
A

Polymorphic Manifest Contracts, Revised and Resolved

TARO SEKIYAMA and ATSUSHI IGARASHI, Kyoto University
MICHAEL GREENBERG, Princeton University

Manifest contracts track precise program properties by refining types with predicates—e.g., {x :Int | x > 0}
denotes the positive integers. Contracts and polymorphism make a natural combination: programmers can
give strong contracts to abstract types, precisely stating pre- and post-conditions while hiding implemen-
tation details—for example, an abstract type of stacks might specify that the pop operation has input type
{x :α Stack | not (empty x)}.

Belo et al. [2011] defined FH, a polymorphic calculus with manifest contracts and dependent functions,
and established fundamental properties including type soundness and relational parametricity. Greenberg
[2013] fixed some but not all of the metatheoretical problems in FH ’s type conversion relation. We define
FσH, which resolves the issues in both prior versions of FH ’s with new semantics for substitution and a new
conversion relation.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory;
D.2.4 [Software engineering]: Software/Program Verification—Programming by contract; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages

General Terms: Languages, Design, Theory

Additional Key Words and Phrases: contracts, refinement types, preconditions, postconditions, dynamic
checking, runtime verification, parametric polymorphism, abstract datatypes, syntactic proof, logical re-
lations

1. INTRODUCTION
Software contracts allow programmers to state precise properties as concrete predi-
cates written in the same language as the rest of the program; for example, contracts
can indicate that a function takes a non-empty list to a positive integer. These predi-
cates can be checked dynamically as the program executes or, more ambitiously, veri-
fied statically with the assistance of a theorem prover. Findler and Felleisen [2002] in-
troduced “higher-order contracts” for functional languages, defining the first runtime
verification semantics for a functional language; these contracts can take one of two
forms: predicate contracts given by a Boolean function and function contracts c1 7→ c2,
which designate contracts for a function’s input and output by c1 and c2, respectively.
Greenberg, Pierce, and Weirich [2010] contrast two different approaches to contracts
according to how contracts and types interact with each other: in the latent approach,
contracts and types live in different worlds (indeed, there may be no types at all, as in
Racket’s contract system [Flatt and PLT 2010; PLT 2014]); in the manifest approach,
contracts are types–the type system itself makes contracts ‘manifest’–and dynamic

This article extends, clarifies, and revises Belo et al. [2011] and Chapter 3 of Greenberg [2013]. It is not
merely an extended version with proofs. This work was supported in part by the National Science Founda-
tion under grant 0915671, Contracts for Precise Types, in part by the JSPS Grant-in-Aid for Young Scientists
(A) No. 21680002, and in part by the Portuguese Foundation for Science and Technology, POPH - QREN, un-
der grant SFRH / BPD / 46065 / 2008.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0164-0925/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Sekiyama et al.

contract checking is expressed by type conversions, which are more commonly called
casts.

Manifest contracts are a sensible choice for combining contracts and other type-
based abstraction mechanisms, such as, abstract datatypes (ADTs). Abstract datatypes
already use the type system to mediate access to abstractions; manifest contracts allow
types to exercise a still finer grained control. To motivate the combination of contracts
and ADTs, consider the interface of an abstract datatype (ADT) modeling the natural
numbers, written in an ML-like language:

module type NAT =
sig

type t
val zero : t
val succ : t -> t
val isZ : t -> bool
val pred : t -> t

end

It is an abstract datatype because the actual representation of t is hidden: users of NAT
interact with it through the constructors and operations provided. The zero construc-
tor represents 0; the succ constructor takes a natural and produces its successor. The
predicate isZ determines whether a given natural is zero. The pred operation takes a
natural number and returns its predecessor.

This interface, however, is not fine-grained enough to prevent misuse of partial oper-
ations. For example, pred can be applied to zero, whereas the mathematical natural-
number predecessor operation isn’t defined for zero.

Using contracts, we can explicitly specify the constraint that an argument to pred is
not zero:

module type NAT =
sig

type t
val zero : t
val succ : t -> t
val isZ : t -> bool
val pred : {x:t | not (isZ x)} -> t

end

The type {x:t | not (isZ x)} is a refinement type and denotes the set of values x
such that not (isZ x) evaluates to true. So, this new interface does not allow pred to
be applied to zero.

In this article, we study the interaction between type abstraction and (manifest)
contracts. We introduce a polymorphic manifest contract calculus FσH, which is an ex-
tension of System F with manifest contracts, and investigate its properties. Actually,
FσH is based on another polymorphic manifest contract calculus FH proposed by Belo
et al. [2011] and fixes a few technical flaws (which we will discuss later) found in FH.

Both FH and FσH scale up to polymorphism by diverging from earlier manifest cal-
culi such as λH [Flanagan 2006], a simply typed manifest contract calculus—for two
reasons.

