDs is given below. Note that the
functions starting with ast: simply access the named child in the abstract syntax tree. For example,
given a element of the syntax catagory of the nonterminal T called target , (ast:target-subjects target)
returns the subject section of the target. If the abstract syntax tree is viewed as scheme list as
explaned in Section 2.3, this would be (first target).

(define (process-target target)
(bdd-and (process-subtarget ’Subject (ast:target-subjects target))

(process-subtarget ’Resource (ast:target-resources target))
(process-subtarget ’Action (ast:target-actions target))))

(define (process-subtarget subtarget-name subtarget-body)
(if (= (first subtarget-body) ’Any)

true-term
(bdd-or∗ (map process-allowance subtarget-body))))

(define (process-allowance subtarget-name match-list)
(bdd-and∗ process-avc match-list)))

(define (process-avc subtarget-name match)
(make-bdd subtarget-name

(ast:attribute-id match)
(ast:attribute-value match)))

4.2.2 Forming Rules, Policies, and PolicySets

Each law can be viewed a function from requests to a decision (Permit, Deny, or NotApplicable).
The function ast->mtbdd takes a (parsed) law and returns just such a function.

(define (ast->mtbdd law)
(cond [(ast:rule? law)

(augment-rule (process-target (ast:law-target law))
(cond [(eq? (ast:rule-effect law) ’Deny) deny-term]

[(eq? (ast:rule-effect law) ’Permit) permit-term]))]
[(or (ast:policy? law) (ast:policySet? law))
(let [ [ca (ast:get-ca law)]

[children (map ast->mtbdd (ast:get-children law))] ]
(augment-rule (process-target (ast:law-target law))

(cond [(equal? ca "first-applicable")
(build-first-applicable children)]
[(equal? ca "deny-overrides")
(build-deny-override children)]
[(equal? ca "permit-overrides")
(build-permit-override children)])))]))
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Figure 2: First-applicable.

(define (augment-rule target-bdd effect-term)
(replace-terminal true-term effect-term

(replace-terminal false-term na-term target-bdd))

(define (build-first-applicable children)
(if (empty? children)

na-term
(replace-terminal na-term (build-first-applicable (rest children))

(first children))

Deny-overrides can be seen in Figure 2.

(define (build-permit-overrides children)
(if (empty? children)

na-term
(replace-terminal deny-term

(replace-terminal na-term deny-term (build-permit-overrides (rest children)))
(replace-terminal na-term (build-permit-overrides (rest children))

(first children)))))

Permit-overrides can be seen in Figure 3.
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Figure 3: Permit-override.



12

possibly find a result

in the next rule’s BDD

the permit from above

applies, so reroute

possibly override the permit

in the next rule’s BDD

D

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

BDD 1

P NA

P D NA

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

BDD 2

D

P

NA

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

BDD 2

Figure 4: Deny-override.

(define (build-deny-overrides children)
(if (empty? children)

na-term
(replace-terminal permit-term

(replace-terminal na-term permit-term (build-deny-overrides (rest children)))
(replace-terminal na-term (build-deny-overrides (rest children))

(first children)))))

Deny-overrides can be seen in Figure 4.

The function Mar is (lambda (policy) (ast->mtbdd (parse policy))).

4.3 An Implementation of Margrave

An implementation of Margrave exists and is available at www.cs.brown.edu/research/plt/

software/margrave. The implementation differs from the above algorithm in that the imple-
mentation uses reduced ordered multi-terminal BDDs instead of just MTBDDs [1]. Since the
relationship between ROMTBDDs and general MTBDDs are well understood and the algorithms
to maintain reduced ordering complicates the proof considerably, the following proofs are not for
ROMTBDDs.
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5 Soundness and Completeness of Margrave Analysis

Margrave is equivalent to XACML evaluation in the following sense

∀p ∈ P,∀q ∈ Q, [〈p, q〉 |= d ⇐⇒ (Mar(p))(q) = d)]. (35)

The proof of this equivalence follows from the soundness and completeness of Margrave with respect
to XACML evaluation as shown in the next two sections. Below we will use the symbol that
represents a nonterminal in the syntax to refer to the set of all strings in that syntax category.

