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Kleene algebras with tests (KATs) offer sound, complete, and decidable equational reasoning about regularly

structured programs. Interest in KATs has increased greatly since NetKAT demonstrated howwell extensions of

KATs with domain-specific primitives and extra axioms apply to computer networks. Unfortunately, extending

a KAT to a new domain by adding custom primitives, proving its equational theory sound and complete, and

coming up with an efficient implementation is still an expert’s task.

We present a general framework for deriving KATs we call Kleene algebra modulo theories: given primitives

and a notion of state, we can automatically derive a corresponding KAT’s semantics, prove its equational theory

sound and complete with respect to a tracing semantics, use term normalization from the completeness proof

to create a decision procedure for equivalence checking. Our framework is based on pushback, a generalization
of weakest preconditions that specifies how predicates and actions interact. We offer several case studies,

showing tracing variants of theories from the literature (bitvectors, NetKAT) along with novel compositional

theories (products, temporal logic, and sets). We derive new results over unbounded state, reasoning about
monotonically increasing, unbounded natural numbers. We provide an OCaml implementation of both decision

procedures that closely matches the theory: with only a few declarations, users can automatically compose

KATs with complete decision procedures. We offer a fast path to a “minimum viable model” for those wishing

to explore KATs formally or in code.

CCS Concepts: • Software and its engineering→ Formal language definitions; Frameworks; Formal soft-
ware verification; Correctness; Automated static analysis; • Theory of computation→ Regular languages.

ACM Reference Format:
Michael Greenberg, Ryan Beckett, and Eric Campbell. 2020. Kleene Algebra Modulo Theories. ACM Trans.
Program. Lang. Syst. 1, 1, Article 1 (January 2020), 47 pages.

1 INTRODUCTION
Kleene algebras with tests (KATs) provide a powerful framework for reasoning about regularly

structured programs. Modeling simple programs with while loops, KATs can handle a variety

of analysis tasks [3, 7, 12–14, 41] and typically enjoy sound, complete, and decidable equational

theories. Interest in KATs has increased recently as they have been applied to the domain of computer

networks: NetKAT, a language for programming and verifying Software Defined Networks (SDNs),

was the first remarkably successful extension of KAT [1], followed by many other variations and

extensions [4, 8, 22, 42, 44, 56].

Considering KAT’s success in networks, we believe other domains would benefit from program-

ming languages where program equivalence is decidable. However, extending a KAT for a particular

domain remains a challenging task even for experts familiar with KATs and their metatheory. To

build a custom KAT, experts must craft custom domain primitives, derive a collection of new
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1:2 Michael Greenberg, Ryan Beckett, and Eric Campbell

domain-specific axioms, prove the soundness and completeness of the resulting algebra, and imple-

ment a decision procedure. For example, NetKAT’s theory and implementation was developed over

several papers [1, 23, 60], after a long series of papers that resembled, but did not use, the KAT

framework [21, 31, 45, 51]. Yet another challenge is that much of the work on KATs applies only to

abstract, purely propositional KATs, where the actions and predicates are not governed by a set

of domain-specific equations but are left abstract [15, 39, 46, 50]. Propositional KATs have limited

applicability for domain-specific reasoning because domain-specific knowledge must be encoded

manually as additional equational assumptions. In the presence of such equational assumptions,

program equivalence becomes undecidable in general [12]. As a result, decision procedures have

limited support for reasoning over domain-specific primitives and axioms [12, 37].

We believe domain-specific KATs will find more general application when it becomes possible to

cheaply build and experiment with them. Our goal in this paper is to democratize KATs, offering a

general framework for automatically deriving sound, complete, and decidable KATs with tracing

semantics for client theories. To demonstrate the effectiveness of our approach, we not only repro-

duce results from the literature (e.g., tracing variants of bit vectors and NetKAT), but we also derive

new KATs that go behind the existing, finite-state KATs to KATs using monotonically increasing,

unbounded naturals. The proof obligations of our approach are relatively mild and our approach

is compositional: a client can compose smaller theories to form larger, more interesting KATs

than might be tractable by hand. Our completeness proof corresponds directly to an equivalence

decision procedure. Our OCaml implementation allows users to compose a KAT with both decision

procedures from small theory specifications. We offer a fast path to a “minimum viable model” for

those wishing to explore KATs formally or in code.

1.1 What is a KAT?
From a bird’s-eye view, a Kleene algebra with tests is a first-order language with loops (the Kleene

algebra) and interesting decision making (the tests). Formally, a KAT consists of two parts: a Kleene

algebra ⟨0, 1,+, ·, ∗⟩ of “actions” with an embedded Boolean algebra ⟨0, 1,+, ·,¬⟩ of “predicates”.
KATs capture While programs: the 1 is interpreted as skip, · as sequence, + as branching, and

∗

for iteration. Simply adding opaque actions and predicates gives us a While-like language, where

our domain is simply traces of the actions taken. For example, if α and β are predicates and π and

ρ are actions, then the KAT term α · π + ¬α · (β · ρ)∗ · ¬β · π defines a program denoting two

kinds of traces: either α holds and we simply run π , or α doesn’t hold, and we run ρ until β no

longer holds and then run π . i.e., the set of traces of the form {π , ρ∗π }. Translating the KAT term

into a While program, we write: if α then π else { while β do { ρ }; π }. Moving from

a While program to a KAT, consider the following program—a simple loop over two natural-valued

variables i and j:

assume i < 50

while (i < 100) { i := i + 1; j := j + 2 }

assert j > 100

To model such a program in KAT, one replaces each concrete test or action with an abstract

representation. Let the atomic test α represent the test i < 50, β represent i < 100, and γ represent

j > 100; the atomic actions p and q represent the assignments i := i+ 1 and j := j+ 2, respectively.
We can now write the program as the KAT expression α · (β ·p ·q)∗ · ¬β ·γ . The complete equational

theory of KAT makes it possible to reason about program transformations and decide equivalence

between KAT terms. For example, KAT’s theory can prove that the assertion j > 100 must hold

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Kleene Algebra Modulo Theories 1:3

after running the while loop by proving that the set of traces where this does not hold is empty:

α · (β · p · q)∗ · ¬β · ¬γ ≡ 0

or that the original loop is equivalent to its unfolding:

α · (β · p · q)∗ · ¬β · γ ≡ α · (1 + β · p · q · (β · p · q)∗) · ¬β · γ

KATs are naïvely propositional: the algebra understands nothing of the underlying domain or the

semantics of the abstract predicates and actions. For example, the fact that (j := j + 2 · j > 200) ≡

(j > 198 · j := j + 2) does not follow from the KAT axioms and must be added manually to any

proof as an equational assumption. Yet the ability to reason about the equivalence of programs in

the presence of particular domains is critical for reasoning about real programs and domain-specific

languages. To allow for reasoning with respect to a particular domain (e.g., the domain of natural

numbers with addition and comparison), one typically must extend KAT with additional axioms

that capture the domain-specific behavior [1, 4, 8, 30, 40]. Unfortunately, it remains an expert’s

task to extend the KAT with new domain-specific axioms, provide new proofs of soundness and

completeness, and develop the corresponding implementation.

As an example of such a domain-specific KAT, NetKAT showed how packet forwarding in

computer networks can be modeled as simple While programs. Devices in a network must drop

or permit packets (tests), update packets by modifying their fields (actions), and iteratively pass

packets to and from other devices (loops). NetKAT extends KAT with two actions and one predicate:

an action to write to packet fields, f ← v , where we write value v to field f of the current packet;

an action dup, which records a packet in a history log; and a field matching predicate, f = v , which
determines whether the field f of the current packet is set to the value v . Each NetKAT program is

denoted as a function from a packet history to a set of packet histories. For example, the program:

dstIP← 192.168.0.1 · dstPort← 4747 · dup

takes a packet history as input, updates the current packet to have a new destination IP address and

port, and then records the current packet state. The original NetKAT paper defines a denotational

semantics not just for its primitive parts, but for the various KAT operators; they explicitly restate

the KAT equational theory along with custom axioms for the new primitive forms, prove the

theory’s soundness, and then devise a novel normalization routine to reduce NetKAT to an existing

KAT with a known completeness result. Later papers [23, 60] then developed the NetKAT automata

theory used to compile NetKAT programs into forwarding tables and to verify networks. NetKAT’s

power comes at a cost: one must prove metatheorems and develop an implementation—a high

barrier to entry for those hoping to apply KAT in their domain.

We aim to make it easier to define new KATs. Our theoretical framework and its correspond-

ing implementation allow for quick and easy composition of sound and complete KATs with

normalization-based decision procedures when given arbitrary domain-specific theories. Our

framework, which we call Kleene algebras modulo theories (KMT) after the objects it produces,

allows us to derive metatheory and implementation for KATs based on a given theory. The KMT

framework obviates the need to deeply understand KAT metatheory and implementation for a

large class of extensions; a variety of higher-order theories allow language designers to compose

new KATs from existing ones, allowing them to rapidly prototype their KAT theories.

We offer some cartoons of KMTs here; see Sec. 2 for technical details.

Consider Pset (Fig. 1b), a program defined over both naturals and a set data structure with two

operations: insertion and membership tests. The insertion action insert(x , j) inserts the value of
an expression (j) into a given set (x ); the membership test in(x , c) determines whether a constant

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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1:4 Michael Greenberg, Ryan Beckett, and Eric Campbell

assume i < 50

while (i < 100) do

i := i + 1

j := j + 2

end

assert j > 100

assume 0 ≤ j < 4

while (i < 10) do

i := i + 1

j := (j << 1) + 3

if i < 5 then

insert(X, j)

end

assert in(X, 9)

i := 0

parity := false

while (true) do

odd[i] := parity

i := i + 1

parity := !parity

end

assert odd[99]

(a) Pnat (b) Pset (c) Pmap

Fig. 1. Example simple while programs.

(c) is included in a given set (x ). An axiom characterizing pushback for this theory has the form:

insert(x , e) · in(x , c) ≡ ((e = c) + in(x , c)) · insert(x , e)

Our theory of sets works for expressions e taken from another theory, so long as the underlying

theory supports tests of the form e = c . For example, this would work over the theory of naturals

since a test like j = 10 can be encoded as (j > 9) · ¬(j > 10).

Finally, Pmap (Fig. 1c) uses a combination of mutable boolean values and a map data structure.

Just as before, we can craft custom theories for reasoning about each of these types of state. For

booleans, we can add actions of the form b := t and b := f and tests of the form b = t and b = f. The
axioms are then simple equivalences like (b := t · b = f) ≡ 0 and (b := t · b = t) ≡ (b := t). To model

map data structures, we add actions of the form X[e] := e and tests of the form X[c] = c . Just as with
the set theory, the map theory is parameterized over other theories, which can provide the type of

keys and values—here, integers and booleans. In Pmap, the odd map tracks whether certain natural

numbers are odd or not by storing a boolean into the map’s index. A sound axiom characterizing

pushback in the theory of maps has the form:

(X[e1] := e2 · X[c1] = c2) ≡ (e1 = c1 · e2 = c2 + X[c1] = c2) · X[e1] := e2

Each of the theories we have described so far—naturals, sets, booleans, and maps—have tests

that only examine the current state of the program. However, we need not restrict ourselves in

this way. Primitive tests can make dynamic decisions or assertions based on any previous state of

the program. As an example, consider the theory of past-time, finite-trace linear temporal logic

(LTLf ) [16, 17]. Linear temporal logic introduces new operators such as: ⃝a (in the last state a), ♢a
(in some previous state a), and □a (in every state a); we use finite-time LTL because finite traces

are a reasonable model in most domains modeling programs.

Finally, we can encode a tracing variant of NetKAT, a system that extends KAT with actions of

the form f ← v , where some value v is assigned to one of a finite number of fields f , and tests

of the form f = v where field f is tested for value v . It also includes a number of axioms such

as f ← v · f = v ≡ f ← v . The NetKAT axioms can be captured in our framework with minor

changes. Further extending NetKAT to Temporal NetKAT is captured trivially in our framework as

an application of the LTLf theory to NetKAT’s theory, deriving Beckett et al.’s [8] completeness

result compositionally (in fact, we can strengthen it—see Sec. 2.5).

1.2 Using our framework: obligations for client theories
Our framework takes a client theory and produces a KAT, but what must one provide in order to

know that the generated KAT is deductively complete, or to derive an implementation? We require,

at a minimum, a description of the theory’s predicates and actions along with how these apply to

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Kleene Algebra Modulo Theories 1:5

some notion of state. We call these parts the client theory; the client theory’s predicates and actions
are primitive, as opposed to those built with the KAT’s composition operators. We call the resulting

KAT a Kleene algebra modulo theory (KMT). Deriving a trace-based semantics for the KMT and

proving it sound isn’t particularly hard—it amounts to “turning the crank”. Proving the KMT is

complete and decidable, however, can be much harder. We take care of much of the difficulty, lifting

simple operations in the client theory generically to KAT.

Our framework hinges on an operation relating predicates and operations called pushback, first
used to prove relative completeness for Temporal NetKAT [8]. Pushback is a generalization of

weakest preconditions: we translate programs to a normal form with all predicates at the front (i.e.,

all predicates become pre-conditions). Pushback generalizes weakest preconditions because we

alter the program as we go, possibly changing its commands or structure. Given a primitive action

π and a primitive predicate α , the client theory must be able to compute weakest preconditions,

telling us how to go from π · α to some set of terms:

∑n
i=0 αi · π = α0 · π + α1 · π + . . . . That is, the

client theory must be able to take any of its primitive tests and “push it back” through any of its

primitive actions. Given the client’s notion of weakest preconditions, we can alter programs to

take an arbitrary term and normalize it into a form where all of the predicates appear only at the

front of the term, a convenient representation both for our completeness proof (Sec. 3.4) and our

implementation (Sec 4).

The client theory’s pushback should have two properties: it should be sound, (i.e., the resulting

expression is equivalent to the original one); and none of the resulting predicates should be any

bigger than the original predicates, by some measure (see Sec. 3). If the pushback has these two

properties, we can use it to define a normal form for the KMT generated from the client theory—and

we can use that normal form to prove that the resulting KMT is complete and decidable.

As an example, in NetKAT, for different fields f and f ′, we can use the network axioms to derive

the equivalence: (f ← v · f ′ = v ′) ≡ (f ′ = v ′ · f ← v), which satisfies the pushback requirements.

For Temporal NetKAT, which adds rich temporal predicates such as ♢ ⃝ (dstPort = 4747) (the

destination port was 4747 at some point before the previous state), we can use the domain axioms

to prove the equivalence (f ← v · ♢⃝ a) ≡ (♢⃝ a + a) · f ← v , which also satisfies the pushback

requirements of equivalence and non-increasing measure (because a is a subterm of ♢⃝ a).
Formally, the client must provide the following for our normalization routine (part of complete-

ness): primitive tests and actions (α and π ), semantics for those primitives (states σ and functions

pred and act), a function identifying each primitive’s subterms (sub), a weakest precondition

relation (WP) justified by sound domain axioms (≡), and restrictions on WP term size growth.

The client’s domain axioms extend the standard KAT equations to explain how the new primitives

behave. In addition to these definitions, our client theory incurs a few proof obligations: ≡ must

be sound with respect to the semantics; the pushback relation should never push back a term

that’s larger than the input; the pushback relation should be sound with respect to ≡; we need

a satisfiability checking procedure for a Boolean algebra extended with the primitive predicates.

Given these things, we can construct a sound and complete KAT with a normalization-based

equivalence procedure.

1.3 Example: incrementing naturals
We can model programs like the While program over i and j from earlier by introducing a new

client theory for natural numbers (Fig. 2). First, we extend the KAT syntax with actions x := n and

incx (increment x ) and a new test x > n for variables x and natural number constants n. First, we
define the client semantics. We fix a set of variables,V , which range over natural numbers, and

the program state σ maps from variables to natural numbers. Primitive actions and predicates are

interpreted over the state σ by the act and pred functions (where t is a trace of states).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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1:6 Michael Greenberg, Ryan Beckett, and Eric Campbell

Syntax

α ::= x > n
π ::= incx | x := n
sub(x > n) = {x > m | m ≤ n}

Semantics
n ∈ N x ∈ V
State = V → N
pred(x > n, t) = last(t)(x) > n
act(incx ,σ ) = σ [x 7→ σ (x) + 1]
act(x := n,σ ) = σ [x 7→ n]

Weakest precondition

x := n · (x > m)WP (n > m)
incy · (x > n)WP (x > n)
incx · (x > n)WP (x > n − 1)

when n , 0

incx · (x > 0)WP 1

Axioms
¬(x > n) · (x > m) ≡ 0 when n ≤ m GT-Contra

x := n · (x > m) ≡ (n > m) · x := n Asgn-GT

(x > m) · (x > n) ≡ (x > max(m,n)) GT-Min

incy · (x > n) ≡ (x > n) · incy GT-Comm

incx · (x > n) ≡ (x > n − 1) · incx when n > 0 Inc-GT

incx · (x > 0) ≡ incx Inc-GT-Z

Fig. 2. IncNat, increasing naturals

Proof obligations. The WP relation provides a way to compute the weakest precondition for any

primitive action and test. For example, the weakest precondition of incx · x > n is x > n − 1 when n
is not zero. We must have domain axioms to justify the weakest precondition relation. For example,

the domain axiom: incx · (x > n) ≡ (x > n − 1) · incx ensures that weakest preconditions for incx
are modeled by the equational theory. The other axioms are used to justify the remaining weakest

preconditions that relate other actions and predicates. Additional axioms that do not involve actions,

such as ¬(x > n) · (x > m) ≡ 0, are included to ensure that the predicate fragment of IncNat is
complete in isolation. The deductive completeness of the model shown here can be reduced to

Presburger arithmetic.