First, we would naturally need so-called “general refinements”, where the underly-
ing type T in a refinement type {x:T|e} can be an arbitrary type (not only base types
like bool and int but also function and forall types). To see such a need, let’s look

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:3

again at our NAT abstract datatype. If we implement the abstract type t by the Church
encoding, we have to implement pred as a function of type

{x:∀a.a->(a->a)->a | not (isZ x)} -> ∀a.a->(a->a)->a
in which the Church natural number type ∀a.a->(a->a)->a is substituted for t. More
generally, if we can put contracts on type variables, then the contracts on our ADTs
could need to allow refinements on function, forall, and even refinement types. These
“general refinements” aren’t possible in existing manifest calculi, which restrict refine-
ments to base types.

Second, the metatheory for existing calculi has been too complicated to extend eas-
ily [Greenberg et al. 2010; Knowles and Flanagan 2010]. The complexity is caused by
denotational technique introduced to prove semantic type soundness. We explain why
they need it in detail when we discuss related work (Section 8), but, briefly, the prob-
lem is subtyping. Subtyping is crucial to prove type soundness in their approaches.
In both Greenberg et al. and Knowles and Flanagan, subtyping between refinement
types is what ultimately requires semantic typing to avoid a dangerous circularity in
the mutually recursive definition of the typing and subtyping judgments. The denota-
tions of types used are, however, harder to scale than standard syntactic methods (i.e.,
progress and preservation).

Our earlier manifest calculus FH addresses these two issues: first, the calculus al-
lows general refinements; second, it replaces subtyping with a syntactic conversion re-
lation, which allows for a simpler, more scalable, syntactic metatheory. Furthermore,
Belo et al. showed that eliminating subtyping doesn’t lose useful reasoning principles:
in Section 5 of their paper, Belo et al. [2011] define subtyping post facto and recover an
“upcast” lemma from Knowles and Flanagan [Knowles and Flanagan 2010] showing
that any value of a type can be treated as its supertypes.

Unfortunately, however, a few technical flaws have been found in the metatheory of
FH. A first issue is that a key lemma about the conversion relation is false. Greenberg
[2013] resolved this problem by changing the conversion relation to the one based on
what we call common subexpression reduction. The more challenging one is that the
proofs of type soundness and parametricity of FH rests on a wrong conjecture, called
cotermination, which says that reduction of subterms does not affect the evaluation
result of the whole refinement term.1 We examine these problems in Section 7 in detail;
briefly speaking, the problem is in the operational semantics where the substitution
can change which reduction rules are chosen at runtime.

In this article, we introduce a new calculus FσH that resolves the technical flaws in
FH. We call our calculus FσH because it takes the FH from Belo et al. [2011] and Green-
berg [2013] and introduces a new substitution semantics using delayed substitutions,
which we write σ. Thanks to delayed substitution, the semantics of FσH can choose re-
duction rules independently of substitution; this property is crucial when we prove
cotermination. We can finally show that type soundness, parametricity, and cotermi-
nation all hold in FσH—without leaving any conjectures.

1.1. Contributions and Outline
After giving an overview of our calculus in Section 2, we define FσH in Section 3. In
Section 4, we develop longer and more detailed examples than exist in the literature
so far. We prove type soundness in Section 5, fixing Belo et al. [2011] with common-
subexpression reduction from Greenberg [2013] and our novel delayed substitutions.

1In the end of Section 4 of Belo et al. [2011], the authors write “our proof of type soundness in Section 3
relies on much simpler properties of parallel reduction, which we have proved.” as if the type soundness
proof didn’t depend on cotermination, but this claim also turns out to be false.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Sekiyama et al.

We prove parametricity in Section 6; along with the proofs of cotermination and type
soundness in the prior section, this constitutes the first conjecture-free metatheory
for the combination of System F and manifest contracts, resolving issues in prior ver-
sions of FH. Section 7 compares FσH with two variants of polymorphic manifest con-
tracts [Belo et al. 2011; Greenberg 2013]. Finally, we discuss broader related work in
Section 8, concluding in Section 9.

2. TECHNICAL OVERVIEW
Starting with a review of basics of casts, which are a mechanism to enforce contracts
in manifest calculi, we informally discuss issues in introducing parametric polymor-
phism.

2.1. Basics of casts
Like other manifest calculi, FσH uses casts to dynamically enforce contracts. Ordinarily,
a cast is just written 〈T1 ⇒ T2〉l ; we call T1 the source type and T2 the target type.
The l superscript is a blame label, an abstract source location used to differentiate be-
tween different casts and identify the source of failures. These failures are indicated
by blame, an uncatchable exception with a blame label attached; we write this excep-
tion ⇑l and pronounce it “blame l”. To use a cast, one applies it—like a function—to
a value v with the source type T1. Running the cast produces a similar value of the
target type T2 if there’s no problem treating v as a T2. If there is a problem, then the
cast will “raise” blame at its label, terminating the program.