5.1 The Match Relationship

Lemma 1.

∀(i, v) ∈ AV C,∀(s, r, a) ∈ Q, [(s, r, a) ∈bdd (process-avc ’Subject (i, v)) ⇐⇒ s ∈∈S (i, v)] (36)

∀(i, v) ∈ AV C,∀(s, r, a) ∈ Q, [(s, r, a) ∈bdd (process-avc ’Resource (i, v)) ⇐⇒ r ∈∈R (i, v)] (37)

∀(i, v) ∈ AV C,∀(s, r, a) ∈ Q, [(s, r, a) ∈bdd (process-avc ’Action (i, v)) ⇐⇒ a ∈∈A (i, v)] (38)

Proof. For the subject case, (process-avc ’Subject (i, v)) produces a BDD with one internal node.
The internal node represents the question “Does the request include in the Subject subrequest the
id-value pair (i, v)?”. The high branch goes to T and the low branch to F. Thus, (s, r, a) ∈bdd

(process-ac ’Subject (i, v)) if and only if (s, r, a) includes attribute-value pair (i, v) in the Subject
subtarget. Formally, (s, r, a) ∈bdd (process-ac ’Subject (i, v)) if and only if ∃(i′, v′) ∈ S s.t. (i′, v′) =
(i, v). Such a request (s, r, a) will make s ∈∈S (i, v) true since this is the same requirement to for
Judgement 7.

For the other direction for the subject case, if q ∈∈ (i, v), then ∃(i′, v′) ∈ s s.t. (i′, v′) = (i, v). This
will allow the high branch of the single node in the BDD created to be taken yielding T. Thus,
q ∈∈ (i, v) implies (s, r, a) ∈bdd (process-avc ’Subject (i, v)).

The resource and action cases follow the same reasoning as the subject case.

Lemma 2.

∀` ∈ Allow,∀(s, r, a) ∈ Q,[(s, r, a) ∈bdd (process-allowance ’Subject `) ⇐⇒ q ∈∈ `] (39)

∀` ∈ Allow,∀(s, r, a) ∈ Q,[(s, r, a) ∈bdd (process-allowance ’Resource `) ⇐⇒ q ∈∈ `] (40)

∀` ∈ Allow,∀(s, r, a) ∈ Q,[(s, r, a) ∈bdd (process-allowance ’Action `) ⇐⇒ q ∈∈ `] (41)

Proof. For subject case: Let (ij , vj) ∈ AC be the jth element of ` ∈ Allow where j ranges from
1 to |`|. Let b be (process-allowance ’Subject `). process-allowance produces b as the bdd-and of
(process-avc ’Subject (ij , vj)) for all j. Thus, (s, r, a) ∈bdd b if and only if

(s, r, a) ∈bdd (process-avc ’Subject (ij , vj)) (42)
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for all j. Thus,

(s, r, a) ∈bdd (process-allowance ’Subject `) ⇐⇒ ∀j, (s, r, a) ∈bdd (process-avc ’Subject (ij , vj))
(43)

⇐⇒ ∀j, (s, r, a) ∈∈S (ij , vj) (44)

⇐⇒ (s, r, a) ∈∈S `. (45)

where middle step follows from Lemma 1 and the last from Judgement 6.

The resource and action cases follows the same steps.

Lemma 3.

∀s′ ∈ Sub,∀(s, r, a) ∈ Q, [(s, r, a) ∈bdd (process-subtarget ’Subject s′) ⇐⇒ s ∈∈ s′] (46)

∀r′ ∈ Res,∀(s, r, a) ∈ Q, [(s, r, a) ∈bdd (process-subtarget ’Resource r′) ⇐⇒ r ∈∈ r′] (47)

∀a′ ∈ Act,∀(s, r, a) ∈ Q, [(s, r, a) ∈bdd (process-subtarget ’Action a′) ⇐⇒ a ∈∈ a′] (48)

Proof. For the subject case: There are two cases: (1) s′ is either a list of elements from Allow or
(2) s′ is the singleton list holding the keyword “Any”.