For the relative ease of defining IncNat, we get real power—we’ve extended KAT with unbounded

state! It is sound to add other operations to IncNat, like multiplication or addition by a scalar. So

long as the operations are monotonically increasing and invertible, we can still define aWP and

corresponding axioms. It is not possible, however, to compare two variables directly with tests

like x = y—to do so would not satisfy the requirement that weakest precondition does not grow

the size of a test. It would be bad if it did: the test x = y can encode context-free languages! The

(inadmissible!) term x := 0 · y := 0; (incx )∗ · (incy )∗ · x = y describes programs with balanced

increments of x and y. For the same reason, we cannot safely add a decrement operation decx .

Either of these would allow us to define counter machines, leading inevitably to undecidability.

Implementation. Users implement KMT’s client theories by defining OCaml modules; users give

the types of actions and tests along with functions for parsing, computing subterms, calculating

weakest preconditions for primitives, mapping predicates to an SMT solver, and deciding predicate

satisfiability (see Sec. 4 for more detail).

Our example implementation starts by defining a new, recursive module called IncNat. Recursive
modules allow the author of the module to access the final KAT functions and types derived after

instantiating KA with their theory within their theory’s implementation. For example, the module K
on the second line gives us a recursive reference to the resulting KMT instantiated with the IncNat
theory; such self-reference is key for higher-order theories, which must embed KAT predicates

inside of other kinds of predicates (Sec. 2). The user must define two types: a for tests and p for

actions. Tests are of the form x > n where variable names are represented with strings, and values
with OCaml ints. Actions hold either the variable being incremented (incx ) or the variable and
value being assigned (x := n).
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Kleene Algebra Modulo Theories 1:7

type a = Gt of string ∗ int (* alpha ::= x > n *)

type p = Increment of string (* pi ::= inc x *)

module rec IncNat : THEORY with type A.t = a and type P.t = p = struct

(* generated KMT, for recursive use *)

module K = KAT (IncNat)

(* boilerplate necessary for recursive modules, hashconsing *)

module P : CollectionType with type t = p = struct ... end

module A : CollectionType with type t = a = struct ... end

(* extensible parser; pushback; subterms of predicates *)

let parse name es = ...

let push_back p a =

match (p,a) with

| (Increment _x, Gt (_, j)) when 1 > j→ PSet.singleton ~cmp:K.Test.compare (K.one ())

| (Increment x, Gt (y, j)) when x = y→

PSet.singleton ~cmp:K.Test.compare (K.theory (Gt (y, j − 1)))

| (Assign (x,i), Gt (y,j)) when x = y→ PSet.singleton ~cmp:K.Test.compare (if i > j then K.one () else K.zero ())

| _→ PSet.singleton ~cmp:K.Test.compare (K.theory a)

let rec subterms x =

match x with

| Gt (_, 0)→ PSet.singleton ~cmp:K.Test.compare (K.theory x)

| Gt (v, i)→ PSet.add (K.theory x) (subterms (Gt (v, i − 1)))

(* decision procedure for the predicate theory *)

let satisfiable (a: K.Test.t) = ...

end

The first function, parse, allows the library author to extend the KAT parser (if desired) to

include new kinds of tests and actions in terms of infix and named operators. The other functions,

subterms and push_back, follow from the KMT theory directly. Finally, the user must implement

a function that decides satisfiability of theory tests.

The implementation obligations—syntactic extensions, subterms functions, WP on primitives, a

satisfiability checker for the test fragment—mirror our formal development. We offer more client

theories in Sec. 2 and more detail on the implementation in Sec. 4.

1.4 A case study: network routing protocols
As a final example demonstrating the kinds of theories supported by KMT, we turn our attention

to modeling network routing protocols. While NetKAT uses Kleene algebra to define simple,

stateless forwarding tables of networks, the most common network routing protocols are distributed

algorithms that actually compute paths in a network by passing messages between devices. As

an example the Border Gateway Protocol (BGP) [52], which allows users to define rich routing

policy, has become the de facto internet routing protocol used to transport data between between

autonomous networks under the control of different entities (e.g. Verizon, Comcast). However, the

combination of the distributed nature of BGP, the difficulty of writing policy per-device, and the

fact that network devices can and often do fail [28] all contribute to the fact that network outages

caused by BGP misconfiguration are common [2, 29, 33, 43, 48, 58, 63]. By encoding BGP policies
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A := 0

B :=∞

C :=∞

D :=∞

while (true) do

B := min+(A, C, D)

C := min+(A, B, D)

D := min+(B, C)

end

A := (0, true)

B := (0, false)

C := (0, false)

D := (0, false)

while (true) do

updateB

updateC

updateD

end

(a) Sample network with policy on C (b) PSP, default policy (c) PBGP, local policies

Fig. 3. An example network and models of BGP routing.

in our framework, it immediately follows that we can decide properties about networks running

BGP such as “will router A always be able to reach router B after at most 1 link failure”.

Fig. 3a shows an example network that is configured to run BGP. In BGP, devices exchange

messages between neighbors to determine routes to a destination. In the figure, routerA is connected

to an end host (the line going to the left) and wants to tell other routers how to get to this destination.

In the default behavior of the BGP protocol, each router selects the shortest path among all of its

neighbors and then informs each of its neighbors about this route (with the path length increased

by one). In effect, the devices will compute the shortest paths through the network in a distributed

fashion. We can model shortest paths routing in a KMT using the theory of natural numbers: in PSP
(Fig. 3b), each router maintains a distance to the destination. Since A knows about the destination,

it will start with a distance of 0, while all other routers start with distance ∞. Then, iteratively,

each other router updates its distance to be 1 more than the minimum of each of its peers, which is

captured by the min+ operator. The behavior of min+ can be described by pushback equivalences

like:

B := min+(A,C,D) · B < 3 ≡ (A < 2 +C < 2 + D < 2) · B := min+(A,C,D)

BGP gets interesting when users go beyond shortest path routing and also define router-local

policy. In our example network, router C is configured with local policy (Fig. 3a): router C will

block messages received from D and will prioritize paths received from neighbor B over those from

A (using distance as a tie breaker). In order to accommodate this richer routing behavior, we must

extend our model to PBGP (Fig. 3c). Now, each router is associated with a variable storing a tuple of

both the distance and whether or not the router has a path to the destination; we write C1 for the

“does C have a path” boolean and C0 for the length of that path, if it exists. We can then create a

separate update action for each device in the network to reflect the semantics of the device’s local

policy (updateC, etc.). Further, suppose we have a boolean variable failX ,Y for each link between

routers X and Y indicating whether or not the link is failed. The update action for router C’s local

policy can be captured with the following type of equivalence:

updateC ·C0 < 3 ≡ (¬failA,C · (¬B1 + failB,C ) · A1 · (A0 < 2) + ¬failB,C · B1 · (B0 < 2)) · updateC

In order for router C to have a path length < 3 to the destination after applying the local update

function, it must have either been the case that B did not have a route to the destination (or the

B-C link is down) and A had a route with length < 2 and the A-C link is not down, or B had a

route with length < 2 and the B-C link is not down. Similarly, we would need an axiom to capture

when router C will have a path to the destination based on equivalences like: updateC · C1 ≡
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Kleene Algebra Modulo Theories 1:9

(A1 · ¬failA,C + B1 · ¬failB,C ) · updateC—C has a path to the destination if any of its neighbors

has a path to the destination and the corresponding link is not failed.

It is now possible to ask questions such as “if there is any single network link failure, will C ever

have a path with length greater than 2?”. Assuming the network program is encoded as ρ, we can
answer this question by checking language non-emptiness for

(failA,C · ¬failB,C + ¬failA,C · failB,C ) · ρ · (C0 > 2) ≡ 0

While we have in a sense come back to a per-program world—PBGP requires definitions and axioms

for each router’s local policy—we can reason in a very complex domain.

1.5 Contributions
We claim the following contributions:

• A compositional framework for defining KATs and proving their metatheory, with a novel

development of the normalization procedure used in completeness (Sec. 3). Completeness yields

a decision procedure based on normalization.

• Several case studies of this framework (Sec. 2), including a strengthening of Temporal NetKAT’s

completeness result, theories for unbounded state (naturals, sets, maps), distributed routing

protocols, and, most importantly, compositional theories that allow designers to experiment new,

complex theories. Several of these theories use unbounded state (e.g., naturals, sets, and maps),

going beyond what the state of the art in KAT metatheory is able to accommodate.

• An implementation of KMT (Sec. 4) mirroring our proofs; we derive a normalization-based

equivalence decision procedure for client theories from just a few definitions. Our implementation

is efficient enough for experimentation with small programs (Sec. 5).

Finally, our framework offers a new way in for those looking to work with KATs. Researchers

comfortable with inductive relations from, e.g., type theory and semantics, will find a familiar friend

in pushback, our generalization of weakest preconditions—we define it as an inductive relation. To

restate our contributions for readers more deeply familiar with KAT: Our framework is similar to

Schematic KAT, a KAT extended with first order theories. However, Schematic KAT is incomplete

in general. Our framework shows that a subset of Schematic KATs is complete—those with tracing

semantics and a monotonic pushback.

The core technique we discuss here was first developed in Beckett et al.’s work on Temporal

NetKAT [8]. Our work here is a significant extension of that work:

• We explicitly define the normalization routine using inference rules (Section 3.3); in Temporal

NetKAT, normalization is implicit in its completeness proof.

• The Temporal NetKAT proof of completeness is a morass, simultaneously proving the cor-

rectness and termination of normalization. In our framework, we prove those theorems

separately (Theorems 3.34 and 3.35).

• Our treatment of negation is improved; we prove a new KAT theorem (Pushback-Neg).

• We present a general framework for proving completeness, while the Temporal NetKAT

development is specialized to a particular instance—tracing NetKAT with LTLf .

• The Temporal NetKAT proof achieves only network-wide completeness because of its limited

understanding of LTLf ; we are able to achieve completeness.

Beckett et al. handles compilation to forwarding decision diagrams [60], while our presentation

doesn’t discuss compilation.
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Syntax

α ::= b = t
π ::= b := t | b := f

sub(α) = {α }

Semantics
b ∈ B

State = B → {t, f}

pred(b = t, t) = last(t)(b)
act(b := t,σ ) = σ [b 7→ t]
act(b := f,σ ) = σ [b 7→ f]

Weakest precondition

b := t · b = t WP 1

b := f · b = t WP 0

Axioms
(b := t) · (b = t) ≡ (b := t) Set-Test-True-True

(b := f) · (b = t) ≡ 0 Set-Test-False-True

Fig. 4. BitVec, theory of bitvectors

2 CASE STUDIES
In this section, we define KAT client theories for bitvectors and networks, as well as higher-order

theories for products of theories, sets over theories, and temporal logic over theories. To give a

sense of the range and power of our framework, we offer these case studies before the formal details

of the framework itself (Section 3). We start with a simple theory (bit vectors in Sec. 2.1), building

up to unbounded state from naturals (Sec. 1.3) to sets and maps parameterized over a notion of

value and variable (Sec. 2.3). As an example of a higher-order theory, we define LTL on finite traces

(a/k/a LTLf ; Sec. 2.5), extending the predicate language with temporal operators like ⃝a, meaning

“the predicate a holds in the previous state of the trace”.

2.1 Bit vectors
The simplest KMT is bit vectors: we extend KAT with some finite number of bits, each of which can

be set to true or false and tested for their current value (Fig. 4). The theory adds actions b := t and

b := f for boolean variables b, and tests of the form b = t, where b is drawn from some set of names

B. Since our bit vectors are embedded in a KAT, we can use KAT operators to build up encodings

on top of bits: b = f desugars to ¬(b = t); flip b desugars to (b = t ·b := f)+ (b = f ·b := t). We could

go further and define numeric operators on collections of bits, at the cost of producing larger terms.

We are not limited to just numbers, of course; once we have bits, we can encode any bounded data

structure we like.

KAT+B! [30] develops a nearly identical theory, though our semantics admit different equations.

We use a trace semantics, where we distinguish between (b := t · b := t) and (b := t). Even though

the final states are equivalent, they produce different traces because they run different actions.

KAT+B!, on the other hand, doesn’t distinguish based on the trace of actions, so they find that

(b := t · b := t) ≡ (b := t). It’s difficult to say whether one model is better than the other—we

imagine that either could be appropriate, depending on the setting. For example, our trace semantics

is useful for answering model-checking-like questions (Sec. 2.5).

2.2 Disjoint products
Given two client theories, we can combine them into a disjoint product theory, Prod(T1,T2), where
the states are products of the two sub-theory’s states and the predicates and actions from T1 can’t

affect T2 and vice versa (Fig. 5). We explicitly give definitions for pred and act that defer to the

corresponding sub-theory, using ti to project the trace state to the ith component. It may seem that

disjoint products don’t give us much, but they in fact allow for us to simulate much more interesting

languages in our derived KATs. For example, Prod(BitVec, IncNat) allows us to program with both

variables valued as either booleans or (increasing) naturals; the product theory lets us directly
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Syntax

α ::= α1 | α2
π ::= π1 | π2

sub(αi ) = subi (αi )

Semantics
State = State1 × State2
pred(αi , t) = predi (αi , ti )
act(πi ,σ ) = σ [σi 7→ acti (πi ,σi )]

Weakest precondition extending T1 and T2
π1 · α2 WP α2 π2 · α1 WP α1

Axioms extending T1 and T2
π1 · α2 ≡ α2 · π1 L-R-Comm

π2 · α1 ≡ α1 · π2 R-L-Comm

Fig. 5. Prod(T1,T2), products of two disjoint theories

Syntax

α ::= x[e] = c | e = c | αe
π ::= x[c] := e | πe

pred(x[e] = c), t) = last(t)1(x , last(t)2(e)) = c
pred(αe , t) = pred(αe , t2)

sub(x[e] = c) = {x[e] = c} ∪
sub(¬(e = c ′))

sub(e = c) = sub(e = c)
sub(αe ) = sub(αe )

Semantics
c ∈ C
e ∈ E
x ∈ V

State = (V → C → C) × (E → C)
act(x[c] := e),σ ) = σ [σ1[x[c 7→ σ2(e)]]]

act(πe ,σ ) = σ [σ2 7→ act(πe ,σ2)]

Pushback extending E

(x[c] := e) · αe WP αe
(y[c1] := e1) · (x[e2] = c2)WP x[e2] = c2
(x[c1] := e1) · (x[e2] = c2)WP (e2 = c1 · e1 = c2) + (¬(e2 = c1) · x[e2] = c2)

Axioms extending E

(x[c] := e · αe ) ≡ (αe · x[c] := e) E-Comm

(y[c1] := e1 · x[e2] = c2) ≡ (x[e2] = c2 · y[c1] := e1) Map-NEq

(x[c1] := e1 · x[e2] = c2) ≡ ((e2 = c1 · e1 = c2) + ¬(e2 = c1) · x[e2] = c2) · x[c1] := e1 Map-Eq

Fig. 6. Map(E), unbounded maps over arbitrary expressions/constants

express the sorts of programs that Kozen’s early static analysis work had to encode manually, i.e.,

loops over boolean and numeric state [37].

2.3 Unbounded sets
We define a KMT for unbounded sets parameterized on a theory of expressions E (Fig. 7). The

set data type supports just one operation: add(x , e) adds the value of expression e to set x (we

could add del(x , e), but we omit it to save space). It also supports a single test: in(x , c) checks if the
constant c is contained in set x . The idea is that e ∈ E refers to expressions with, say, variables x
and constants c . We allow arbitrary expressions e in some positions and constants c in others. (If

we allowed expressions in all positions, WP wouldn’t necessarily be non-increasing.)

To instantiate the Set theory, we need a few things: expressions E, a subset of constants C ⊆ E,
and predicates for testing (in)equality between expressions and constants (e = c and e , c). (We

can not, in general, expect tests for equality of non-constant expressions, as it may cause us to

accidentally define a counter machine.) We treat these two extra predicates as inputs, and expect

that they have well behaved subterms. Our state has two parts: σ1 : V → P(C) records the current
sets for each set inV , while σ2 : E → C evaluates expressions in each state. Since each state has

its own evaluation function, the expression language can have actions that update σ2.
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Syntax

α ::= in(x , c) | e = c | αe
π ::= add(x , e) | πe

sub(in(x , c)) = {in(x , c)} ∪ sub(¬(e = c))
sub(e = c) = sub(e = c)

sub(αe ) = sub(αe )

Semantics
c ∈ C

e ∈ E

x ∈ V

State = (V → P(C)) × (E → C)

pred(in(x , c), t) = last(t)2(c) ∈ last(t)1(x)
pred(αe , t) = pred(αe , t2)
act(add(x , e),σ ) = σ [σ1[x 7→ σ1(x) ∪ {σ (e)}]]
act(πe ,σ ) = σ [σ2 7→ act(πe ,σ2)]

Weakest precondition extending E

add(y, e) · in(x , c)WP in(x , c)
add(x , e) · in(x , c)WP (e = c) + in(x , c)
add(x , e) · αe WP αe

Axioms extending E

add(y, e) · in(x , c) ≡ in(x , c) · add(y, e) Add-Comm
add(x , e) · in(x , c) ≡ ((e = c) + in(x , c)) · add(x , e) Add-In

add(x , e) · αe ≡ αe · add(x , e) Add-Comm2

Fig. 7. Set(E), unbounded sets over expressions

For example, we can have sets of naturals by setting E ::= n ∈ N | i ∈ V ′, where our

constants C = N andV ′ is some set of variables distinct from those we use for sets. We can update

the variables inV ′ using IncNat’s actions while simultaneously using set actions to keep sets of

naturals. Our KMT can then prove that the term (inci ·add(x , i))∗ · (i > 100) · in(x , 100) is non-empty

by pushing tests back (and unrolling the loop 100 times). The set theory’s sub function calls the

client theory’s sub function, so all in(x , e) formulae must come later in the global well ordering

than any of those generated by the client theory’s e = c or e , c .