Early work on contracts built on simple types as a framework, using a language of
types comprising refinements of base types {x :B | e} and dependent functions x :T1 →
T2 [Flanagan 2006; Wadler and Findler 2009; Greenberg et al. 2010].

At base types, casts do one of two things: they either return the value they were
applied to, or “raise blame”. For example, consider a cast from integers Int to positive
integers, {x :Int | x > 0}. We write this cast 〈Int⇒ {x :Int | x > 0}〉l , picking an arbitrary
label l . If we apply this cast to 5, we expect to get 5 back, since 5 > 0. That is,

〈Int⇒ {x :Int | x > 0}〉l 5 −→∗ 5.

On the other hand, suppose we apply the same cast to 0. This cast fails, since 0 is
certainly not greater than itself. When the cast fails, it will raise blame with its label:

〈Int⇒ {x :Int | x > 0}〉l 0 −→∗ ⇑l .
When checking predicate contracts, only the target type matters—the type system

will guarantee that whatever value we have is well typed at the source type, i.e., sat-
isfies any predicates it has. For example, we’ll always have

〈{x :Int | x > 0} ⇒ Int〉l v −→ v

immediately, for all values v . The application will only be well typed if v actually is a
positive number, but, operationally, the source type doesn’t matter in this case.

Unlike casts between base types and refinements, casts between function types
aren’t checked immediately. Instead, casts at function types wrap their argument up,
decomposing the function cast into two parts: one cast for the domain and one for the
codomain. In this way, checking is deferred until the cast function is called. Suppose
we have a function f of type Int → Int and we want to ensure that maps positives
to numbers greater than 5, casting it to {x :Int | x > 0} → {y :Int | y > 5}. The cast
decomposes as follows:

〈Int→ Int⇒ {x :Int | x > 0} → {y :Int | y > 5}〉l f −→
λx :{x :Int | x > 0}. (〈Int⇒ {y :Int | y > 5}〉l (f (〈{x :Int | x > 0} ⇒ Int〉l x))).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:5

Both casts in the wrapper have the same blame label as the original cast. Notice that
the domains of the function types are treated contravariantly; note the inner term in
the wrapped term: f (〈{x :Int | x > 0} ⇒ Int〉l x). In this case, the domain cast 〈{x :Int |
x > 0} ⇒ Int〉l x will never fail: every positive integer is also an integer. The codomain
cast is covariant: 〈Int ⇒ {y :Int | y > 5}〉l checks that f returns a number greater than
5. Since not every integer is greater than 5, this cast will fail if f returns a number
less than or equal to 5.

Let’s consider a few concrete choices of the function f . First, we cast the identity
function to {x :Int | x > 0} → {y :Int | y > 5}. We can safely apply the cast function to 6:

〈Int→ Int⇒ {x :Int | x > 0} → {y :Int | y > 5}〉l (λx :Int. x) 6 −→∗ 6.

In general, the identity function does not take positives to numbers greater than 5. But
when we apply the cast function to 6, which happens to satisfy the codomain contract,
no blame is raised. However, when we apply the cast identity function to a value that
doesn’t satisfy the codomain contract, say 2, blame will be raised:

〈Int→ Int⇒ {x :Int | x > 0} → {y :Int | y > 5}〉l (λx :Int. x) 2 −→∗ ⇑l .

Contrast this with the sorts of static checks offered by type systems: contract systems
raise blame only when a violation is detected; type systems are usually conservative,
signaling errors when a violation is possible.

Some functions will never work. If we cast the constant zero function to {x :Int | x >
0} → {y :Int | y > 5}, it will raise blame for any value:

〈Int→ Int⇒ {x :Int | x > 0} → {y :Int | y > 5}〉l (λx :Int. 0) 6 −→∗ ⇑l .

The constant zero function, which never returns a value satisfying the codomain con-
tract {y :Int | y > 5}. No matter what value we apply the cast function to, it will always
raise blame. Cast at function types are deferred, though: if we never call the cast func-
tion, it never has the opportunity to raise blame. Since casts check contracts dynami-
cally, they only detect errors in parts of the program that are explored at runtime.

FσH’s type system rules out directly applying a function with domain type {x :Int | x >
0} to 0. It is an important property of FσH that 0 doesn’t have type {x :Int | x > 0}! One
can try to cast 0 from Int to {x :Int | x > 0}, but this will always fail:

〈Int→ Int⇒ {x :Int | x > 0} → {y :Int | y > 5}〉l
(λx :Int. 0) (〈Int⇒ {x :Int | x > 0}〉l′ 0)

−→∗ ⇑l ′

Finally, FσH supports dependent function types. For example, the type x :Int→ {y :Int |
y > x} is inhabited by functions over integers which produce results greater than
their inputs. Dependent functions allow for very precise specifications. For example,
x :Float → {y :Float |

∣∣y2 − x
∣∣ < ε} specifies the square-root function. The exact un-

winding rule for dependent functions is slightly subtle—see the discussion of E FUN
in Section 3.