1. s′ ∈ Allow+: Let `j ∈ Allow be the jth element of s′ ∈ Sub where j ranges from 1
to |s|. (process-subtarget ’Subject s′) produces the bdd-or of (process-allowance ’Subject `j)
over all j. Thus, (s, r, a) ∈bdd (process-subtarget ’Subject s′) if and only if (s, r, a) ∈bdd

(process-allowance ’Subject `j) for at least one j. Thus,

(s, r, a) ∈bdd (process-subtarget ’Subject s′) ⇐⇒ ∃j, (s, r, a) ∈bdd (process-allowance ’Subject `j)
(49)

⇐⇒ ∃j, (s, r, a) ∈∈S `j (50)

⇐⇒ (s, r, a) ∈∈S s′. (51)

where middle step follows from Lemma 2 and the last from Judgement 3.

2. s′ = (Any): In this case, process-subtarget will return true-term. Thus, for any request
(s, r, a), (s, r, a) ∈bdd (process-subtarget ’Subject s′). Equivalently, by Judgement 2, all re-
quests (s, r, a) ∈ Q, s ∈∈ (Any).

The resource and action cases follows the same steps.

Lemma 4.

∀(s′, r′, a′) ∈ Target,∀(s, r, a) ∈ Q, [(s, r, a) ∈bdd (process-target (s′, r′, a′)) ⇐⇒ (s, r, a) ∈∈ (s′, r′, a′)]
(52)

Proof. (process-target (s′, r′, a′)) constructs the bdd-and of

• (process-subtarget ’Subject s′),
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• (process-subtarget ’Resource r′), and

• (process-subtarget ’Action a′).

Thus,

(s, r, a) ∈bdd (process-target (s′, r′, a′)) (53)

⇐⇒ (process-subtarget ’Subject s′) ∧ (process-subtarget ’Resource r′) ∧ (process-subtarget ’Action a′)
(54)

⇐⇒ (s, r, a) ∈∈S s′ ∧ (s, r, a) ∈∈R r′ ∧ (s, r, a) ∈∈A a′ (55)

⇐⇒ (s, r, a) ∈∈ (s′, r′, a′). (56)

where middle step follows from Lemma 3 and the last from Judgement 1.

5.2 Rules

Lemma 5.

∀r ∈ Rule,∀q ∈ Q, [(Mar(r))(q) = d ⇐⇒ 〈p, q〉 |=r d]. (57)

Proof. The relative branch of ast->add is as follows:

(augment-rule (process-target (ast:law-target law))
(cond [(eq? (ast:rule-effect law) ’Deny) deny-term]

[(eq? (ast:rule-effect law) ’Permit) permit-term]))]

The function augment-rule first replaces the false terminal with na-term, which means that any
request that yields false in BDD (was not ∈bdd the BDD) will now yield NotApplicable. Second,
augment-rule replaces the true terminal of the BDD produced by (process-target (ast:law-target
law)) with the effect of the rule (either a deny-term or permit-term as selected the effected list in
law).

Consider two cases: (1) where the request does not match the target and (2) where the request
matches the target:

1. From Lemma 4, we know that the only requests that will yield F from BDD produced by
(process-target (ast:law-target law)) are those that are not in the match relationship with the
target. Thus, since the terminal for F was replaced by the terminal for NotApplicable and
none of the internal nodes were altered, the MTBDD that is produced by augment-rule will
yield NotApplicable if and only if the request was not in the match relationship ∈∈ with the
target. This is the same behavior of the rule relationship |=r found in Table 2 (note esp.
Judgement 8).

2. Now consider the case where the match relationship does hold (as in Judgements 9 and 10).
Consider the sub-case where the effect of the rule is Permit. Since the terminal for T was
replaced by the terminal for Permit and none of the internal nodes were altered, the MTBDD
that is produced by augment-rule will yield Permit if and only if the request is in the match
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relationship ∈∈ with the target. Thus, the same behavior as found in Table 2 will be observed
(note esp. Judgement 9). The proof of equivalence for the deny case follows in the same way.