2.4 Unbounded maps
Maps aren’t much different from sets; rather than having simple membership tests, we instead

check to see whether a given key maps to a given constant (Fig. 6). Our writes use constant keys

and expression values, while our reads use variable keys but constant values. We could have flipped

this arrangement—writing to expression keys and reading from constant ones—but we cannot allow

both reads and writes to expression keys. Doing so would allow us to compare variables, putting us

in the realm of context-free languages and foreclosing on the possibility of a complete theory. We

could add other operations (at the cost of even more equational rules/pushback entries), like the

ability to remove keys from maps or to test whether a key is in the map or not. Just as for Set(E),
we must put all x[e] = c and x[e] , c formulae later in the global well ordering than any of those

generated by the client theory’s e = c or e , c .

2.5 Past-time linear temporal logic
Past-time linear temporal logic on finite traces (LTLf ) is a higher-order theory: LTLf is itself

parameterized on a theory T , which introduces its own predicates and actions—any T test can

appear inside of LTLf ’s predicates (Fig. 8). For information on LTLf , we refer the reader to work by

Baier andMcIlraith, De Giacomo and Vardi, Roşu, and Beckett et al., and Campbell and Greenberg [5,

8, 10, 11, 16, 17, 53].

LTLf adds just two predicates:⃝a, pronounced “last a”, means a held in the prior state; and a S b,
pronounced “a since b”, means b held at some point in the past, and a has held since then. There is

a slight subtlety around the beginning of time: we say that ⃝a is false at the beginning (what can

be true in a state that never happened?), and a S b degenerates to b at the beginning of time. The

last and since predicates together are enough to encode the rest of LTLf ; encodings are given below

the syntax. The pred definitions mostly defer to the client theory’s definition of pred (which may
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Syntax

α ::= ⃝a | a S b | a
π ::= πT

sub(⃝a) = {⃝a} ∪ sub(a)
sub(a S b) = {a S b} ∪ sub(a) ∪ sub(b)
act(π ,σ ) = act(π ,σ )

 a = ¬ ⃝ ¬a a B b = a S b +□a
start = ¬ ⃝ 1 ♢a = 1 S a □a = ¬♢¬a

Semantics
State = StateT
pred(⃝a, ⟨σ , l⟩) = f

pred(⃝a, t ⟨σ , l⟩) = pred(a, t)
pred(a S b, ⟨σ , l⟩) = pred(b, ⟨σ , l⟩)
pred(a S b, t ⟨σ , l⟩) = pred(b, t ⟨σ , l⟩) ∨

(pred(a, t ⟨σ , l⟩) ∧ pred(a S b, t))

Weakest precondition extending T

π · ⃝a WP a

π · a PB•T a′ · π π · b PB•T b ′ · π

π · (a S b)WP b ′ + a′ · (a S b)

Axioms extending T

inherited from T

⃝(a · b) ≡ ⃝a · ⃝b LTL-Last-Dist-Seq

⃝(a + b) ≡ ⃝a +⃝b LTL-Last-Dist-Plus

 1 ≡ 1 LTL-WLast-One

a S b ≡ b + a · ⃝(a S b) LTL-Since-Unroll

¬(a S b) ≡ (¬b) B (¬a · ¬b) LTL-Not-Since

a ≤  a · b → a ≤ □b LTL-Induction

□a ≤ ♢(start · a) LTL-Finite

Fig. 8. LTLf (T ), linear temporal logic on finite traces over an arbitrary theory

recursively reference the LTLf pred function), unrolling S as it goes (LTL-Since-Unroll). Weakest

preconditions uses inference rules: to push back S, we unroll a S b into a · ⃝(a S b) + b; pushing
last through an action is easy, but pushing back a or b recursively uses the PB• judgment. Adding

these rules leaves our judgments monotonic, and if π · a PB• x , then x =
∑
aiπ (Lemma 3.33). In

this case, our implementation’s recursive modules are critical—they allow us to use the derived

pushback inside our definition of weakest preconditions.

The equivalence axioms come from Temporal NetKAT [8]; the deductive completeness result for

these axioms comes from Campbell and Greenberg’s work, which proves deductive completeness

for an axiomatic framing and then relates those axioms to our equations [10, 11]; we could have

also used Roşu’s proof with coinductive axioms [53].

As a use of LTLf , recall the simple While program from Sec. 1. We may want to check that, before

the last state after the loop, the variable j was always less than or equal to 200. We can capture this

with the test ⃝□(j ≤ 200). We can use the LTLf axioms to push tests back through actions; for

example, we can rewrite terms using these LTLf axioms alongside the natural number axioms:

j := j + 2 ·□(j ≤ 200) ≡ j := j + 2 · (j ≤ 200 · ⃝□(j ≤ 200))

≡ (j := j + 2 · j ≤ 200) · ⃝□(j ≤ 200)

≡ (j ≤ 198) · j := j + 2 · ⃝□(j ≤ 200)

≡ (j ≤ 198) ·□(j ≤ 200) · j := j + 2

Pushing the temporal test back through the action reveals that j is never greater than 200 if before

the action j was not greater than 198 in the previous state and j never exceeded 200 before the

action as well. The final pushed back test (j ≤ 198) ·□(j ≤ 200) satisfies the theory requirements

for pushback not yielding larger tests, since the resulting test is only in terms of the original test

and its subterms. Note that we’ve embedded our theory of naturals into LTLf : we can generate a

complete equational theory for LTLf over any other complete theory.

The ability to use temporal logic in KAT means that we can model check programs by phrasing

model checking questions in terms of program equivalence. For example, for some program r , we
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Syntax

α ::= f = v
π ::= f ← v

sub(α) = {α }

Semantics
F = packet fields

V = packet field values

State = F→ V
pred(f = v, t) = last(t). f = v
act(f ← v,σ ) = σ [f 7→ v]

Weakest precondition

f ← v · f = v WP 1

f ← v · f = v ′ WP 0 when v , v ′

f ′ ← v · f = v WP f = v

Axioms
f ← v · f ′ = v ′ ≡ f ′ = v ′ · f ← v PA-Mod-Comm

f ← v · f = v ≡ f ← v PA-Mod-Filter

f = v · f = v ′ ≡ 0, if v , v ′ PA-Contra∑
v f = v ≡ 1 PA-Match-All

Fig. 9. Tracing NetKAT a/k/a NetKAT without dup

can check if r ≡ r · ⃝□(j ≤ 200). In other words, if there exists some program trace that does not

satisfy the test, then it will be filtered—resulting in non-equivalent terms. If the terms are equal,

then every trace from r satisfies the test. Similarly, we can test whether r · ⃝□(j ≤ 200) is empty—if

so, there are no satisfying traces.
In addition tomodel checking, temporal logic is a useful programming language feature: programs

can make dynamic program decisions based on the past more concisely. Such a feature is useful

for Temporal NetKAT (Sec. 2.7 below), but could also be used for, e.g., regular expressions with

lookbehind or even a limited form of back-reference.

2.6 Tracing NetKAT
We define NetKAT as a KMT over packets, which we model as functions from packet fields to

values (Fig. 9). KMT’s trace semantics diverge slightly from NetKAT’s: like KAT+B! (Sec. 2.1; [30]),

NetKAT normally merges adjacent writes. If the policy analysis demands reasoning about the

history of packets traversing the network—reasoning, for example, about which routes packets

actually take—the programmer must insert dups to record relevant moments in time. Typically,

dups are automatically inserted at the topology level, i.e., before a packet enters a switch, we record

its state by running dup. From our perspective, NetKAT very nearly has a tracing semantics, but

the traces are selective. If we put an implicit dup before every field update, NetKAT has our tracing

semantics. The upshot is that our “tracing NetKAT” has a slightly different equational theory from

conventional NetKAT, rejecting the following NetKAT laws as unsound for trace semantics:

f = v · f ← v ≡ f = v PA-Filter-Mod

f ← v · f ← v ′ ≡ f ← v ′ PA-Mod-Mod

f ← v · f ′← v ′ ≡ f ′← v ′ · f ← v PA-Mod-Mod-Comm

In principle, one can abstract our semantics’ traces to find the more restricted NetKAT traces, but

we can’t offer any formal support in our framework for abstracted reasoning. Just as for BitVec, It
is possible that ideas from Kozen and Mamouras could apply here [40]; see Sec. 6.

2.7 Temporal NetKAT
We derive Temporal NetKAT as LTLf (NetKAT), i.e., LTLf instantiated over tracing NetKAT; the

combination yields precisely the system described in the Temporal NetKAT paper [8]. Our LTLf
theory can now rely on Campbell and Greenberg’s proof of deductive completeness for LTLf [10, 11],

we can automatically derive a stronger completeness result for Temporal NetKAT than that from
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Syntax

α ::= x < n
π ::= x := min+(®x)

pred(x < n, t) = last(t)(x) < n
sub(x < n) = {xi < m | m ≤ n,xi ∈ V}

act(x := min+(®x),σ ) = σ [x 7→ 1 +min(σ (®x))]

Semantics
n ∈ N ∪ {∞}
x ∈ V

State = V → N

Weakest precondition axioms are identical to pushback

x := min+(®x) · (x < ∞)WP Σi (xi < ∞)
x := min+(®x) · (x < n)WP Σi (xi < n − 1)

Fig. 10. SP, shortest paths in a graph

Syntax Semantics
α ::= C0 < n | C1 | failR1,R2

R = Routers

π ::= updateC L = R × R Links

pred(C1, t) = last(t)1(C)1 n ∈ N
pred(C0 < n, t) = last(t)1(C)0 < n x ∈ R

pred(failR1,R2
, t) = last(t)2(R1,R2) State = R→ N × {t, f}

sub(failR1,R2
) = {failR1,R2

} × L→ {t, f}
sub(C1) = {A1,B1, failA,C , failB,C }

sub(C0 < n) = {A0 < n − 1,B0 < n − 1,A1,B1, failA,C , failB,C }

act(updateC),σ ) = σ

C 7→

(1 + σ (B)0, true) path(B)

(1 + σ (A)0, true) else if path(A)

(σ (C)0,σ (C)1) otherwise


where path(X ) = σ (X )1 ∧ σ ((X ,C))1

Weakest precondition axioms are identical to pushback

(π · failR1,R2
) WP failR1,R2

(updateC · D1) WP D1

(updateC ·C1) WP ¬failA,C · A1 + ¬failB,C · B1
(updateC · D0 < n) WP (D0 < n)
(updateC ·C0 < n) WP ¬failA,C · (¬B1 + failB,C ) · A1 · (A0 < n − 1) +

¬failB,C · B1 · (B0 < n − 1)

Fig. 11. BGP, protocol theory for router C from the network in Fig. 3

the paper, which showed completeness only for “network-wide” policies, i.e., those with start at
the front.

2.8 Distributed routing protocols
The theory for naturals with the min+ operator used for shortest path routing is shown in Fig. 10.

The theory is similar to the IncNat theory but for some minor differences. First, the domain is now

over N ∪ {∞}. Second, there is a new axiom and pushback relation relating min+ to a test of the

form x < n. Third, the subterms function is now defined in terms of all other variables, which are

infinite in principle but finite in any given term (e.g., the number of routers in a given network).

The theory for the BGP protocol instance with local router policy described in Fig. 3 is now

shown in Fig. 11. For brevity, we only show the theory for router C in the network. The state has

two parts: the first part maps each router to a pair of a natural number describing the path length

to the destination for that router, and a boolean describing whether or not the router has a route
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Predicates T ∗pred
a,b ::= 0 additive identity

| 1 multiplicative identity
| ¬a negation
| a + b disjunction
| a · b conjunction
| α primitive predicates (Tα )

Actions
p,q ::= a embedded predicates

| p + q parallel composition
| p · q sequential composition
| p∗ Kleene star
| π primitive actions (Tπ )

Fig. 12. T ∗: generalized KAT syntax over a client theory T (client parts highlighted)

to the destination; the second part maps links to a boolean representing whether the link is up or

not. We require new axioms corresponding to each of the pushback operations shown. The action

updateC commutes with unrelated tests, and otherwise behaves as described in Sec. 1.

3 THE KMT FRAMEWORK
The rest of our paper describes how our framework takes a client theory and generates a KAT. We

emphasize that you need not understand the following mathematics to use our framework—we

do it once and for all, so you don’t have to. We first explain the structure of our framework for

defining a KAT in terms of a client theory. While we have striven to make this section accessible to

non-expert readers, those completely new to KATs may do well to skip our discussion of pushback

(Sec. 3.3.2 on) and read our case studies (Sec. 2). We highlight anything the client theory must

provide.

We derive a KAT T ∗ (Fig. 12) on top of a client theory T where T has two fundamental parts—

predicates α ∈ Tα and actions π ∈ Tπ . These are the primitives of the client theory. We refer to the

Boolean algebra over the client theory as T ∗pred ⊆ T
∗
.

Our framework can provide results for T ∗ in a pay-as-you-go fashion: given a notion of state and

an interpretation for the predicates and actions of T , we derive a trace semantics for T ∗ (Sec. 3.1);

if T has a sound equational theory with respect to our semantics, so does T ∗ (Sec. 3.2); if T has a

complete equational theory with respect to our semantics, and satisfies certain weakest precondition

requirements, then T ∗ has a complete equational theory (Sec. 3.4); and finally, with just a few

lines of code defining the structure of T , we can provide a decision procedure for equivalence

(Sec. 4)using the normalization routine from completeness (Sec. 3.4).

The key to our general, parameterized proof is a novel pushback operation that generalizes

weakest preconditions (Sec. 3.3.2): given an understanding of how to push primitive predicates

back to the front of a term, we can normalize terms for our completeness proof (Sec. 3.4).

3.1 Semantics
The first step in turning the client theory T into a KAT is to define a semantics (Fig. 13). We can

give any KAT a trace semantics: the meaning of a term is a trace t , which is a non-empty list of log

entries l . Each log entry records a state σ and (in all but the initial state) a primitive action π . The
client assigns meaning to predicates and actions by defining a set of states State and two functions:

one to determine whether a predicate holds (pred) and another to determine an action’s effects

(act). To run a T ∗ term on a state σ , we start with an initial state ⟨σ ,⊥⟩; when we’re done, we’ll

have a set of traces of the form ⟨σ0,⊥⟩⟨σ1,π1⟩ . . . , where σi = act(πi ,σi−1) for i > 0. (A similar

semantics shows up in Kozen’s application of KAT to static analysis [37].)

A reader new to KATs should compare this definitionwith that of NetKAT or Temporal NetKAT [1,

8]: defined recursively over the syntax, the denotation function collapses predicates and actions
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Trace definitions

σ ∈ State
l ∈ Log ::= ⟨σ ,⊥⟩ | ⟨σ ,π ⟩
t ∈ Trace = Log+

pred : Tα × Trace→ {t, f}
act : Tπ × State→ State

Trace semantics [[−]] : T ∗ → Trace→ P(Trace)

[[0]](t) = ∅

[[1]](t) = {t}
[[α]](t) = {t | pred(α , t) = t}
[[¬a]](t) = {t | [[a]](t) = ∅}
[[π ]](t) = {t ⟨σ ′,π ⟩ | σ ′ = act(π , last(t))}

[[p + q]](t) = [[p]](t) ∪ [[q]](t)
[[p · q]](t) = ([[p]] • [[q]])(t)
[[p∗]](t) =

⋃
0≤i [[p]]

i (t)

(f • д)(t) =
⋃
t ′∈f (t ) д(t

′)

f 0(t) = {t} f i+1(t) = (f • f i )(t)

last(. . . ⟨σ , _⟩) = σ

Kleene Algebra axioms
p + (q + r ) ≡ (p + q) + r KA-Plus-Assoc

p + q ≡ q + p KA-Plus-Comm

p + 0 ≡ p KA-Plus-Zero

p + p ≡ p KA-Plus-Idem

p · (q · r ) ≡ (p · q) · r KA-Seq-Assoc

1 · p ≡ p KA-Seq-One

p · 1 ≡ p KA-One-Seq

p · (q + r ) ≡ p · q + p · r KA-Dist-L

(p + q) · r ≡ p · r + q · r KA-Dist-R

0 · p ≡ 0 KA-Zero-Seq

p · 0 ≡ 0 KA-Seq-Zero

1 + p · p∗ ≡ p∗ KA-Unroll-L

1 + p∗ · p ≡ p∗ KA-Unroll-R

q + p · r ≤ r → p∗ · q ≤ r KA-LFP-L

p + q · r ≤ q → p · r∗ ≤ q KA-LFP-R

p ≤ q ⇔ p + q ≡ q

Boolean Algebra axioms
a + (b · c) ≡ (a + b) · (a + c) BA-Plus-Dist

a + 1 ≡ 1 BA-Plus-One

a + ¬a ≡ 1 BA-Excl-Mid

a · b ≡ b · a BA-Seq-Comm

a · ¬a ≡ 0 BA-Contra

a · a ≡ a BA-Seq-Idem

Consequences
p · a ≡ b · p ↔ p · ¬a ≡ ¬b · p Pushback-Neg

p · (q · p)∗ ≡ (p · q)∗ · p Sliding

(p + q)∗ ≡ p∗ · (q · p∗)∗ Denesting

p · a ≡ a · q + r →
p∗ · a ≡ (a + p∗ · r ) · q∗ Star-Inv

p · a ≡ a · q + r →
p · a · (p · a)∗ ≡ (a · q + r ) · (q + r )∗ Star-Expand

Fig. 13. Semantics and equational theory for T ∗

into a single semantics, using Kleisli composition (written •) to give meaning to sequence and an

infinite union and exponentiation (written −n ) to give meaning to Kleene star. We’ve generalized

the way that predicates and actions work, though, deferring to two functions that must be defined

by the client theory: pred and act.
The client’s pred function takes a primitive predicate α and a trace — predicates can examine the

entire trace — returning true or false. When the pred function returns t, we return the singleton

set holding our input trace; when pred returns f, we return the empty set. (Composite predicates

follow this same pattern, always returning either a singleton set holding their input trace or the

empty set(Lemma 3.4).) It’s acceptable for the pred function to recursively call the denotational

semantics, though we have skipped the formal detail here. This way we can define composite

primitive predicates as in, e.g., temporal logic (Sec. 2.7).