2.2. Extending manifest contracts to polymorphism
Polymorphism is a cornerstone of functional programming. First, polymorphism allow
programmers to reuse higher-order functions like compose:

compose : ∀α.∀β.∀γ.(α→ β)→ (β → γ)→ (α→ γ)
compose = Λα. Λβ. Λγ. λf :(α→ β). λg :(β → γ). λx :α. g (f x)

Perhaps more importantly, polymorphism is critical for defining abstract datatypes
and expressing modularity. For example, the standard encoding of products and sums

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Sekiyama et al.

are as follows:

T1 × T2 = ∀α.(T1 → T2 → α)→ α
(e1, e2)T1×T2 = Λα. λf :(T1 → T2 → α). f e1 e2

T1 + T2 = ∀α.(T1 → α)→ (T2 → α)→ α
(L e)T1+T2

= Λα. λf1:(T1 → α). λf2:(T2 → α). f1 e
(R e)T1+T2

= Λα. λf1:(T1 → α). λf2:(T2 → α). f2 e

These encodings mean that calculi with polymorphism indirectly model calculi with
data structures. Encodings of existentials allow for truly ‘abstract’ datatypes along
with simple models of module systems.

Adding polymorphism is a vital step in scaling up the theory of manifest contracts:
few functional programmers would want to use a language without polymorphism in
some form. But that’s not the only reason to add polymorphism: manifest contracts
add expressivity to polymorphism. We discuss this more below in Section 4, but as a
preview: manifest contracts allow us to express dependent pairs, e.g., lists paired with
their lengths, public keys paired with their constituent primes, etc.

Unfortunately, adding polymorphism to manifest contracts isn’t as simple as just
adding some extra syntax terms. The crux of the matter is this: we need to be able to
write {x :α | e} for our refinements to interact with abstract datatypes in a useful way.
What types can be instantiated for the type variable α?

Earlier work restricts refinements to base types, forbidding refinements like
{f :(Int → Int) | f 0 = 0}. Why? The core issue that led to forbidding refinements of
function types was subject reduction. The cast 〈{x :T | e1} ⇒ {x :T | e2}〉l v will reduce
to either v or ⇑l . To have subject reduction, we need to be able to give the value v the
type {x :T | e1} and {x :T | e2}. When T is restricted to base types, we can assign con-
stants most specific types, e.g., 2 has type {x :Int | x = 2}. Constants are assigned types
that are subtypes of any refinement they pass checks for.

These ‘selfified’ types [Ou et al. 2004] work fine for constants, but what should we do
for functions? It may be that we could find an ad hoc solution for refinements of func-
tions. But to truly have polymorphism, we must be able to instantiate type variables
α with any type, even a type that’s already refined, like {x :Int | x ≥ 0}. We call this
general refinement. If we instantiate a refined type variable with an already refined
type, what happens? How high can the stack of refinements go?

FσH uses a new metatheory that does away with subtyping entirely, allowing general
refinement. The crucial changes are a rule that says values can be typed at any re-
finement they satisfy (T EXACT in Figure 3) and a type conversion relation replacing
subtyping (≡ in Figure 4).

2.3. Delayed substitution semantics
Introducing general refinements means defining a new semantics for casts: what can
be cast to what, and how do casts evaluate? The decisions here are critical. Type vari-
ables can only be cast to themselves, just like base variables. Casts between refine-
ments must, at their core, be between similar base types, type variables, or functions.
A cast 〈T1 ⇒ T2〉l evaluates in several steps, described in detail below (Section 3). In
general, the semantics first forgets all of the refinements on T1 and then starts check-
ing the refinements on T2 from the inside out. Refinement checking bottoms out in a
reflexivity rule: casts of the form 〈T ⇒ T 〉l just disappear (E REFL in Figure 2).