Thus, in both cases Mar and |=r behaves the same making the above equivalence true.

5.3 Policy

Lemma 6.

∀p ∈ Pol,∀q ∈ Q, [(Mar(p))(q) = d =⇒ 〈p, q〉 |= d]. (58)

Proof. The case where the request does not match the target of the policy is almost identical to the
corresponding case in the proof of Lemma 5. For the case where the request does match the target,
we must proof that result returned by rule-combining function (either build-first-applicable, build-
permit-overrides, or build-deny-overrides) is correct. We use proof by induction over the number
of rules in p.

Base Case: Zero rules. The functions build-first-applicable, build-permit-overrides, and build-
deny-overrides all return na-term for the rule-less policy. ∀p ∈ P,∀q ∈ Q, 〈p, q〉 |= NotApplicable

holds when p is rule-less but not for either 〈p, q〉 |= Permit or 〈p, q〉 |= Deny.

Inductive Case: Assume for n ≥ 0 rules that ∀p ∈ Pol,∀q ∈ Q, [q ∈ Mar(p, d) =⇒ 〈p, q〉 |= d].
Let p be in Pol and have n + 1 rules.

1. First-Applicable: Since the number of child rules is greater than zero, the applicable branch
in build-first-applicable is

(replace-terminal na-term (build-first-applicable (rest children))
(first children)).

Since (first children) is just a rule, it is correct by Lemma 5. Since the number rules in (rest
children) is n, by the inductive hypothesis, (build-first-applicable (rest children)) is correct.
These other rules only matter if the first rule yields NotApplicable for given request. Otherwise,
the result of the first rule is the result for the given request. The results of replace-terminal
ensures this behavior. If the first rule yields NotApplicable, then the other rules are consulted
since the terminal for NotApplicable gets replaced by the correct MTBDD that results from
the other rules. The other two terminals are unchanged and thus correctly returned.

2. Permit-Overrides: Since the number of child rules is greater than zero, the applicable branch
in build-permit-overrides is

(replace-terminal deny-term
(replace-terminal na-term deny-term (build-permit-overrides (rest children)))
(replace-terminal na-term (build-permit-overrides (rest children))

(first children))))).
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Lets decompose this as follows:

b̂ = (first children) (59)

ĉ = (build-permit-overrides (rest children)) (60)

d̂ = (replace-terminal na-term ĉ b̂) (61)

ê = (replace-terminal na-term deny-term ĉ) (62)

f̂ = (replace-terminal deny-term ê d̂) (63)

First we will prove soundness and then completeness:

Soundness:

(a) f̂(q) = Permit: For f̂(q) to equal Permit, either d̂(q) = Deny and ê(q) = Permit, or
d̂(q) = Permit.

If ê(q) = Permit, then ĉ(q) = Permit. Since ĉ is produced by n rules, by the inductive
hypothesis, ĉ(q) = Permit is sound. That is, if p′ is a policy created out the last n rules
of the given policy p, then 〈p′, q〉 |= Permit. Thus, since the only applicable judgement
that implies that Permit is yielded is Judgement 15, the antecedents of Judgement 15
must hold. Thus, there exists a rule in (rest children) that yields Permit. This makes
Judgement 15 applicable for policy p as well.

If d̂(q) = Permit, then either b̂(q) = Permit, or b̂(q) = NotApplicable and ĉ(q) = Permit.
If b̂(q) = Permit, then by Lemma 5, rule n + 1 must yield Permit making Judgement 15
applicable. If ĉ(q) = Permit,, then as above, Judgement 15 holds.

Thus, in either case, Judgement 15 holds, and thus, 〈p, q〉 |= Permit.

(b) f̂(q) = Deny: For f̂(q) to equal Deny, then both ê(q) and d̂(q) must be Deny since f̂ is
d̂ with its Deny terminal replaced by ê.