The client’s act function takes a primitive action π and the last state in the trace, returning a new

state. Whatever new state comes out is recorded in the trace, along with the action just performed.
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3.2 Soundness
Proving that the equational theory is sound is relatively straightforward: we only depend on the

client’s act and pred functions, and none of our KAT axioms (Fig. 13) even mention the client’s

primitives. Pushback negation is a novel KAT theorem (Pushback-Neg); it generalizes the result

that theorem that b · p ≡ p · b ↔ b · p · ¬b + ¬b · p · b ≡ 0 from Kozen [36].

Lemma 3.1 (Pushback negation (Pushback-Neg)). p · a ≡ b · p iff p · ¬a ≡ ¬b · p.

Proof. We show that both sides p · ¬a and ¬b · p are equivalent to ¬b · p · ¬a by way of

BA-Excl-Mid:

p · ¬a ≡ (b + ¬b) · p · ¬a (KA-Seq-One, BA-Excl-Mid)

≡ b · p · ¬a + ¬b · p · ¬a (KA-Dist-L)

≡ p · a · ¬a + ¬b · p · ¬a (assumption)

≡ p · 0 + ¬b · p · ¬a (BA-Contra)

≡ ¬b · p · ¬a (KA-Plus-Comm, KA-Plus-Zero)

≡ 0 · p + ¬b · p · ¬a (BA-Contra)

≡ ¬b · b · p + ¬b · p · ¬a (assumption)

≡ ¬b · p · a + ¬b · p · ¬a (KA-Dist-R)

≡ ¬b · p · (a + ¬a) (KA-One-Seq, BA-Excl-Mid)

≡ ¬b · p □

The other direction of the proof is symmetric, with the two terms meeting at b · p · a.

Our soundness proof naturally enough requires that any equations the client theory adds need

to be sound in our trace semantics. We do need to use several KAT theorems in our completeness

proof (Fig. 13, Consequences), the most complex being star expansion (Star-Expand), which we

take from Temporal NetKAT [8]; we believe Pushback-Neg is a novel theorem that holds in all

KATs.

Lemma 3.2 (Kleisli composition is associative). [[p]] • ([[q]] • [[r ]]) = ([[p]] • [[q]]) • [[r ]].

Proof. By direct computation. □

Lemma 3.3 (Exponentiation commutes). [[p]]i+1 = [[p]]i • [[p]]

Proof. By induction on i . When i = 0, both yield [[p]]. In the inductive case, we compute:

[[p]]i+2 = [[p]] • [[p]]i+1

= [[p]] • ([[p]]i • [[p]]) by the IH

= ([[p]] • [[p]]i ) • [[p]] by Lemma 3.2

= ([[p]]i+1) • [[p]] by Lemma 3.2

□

Lemma 3.4 (Predicates produce singleton or empty sets). [[a]](t) ⊆ {t}.

Proof. By induction on a, leaving t general. □

Theorem 3.5 (Soundness of T ∗). If T ’s equational reasoning is sound (p ≡T q ⇒ [[p]] = [[q]])
then T ∗’s equational reasoning is sound (p ≡ q ⇒ [[p]] = [[q]]).

Proof. By induction on the derivation of p ≡ q.

(KA-Plus-Assoc) We have p + (q + r ) ≡ (p + q) + r ; by associativity of union.

(KA-Plus-Comm) We have p + q ≡ q + p; by commutativity of union.
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(KA-Plus-Zero) We have p + 0 ≡ p; immediate, since [[0]](t) = ∅.

(KA-Plus-Idem) By idempotence of union p + p ≡ p.

(KA-Seq-Assoc) We have p · (q · r ) ≡ (p · q) · r ; by Lemma 3.2.

(KA-Seq-One) We have 1 · p ≡ p; immediate, since [[1]](t) = {t}.

(KA-One-Seq) We have p · 1 ≡ p; immediate, since [[1]](t) = {t}.

(KA-Dist-L) We have p · (q + r ) ≡ p · q + p · r ; we compute:

[[p · (q + r )]](t) =
⋃

t ′∈[[p]](t )[[q + r ]](t
′)

=
⋃

t ′∈[[p]](t )[[q]](t
′) ∪ [[r ]](t ′)

=
⋃

t ′∈[[p]](t )[[q]](t
′) ∪

⋃
t ′∈[[p]](t )[[r ]](t

′)

= [[p · q]](t) ∪ [[p · r ]](t)
= [[p · q + p · r ]](t)

(KA-Dist-R) As for KA-Dist-L.

(KA-Zero-Seq) We have 0 · p ≡ 0; immediate, since [[0]](t) = ∅.

(KA-Seq-Zero) We have p · 0 ≡ 0; immediate, since [[0]](t) = ∅.

(KA-Unroll-L) We have p∗ ≡ 1 + p · p∗. We compute:

[[p∗]](t) =
⋃

0≤i [[p]]
i (t)

= [[1]](t) ∪
⋃

1≤i [[p]]
i (t)

= [[1]](t) ∪ [[p]](t) ∪
⋃

2≤i [[p]]
i (t))

= [[1]](t) ∪ ([[p]] • [[1]])(t) ∪
⋃

1≤i ([[p]] • [[p]]
i )(t)

= [[1]](t) ∪ ([[p]] • [[1]])(t ′) ∪ ([[p]] •
⋃

1≤i [[p]]
i )(t)

= [[1]](t) ∪ ([[p]] •
⋃

0≤i [[p]]
i )(t)

= [[1]](t) ∪ [[p · p∗]](t))
= [[1 + p · p∗]](t)

(KA-Unroll-R) As for KA-Unroll-L.

(KA-LFP-L) We have p∗ ·q ≤ r , i.e., p∗ ·q+r ≡ r . By the IH, we know that [[q]](t)∪([[p]]•[[r ]])(t)∪
[[r ]](t) = [[r ]](t). We show, by induction on i , that ([[p]]i • [[q]])(t) ∪ [[r ]](t) = [[r ]](t).

(i = 0) We compute:

([[p]]0 • [[q]])(t) ∪ [[r ]](t)
= ([[1]] • [[q]])(t) ∪ [[r ]](t)
= [[q]](t) ∪ [[r ]](t)
= [[q]](t) ∪ ([[q]](t) ∪ ([[p]] • [[r ]])(t) ∪ [[r ]]) by the outer IH

= [[q]](t) ∪ ([[p]] · [[r ]])(t) ∪ [[r ]](t)
= [[r ]](t) by the outer IH again

(i = i ′ + 1) We compute:

([[p]]i
′+1 • [[q]])(t) ∪ [[r ]](t)

= ([[p]] • [[p]]i
′

• [[q]])(t) ∪ [[r ]](t)
= ([[p]] • [[p]]i

′

• [[q]])(t) ∪ ([[q]](t) ∪ ([[p]] • [[r ]])(t) ∪ [[r ]](t)) by the outer IH

=
⋃

t ′∈[[p]](t )(
⋃

t ′′∈[[p]]i′ (t ′)[[q]](t
′) ∪ [[r ]](t ′)) ∪ ([[q]](t) ∪ [[r ]](t))

= ([[p]] • [[r ]])(t) ∪ ([[q]](t) ∪ [[r ]](t)) by the inner IH

= [[r ]](t) by the outer IH again
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So, finally, we have:

[[p∗ · q + r ]](t) = (
⋃
0≤i

[[p]]i • [[q]])(t) ∪ [[r ]](t) =
⋃
0≤i

([[p]]i • [[q]])(t) ∪ [[r ]](t)) =
⋃
0≤i

[[r ]](t) = [[r ]](t)

(KA-LFP-R) As for KA-LFP-L.

(BA-Plus-Dist) We have a+ (b ·c) ≡ (a+b) · (a+c). We have [[a+ (b ·c)]](t) = [[a]](t)∪([[b]]• [[c]])(t).
By Lemma 3.4, we know that each of these denotations produces either {t} or ∅,
where ∪ is disjunction and • is conjunction. By distributivity of these operations.

(BA-Plus-One) We have a + 1 ≡ 1; we have this directly by Lemma 3.4.

(BA-Excl-Mid) We have a + ¬a ≡ 1; we have this directly by Lemma 3.4 and the definition of

negation.

(BA-Seq-Comm) a · b ≡ b · a; we have this directly by Lemma 3.4 and unfolding the union.

(BA-Contra) We have a · ¬a ≡ 0; we have this directly by Lemma 3.4 and the definition of

negation.

(BA-Seq-Idem) a · a ≡ a; we have this directly by Lemma 3.4 and unfolding the union.

□

For the duration of Sec. 3, we assume that any equations T adds are sound and, so, T ∗ is sound by

Theorem 3.5.

3.3 Normalization via pushback
In order to prove completeness (Sec. 3.4), we reduce our KAT terms to a more manageable subset

of normal forms. Normalization happens via a generalization of weakest preconditions; we use

a pushback operation to translate a term p into an equivalent term of the form

∑
ai ·mi where

eachmi does not contain any tests. Once in this form, we can use the completeness result provided

by the client theory to reduce the completeness of our language to an existing result for Kleene

algebra.

In order to use our general normalization procedure, the client theory T must define two things:

(1) a way to extract subterms from predicates, to define an ordering on predicates that serves as

the termination measure on normalization (Sec. 3.3.1); and

(2) weakest preconditions for primitives (Sec. 3.3.2).

Once we’ve defined our normalization procedure, we can use it prove completeness (Sec. 3.4).

3.3.1 Normalization and the maximal subterm ordering. Our normalization algorithm works by

“pushing back” predicates to the front of a term until we reach a normal form with all predicates at
the front. The pushback algorithm’s termination measure is a complex one. For example, pushing a

predicate back may not eliminate the predicate even though progress was made in getting predicates

to the front. More trickily, it may be that pushing test a back through π yields

∑
ai · π where each

of the ai is a copy of some subterm of a—and there may be many such copies!

Let the set of restricted actions TRA be the subset of T ∗ where the only test is 1. We will use

metavariablesm, n, and l to denote elements of TRA. Let the set of normal forms T ∗nf be a set of
pairs of tests ai ∈ T

∗
pred and restricted actionsmi ∈ TRA. We will use metavariables t , u, v ,w , x , y,

and z to denote elements of T ∗nf ; we typically write these sets not in set notation, but as sums, i.e.,

x =
∑k

i=1 ai ·mi means x = {(a1,m1), (a2,m2), . . . , (ak ,mk )}. The sum notation is convenient, but

it is important that normal forms really be treated as sets—there should be no duplicated terms in

the sum. We write

∑
i ai to denote the normal form

∑
i ai · 1. We will call a normal form vacuous

when it is the empty set (i.e., the empty sum, which we interpret conventionally as 0) or when
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Sequences and tests seqs : T ∗pred → P(T
∗
pred) seqs : P(T ∗pred) → P(T

∗
pred) tests : T ∗nf → P(T

∗
pred)

seqs(a · b) = seqs(a) ∪ seqs(b)
seqs(a) = {a}

seqs(A) =
⋃
a∈A seqs(a)

tests(
∑
ai ·mi ) = {1} ∪

⋃
ai ∈

∑
ai {ai }

Subterms sub : T ∗pred → P(T
∗
pred) subT : Tα → P(T

∗
pred) sub : P(T ∗pred) → P(T

∗
pred)

sub(0) = {0}

sub(1) = {0, 1}

sub(α) = {0, 1,α } ∪ subT (α)

sub(¬a) = {0, 1} ∪ sub(a) ∪ {¬b | b ∈ sub(a)}
sub(a + b) = {a + b} ∪ sub(a) ∪ sub(b)
sub(a · b) = {a · b} ∪ sub(a) ∪ sub(b)

sub(A) =
⋃
a∈A

sub(a)

Maximal tests mt : P(T ∗pred) → P(T
∗
pred) mt : T ∗nf → P(T

∗
pred)

mt(A) = {b ∈ seqs(A) | ∀c ∈ seqs(A), c , b ⇒ b < sub(c)} mt(x) = mt(tests(x))

Maximal subterm ordering ⪯,≺,≈ ⊆ T ∗nf × T
∗
nf

x ⪯ y ⇐⇒ sub(mt(x)) ⊆ sub(mt(y)) x ≺ y ⇐⇒ sub(mt(x)) ⊊ sub(mt(y))

x ≈ y ⇐⇒ x ⪯ y ∧ y ⪯ x

Fig. 14. Maximal tests and the maximal subterm ordering

all of its tests are 0. The set of normal forms, T ∗nf , is closed over parallel composition by simply

joining the sums. The fundamental challenge in our normalization method is to define sequential

composition and Kleene star on T ∗nf .

The definitions for the maximal subterm ordering are complex (Fig. 14), but the intuition is: seqs
gets all the tests out of a predicate; tests gets all the predicates out of a normal form; sub gets

subterms; mt gets “maximal” tests that cover a whole set of tests; we lift mt to work on normal

forms by extracting all possible tests; the relation x ⪯ y means that y’s maximal tests include

all of x ’s maximal tests. Maximal tests indicate which test to push back next in order to make

progress towards normalization. For example, the subterms of ♢x > 1 are defined by the client

theory (Sec. 2.5) as {♢x > 1,x > 1,x > 0, 1, 0}, which represents the possible tests that might be

generated pushing back ♢x > 1; the maximal tests of ♢x > 1 are just {♢x > 1}; the maximal tests

of the set {♢x > 1,x > 0,y > 6} are {♢x > 1,y > 6} since these tests are not subterms of any

other test. Therefore, we can choose to push back either of ♢x > 1 or y > 6 next and know that we

will continue making progress towards normalization.

Lemma 3.6 (Terms are subterms of themselves). a ∈ sub(a)

Proof. By induction on a. All cases are immediate except for ¬a, which uses the IH. □

Lemma 3.7 (0 is a subterm of all terms). 0 ∈ sub(a)

Proof. By induction on a. The cases for 0, 1, and α are immediate; the rest of the cases follow

by the IH. □

Lemma 3.8 (Maximal tests are tests). mt(A) ⊆ seqs(A) for all sets of tests A.
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1:22 Michael Greenberg, Ryan Beckett, and Eric Campbell

Proof. We have by definition:

mt(A) = {b ∈ seqs(A) | ∀c ∈ seqs(A), c , b ⇒ b < sub(c)}
⊆ seqs(A)

□

Lemma 3.9 (Maximal tests contain all tests). seqs(A) ⊆ sub(mt(A)) for all sets of tests A.

Proof. Let an a ∈ seqs(A) be given; we must show that a ∈ sub(mt(A)). If a ∈ mt(A), then
a ∈ sub(mt(A)) (Lemma 3.6). If a < mt(A), then there must exist a b ∈ mt(A) such that a ∈ sub(b).
But in that case, a ∈ sub(b) ∪

⋃
a∈mt(A)\{b } sub(mt(a)), so a ∈ sub(mt(A)). □

Lemma 3.10 (seqs distributes over union). seqs(A ∪ B) = seqs(A) ∪ seqs(B)

Proof. We compute:

seqs(A ∪ B) =
⋃

c ∈A∪B seqs(c)
=

⋃
c ∈A seqs(c) ∪

⋃
c ∈B seqs(c)

= seqs(A) ∪ seqs(B)

□

Lemma 3.11 (seqs is idempotent). seqs(a) = seqs(seqs(a))

Proof. By induction on a. □

We can lift Lemma 3.11 to sets of terms, as well.

Lemma 3.12 (Seqence extraction). If seqs(a) = {a1, . . . ,ak } then a ≡ a1 · . . . · ak .

Proof. By induction on a. The only interesting case is when a = b · c . We have:

{a1, . . . ,ak } = seqs(a) = seqs(b · c) = seqs(b) ∪ seqs(c).

Furthermore, seqs(b) (resp. seqs(c)) is equal to some subset of the ai ∈ seqs(a), such that seqs(b) ∪
seqs(c) = seqs(a). By the IH, we know that b ≡ Πbi ∈seqs(b)bi and c ≡ Πci ∈seqs(c)ci , so we have:

a ≡ b · c

≡

(∏
bi ∈seqs(b) bi

)
·

(∏
bi ∈seqs(b) bi

)
(BA-Seq-Idem)

≡
∏

ai ∈seqs(b)∪seqs(c) ai (BA-Seq-Comm)

≡
∏k

i=1 ai

□

Corollary 3.13 (Maximal tests are invariant over tests). mt(A) = mt(seqs(A))

Proof. We compute:

mt(A) = {b ∈ seqs(A) | ∀c ∈ seqs(A), c , b ⇒ b < sub(c)}
(Lemma 3.11)

= {b ∈ seqs(seqs(A)) | ∀c ∈ seqs(seqs(A)), c , b ⇒ b < sub(c)}
= mt(seqs(A))

□

Lemma 3.14 (Subterms are closed under subterms). If a ∈ sub(b) then sub(a) ⊆ sub(b).

Proof. By induction on b, letting some a ∈ sub(b) be given. □
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Lemma 3.15 (Subterms decrease in size). If a ∈ sub(b), then either a ∈ {0, 1,b} or a comes
before b in the global well ordering.