Unlike earlier manifest calculi [Flanagan 2006; Wadler and Findler 2009; Green-
berg et al. 2010], in which a reflexive cast disappears only when the target (and also

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:7

Terms, substitutions, and contexts
Ty 3 T ::= B | α | x :T1 → T2 | ∀α.T | {x :T | e}

σ ∈ (TmVar
fin
⇀ Tm)× (TyVar

fin
⇀ Ty)

Γ ::= ∅ | Γ, x :T | Γ, α
Terms, values, results, and evaluation contexts
Tm 3 e ::= x | k | op (e1, ... , en) | λx :T . e | Λα. e | e1 e2 | e T |

〈T1 ⇒ T2〉lσ | ⇑l | 〈{x :T | e1}, e2, v〉l
v ::= k | λx :T . e | Λα. e | 〈T1 ⇒ T2〉lσ
r ::= v | ⇑l
E ::= [] e2 | v1 [] | []T | 〈{x :T | e}, [] , v〉l | op(v1, ... , vi−1, [] , ei+1, ... , en)

Fig. 1. Syntax for FσH

source) type is a base type2, this reflexivity rule works for any type T . This is motivated
by parametricity—〈α ⇒ α〉l should behave the same whatever the type variable α is
bound to and the only reasonable behavior is to disappear like the identity function.

The reflexivity rule, however, led to a problem in earlier formulations of manifest
contracts with polymorphism—Belo et al. [2011] and Greenberg [2013]. We discuss
the problem at length in Section 7, but essence is that substitution could interfere
with casts, causing certain terms to incorrectly use reflexivity when they should have
used a different rule. The consequences of this interference were metatheoretically
dire. While we haven’t been able to produce well typed terms with unsound behavior,
the prior type soundness proofs are not correct.

FσH uses delayed substitutions σ to ensure that substitution doesn’t interfere with
how casts evaluate. A delayed substitution is just a map from variables to terms and
types. The reason they’re ‘delayed’ is that casts ignore substitutions when deciding
what steps to take to check values. Applying a cast 〈T1 ⇒ T2〉lσ with delayed substitu-
tion σ to a value of type σ(T1) will ensure that the value behaves like a σ(T2).

3. DEFINING FσH
3.1. Syntax
The syntax of FσH is given in Figure 1. For unrefined types we have: base types B , which
must include Bool; type variables α; dependent function types x :T1 → T2 where x is
bound in T2; and universal types ∀α.T , where α is bound in T . Aside from dependency
in function types, these are just the types of the standard polymorphic lambda calculus.
For each B , we fix a set KB of the constants in that type; we require the typing rules
for constants and the typing and evaluation rules for operations to respect this set. We
also require that KBool = {true, false}. We also have predicate contracts, or refinement
types, written {x :T | e}. Conceptually, {x :T | e} denotes values v of type T for which
[v/x]e reduces to true. As mentioned before, refinement types in FσH is notable relative
to existing manifest calculi in that any type (even a refinement type) can be refined, not
just base types (as in [Flanagan 2006; Greenberg et al. 2010; Gronski and Flanagan
2007; Knowles and Flanagan 2010; Ou et al. 2004]).

In the syntax of terms, the first line is standard for a call-by-value polymorphic
language: variables, constants, several monomorphic first-order operations op (i.e., de-
structors of one or more base-type arguments), term and type abstractions, and term
and type applications. Note that there is no value restriction on type abstractions—as
in System F, we do not evaluate under type abstractions, so there is no issue with or-

2Precisely speaking, in [Flanagan 2006; Greenberg et al. 2010], all base types come with predicate contracts.
So, a “base type” here means that its contract is always true.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Sekiyama et al.

dering of effects. The second line offers the standard constructs of a manifest contract
calculus [Flanagan 2006; Greenberg et al. 2010; Knowles and Flanagan 2010], with a
few alterations, discussed below.

Casts are the distinguishing feature of manifest contract calculi. Unlike other man-
ifest calculi, casts in FσH take substitutions (ranged over by σ), which are finite map-
pings from term and type variables to terms and types, respectively. The cast 〈T1 ⇒
T2〉lσ ensures that, when applied to a value of type σ(T1), its argument behaves—and is
treated—like a value of type σ(T2). The substitution σ is called a delayed substitution
because substitution (triggered by, say, β-reduction) does not propagate into casts, at
which it is recorded as delayed. A delayed substitution is applied when refinements in
a cast are checked at runtime. FσH uses delayed substitutions to statically determine
how casts work. In fact, as we will see below in Section 3.2, the reduction rules for a
cast are selected independently of any terms or types substituted in the cast’s source
and target types, unlike FH. This is crucial to prove the property that we call cotermi-
nation (Lemma 5.5), a false conjecture in prior work.

When a cast detects a problem, it raises blame, a label-indexed uncatchable excep-
tion written ⇑l . The label l allows us to trace blame back to a specific cast. (While labels
here are drawn from an arbitrary set, in practice l will refer to a source-code location.)
Finally, we use active checks 〈{x :T | e1}, e2, v〉l to support a small-step semantics for
checking casts into refinement types. In an active check, {x :T | e1} is the refinement
being checked, e2 is the current state of checking, and v is the value being checked. The
type in the first position of an active check is not necessary for the operational seman-
tics, but we keep it around as a technical aid to type soundness. The value in the third
position can be any value, not just a constant according to generalization of refine-
ment types. If checking succeeds, the check will return v ; if checking fails, the check
will blame its label, raising ⇑l . Active checks and blame are not intended to occur in
source programs—they are runtime devices. (In a real programming language based
on this calculus, casts will probably not appear explicitly either, but will be inserted by
an elaboration phase. The details of this process are beyond the present scope.)