When ê(q) = Deny, ĉ(q) must equal either Deny or NotApplicable since ê is ĉ with its
NotApplicable terminal changed to be a Deny terminal. Since ĉ is created by n rules, by
the inductive hypothesis, ĉ must be sound. Thus, since both applicable judgements that
yield Deny or NotApplicable (Judgements 17 and 19) require that no rule in the Policy
yields Permit, no rule in (rest children) may yield Permit.

When d̂(q) = Deny, either b̂(q) = Deny, or b̂(q) = NotApplicable and ĉ(q) = Deny. If
b̂(q) = Deny, then by Lemma 5, rule (first children) must yield Deny. As above, if ĉ(q) =
Deny, there must exist a rule that yields deny in (rest children) (see Judgement 17).
Thus, under either case, b̂(q) 6= Permit and there exists a rule the yields Deny.

From the implications of ê(q) = Deny, no rule in (rest children) may not yield Permit.
From implications of d̂(q) = Deny, the rule (first children) may not yield permit and
there must exist a rule in the policy that must yields Deny. Thus, Judgement 17 applies
and 〈p, q〉 |= Deny.

(c) f̂(q) = NotApplicable: For f̂(q) to equal NotApplicable, either d̂(q) = NotApplicable, or
d̂(q) = Deny and ê(q) = NotApplicable. However, ê(q) cannot equal NotApplicable since ê
has no NotApplicable terminal (it was replaced by a Deny terminal). Thus, d̂(q) must be
NotApplicable. For d̂(q) to be NotApplicable, both b̂(q) and ĉ(q) must be NotApplicable.
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When b̂(q) = NotApplicable, by Lemma 5, (first children) must yield NotApplicable.

When ĉ(q) = NotApplicable, by the inductive hypothesis, a policy with all the rules
in (rest children) and on others, must yield NotApplicable. Since the only applicable
judgement that yields NotApplicable is Judgement 19, the antecedents of that judgement
must hold. Thus, all of the rules in (rest children) must yield NotApplicable.

Thus, every rule in p must yield NotApplicable and Judgement 19 is applicable. Thus,
〈p, q〉 |= NotApplicable.

Completeness:

(a) 〈p, q〉 |= Permit: Only one judgement can be applied to yield Permit: Judgement 15.
According to the antecedent of Judgement 15, there must exist a rule in the policy that
yields Permit. Thus, either rule n + 1 yields Permit or at least on rule in (rest children)
yields Permit.

In the first case where rule n+1 yields Permit, by Lemma 5 b̂ will yield Permit. Since the
creation of f̂ from b̂ does not change the Permit terminal or any of the internal nodes, f̂
will yield Permit for the same requests as b̂. Thus, f̂ yields Permit.

In the second case where rule n + 1 does not yield Permit but another rule in (rest
children) does, by the inductive hypothesis the MTBDD ĉ will yield Permit. Either rule
n + 1 yields NotApplicable or Deny. If it yields NotApplicable, then since in f̂ it has its
NotApplicable terminal replaced by ĉ, it will now produce what ĉ produces: Permit. If
it yields Deny, then since in f̂ it has its Deny terminal replaced by ê, it will yields what
this MTBDD ê yields. Since ê is just ĉ with its NotApplicable terminal replaced by Deny

and ĉ yields Permit, ê will yield Permit. Thus, ĉ will yield Permit.

(b) 〈p, q〉 |= Deny: Only one judgement could can be applied to yield deny: Judgement 17.
According to the antecedent of Judgement 17, there must exist a rule in the policy that
yields Deny and no rules that yield Permit on q. Thus, either rule n + 1 yields Deny or
at least on rule in (rest children) yields Deny.

In the first case where rule n + 1 yields Deny, by Lemma 5 b̂ yields Deny. The creation
of f̂ from b̂ changes the Deny terminal to be ê. Thus, f̂ yields what ê yields. Since no
rules may yield Permit, by the inductive hypothesis, ĉ does not yield Permit. Thus, ĉ
either yields Deny or NotApplicable. ê is ĉ with its NotApplicable terminal replaced with
a Deny terminal. Thus, ê always yields Deny. Thus, f̂ yields Deny as required.