Proof. By induction on b. □

Lemma 3.16 (Maximal tests always exist). If A is a non-empty set of tests, then mt(A) , ∅.

Proof. We must show there exists at least one term in mt(A).
If seqs(A) = {a}, then a is a maximal test. If seqs(A) = {0, 1}, then 1 is a maximal test. If

seqs(A) = {0, 1,α }, then α is a maximal test. If seqs(A) isn’t any of those, then let aseqsA be the

term that comes last in the well ordering on predicates.

To see why a ∈mt(A), suppose (for a contradiction) we haveb ∈ mt(A) suchb , a and a ∈ sub(b).
By Lemma 3.15, either a ∈ {0, 1,b} or a comes before b in the global well ordering. We’ve ruled

out the first two cases above. If a = b, then we’re fine—a is a maximal test. But if a comes before b
in the well ordering, we’ve reached a contradiction, since we selected a as the term which comes

latest in the well ordering. □

As a corollary, note that a maximal test exists even for vacuous normal forms, wheremt(x) = {0}
when x is vacuous.

Lemma 3.17 (Maximal tests generate subterms). sub(mt(A)) =
⋃

a∈seqs(A) sub(a)

Proof. Since mt(A) ⊆ seqs(A) (Lemma 3.8), we can restate our goal as:

sub(mt(A)) =
⋃

a∈mt(A)

sub(a) ∪
⋃

a∈seqs(A)\mt(A)

sub(a)

We have sub(mt(A)) =
⋃

a∈mt(A) sub(a) by definition; it remains to see that the latter union is

subsumed by the former; but we have seqs(A) ⊆ sub(mt(A)) by Lemma 3.9. □

Lemma 3.18 (Union distributes over maximal tests).

sub(mt(A ∪ B)) = sub(mt(A)) ∪ sub(mt(B))

Proof. We compute:

sub(mt(A ∪ B)) =
⋃

a∈seqs(A∪B) sub(a) (Lemma 3.17)

=
⋃

a∈seqs(A)∪seqs(B) sub(a)
=

[⋃
a∈seqs(A) a

]
∪
[⋃

b ∈seqs(B) sub(b)
]

= sub(mt(A)) ∪ sub(mt(B)) (Lemma 3.17)

□

Lemma 3.19 (Maximal tests are monotonic). If A ⊆ B then sub(mt(A)) ⊆ sub(mt(B)).

Proof. We have sub(mt(B)) = sub(mt(A∪B)) = sub(mt(A)) ∪ sub(mt(B)) (by Lemma 3.18). □

Corollary 3.20 (Seqences of maximal tests). sub(mt(a · b)) = sub(mt(a)) ∪ sub(mt(b))

Proof.

sub(mt(c · d))
= sub(mt(seqs(c · d))) (Corollary 3.13)

= sub(mt(seqs(c) ∪ seqs(d)))
= sub(mt(seqs(c))) ∪ sub(mt(seqs(d))) (distributivity; Lemma 3.18)

= sub(mt(c)) ∪ sub(mt(d)) (Corollary 3.13)

□
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nnf : T ∗pred → T
∗
pred

nnf(0) = 0

nnf(1) = 1

nnf(α) = α
nnf(a + b) = nnf(a) + nnf(b)
nnf(a · b) = nnf(a) · nnf(b)

nnf(¬0) = 1

nnf(¬1) = 0

nnf(¬α) = ¬α
nnf(¬¬a) = nnf(a)

nnf(¬(a + b)) = nnf(¬a) · nnf(¬b)
nnf(¬(a · b)) = nnf(¬a) + nnf(¬b)

Fig. 15. Negation normal form

To handle negation, we translate predicates into a negation normal form where only primitive

predicates α can be negated (Figure 15). The translation nnf uses De Morgan’s laws to push

negations inwards. These possibly negated predicates are commonly called “atoms”. In our setting,

it is important that negation normal form is monotonic in the maximal subterm ordering (⪯).

Lemma 3.21 (Negation normal form is monotonic). If a ⪯ b then nnf(¬a) ⪯ ¬b.

Proof. By induction on a.

(a = 0) We have nnf(¬0) = 1 and 1 ⪯ ¬b by definition.

(a = 1) We have nnf(¬1) = 0 and 0 ⪯ ¬b by definition.

(a = α ) We have nnf(¬α) = ¬α ; since a ⪯ b, it must be that α ∈ sub(mt(b)), so ¬α ∈
sub(mt(¬b)). We have α ∈ sub(¬b), since α ∈ sub(b).

(a = ¬c) We have nnf(¬¬c) = nnf(c); since c ∈ sub(a) and a ⪯ b, it must be that c ∈
sub(mt(b)), so nnf(c) ⪯ ¬b by the IH.

(a = c + d) We have nnf(¬(c + d)) = nnf(¬c) · nnf(¬d); since c and d are subterms of a and

a ⪯ b, ¬c and ¬d must be in sub(mt(¬b)), and we are done by the IHs.

(a = c · d) We have nnf(¬(c · d)) = nnf(¬c) + nnf(¬d); since c and d are subterms of a and

a ⪯ b, ¬c and ¬d must be in sub(mt(¬b)), and we are done by the IHs.

□

Lemma 3.22 (Normal form ordering). For all tests a,b, c and normal forms x ,y, z, the following
inequalities hold:
(1) a ⪯ a · b (extension);
(2) if a ∈ tests(x), then a ⪯ x (subsumption);
(3) x ≈

∑
a∈tests(x ) a (equivalence);

(4) if x ⪯ x ′ and y ⪯ y ′, then x + y ⪯ x ′ + y ′ (normal-form parallel congruence);
(5) if x + y ⪯ z, then x ⪯ z and y ⪯ z (inversion);
(6) if a ⪯ a′ and b ⪯ b ′, then a · b ⪯ a′ · b ′ (test sequence congruence);
(7) if a ⪯ x and b ⪯ x then a · b ⪯ x (test bounding);
(8) if a ⪯ b and x ⪯ c then a · x ⪯ b · c (mixed sequence congruence);
(9) if a ⪯ b then nnf(¬a) ⪯ ¬b (negation normal-form monotonic).

Each of the above equalities also hold replacing ⪯ with ≺, excluding the equivalence (3).

Proof. We prove each properly independently and in turn. Each property can be proved using

the foregoing lemmas and set-theoretic reasoning. □
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Lemma 3.23 (Test seqence split). If a ∈ mt(c) then c ≡ a · b for some b ≺ c .

Proof. We have a ∈ seqs(c) by definition. Suppose seqs(c) = {a, c1, . . . , ck }. By sequence

extraction, we have c ≡ a · c1 · · · · · ck (Lemma 3.12). So let b = c1 · · · · · ck ; we must show b ≺ c , i.e.,
sub(mt(b)) ⊊ sub(mt(c)). Note that {c1, . . . , ck } = seqs(b). We find:

sub(mt(b)) ⊊ sub(mt(c))
⇕ (Corollary 3.13)

sub(mt(seqs(b))) ⊊ sub(mt(seqs(c)))
⇕

sub(mt({c1, . . . , ck })) ⊊ sub(mt({a, c1, . . . , ck }))
⇕ (distributivity; Lemma 3.18)⋃k

i=1 sub(mt({ci })) ⊊ sub(mt(a)) ∪
⋃k

i=1 sub(mt({ci }))

Since a ∈ mt(c), we know that a < sub(mt(ci )) for all i . But terms are subterms of themselves

(Lemma 3.6), so a ∈ sub(a) = sub(mt(a)). □

Lemma 3.24 (Maximal test ineqality). If a ∈ mt(y) and x ⪯ y then either a ∈ mt(x) or x ≺ y.

Proof. Since a ∈ mt(y), we have a ∈ sub(mt(y)). Since x ⪯ y, we know that sub(mt(x)) ⊆
sub(mt(y)). We go by cases on whether or not a ∈ mt(x):

(a ∈ mt(x)) We are done immediately.

(a < mt(x)) In this case, we show that a < sub(mt(x)) and therefore x ≺ y. Suppose, for a
contradiction, that a ∈ sub(mt(x)). Since a < mt(x), there must exist some b ∈
sub(mt(x)) where a ∈ sub(b). But since x ⪯ y, we must also have b ∈ sub(mt(y))...
and so it couldn’t be that case that a ∈ mt(y)). We can conclude that it must, then,

be the case that a < sub(mt(x)) and so x ≺ y. □

We can take a normal form x and split it around a maximal test a ∈ mt(x) such that we have a

pair of normal forms: a · y + z, where both y and z are smaller than x in our ordering, because a (1)

appears at the front of y and (2) doesn’t appear in z at all.

Lemma 3.25 (Splitting). If a ∈ mt(x), then there exist y and z such that x ≡ a · y + z and y ≺ x
and z ≺ x .

Proof. Suppose x =
∑k

i=1 ci ·mi . We have a ∈ mt(x), so, in particular:

a ∈ seqs(tests(x)) = seqs(tests(
k∑
i=1

ci ·mi )) = seqs({c1, . . . , ck }) =
k⋃
i=1

seqs(ci ).

That is, a ∈ seqs(ci ) for at least one i . We can, without loss of generality, rearrange x into two sums,

where the first j elements have a in them but the rest don’t, i.e., x ≡
∑j

i=1 ci ·mi +
∑k

i=j+1 ci ·mi
where a ∈ seqs(ci ) for 1 ≤ i ≤ j but a < seqs(ci ) for j + 1 ≤ i ≤ k . By subsumption (Lemma 3.22),

we have ci ⪯ x . Since a ∈ mt(x), it must be that a ∈ mt(ci ) for 1 ≤ i ≤ j (instantiating Lemma 3.24

with the normal form ci · 1). By test sequence splitting (Lemma 3.23), we find that ci ≡ a · bi with
bi ≺ ci ⪯ x for 1 ≤ i ≤ j, as well.

We are finally ready to producey and z: they are the first j tests with a removed and the remaining

tests which never had a, respectively. Formally, let y =
∑j

i=1 bi ·mi ; we immediately have that

a · y ≡
∑j

i=1 ci ·mi ; let z =
∑k

i=j+1 ci ·mi . We can conclude that x ≡ a · y + z.
It remains to be seen that y ≺ x and z ≺ x . The argument is the same for both; presenting it

for y, we have a < seqs(y) (because of sequence splitting), so a < sub(mt(y)). But we assumed
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a ∈ mt(x), so a ∈ sub(mt(x)), and therefore y ≺ x . The argument for z is nearly identical but needs

no recourse to sequence splitting—we never had any a ∈ seqs(ci ) for j + 1 ≤ i ≤ k . □

Splitting is the key lemma for making progress pushing tests back, allowing us to take a normal

form and slowly push its maximal tests to the front; its proof follows from a chain of lemmas given

in the supplementary material.

3.3.2 Pushback. In order to define normalization—necessary for completeness (Sec. 3.4)—the client

theory must have a weakest preconditions operation that respects the subterm ordering.

Definition 3.26 (Weakest preconditions). The weakest precondition operation of the client theory is

a relationWP ⊆ Tπ × Tα × P(T ∗pred), where Tπ are the primitive actions and Tα are the primitive

predicates of T . We write the relation as π · α WP
∑
ai · π and read it as “α pushes back through π

to yield

∑
ai · π”; the second π is redundant but written for clarity. We require that if π · α WP

{a1, . . . ,ak } · π , then π · α ≡
∑k

i=1 ai · π , and ai ⪯ α .

Given the client theory’s weakest-precondition relation WP, we define a normalization procedure

for T ∗ by extending the client’s WP relation to a more general pushback relation, PB (Fig. 16). The

client’s WP relation need not be a function, nor do the ai need to be obviously related to α or π in

any way. Even when the WP relation is a function, the PB relation will generally not be a function.

WhileWP computes the classical weakest precondition, the PB relations do something different:

when pushing back we have the freedom to change the program itself—not normally an option for

weakest preconditions (see Sec. 6).

We define the top-level normalization routine with the p norm x relation (Fig. 16), a syntax

directed relation that takes a term p and produces a normal form x =
∑

i aimi . Most syntactic forms

are easy to normalize: predicates are already normal forms (Pred); primitive actions π are normal

forms where there’s just one summand and the predicate is 1 (Act); and parallel composition of

two normal forms means just joining the sums (Par). But sequence and Kleene star are harder: we

define judgments using PB to lift these operations to normal forms (Seq, Star).

For sequences, we can recursively take p · q and normalize p into x =
∑
ai · mi and q into

y =
∑
bj · nj . But how can we combine x and y into a new normal form? We can concatenate

and rearrange the normal forms to get

∑
i, j ai ·mi · bj · nj . If we can push bj back throughmi to

find some new normal form

∑
ck · lk , then

∑
i, j,k ai · ck · lk · nj is a normal form (Join); we write

x · y PBJ z to mean that the concatenation of x and y is equivalent to the normal form z—the · is
suggestive notation, as are other operators that appear on the left-hand side of the PB judgments.

For Kleene star, we can take p∗ and normalize p into x =
∑
ai ·mi , but x

∗
isn’t a normal form—we

need to somehow move all of the tests out of the star and to the front. We do so with the PB∗

relation (Fig. 16), writing x∗ PB∗ y to mean that the Kleene star of x is equivalent to the normal

form y—the ∗ on the left is again suggestive notation. The PB∗ relation is more subtle than PBJ
.

There are four possible ways to treat x , based on how it splits (Lemma 3.25): if x = 0, then our work

is trivial since 0
∗ ≡ 1 (StarZero); if x splits into a · x ′ where a is a maximal test and there are no

other summands, then we can either use the KAT sliding lemma (Lemma 3.29)to pull the test out

when a is strictly the largest test in x (Slide) or by using the KAT expansion lemma (Lemma 3.32)

otherwise (Expand); if x splits into a · x ′ + z, we use the KAT denesting lemma (Lemma 3.30)to

pull a out before recurring on what remains (Denest).

The bulk of the pushback’s work happens in the PB• relation, which pushes a test back through

a restricted action; PBR
and PBT

use PB• to push tests back through normal forms and normal

forms back through restricted actions, respectively. We writem · a PB• y to mean that pushing

the test a back through restricted actionm yields the equivalent normal form y. The PB• relation
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Normalization p norm x

a norm a
Pred

π norm 1 · π
Act

p norm x q norm y

p + q norm x + y
Par

p norm x q norm y x · y PBJ z

p · q norm z
Seq

p norm x x∗ PB∗ y

p∗ norm y
Star

Sequential composition of normal forms x · y PBJ z

mi · bj PB• xi j

(
∑
i ai ·mi ) · (

∑
j bj · nj ) PB

J ∑
i
∑
j ai · xi j · nj

Join

Normalization of star x∗ PB∗ y

0
∗ PB∗ 1

StarZero

x ≺ a x · a PBT y y∗ PB∗ y′ y′ · x PBJ z

(a · x)∗ PB∗ 1 + a · z
Slide

x ⊀ a x · a PBT a · t + u

(t + u)∗ PB∗ y y · x PBJ z

(a · x)∗ PB∗ 1 + a · z
Expand

a < mt(z) y . 0 y∗ PB∗ y′

x · y′ PBJ x ′ (a · x ′)∗ PB∗ z y′ · z PBJ z′

(a · x + y)∗ PB∗ z′
Denest

Pushback m · a PB• y m · x PBR y x · a PBT y

m · 0 PB• 0
SeqZero

m · 1 PB• 1 ·m
SeqOne

m · a PB• y y · b PBT z

m · (a · b) PB• z
SeqSeqTest

n · a PB• x m · x PBR y

(m · n) · a PB• y
SeqSeqAction

m · a PB• x m · b PB• y

m · (a + b) PB• x + y
SeqParTest

m · a PB• x n · a PB• y

(m + n) · a PB• x + y
SeqParAction

π · α WP {a1, . . . }

π · α PB•
∑
i ai · π

Prim

π · a PB•
∑
i ai · π nnf(¬(

∑
i ai )) = b

π · ¬a PB• b · π
PrimNeg

m · a PB• x x ≺ a

m∗ · x PBR y

m∗ · a PB• a + y
SeqStarSmaller

m · a PB• a · t + u m∗ · u PBR x

t∗ PB∗ y x · y PBJ z

m∗ · a PB• a · y + z
SeqStarInv

m · ai PB• xi

m ·
∑
i ai · ni PB

R ∑
i xi · ni

Restricted

mi · a PB•
∑
j bi j ·mi j

(
∑
i ai ·mi ) · a PBT

∑
i
∑
j ai · bi j ·mi j

Test

Fig. 16. Normalization for T ∗

works by analyzing both the action and the test. The client theory’s WP relation is used in PB•

when we try to push a primitive predicate α through a primitive action π (Prim); all other KAT

predicates can be handled by rules matching on the action or predicate structure, deferring to

other PB relations. To handle negation, the function nnf translates predicates to negation normal
form, where negations only appear on primitive predicates (Fig. 15); Pushback-Neg justifies the

PrimNeg case(Pushback-Neg); we use nnf to respect the maximal subterm ordering.
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1:28 Michael Greenberg, Ryan Beckett, and Eric Campbell

Definition 3.27 (Negation normal form). The negation normal form of a term p is a term p ′ such
that p ≡ p ′ and negations occur only on primitive predicates in p ′.

Lemma 3.28 (Terms are eqivalent to their negation-normal forms). nnf(p) ≡ p and
nnf(p) is in negation normal form.

Proof. By induction on the size of p. The only interesting case is when p = ¬a; we go by cases

on a.

(a = 0) We have ¬0 ≡ 1 immediately, and the latter is clearly negation free.

(a = 1) We have ¬1 ≡ 0; as above.