The values in FσH are constants, term and type abstractions, and casts. We also de-
fine results, which are either values or blame. Type soundness, stated in Theorem 5.19,
will show that evaluation produces a result, but not necessarily a value. We note that,
unlike some contract calculi—i.e., blame calculus [Wadler and Findler 2009]—, func-
tion cast applications 〈x :T11 → T12 ⇒ x :T21 → T22〉l v are not seen as values, which
simplifies our inversion lemmas. Instead, casts between function types will η-expand
and wrap with the casts on the domain and the codomain their argument. This makes
the notion of “function proxy” explicit: the cast semantics adds many new closures.

To define semantics, we use evaluation contexts [Felleisen and Hieb 1992] (ranged
over by E), a standard tool to introduce small-step operational semantics. The syntax
of evaluation contexts shown in Figure 1 means that the semantics evaluates subterms
from left to right in the call-by-value style.

As usual, we introduce some conventional notations. We write FV(e) (resp. FV(T))
to denote free term variables in the term e (resp. the type T), which is defined as usual,
except for casts:

FV(〈T1 ⇒ T2〉lσ) = ((FV(T1) ∪ FV(T2)) \ dom(σ)) ∪ FV(σ)

where dom(σ) is the domain set of σ and FV(σ) is the set of free term variables in terms
and types mapped by σ. Similarly, we use FTV(e), FTV(T) and FTV(σ) for free type
variables, and AFV(e), AFV(T) and AFV(σ) for all free variables, namely, both free
term and type variables. We say that terms and types are closed when they have no
free term and type variables.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:9

We define application of substitutions, which is almost standard except the case
for casts, below. To preserve standard properties of substitution, such as, “applying
a substitution to a closed term yields the same term,” we consider only terms with-
out garbage bindings in delayed substitutions and assume that dom(σ) ⊆ AFV(T1) ∪
AFV(T2) holds for every cast 〈T1 ⇒ T2〉lσ. Before defining application of substitution,
we introduce a few auxiliary notations. For a set S of variables, σ | S denotes the
restriction of σ to S . Formally,

σ | S = ({x 7→ σ(x) | x ∈ dom(σ) ∩ S}, {α 7→ σ(α) | α ∈ dom(σ) ∩ S}).
We denote by σ1] σ2 a delayed substitution obtained by concatenating substitutions
elementwise.

3.1 Definition [Substitution]: Substitution in FσH is the standard substitution func-
tion with a single change, in the cast case:

σ(〈T1 ⇒ T2〉lσ1
) = 〈T1 ⇒ T2〉lσ2

where σ2 = σ(σ1)] (σ | (AFV(T1) ∪ AFV(T2)) \ dom(σ1)).

Here, σ(σ1) means application of σ to terms and types mapped by σ1. Notice that the
restriction on σ is required for the assumption on terms mentioned above. We will see
that many properties of substitution in lambda calculi hold for our substitution later.

Finally, we introduce several syntactic shorthands. We write T1 → T2 for x :T1 → T2

when x does not appear free in T2 and 〈T1 ⇒ T2〉l for 〈T1 ⇒ T2〉lσ if the domain of
σ is empty. A let expression let x : T = e1 in e2 denotes an application term of the
form (λx :T . e2) e1. We may omit the type if it is clear from the context. If σ = ({x 7→
e}, ∅), then we write [e/x]e ′, [e/x]T ′ and [e/x]σ′ for σ(e ′), σ(T ′) and σ(σ′), respectively.
Similarly, we write [T/α]e ′, [T/α]T ′ and [T/α]σ′ for σ(e ′), σ(T ′) and σ(σ′), respectively,
if σ = (∅, {α 7→ T}).

3.2. Operational semantics
The call-by-value operational semantics in Figure 2 are given as a small-step relation,
split into two sub-relations: one for reductions () and one for congruence and blame
lifting (−→). We define these relations as over closed terms.

The latter relation is standard. The E REDUCE rule lifts reductions into −→;
the E COMPAT rule turns −→ into a congruence over evaluation contexts; and the
E BLAME rule lifts blame, treating it as an uncatchable exception. The reduction rela-
tion is more interesting. There are four different kinds of reductions: the standard
lambda calculus reductions, structural cast reductions, cast staging reductions, and
checking reductions.

The E BETA, and E TBETA rules should need no explanation—these are the stan-
dard call-by-value polymorphic lambda calculus reductions. The E OP rule uses a de-
notation function [[−]] to give meaning to the first-order operations. In Section 3.3, we
describe a property of [[−]] to be required for showing type soundness.