In the second case where rule n+1 does not yield Deny but another rule in (rest children)
does, by the inductive hypothesis MTBDD ĉ will yield Deny. Since rule n + 1 may yield
neither Permit nor Deny, it must yield NotApplicable. Since f̂ is b̂ with its NotApplicable

terminal changed to ĉ, f̂ will yield what ĉ yields. Thus, f̂ will yield Deny.

Thus, in either case, f̂ under q will yield Deny if 〈p, q〉 |= Deny.

(c) 〈p, q〉 |= NotApplicable: Given that the target matches, only one judgement can be
applied to yield deny: Judgement 19. According to the antecedent of Judgement 19,
every rule with in the policy must yields NotApplicable. Thus, by Lemma 5, b̂(q) =
NotApplicable. By the inductive hypothesis, ĉ(q) = NotApplicable. Since f̂ is b̂ with its
NotApplicable terminal replaced by ĉ, f̂(q) = ĉ(q) = NotApplicable.
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Thus, in every case, 〈p, q〉 |= d =⇒ f(q) = d

3. Deny-Overrides: Almost the same as Permit-Overrides.

5.4 PolicySets

Theorem 7 (Equivalence).

∀p ∈ Pol,∀q ∈ Q, [(Mar(p))(q) = d ⇐⇒ 〈p, q〉 |= d]. (64)

Proof. Let the height of a PolicySet be defined as 1 for any PolicySet that has only Policies as
children (no PolicySets) and as one more than the maximum height of any of children for PolicySets
that do have other PolicySets are children. Theorem will proved by induction over the height of
the PolicySet.

Base Case: height 1, that is, a PolicySet with all its children being Policies. Given a PolicySet of
height 1, it can have any number of children. By Lemma 6, we know that each of these children
are both sound and complete. Now we must show that Margrave combines them correctly to yield
a MTBDD that is sound and complete. Margrave uses the same function to combine Policies into
PolicySets as it does to combine Rules into Policies. Inspecting the judgements for PolicySets, one
can see that every rule for a PolicySet has a corresponding rule for Policy (listed right after it).
The only differences in each pair of corresponding judgements are the syntactic category of children
and the use of |= instead of |=r. The proof above for Lemma 6 only makes use of these two facts in
using Lemma 5; it does not make use of any internal structure of rules or |=r, only that Margrave
is sound and complete with respect to rule and the relation |=r. Lemma 6 shows that Margrave
is sound and complete with respect to Policies and the relation |= when used with Policies. Thus,
Lemma 6 can be substituted for Lemma 5 everywhere in the proof of Lemma 6 to prove the base
case of this theorem.

Inductive Case: Assume the inductive hypothesis that for all PolicySets of height n or less, ∀p ∈
P,∀q ∈ Q, [(Mar(p))(q) = d ⇐⇒ 〈p, q〉 |= d]. Note that all the children of a PolicySet of height
n + 1 has a height of n or less. Thus, the inductive hypothesis proves Margrave to be equivalent
on all the children. Thus, as Lemma 6 stood in place of Lemma 5 in proof of the base case, the
inductive hypothesis can stand in place of Lemma 5 in proof of the inductive case.

Thus, it has been proven that for a PolicySet of any finite height. Since only PolicySets of finite
height are permissible by the grammar, the theorem is proven.

6 Conclusion

This paper has presented a subset of XACML, provided a natural semantics for that subset, for-
malize an algorithm evaluating policies written in this subset, and proven the soundness and com-
pleteness of this algorithm.

The reader should bear in mind that full XACML is a much more rich set of operators. For example,
full XACML results in not simply a decision being produced by each policy-request pair, but also a
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list of obligations, actions that must be fulfilled upon the rendering of the decision (e.g., notifying an
auditor). How these lists of obligations are produced from the policy introduces non-determinism
into the language. Future work shall have to provide a semantics for full XACML.

The algorithm presented is incapable of running on full XACML. Furthermore, due to the limi-
tations of MTBDD construction, no way to extend the algorithm to full XACML presents itself.
Future work should produce a tool capable of the analysis of XACML policies written in full
XACML.
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