(a = α ) We have ¬alpha, which is in normal form.

(a = b + c) We have ¬(b + c) ≡ ¬b · ¬c as a consequence of BA-Excl-Mid and soundness

(Theorem 3.5). By the IH on ¬b and ¬c , we find that nnf(¬b) ≡ ¬b and nnf(¬c) ≡
¬c—where the left-hand sides are negation normal. So transitively, we have ¬(b +
c) ≡ nnf(¬b) · nnf(¬c), and the latter is negation normal.

(a = b · c) We have ¬(b · c) ≡ ¬b + ¬c as a consequence of BA-Excl-Mid and soundness

(Theorem 3.5). By the IH on ¬b and ¬c , we find that nnf(¬b) ≡ ¬b and nnf(¬c) ≡
¬c—where the left-hand sides are negation normal. So transitively, we have¬(b ·c) ≡
nnf(¬b) + nnf(¬c), and the latter is negation normal. □

To elucidate the way PB• handles structure, suppose we have the term (π1+π2) · (α1+α2). One of
two rules could apply: we could split up the tests and push them through individually (SeqParTest),

or we could split up the actions and push the tests through together (SeqParAction). It doesn’t

particularly matter which we do first: the next step will almost certainly be the other rule, and in

any case the results will be equivalent from the perspective of our equational theory. It could be

the case that choosing a one rule over another could give us a smaller term, which might yield a

more efficient normalization procedure. Similarly, a given normal form may have more than one

maximal test—and therefore be splittable in more than one way (Lemma 3.25)—and it may be that

different splits produce more or less efficient terms. We haven’t yet studied differing strategies for

pushback.

Lemma 3.29 (Sliding). p · (q · p)∗ ≡ (p · q)∗ · p.

Proof. Following Kozen [35], as a corollary of a related result: if p · x ≡ x · q then p∗ · x ≡ x · q∗.
We prove this separate property by mutual inclusion.

(⇒) We use KA-LFP-Lwith p = p and q = x and r = x ·q∗. We must show that x +p ·x ·q∗ ≤ x ·q∗

to find p∗ · x ≤ x · q∗.

If p · q ≤ x · q then p · x · q∗ ≤ x · q · q∗ by monotonicity. We have x + x · q · q∗ ≤ x · q∗ by
KA-Unroll-L and KA-Plus-Idem. Therefore x + p · x · q∗ ≤ x + x · q · q∗ ≤ x · q∗, as desired.

(⇐) This case is symmetric to the first, using -R rules instead of -L rules. We apply KA-LFP-R

with p = x and r = q and q = p∗ · x . We must show x +p∗ · x ·q ≤ p∗ · x to find x ·q∗ ≤ p∗ · x .

If x · q ≤ p · x , then p∗ · x · q ≤ p∗ · p · x by monotonicity. We have x + p∗ · p · x ≤ p∗ · x by

KA-Unroll-R and KA-Plus-Idem. Therefore x +p∗ · x · q ≤ x +p∗ · p · x ≤ p∗ · x , as desired.

We can now find sliding by letting p = p · q and x = p and q = q ·p in the above, i.e., we have the

premise p · q · p ≡ p · q · p by reflexivity, and so (p · q)∗ · p ≡ p · (q · p)∗. □

Lemma 3.30 (Denesting). (p + q)∗ ≡ p∗ · (q · p∗)∗.
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Kleene Algebra Modulo Theories 1:29

Proof. Following Kozen [35], we do the proof by mutual inclusion. The proof is surprisingly

challenging, so we include it here.

(⇒) To show (p +q)∗ ≤ a∗ · (b · a∗)∗, we apply induction with q = 1 and r = p∗ · (q ·p∗)∗ (to show
(a + b)∗ · 1 ≤ r ). We must show that 1 + (p + q) · p∗ · (q · p∗)∗ ≤ p∗ · (q · p∗)∗. We do so in

several parts, working our way there in five steps.

First, we observe that 1 ≤ p∗ · (q · p∗)∗ (A) because:

1 + p∗ · (q · p∗)∗

≡ 1 + (1 + p · p∗ · (q · p∗)∗) KA-Unroll-L

≡ 1 + p · p∗ · (q · p∗)∗ KA-Plus-Assoc,KA-Plus-Idem
≡ p∗ · (q · p∗)∗ KA-Unroll-L

Next, p · p∗ · (q · p∗)∗ ≤ p∗ · (q · p∗)∗ (B) because:

p · p∗ · (q · p∗)∗ + p∗ · (q · p∗)∗

≡ p · p∗ · (q · p∗)∗ + 1 + p · p∗ · (q · p∗)∗ KA-Unroll-L

≡ 1 + p · p∗ · (q · p∗)∗ KA-Plus-Idem

≡ p∗ · (q · p∗)∗ KA-Unroll-L

We have q · p∗ · (q · p∗)∗ ≤ (q · p∗)∗ because:

q · p∗ · (q · p∗)∗ + (q · p∗)∗

≡ q · p∗ · (q · p∗)∗ + 1 + q · p∗ · (q · p∗)∗ KA-Unroll-L

≡ 1 + q · p∗ · (q · p∗)∗ KA-Plus-Idem

≡ (q · p∗)∗ KA-Unroll-L

Further, (q · p∗)∗ ≤ p∗ · (q · p∗)∗ because:

(q · p∗)∗ + p∗ · (q · p∗)∗

≡ (q · p∗)∗ + 1 · (q · p∗)∗ + p · p∗ · (q · p∗)∗ KA-Unroll-L,KA-Dist-R
≡ 1 · (q · p∗)∗ + p · p∗ · (q · p∗)∗ KA-Plus-Idem

≡ p∗ · (q · p∗)∗ KA-Unroll-L

Finally, q · p∗ · (q · p∗)∗ ≤ a∗ · (q · p∗)∗ (C) by transitivity with the last two results.

Now we can find that

1 + (p + q)p∗ · (q · p∗)∗ ≤ 1 + p · p∗ · (q · p∗)∗ + q · p∗ · (q · p∗)∗ ≤ p∗ · (q · p∗)∗

because:

1 + (p + q)p∗ · (q · p∗)∗ + 1 + p · p∗ · (q · p∗)∗ + q · p∗ · (q · p∗)∗

≡ 1 + p · p∗ · (q · p∗)∗ + q · p∗ · (q · p∗)∗ + p · p∗ · (q · p∗)∗ + q · p∗ · (q · p∗)∗ KA-Plus-Idem

≡ 1 + p · p∗ · (q · p∗)∗ + q · p∗ · (q · p∗)∗ KA-Plus-Idem

because, finally:

1 + p · p∗ · (q · p∗)∗ + q · p∗ · (q · p∗)∗ + p∗ · (q · p∗)∗

≡ p∗ · (q · p∗)∗ + p · p∗ · (q · p∗)∗ + q · p∗ · (q · p∗)∗ (A)

≡ p∗ · (q · p∗)∗ + q · p∗ · (q · p∗)∗ (B)

≡ p∗ · (q · p∗)∗ (C)
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1:30 Michael Greenberg, Ryan Beckett, and Eric Campbell

(⇐) To show p∗ · (q · p∗)∗ ≤ (p + q)∗((p + q)(p + q)∗)∗, we have first that p ≤ p + q and q ≤ p + q,
and so p + q ≤ (p + q)∗. And so, by monotonicity p∗ · (q · p∗)∗ ≤ (p + q)∗((p + q)(p + q)∗)∗.
We can then find that (p + q)∗ · ((p + q) · (p + q)∗)∗ ≤ (p + q)∗ · ((p + q)∗)∗ because:

(p + q)(p + q)∗ + (p + q)∗

≡ p · (p + q)∗ + q · (p + q)∗ + (p + q)∗ KA-Dist-R

≡ p · (p + q)∗ + q · (p + q)∗ + 1 + (p + q)(p + q)∗ KA-Unroll-L

≡ p · (p + q)∗ + q · (p + q)∗ + 1 + p · (p + q)∗ + q · (p + q)∗ KA-Dist-R

≡ 1 + p · (p + q)∗ + q · (p + q)∗ KA-Plus-Idem

≡ 1 + (p + q) · (p + q)∗ KA-Dist-R

≡ (p + q)∗ KA-Unroll-L

But we also have (p + q)∗ · ((p + q)∗)∗ ≤ (p + q)∗ because:

(p + q)∗ · ((p + q)∗)∗ + (p + q)∗

≡ (p + q)∗ · (p + q)∗ + (p + q)∗ because (x∗)∗ = x∗

≡ (p + q)∗ + (p + q)∗ because x∗x∗ = x∗

≡ (p + q)∗ KA-Plus-Idem

□

Lemma 3.31 (Star invariant). If p · a ≡ a · q + r then p∗ · a ≡ (a + p∗ · r ) · q∗.

Proof. We show two implications using ≤ to derive the equality.

(⇒) We want to show p∗;a ≤ (a + p∗;y);x∗.

We know that q + pr ≤ r =⇒ p∗q ≤ r by the induction axiom KA-LFP-L, so we can

instantiate it with p as p and q as a and r as (a + p∗;y);x∗. We find:

a + p; (a + p∗;y);x∗ ≤ (a + p∗;y);x∗

a + p;a;x∗ + p;p∗;y;x∗ ≤ (a + p∗;y);x∗

a + p;a;x∗ + p;p∗;y;x∗ + (a + p∗;y);x∗ = (a + p∗;y);x∗

a + p;a;x∗ + p;p∗;y;x∗ + a;x∗ + p∗;y;x∗ = (a + p∗;y);x∗

(a + a;x∗ + p;a;x∗) + (p;p∗;y;x∗ + p∗;y;x∗) = (a + p∗;y);x∗

(a;x∗ + p;a;x∗) + (p;p∗;y;x∗ + p∗;y;x∗) = (a + p∗;y);x∗

(1 + p);a;x∗ + (1 + p);p∗;y;x∗ = (a + p∗;y);x∗

a;x∗ + p∗;y;x∗ = (a + p∗;y);x∗

(a + p∗;y);x∗ = (a + p∗;y);x∗

(⇐) We can to show (a + p∗;y);x∗ ≤ p∗;a We can apply the other induction axiom (KA-LFP-R),

q + r ;p ≤ r =⇒ q;p∗ ≤ r , with p = x and q = (a + p∗;y) and r = p∗;a. We find:

(a + p∗;y) + (p∗;a);x ≤ p∗;a
a + p∗;y + p∗;a;x + p∗;a = p∗;a

a + p∗; (a;x + y + a) = p∗;a
a + p∗; (p;a + a) = p∗;a

a + p∗; (a; (p + 1)) = p∗;a
a + p∗;a = p∗;a

p∗;a = p∗;a

□

Lemma 3.32 (Star expansion). If p · a ≡ a · q + r then p · a · (p · a)∗ ≡ (a · q + r ) · (q + r )∗.
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Kleene Algebra Modulo Theories 1:31

Proof. First we observe that p;a; (p;a)∗ is equivalent to (p;a)∗;p;a (apply KA-SLIDING twice).

We show two implications using ≤ to derive the equality.

(⇒) We want to show (p;a)∗;p;a ≤ (a;x + y); (x + y)∗.

We know that q + pr ≤ r =⇒ p∗q ≤ r by the induction axiom KA-LFP-L, so we can

instantiate it with p and q as p;a and r as (a;x + y); (x + y)∗. We find:

p;a + p;a; (a;x + y); (x + y)∗ ≤ (a;x + y); (x + y)∗

p;a + (p;a;x + p;a;y); (x + y)∗ ≤ (a;x + y); (x + y)∗

(a;x + y) + ((a;x + y);x + (a;x + y);y); (x + y)∗ ≤ (a;x + y); (x + y)∗

(a;x + y) + (a;x + y); (x + y); (x + y)∗ ≤ (a;x + y); (x + y)∗

(a;x + y); (1 + (x + y); (x + y)∗) ≤ (a;x + y); (x + y)∗

(a;x + y); (x + y)∗ ≤ (a;x + y); (x + y)∗

(⇐)) We can to show (a;x + y); (x + y)∗ ≤ p;a; (p;a)∗ We can apply the other induction axiom

(KA-LFP-R), q + r ;p ≤ r =⇒ q;p∗ ≤ r , with p = x + y and q = a;x + y and r = p;a(p;a)∗.
We find:

(a;x + y) + p;a; (p;a)∗; (x + y) ≤ (p;a)∗;p;a
p;a + p;a; (p;a)∗; (x + y) ≤ (p;a)∗;p;a
p;a + p;a; (p;a)∗; (x + y) ≤ p;a + (p;a)∗;p;a;p;a
p;a + p;a; (p;a)∗; (x + y) ≤ p;a + (p;a)∗;p;a; (a;x + y)
p;a + p;a; (p;a)∗; (x + y) ≤ p;a + (p;a)∗; (a;x + y); (x + y)
p;a + p;a; (p;a)∗; (x + y) ≤ p;a + (p;a)∗; (p;a); (x + y)

□

Lemma 3.33 (Pushback through primitive actions). Pushing a test back through a primitive
action leaves the primitive action intact, i.e., if π · a PB• x or (

∑
bi · π ) · a PBT x , then x =

∑
ai · π .

Proof. By induction on the derivation rule used. □

We show that our notion of pushback is correct in two steps. First we prove that pushback is

partially correct, i.e., if we can form a derivation in the pushback relations, the right-hand sides

are equivalent to the left-hand-sides (Theorem 3.34). Once we’ve established that our pushback

relations’ derivations mean what we want, we have to show that we can find such derivations;

here we use our maximal subterm measure to show that the recursive tangle of our PB relations

always terminates (Theorem 3.35) , which makes extensive use of our subterm ordering lemma

(Lemma 3.22) and splitting (Lemma 3.25)).

Theorem 3.34 (Pushback soundness).

(1) If x · y PBJ z ′ then x · y ≡ z ′.
(2) If x∗ PB∗ y then x∗ ≡ y.
(3) Ifm · a PB• y thenm · a ≡ y.
(4) Ifm · x PBR y thenm · x ≡ y.
(5) If x · a PBT y then x · a ≡ y.

Proof. By simultaneous induction on the derivations. Cases are grouped by judgment.
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1:32 Michael Greenberg, Ryan Beckett, and Eric Campbell

Sequential composition of normal forms (x · y PBJ z).

(Join) We have x =
∑k

i=1 ai ·mi and y =
∑l

j=1 bj ·nj . By the IH on (3), eachmi ·bj PB• xi j .
We compute:

x · y

≡

[∑k
i=1 ai ·mi

]
·

[∑l
j=1 bj · nj

]
≡

∑k
i=1 ai ·mi ·

[∑l
j=1 bj · nj

]
(KA-Dist-R)

≡
∑k

i=1 ai ·
[
mi ·

∑l
j=1 bj · nj

]
(KA-Seq-Assoc)

≡
∑k

i=1 ai ·
[∑l

j=1mi · bj · nj
]

(KA-Dist-L)

≡
∑k

i=1 ai ·
[∑l

j=1 xi j · nj
]

(IH (3))

≡
∑k

i=1
∑l

j=1 ai · xi j · nj (KA-Dist-L)

Kleene star of normal forms (x∗ PBJ y).

(StarZero) We have 0
∗ PB∗ 1. We compute:

0
∗

≡ 1 + 0 · 0∗ (KA-Unroll-L)

≡ 1 + 0 (KA-Zero-Seq)

≡ 1 (KA-Plus-Zero)

(Slide) We are trying to pushback the minimal term a of x through a star, i.e., we have

(a · x)∗; by the IH on (5), we know there exists some y such that x · a ≡ y; by the

IH on (2), we know that y∗ ≡ y ′; and by the IH on (1), we know that y ′ · x ≡ z. We

must show that (a · x)∗ ≡ 1 + a · z. We compute:

(a · x)∗

≡ 1 + a · x · (a · x)∗ (KA-Unroll-L)

≡ 1 + a · (x · a)∗ · x (sliding with p = x and q = a; Lemma 3.29)

≡ 1 + a · y∗ · x (IH (5))

≡ 1 + a · y ′ · x (IH (2))

≡ 1 + a · z (IH (1))

(Expand) We are trying to pushback the minimal term a of x through a star, i.e., we have

(a · x)∗; by the IH on (5), we know that there exist t and u such that x · a ≡ a · t +u;
by the IH on (2), we know that there exists a y such that (t +u)∗ ≡ y; and by the IH
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on (1), we know that there is some z such that y · x ≡ z. We compute:

(a · x)∗

≡ 1 + a · x + a · x · a · x · (a · x)∗ (KA-Unroll-L)

≡ 1 + a · x + a · x · a · (x · a)∗ · x
(sliding with p = x and q = a; Lemma 3.29)

≡ 1 + a · x + a · [x · a · (x · a)∗] · x (KA-Seq-Assoc)

≡ 1 + a · x + a · [(a · t + u) · (t + u)∗] · x
(expansion using IH (5); Lemma 3.32)

≡ 1 + a · x + a · (a · t + u) · (t + u)∗ · x (KA-Seq-Assoc)

≡ 1 + a · x + (a · a · t + a · u) · (t + u)∗ · x (KA-Dist-L)

≡ 1 + a · x + (a · t + a · u) · (t + u)∗ · x (BA-Seq-Idem)

≡ 1 + a · x + a · (t + u) · (t + u)∗ · x (BA-Seq-Idem)

≡ 1 + a · 1 · x + a · (t + u) · (t + u)∗ · x (KA-One-Seq)

≡ 1 + (a · 1 + a · (t + u) · (t + u)∗) · x (KA-Dist-R)

≡ 1 + a · (1 + (t + u) · (t + u)∗) · x (KA-Dist-L)

≡ 1 + a · (t + u)∗ · x (KA-Unroll-L)

≡ 1 + a · y · x (IH (2))

≡ 1 + a · z (IH (1))

(Denest) We have a compound normal form a · x + y under a star; we will push back the

maximal test a. By our first IH on (2) we know that that y∗ ≡ y ′ for some y ′; by
our first IH on (1), we know that x · y ′ ≡ x ′ for some x ′; by our second IH on (2),

we know that (a · x ′)∗ ≡ z for some z; and by our second IH on (1), we know that

y ′ · z ≡ z ′ for some z ′. We must show that (a · x + y)∗ ≡ z ′. We compute:

(a · x + y)∗

≡ y∗ · (a · x · y∗)∗ (denesting with p = a · x and q = y; Lemma 3.30)

≡ y ′ · (a · x · y ′)∗ (first IH (2))

≡ y ′ · (a · x ′)∗ (first IH (1))

≡ y ′ · z (second IH (2))

≡ z ′ (second IH (1))

Pushing tests through actions (m · a PB• y).