The E REFL, E FUN, and E FORALL rules reduce casts structurally. E REFL elimi-
nates a cast from a type to itself; intuitively, such a cast should always succeed anyway.
(We discuss this rule more in Section 6.) When a cast between function types is applied
to a value v , the E FUN rule produces a new lambda, wrapping v with a contravariant
cast on the domain and covariant cast on the codomain. The extra substitution in the
left-hand side of the codomain cast may seem suspicious, but in fact the rule must be
this way in order for type preservation to hold (see [Greenberg et al. 2010] for an expla-
nation). As one may notice, similarly to substitution (Definition 3.1), E FUN and other
cast rules restrict the domain of each delayed substitution in the right-hand side of re-
duction to free variables in the source and the target types of the corresponding cast.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Sekiyama et al.

Reduction rules e1 e2

op (v1, ... , vn) [[op]] (v1, ... , vn) E OP
(λx :T1. e12) v2 [v2/x]e12 E BETA

(Λα. e)T [T/α]e E TBETA

〈T ⇒ T 〉lσ v v E REFL
〈x :T11 → T12 ⇒ x :T21 → T22〉lσ v E FUN

λx :σ(T21). let y : σ(T11) = 〈T21 ⇒ T11〉lσ1
x in 〈[y/x]T12 ⇒ T22〉lσ2

(v y)
when x :T11 → T12 6= x :T21 → T22 and x 6∈ dom(σ) and

y is fresh and, for i ∈ {1, 2}, σi = σ | AFV(T1i) ∪ AFV(T2i)
〈∀α.T1 ⇒ ∀α.T2〉lσ v Λα. (〈[α/α]T1 ⇒ T2〉lσ (v α)) E FORALL

when ∀α.T1 6= ∀α.T2 and α 6∈ dom(σ)

〈{x :T1 | e} ⇒ T2〉lσ v 〈T1 ⇒ T2〉lσ′ v E FORGET
when T2 6= {x :T1 | e} and T2 6= {y :{x :T1 | e} | e2}

(σ′ = σ | AFV(T1) ∪ AFV(T2))
〈T1 ⇒ {x :T2 | e}〉lσ v E PRECHECK

〈T2 ⇒ {x :T2 | e}〉lσ1
(〈T1 ⇒ T2〉lσ2

v)
when T1 6= T2 and T1 6= {x :T ′ | e ′}

(σ1 = σ | AFV({x :T2 | e2}) and σ2 = σ | AFV(T1) ∪ AFV(T2))
〈T ⇒ {x :T | e}〉lσ v 〈σ({x :T | e}), σ([v/x]e), v〉l E CHECK

〈{x :T | e}, true, v〉l v E OK
〈{x :T | e}, false, v〉l ⇑l E FAIL

Evaluation rules e1 −→ e2

e1 e2

e1 −→ e2
E REDUCE

e1 −→ e2

E [e1] −→ E [e2]
E COMPAT

E [⇑l] −→ ⇑l
E BLAME

Fig. 2. Operational semantics for FσH

Note that E FUN uses a let expression—syntactic sugar for immediate application of
a lambda—for the domain check. This is a nicer evaluation semantics than one in the
previous calculi where the domain check can be duplicated by substitution. This way,
some of our proofs are simplified. The E FORALL rule is similar to E FUN, generating
a type abstraction with the necessary covariant cast. A seemingly trivial substitution
[α/α] is necessary for type soundness. The value v in this rule is expected to have ∀α.T1

and then v α is given type [α/α]T1, which is not the same as T1 in general since substi-
tution is delayed at casts! So, after the reduction, the source type of the cast has to be
[α/α]T1. Side conditions on E FORALL and E FUN ensure that these rules apply only
when E REFL doesn’t.

The E FORGET, E PRECHECK, and E CHECK rules are cast-staging reductions,
breaking a complex cast down to a series of simpler casts and checks. All of these
rules require that the left- and right-hand sides of the cast be different—if they are
the same, then E REFL applies. The E FORGET rule strips a layer of refinement off the
left-hand side; in addition to requiring that the left- and right-hand sides are different,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:11

the preconditions require that the right-hand side isn’t a refinement of the left-hand
side. The E PRECHECK rule breaks a cast into two parts: one that checks exactly one
level of refinement and another that checks the remaining parts. We only apply this
rule when the two sides of the cast are different and when the left-hand side isn’t a
refinement. The E CHECK rule applies when the right-hand side refines the left-hand
side; it takes the cast value and checks that it satisfies the right-hand side. (We don’t
have to check the left-hand side, since that’s the type we’re casting from.) If the check
succeeds, then the active check evaluates to the checked value (E OK); otherwise, it is
blamed with l (E FAIL).