(SeqZero) We are pushing 0 back through a restricted actionm. We immediately findm ·0 ≡ 0

by KA-Seq-Zero.

(SeqOne) We are pushing 1 back through a restricted actionm. We find:

m · 1
≡ m (KA-One-Seq)

≡ 1 ·m (KA-Seq-One)

(SeqSeqTest) We are pushing the tests a · b through the restricted actionm. By our first IH on

(3), we havem · a ≡ y; by our second IH on (3), we have y · b ≡ z. We compute:

m · (a · b)
≡ m · a · b (KA-Seq-Assoc)

≡ y · b (first IH (3))

≡ z (second IH (3))
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1:34 Michael Greenberg, Ryan Beckett, and Eric Campbell

(SeqSeqAction) We are pushing the test a through the restricted actionsm · n. By our IH on (3),

we have n · a ≡ x ; by our IH on (4), we havem · x ≡ y. We compute:

(m · n) · a
≡ m · (n · a) (KA-Seq-Assoc)

≡ m · x (IH (3))

≡ y (IH (4))

(SeqParTest) We are pushing the tests a + b through the restricted actionm. By our first IH on

(3), we havem · a ≡ x ; by our second IH on (3), we havem · b ≡ y. We compute:

m · (a + b)
m · a +m · b (KA-Dist-L)

≡ x +m · b (first IH (3))

≡ x + y (second IH (3))

(SeqParAction) We are pushing the test a through the restricted actionsm + n. By our first IH on

(3), we havem · a ≡ x ; by our second IH on (3), we have n · a ≡ y. We compute:

(m + n) · a
m · a + n · a (KA-Dist-R)

≡ x + n · a (first IH (3))

≡ x + y (second IH (3))

(Prim) We are pushing a primitive predicate α through a primitive action π . We have, by

assumption, that π · a WP {a1, . . . ,ak }. By definition of the WP relation, it must

be the case that π · α ≡
∑k

i=1 ai · π

(PrimNeg) We are pushing a negated predicate ¬a back through a primitive action π . We

have, by assumption, that π · a PB•
∑

i ai · pi and that nnf(¬(
∑

i ai )) = b, so
¬(
∑

i ai ) ≡ b (Lemma 3.28). By the IH, we know that π · a ≡
∑

i ai · π ; we must

show that π · ¬a ≡ b · π . By our assumptions, we know that b · π ≡ ¬(
∑

i ai ) · π ,
so by pushback negation (Pushback-Neg/Lemma 3.1).

(SeqStarSmaller) We are pushing the test a through the restricted actionm∗. By our IH on (3), we

havem · a ≡ x for some x ; by our IH on (4), we havem∗ · x ≡ y for some y. We

compute:

m∗ · a
≡ (1 +m∗ ·m) · a (KA-Unroll-R)

≡ a +m∗ ·m · a (KA-Dist-R)

≡ a +m∗ · (m · a) (KA-Seq-Assoc)

≡ a +m∗ · x (IH (3))

≡ a + y (IH (4))

(SeqStarInv) We are pushing the test a through the restricted actionm∗. By our IH on (3), there

exist t and u such thatm · a ≡ a · t + u; by our IH on (4), there exists an x such

thatm∗ · u ≡ x ; by our IH on (2), there exists a y such that u∗ ≡ y; and by our IH

on (1), there exists a z such that x · y ≡ z. We compute:
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m . a = a . t + u m* a = (a + m* . u) + t*

m∗ · a
≡ (a +m∗ · u) · t∗ (star invariant on IH (3); Lemma 3.31)

≡ a · t∗ +m∗ · u · t∗ (KA-Dist-R)

≡ a · t∗ + x · t∗ (IH (4))

≡ a · y + x · y (IH (2))

≡ a · y + z (IH (1))

Pushing normal forms through actions (m · x PBR z).

(Restricted) We have x =
∑k

i=1 ai · ni . By the IH on (3),m · ai PB• yi . We compute:

m · x

≡ m ·
∑k

i=1 ai · ni
≡

∑k
i=1m · ai · ni (KA-Dist-L)

≡
∑k

i=1 yi · ni (IH (3))

Pushing tests through normal forms (x · a PBT y).

(Test) We have x =
∑k

i=1 ai ·mi . By the IH on (3), we have mi · a PB• yi where yi =∑l
j=1 bi j ·mi j . We compute:

x · a

≡

[∑k
i=1 ai ·mi

]
· a

≡
∑k

i=1 ai ·mi · a (KA-Dist-R)

≡
∑k

i=1 ai · (mi · a) (KA-Seq-Assoc)

≡
∑k

i=1 ai · yi (IH (3))

≡
∑k

i=1 ai ·
∑l

j=1 bi j ·mi j

≡
∑k

i=1
∑l

j=1 ai · bi j ·mi j (KA-Dist-L)

□

Theorem 3.35 (Pushback existence). For all x andm and a:

(1) For all y and z, if x ⪯ z and y ⪯ z then there exists some z ′ ⪯ z such that x · y PBJ z ′.
(2) There exists a y ⪯ x such that x∗ PB∗ y.
(3) There exists some y ⪯ a such thatm · a PB• y.
(4) There exists a y ⪯ x such thatm · x PBR y.
(5) If x ⪯ z and a ⪯ z then there exists a y ⪯ z such that x · a PBT y.

Proof. By induction on the lexicographical order of: the subterm ordering (≺); the size of x (for
(1), (2), (4), and (5)); the size ofm(for (3) and (4)); and the size of a(for (3)).

Sequential composition of normal forms (x ·y PBJ z). We have x =
∑k

i=1 ai ·mi andy =
∑l

j=1 bj ·nj ;
by the IH on (3) with the size decreasing onmi , we know thatmi · bj PB• xi j for each i and j such

that xi j ⪯ ai , so by Join, we know that x · y PBJ ∑k
i=1

∑l
j=1 aixi jnj = z ′.

Given that x ,y ⪯ z, it remains to be seen that z ′ ⪯ z. We’ve assumed that ai ⪯ x ⪯ z. By our IH

on (3) we found earlier that xi j ⪯ ai ⪯ z. Therefore, by unpacking x and applying test bounding

(Lemma 3.22), ai · xi j · nj ⪯ z. By normal form parallel congruence (Lemma 3.22), we have z ′ ⪯ z.)
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Kleene star of normal forms (x∗ PBJ y). If x is vacuous, we find that 0
∗ PB∗ 1 by StarZero, with

1 ⪯ 0 since they have the same maximal terms (just 1).

If x isn’t vacuous, then we have x ≡ a · x1 + x2 where x1,x2 ≺ x and a ∈ mt(x) by splitting

(Lemma 3.25). We first consider whether x2 is vacuous.

(x2 is vacuous) We have x ≡ a · x1 + 0 ≡ a · x1.

By our IH on (5) with x1 decreasing in size, we have x1 · a PBT w where w ⪯ x
(because x1 ≺ x and a ⪯ x). By maximal test inequality (Lemma 3.24), we have

two cases: either a ∈ mt(w) orw ≺ a ⪯ x .

(a ∈ mt(w)) By splitting (Lemma 3.25), we havew ≡ a · t +u for some normal

forms t ,u ≺ w .

By normal-form parallel congruence (Lemma 3.22), t + u ≺ x ; so
by the IH on (2) with our subterm ordering decreasing on t+u ≺ x ,
we find that (t + u)∗ PB∗ w ′ for some w ′ ⪯ (t + u)∗ ≺ w ⪯ x .
Since w ′ ≺ x , we can apply our IH on (1) with our subterm

ordering decreasing onw ′ ≺ x to find thatw ′ · x1 PBJ z such that

z ⪯ x1 ≺ x (sincew ′ ⪯ x and x1 ≺ x ).

Finally, we can see by Expand that x = (a · x1)
∗ PB∗ 1 + a · z = y.

Since each 1,a, z ⪯ x , we have y = 1 + a · z ⪯ x as needed.

(w ≺ a) Sincew ≺ a, we can apply our IH on (2) with our subterm order

decreasing onw ≺ x to find thatw∗ PB∗ w ′ such thatw ′ ⪯ w ≺
a ⪯ x . By our IH on (1) with our subterm order decreasing on

w ′ ≺ x to find that w ′ · x1 PBJ z where z ⪯ x (because w ′ ⪯ x
and x1 ≺ x ).

We can now see by Slide that x = (a ·x1)
∗ PB∗ 1+a ·z = y. Since

each 1,a, z ⪯ x , we have y = 1 + a · z ⪯ x as needed.

(x2 isn’t vacuous) We have x ≡ a · x1 + x2 where xi ≺ x and a ∈mt(x). Since x2 isn’t vacuous, we
must have a ≺ x , not just a ⪯ x .

By the IH on (2) with the subterm ordering decreasing on x2 ≺ x , we find x2 PB∗ w
such thatw ⪯ x2. By the IH on (1) with the subterm ordering decreasing on x1 ≺ x ,
we have x1 ·w PBJ v where v ⪯ x (because x1 ⪯ x andw ⪯ x). By the IH on (2)

with the subterm ordering decreasing on a · v ≺ x , we find (a · v)∗ PB∗ z where
z ⪯ a · v ≺ x . By our IH on (1) with the subterm ordering decreasing onw ≺ x ,
we findw · z PBJ y where y ≺ x (becausew ≺ x and z ≺ x ).

By Denest, we can see that x ≡ (a · x1 + x2)
∗ PB∗ y, and we’ve already found

that y ⪯ x as needed.

Pushing tests through actions (m · a PB• y). We go by cases on a andm to find the y ⪯ a such

thatm · a PB• y.

(m, 0) We havem · 0 PB• 0 by SeqZero, and 0 ⪯ 0 immediately.

(m, 1) We havem · 1 PB• 1 ·m by SeqOne and 1 ⪯ 1 immediately.

(m,a · b) By the IH on (3) decreasing in size on a, we know thatm ·a PB• x where x ⪯ a ⪯ a ·b.
By the IH on (5) decreasing in size on b, we know that x ·b PBT y. Finally, we know
by SeqSeqTest thatm · (a · b) PB• y. Since x ⪯ a · b and b ⪯ a · b, we know by the

IH on (5) earlier that y ⪯ a · b.
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(m,a + b) By the IH on (3) decreasing in size on a, we know thatm ·a PB• x such that x ⪯ a ⪯
a + b. Similarly, by the IH on (3) decreasing in size on b, we know thatm · b PB• z
such that z ⪯ b ⪯ a + b. By SeqParTest, we know thatm · (a + b) PB• x + z = y;
by normal form parallel congruence, we know that y = x + z ⪯ a + b as needed.

(m · n,a) By the IH on (3) decreasing in size on n, we know that n · a PB• x such that x ⪯ a.
By the IH on (4) decreasing in size on m, we know that m · x PBR y such that

y ⪯ x ⪯ a (which are the size bounds on y we needed to show). All that remains to

be seen is that (m · n) · a PB• y, which we have by SeqSeqAction.

(m + n,a) By the IH on (3) decreasing in size onm, we know thatm · a PB• x . Similarly, by

the IH on (3) decreasing in size on n, we know that n · a PB• z. By SeqParAction,

we know that (m + n) · a PB• x + z = y. Furthermore, both IHs let us know that

x , z ⪯ a, so by normal form parallel congruence, we know that y = x + z ⪯ a.

(π ,¬a) By the IH on (3) decreasing in size on a, we can find that π · a PB•
∑

i ai · π where∑
i ai ⪯ a, and nnf(¬(

∑
i ai )) = b for some term b. It remains to be seen that b ⪯ ¬a,

which we have by monotonicity of nnf (Lemma 3.21).

(π ,α) In this case, we fall back on the client theory’s pushback operation (Definition 3.26).

We have π · α WP {a1, . . . ,ak } such that ai ⪯ α . By Prim, we have π · α PB•∑k
i=1 ai · π = y; since each ai ⪯ α , we find y ⪯ α by the monotonicity of union

(Lemma 3.18).

(m∗,a) We’ve already ruled out the case where a = b · c , so it must be the case that

seqs(a) = {a}, so mt(a) = {a}.

By the IH on (3) decreasing in size onm, we know thatm · a PB• x such that x ⪯ a.
There are now two possibilities: either x ≺ a or a ∈ mt(x) = {a}.

(x ≺ a) By the IH on (4) with x ≺ a, we know by SeqStarSmaller thatm∗ ·x PBR y
such that y ⪯ x ≺ a.

(a ∈ mt(x)) By splitting (Lemma 3.25), we have x ≡ a · t + u, where t and u are normal

forms such that t ,u ≺ x ⪯ a.

By the IH on (4) with t ≺ a, we know that m∗ · t PBR w such that w ⪯
t ≺ x ⪯ a. By the IH on (2) with u ≺ x ⪯ a, we know that u∗ PB∗ z such
that z ⪯ u ≺ x ⪯ a. By the IH on (1) with w ≺ a and z ≺ a, we find that

w · z PBJ v such that v ⪯ w ≺ a.

Finally we have our y: by SeqStarInv, we havem∗ · a PB• a · z + v = y.
Since z ⪯ a and a ⪯ a, we have a · z ⪯ a (mixed sequence congruence;

Lemma 3.22) and v ≺ a. By normal form parallel congruence, we have

a · z +v ⪯ a (Lemma 3.22).

Pushing normal forms through actions (m · x PBR z). We have x =
∑k

i=1 ai · ni ; by the IH on (3)

with the size decreasing on ni , we know that m · ai PB• xi for each i such that xi ⪯ ai , so by

Restricted, we know thatm · x PBR ∑k
i=1 xini = y.

We must show that y ⪯ x . By our IH on (3) we found earlier that xi ⪯ ai . By normal form parallel

congruence (Lemma 3.22), we have y ⪯ x .

Pushing tests through normal forms (x · a PBT y). We have x =
∑k

i=1 ai ·mi ; by the IH on (3) with

the size decreasing onmi , we know thatmi · a PB• yi =
∑l

j=1 bi jmi j where yi ⪯ a. Therefore, we

know that x · a PBT ∑k
i=1

∑l
j=1 ai · bi j ·mi j = y by Test.
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Given that x ⪯ z and a ⪯ z, We must show that y ⪯ z. We already know that ai ⪯ x ⪯ z, and we
found from the IH on (3) earlier that bi j ⪯ yi ⪯ a ⪯ z. By test bounding (Lemma 3.22), we have

ai · bi j ⪯ z, and therefore y ⪯ z by normal form parallel congruence (Lemma 3.22).

□

Finally, to reiterate our discussion of PB•, Theorem 3.35 shows that every left-hand side of the

pushback relation has a corresponding right-hand side. We haven’t proved that the pushback

relation is functional— if a term has more than one maximal test, there could be many different

choices of how we perform the pushback.

Now that we can push back tests, we can show that every term has an equivalent normal form.

Corollary 3.36 (Normal forms). For all p ∈ T ∗, there exists a normal form x such p norm x
and that p ≡ x .

Proof. By induction on p.

(Pred) We have a ≡ a immediately.

(Act) We have π ≡ 1 · π by KA-Seq-One.

(Par) By the IHs and congruence.

(Seq) We have p = q · r ; by the IHs, we know that q norm x and r norm y. By pushback

existence (Theorem 3.35), we know that x · y PBJ z for some z. By pushback

soundness (Theorem 3.34), we know that x · y ≡ z. By congruence, p ≡ z.

(Star) We have p = q∗. By the IH, we know that q norm x . By pushback existence

(Theorem 3.35), we know that x∗ PB∗ y. By pushback soundness (Theorem 3.34),

we know that x∗ ≡ y.

□

The PB relations and these two proofs are one of the contributions of this paper: we believe it is

the first time that a KAT normalization procedure has been made so explicit, rather than hiding

inside of completeness proofs. Temporal NetKAT, which introduced the idea of pushback, proved a

concretization of Theorems 3.34 and 3.35 as a single theorem and without any explicit normalization

or pushback relation.

3.4 Completeness
We prove completeness—if [[p]] = [[q]] then p ≡ q—by normalizing p and q and comparing the

resulting terms. Our completeness proof uses the completeness of Kleene algebra (KA) as its

foundation: the set of possible traces of actions performed for a restricted (test-free) action in our

denotational semantics is a regular language, and so the KA axioms are sound and complete for it. In

order to relate our denotational semantics to regular languages, we define the regular interpretation

of restricted actionsm ∈ TRA in the conventional way and then relate our denotational semantics

to the regular interpretation (Fig. 17). Readers familiar with NetKAT’s completeness proof may

notice that we’ve omitted the language model and gone straight to the regular interpretation. We’re

able to shorten our proof because our tracing semantics is more directly relatable to its regular

interpretation, and because our completeness proof separately defers to the client theory’s decision

procedure for the predicates at the front. Our normalization routine—the essence of our proof—only

uses the KAT axioms and doesn’t rely on any property of our tracing semantics. We conjecture

that one could prove a similar completeness result and derive a similar decision procedure with

a merging, non-tracing semantics, like in NetKAT or KAT+B! [1, 30]. We haven’t attempted the

proof or an implementation.
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R : TRA → P(Π
∗
T
)

R(1) = {ϵ}
R(π ) = {π }

R(m + n) = R(m) ∪ R(n)
R(m · n) = {uv | u ∈ R(m),v ∈ R(n)}
R(m∗) =

⋃
0≤i R(m)

i

label : Trace→ Π∗
T

label(⟨σ ,⊥⟩) = ϵ
label(t ⟨σ ,π ⟩) = label(t)π

L0 = {ϵ}
Ln+1 = {uv | u ∈ L,v ∈ Ln }

Fig. 17. Regular interpretation of restricted actions

Lemma 3.37 (Restricted actions are ahistorical). If [[m]](t1) = t1, t and last(t1) = last(t2)
then [[m]](t2) = t2, t .

Proof. By induction onm.

(m = 1) Immediate, since t is empty.

(m = π ) We immediately have t = ⟨last(t1),π ⟩.

(m =m + n) We have [[m + n]](t1) = [[m]](t1) ∪ [[n]](t1) and [[m + n]](t2) = [[m]](t2) ∪ [[n]](t2). By
the IHs.

(m =m · n) We have [[m ·n]](t1) = ([[m]] • [[n]])(t1) and [[m ·n]](t2) = ([[m]] • [[n]])(t2). It must be

that [[m]](t1) = {t1, tmi }, so by the IH we have [[m]](t2) = {t2, tmi }. These sets have

the same last states, so we can apply the IH again for n, and we are done.

(m =m∗) We have [[m∗]](t1) =
⋃

0≤i [[m]]
i (t1). By induction on i .

(i = 0) Immediate, since [[m]]0(ti ) = ti and so t is empty.

(i = i + 1) By the IH and the reasoning above for ·.

□

Lemma 3.38 (Labels are regular). {label([[m]](⟨σ ,⊥⟩)) | σ ∈ State} = R(m)

Proof. By induction on the restricted actionm.

(m = 1) We have R(1) = {ϵ}. For all σ , we find [[1]](⟨σ ,⊥⟩) = {⟨σ ,⊥⟩}, and label(⟨σ ,⊥⟩) =
ϵ .

(m = π ) We R(π ) = {π }. For all σ , we find [[π ]](⟨σ ,⊥⟩) = {⟨σ ,⊥⟩⟨act(π ,σ ),π ⟩}, and so

label(⟨σ ,⊥⟩⟨act(π ,σ ),π ⟩) = π .

(m =m + n) We have R(m + n) = R(m) ∪ R(n). For all σ , we have:

label([[m + n]](⟨σ ,⊥⟩)) = label([[m]](⟨σ ,⊥⟩) ∪ [[n]](⟨σ ,⊥⟩))
= label([[m]](⟨σ ,⊥⟩)) ∪ label([[n]](⟨σ ,⊥⟩))

and we are done by the IHs.

(m =m · n) We have R(m · n) = {uv | u ∈ R(m),v ∈ R(n)}. For all σ , we have:

label([[m · n]](⟨σ ,⊥⟩)) = label(([[m]] • [[n]])(⟨σ ,⊥⟩))
= label(

⋃
t ∈[[m]](⟨σ ,⊥⟩) label([[n]](t)))

= label(
⋃

t ∈[[m]](⟨σ ,⊥⟩) label(t[[n]](⟨σ ,⊥⟩))) by Lemma 3.37

= label([[m]](⟨σ ,⊥⟩))label([[n]](⟨σ ,⊥⟩))

and we are done by the IHs.

(m =m∗) We have R(m∗) =
⋃

0≤i R(m)
i
. For all σ , we have:

label([[m∗]](⟨σ ,⊥⟩)) = label(
⋃

0≤i [[m]]
i (⟨σ ,⊥⟩))

=
⋃

0≤i label([[m]]
i (⟨σ ,⊥⟩))
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and we are done by the IH.

□

Our proof of completeness works by normalizing each side of the equation, making each side

locally unambiguous, making the entire equation unambiguous, and then using word equality to

ensure that normal forms with equivalent predicates have equivalent actions.

Theorem 3.39 (Completeness). If the emptiness of T predicates is decidable, then if [[p]] = [[q]]
then p ≡ q.

Proof. There must exist normal forms x and y such that p norm x and q norm y and p ≡ x and

q ≡ y (Corollary 3.36); by soundness (Theorem 3.5), we can find that [[p]] = [[x]] and [[q]] = [[y]],
so it must be the case that [[x]] = [[y]]. We will find a proof that x ≡ y; we can then transitively

construct a proof that p ≡ q.
We have x =

∑
i ai ·mi and y =

∑
j bj · nj . In principle, we ought to be able to match up each

of the ai with one of the bj and then check to see whethermi is equivalent to nj (by appealing to

the completeness on Kleene algebra). But we can’t simply do a syntactic matching—we could have

ai and bj that are in effect equivalent, but not obviously so. Worse still, we could have ai and ai′

equivalent! We need to perform two steps of disambiguation: first each normal form’s predicates

must be unambiguous locally, and then the predicates must be pairwise comparable between the

two normal forms.

To construct independently unambiguous normal forms, we explode our normal form x into a

disjoint form x̂ , where we test each possible combination of the predicates ai (excluding the case
where we select none) and run the actions corresponding to the true predicates, i.e.,mi gets run

precisely when ai is true:

x̂ = a1 · a2 · . . . · an · (m1 +m2 + . . . +mn)

+ ¬a1 · a2 · . . . · an · (m2 + . . . +mn)

+ a1 · ¬a2 · . . . · an · (m1 + . . . +mn)

+ . . .
+ ¬a1 · ¬a2 · . . . · an ·mn
+ ¬a1 · ¬a2 · . . . · ¬an · 0


all combinations of ai (2

n
summands)

and similarly for ŷ. We can find x ≡ x̂ via distributivity (BA-Plus-Dist), commutativity (KA-Plus-

Comm, BA-Seq-Comm) and the excluded middle (BA-Excl-Mid).

Observe that the sum of all of the predicates in x̂ and ŷ are respectively equivalent to 1, since it

enumerates all possible combinations of each ai (BA-Plus-Dist, BA-Excl-Mid); i.e., if x̂ =
∑

i ci · li
and ŷ =

∑
j dj ·mj , then

∑
i ci ≡ 1 and

∑
j dj ≡ 1. We can take advantage of exhaustiveness of

these sums to translate the locally disjoint but syntactically unequal predicates in each x̂ and ŷ
to a single set of predicates on both, which allows us to do a syntactic comparison on each of the

predicates. Let Üx and Üy be the extension of x̂ and ŷ with the tests from the other form, giving us

Üx =
∑

i, j ci · dj · li and Üy =
∑

i, j ci · dj ·mj . Extending the normal forms to be disjoint between

the two normal forms is still provably equivalent using commutativity (BA-Seq-Comm) and the

exhaustiveness above (KA-Seq-One).

Now that each of the predicates are syntactically uniform and disjoint, we can proceed to compare

the commands. But there is one final risk: what if the ci · dj ≡ 0? Then li and oj could safely be

different. We have assumed that the predicates of T can be checked for emptiness, so we can

eliminate those cases where the expanded tests at the front of Üx and Üy are equivalent to zero, which is

sound by the client theory’s completeness and zero-cancellation (KA-Zero-Seq and KA-Seq-Zero).

If one normal form is empty, the other one must be empty as well.
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Finally, we can defer to deductive completeness for KA to find proofs that the commands are

equivalent. To use KA’s completeness to get a proof over commands, we have to show that if our

commands have equal denotations in our semantics, then they will also have equal denotations

in the KA semantics. We’ve done exactly this by showing that restricted actions have regular

interpretations: because the zero-canceled Üx and Üy are provably equivalent, soundness guarantees

that their denotations are equal. Since their tests are pairwise disjoint, if their denotations are

equal, it must be that any non-canceled commands are equal, which means that each label of these
commands must be equal—and so R(li ) = R(oj ) (Lemma 3.38). By the deductive completeness of

KA, we know that KA ⊢ li ≡ oj . Since we have the KA axioms in our system, then li ≡ oj ; by
reflexivity, we know that ci · dj ≡ ci · dj , and we have proved that Üx ≡ Üy. By transitivity, we can see

that x̂ ≡ ŷ and so x ≡ y and p ≡ q, as desired. □

4 IMPLEMENTATION
We have implemented our ideas in an OCaml library; the library’s source code, tests, and our

evaluation workbench are available online.
1
Sec. 1.3 summarizes the high-level idea and gives an

example library implementation for the theory of increasing natural numbers. To use a higher-order

theory such as that of product theories, one need only instantiate the appropriate modules in the

library:

module P = Product(IncNat)(Boolean)

module D = Decide(P) (* normalization-based decision procedure *)

let a = P.K.parse "y<1; (a=F + a=T; inc(y)); y>0" in

let b = P.K.parse "y<1; a=T; inc(y)" in

assert (D.equivalent a b)

The module P instantiates Product over our theories of incrementing naturals and booleans; the

module D gives a way to normalize terms based on the completeness proof. User’s of the library

can access these representations to perform any number of tasks such as compilation, verification,

inference, and so on. For example, checking language equivalence is then simply a matter of reading

in KMT terms and calling the equivalence function. Our implementation currently supports both

a decision procedure based on automata (not yet completely correct, and so omitted from this

article) and one based on the normalization term-rewriting from the completeness proof. We’ve

implemented a command-line tool that can be configured to work these theories; given a variety of

KMT terms as input, it partitions them into equivalence classes using the decision procedure of the

user’s choice.

4.1 Optimizations
In practice, our implementation uses several optimizations, with the two most prominent being (1)

hash-consing all KAT terms to ensure fast set operations, and (2) lazy construction and exploration

of automata during equivalence checking.

Our hash-consing constructors are smart constructors, automatically rewriting common identities

(e.g., constructing p · 1will simply return p; constructing (p∗)∗ will simply return p∗). Client theories
can extend our smart constructors to witness theory-specific identities. These optimizations are

partly responsible for the speed of our normalization routine (when it avoids the costlyDenest case).

When deciding equivalence using normalization, we use the Hopcroft and Karp algorithm [32] on

implicit automata using the Brzozowski derivative [9] to generate the transition relation on-the-fly.

1
https://github.com/mgree/kmt
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Benchmark T Time to check equivalence
a∗ . a (for random arithmetic predicate a) N 0.034s

inc∗x ;x > 10 ≡ inc∗x ; inc
∗
x ;x > 10 N <0.001s

inc∗x ;x > 3; inc∗y ;y > 3 ≡ inc∗x ; inc
∗
y ;x > 3;y > 3 N <0.001s

x = f; (flip x ; flip x)∗ ≡ (flip x ; flip x)∗;x = f B <0.001s

w := f;x := t;y := f; z := f;

((w = t + x = t + y = t + z = t);a := t+

(¬(w = t + x = t + y = t + z = t));a := f)

≡ w := f;x := t;y := f; z := f;

(((w = t + x = t) + (y = t + z = t));a := t+

(¬((w = t + x = t) + (y = t + z = t)));a := f)

B <0.001s

y < 1;a = t; incy ;
(1 + b = t; incy );
(1 + c = t; incy );y > 2

≡ y < 1;a = t;b = t; c = t; incy ; incy ; incy

N × B 0.309s

(flip x + flip y + flip z)∗ = (flip x + flip y + flip z)∗ B >30s (timeout)

Fig. 18. Implementation microbenchmarks

Client theories can implement custom solvers or rely on Z3 embeddings—custom solvers are

typically faster. We’ve implemented a few of these domain-specific optimizations: satisfiability

procedure for IncNat makes a heuristic decision between using our incomplete custom solver or

Z3 [18]—our solver is much faster on its restricted domain.

5 EVALUATION
We performed a few experiments to evaluate our tool on a collection of simple microbenchmarks.

Fig. 18 shows the microbenchmarks, each of which performs a simple task. For instance, the

population-count example initializes a collection of boolean variables and then counts how many

are set to true using a natural number counter. It proves that, if the number is above a certain

threshold, then all booleans must have been set to true. The figure also shows the time it takes to

verify the equivalence of terms for each example . We use a timeout of thirty seconds.

Our normalization-based decision procedure is very fast in many cases. This is likely due to a

combination of hash-consing and smart constructors that rewrite complex terms into simpler ones

when possible, and the fact that, unlike previous KAT-based normalization proofs (e.g., [1, 37]) our

normalization proof does not require splitting predicates into all possible “complete tests.” However,

the normalization-based decision procedure does very poorly on examples where there is a sum

nested inside of a Kleene star, i.e., (p + q)∗. The fourth, parity-swapping benchmark is one such

example – it flips the parity of a boolean variable an even number of times and verifies that the

end value is always the same as the initial value. In this case the normalization-based decision

procedure must repeatedly invoke the Denest rewriting rule, which greatly increases the size of

the term on each invocation.

6 RELATEDWORK
Kozen and Mamouras’s Kleene algebra with equations [40] is perhaps the most closely related work:

they also devise a framework for proving extensions of KAT sound and complete. Our works share

a similar genesis: Kleene algebra with equations generalizes the NetKAT completeness proof (and

then reconstructs it); our work generalizes the Temporal NetKAT completeness proof (and then

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.



2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Kleene Algebra Modulo Theories 1:43

reconstructs it—while also developing several other, novel KATs). Both their work and ours use

rewriting to find normal forms and prove deductive completeness. Their rewriting systems work on

mixed sequences of actions and predicates, but they can only delete these sequences wholesale or

replace them with a single primitive action or predicate; our rewriting system’s pushback operation

only works on predicates (since the trace semantics preserves the order of actions), but pushback

isn’t restricted to producing at most a single primitive predicate. Each framework can do things the

other cannot. Kozen and Mamouras can accommodate equations that combine actions, like those

that eliminate redundant writes in KAT+B! and NetKAT [1, 30]; we can accommodate more complex

predicates and their interaction with actions, like those found in Temporal NetKAT [8] or those

produced by the compositional theories (Sec. 2). It may be possible to build a hybrid framework,

with ideas from both. A trace semantics occurs in previous work on KAT as well [26, 37].

Kozen studies KATs with arbitrary equations x := e [38], also called Schematic KAT, where

e comes from arbitrary first-order structures over a fixed signature Σ. He has a pushback-like

axiom x := e · p ≡ ϕ[x/e] · x := e . Arbitrary first-order structures over Σ’s theory are much more

expressive than anything we can handle—the pushback may or may not decrease in size, depending

on Σ; KATs over such theories are generally undecidable. We, on the other hand, are able to offer

pay-as-you-go results for soundness and completeness as well as an implementations for deciding

equivalence—but only for first-order structures that admit a non-increasing weakest precondition.

Other extensions of KAT often give up on decidabililty, too. Larsen et al. [42] allow comparison

of variables, but this of course leads to an incomplete theory. They are, able, however, to decide

emptiness of an entire expression.

Coalgebra provides a general framework for reasoning about state-based systems [39, 54, 59],

which has proven useful in the development of automata theory for KAT extensions. Although

we do not explicitly develop the connection in this paper, KMT uses tools similar to those used

in coalgebraic approaches, and one could perhaps adapt our theory and implementation to that

setting. In principle, we ought to be able to combine ideas from the two schemes into a single, even

more general framework that supports complex actions and predicates.

Smolka et al. [61] find an almost linear algorithm for checking equivalence of guarded KAT terms

(O(n · α(n)), where α is the inverse Ackermann function), i.e., terms which use if and while instead
of + and

∗
, respectively. Their guarded KAT is completely abstract, while our KMTs are completely

concrete.

Our work is loosely related to Satisfiability Modulo Theories (SMT) [19]. The high-level motiva-

tion is the same—to create an extensible framework where custom theories can be combined [47]

and used to increase the expressiveness and power [62] of the underlying technique (SAT vs. KA).

However, the specifics vary greatly—while SMT is used to reason about the formula satisfiability,

KMT is used to reason about how program structure interacts with tests. Some of our KMT theories

implement satisfiability checking by calling out to Z3 [18].

The pushback requirement detailed in this paper is closely related to the classical notion of

weakest precondition [6, 20, 55]. The pushback operation isn’t quite a generalization of weakest

preconditions because the various PB relations can change the program itself. Automatic weakest

precondition generation is generally limited in the presence of loops in while-programs. While

there has been much work on loop invariant inference [24, 25, 27, 34, 49, 57], the problem remains

undecidable in most cases; however, the pushback restrictions of “growth” of terms makes it possible

for us to automatically lift the weakest precondition generation to loops in KAT. In fact, this is

exactly what the normalization proof does when lifting tests out of the Kleene star operator.
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7 CONCLUSION
Kleene algebra modulo theories (KMT) is a new framework for extending Kleene algebra with tests

with the addition of actions and predicates in a custom domain. KMT uses an operation that pushes

tests back through actions to go from a decidable client theory to a domain-specific KMT. Derived

KMTs are sound and complete with respect to a trace semantics; we derive decision procedures for

the KMT in an implementation that mirrors our formalism. The KMT framework captures common

use cases and can reproduce by simple composition several results from the literature, some of which

were challenging results in their own right, as well as several new results: we offer theories for

bitvectors [30], natural numbers, unbounded setsand maps, networks [1], and temporal logic [8].

Our ability to reason about unbounded state is novel. Our work, however, is limited to tracing

semantics; we conjecture that it is possible to merge actions (as in KAT+B!, NetKAT, and Kleene

algebra with equations [1, 30, 40]), but leave it to future work.
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