Before explaining how these rules interact in general, we offer a few examples. First,
here is a reduction using E CHECK, E COMPAT, E OP, and E OK:

〈Int⇒ {x :Int | x ≥ 0}〉l 5 −→ 〈{x :Int | x ≥ 0}, 5 ≥ 0, 5〉l
−→ 〈{x :Int | x ≥ 0}, true, 5〉l −→ 5

A failed check will work the same way until the last reduction, which will use E FAIL
rather than E OK:

〈Int⇒ {x :Int | x ≥ 0}〉l (−1) −→ 〈{x :Int | x ≥ 0},−1 ≥ 0,−1〉l
−→ 〈{x :Int | x ≥ 0}, false,−1〉l −→ ⇑l

Notice that the blame label comes from the cast that failed. Here is a similar reduction
that needs some staging, using E FORGET followed by the first reduction we gave:

〈{x :Int | x = 5} ⇒ {x :Int | x ≥ 0}〉l 5 −→ 〈Int⇒ {x :Int | x ≥ 0}〉l 5
−→ 〈{x :Int | x ≥ 0}, 5 ≥ 0, 5〉l −→∗ 5

There are two cases where we need to use E PRECHECK. First, when nested refine-
ments are involved:

〈Int⇒ {x :{y :Int | y ≥ 0} | x = 5}〉l 5 −→
〈{y :Int | y ≥ 0} ⇒ {x :{y :Int | y ≥ 0} | x = 5}〉l (〈Int⇒ {y :Int | y ≥ 0}〉l 5) −→∗

〈{y :Int | y ≥ 0} ⇒ {x :{y :Int | y ≥ 0} | x = 5}〉l 5 −→
〈{x :{y :Int | y ≥ 0} | x = 5}, 5 = 5, 5〉l −→∗

5

Second, when a function or universal type is cast into a refinement of a different func-
tion or universal type:

〈Bool→ {x :Bool | x} ⇒ {f :Bool→ Bool | f true = f false}〉l v −→
〈Bool→ Bool⇒ {f :Bool→ Bool | f true = f false}〉l

(〈Bool→ {x :Bool | x} ⇒ Bool→ Bool〉l v)

E REFL is necessary for simple cases, like 〈Int ⇒ Int〉l 5 −→ 5. Hopefully, such a silly
cast would never be written, but it could arise as a result of E FUN or E FORALL. (We
also need E REFL in our proof of parametricity; see Section 6.)

We offer two higher-level ways to understand the interactions of these complicated
cast rules. First, we can see the reduction rules as an unfolding of a recursive func-
tion, choosing the first clause in case of ambiguity. That is, the operational semantics

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Sekiyama et al.

unfolds a cast 〈T1 ⇒ T2〉lσ v like Clσ(T1,T2, v):

Clσ(T ,T , v) = v
Clσ({x :T1 | e},T2, v) = Clσ(T1,T2, v)
Clσ(T1, {x :T2 | e}, v) = let x = Clσ(T1,T2, v) in 〈σ({x :T2 | e}), σ(e), x 〉l

(where x 6∈ dom(σ))
Clσ(∀α.T1,∀α.T2, v) = Λα. Clσ(T1,T2, v α) (where α 6∈ dom(σ))

Clσ(x :T11 → T12, x :T21 → T22, v) =
λx :T21. let y = Clσ(T21,T11, x) in Clσ([y/x]T12,T22, v y) (where x 6∈ dom(σ))

Alternatively, the rules firing during the evaluation of a cast in the small-step seman-
tics obeys the following regular schema:

REFL | (FORGET∗ (REFL | (PRECHECK∗ (REFL | FUN | FORALL)? CHECK∗)))

Let’s consider the cast 〈T1 ⇒ T2〉l v where we omit delayed substitution for concise-
ness. To simplify the following discussion, we define unref(T) as T without any outer
refinements (though refinements on, e.g., the domain of a function would be unaf-
fected); we write unrefn(T) when we remove only the n outermost refinements:

unref(T) =

{
unref(T ′) if T = {x :T ′ | e}
T otherwise

First, if T1 = T2, we can apply E REFL and be done with it. If that doesn’t work, we’ll
reduce by E FORGET until the left-hand side doesn’t have any refinements. (N.B. we
may not have to make any of these reductions.) Either all of the refinements will be
stripped away from the source type, or E REFL eventually applies and the entire cast
disappears. Assuming E REFL doesn’t apply, we now have 〈unref(T1) ⇒ T2〉l v . Next,
we apply E PRECHECK until the cast is completely decomposed into one-step casts,
once for each refinement in T2:

〈unref1(T2)⇒ T2〉l(〈unref2(T2)⇒ unref1(T2)〉l
(... (〈unref(T1)⇒ unref(T2)〉l v) ...))

As our next step, we apply whichever structural cast rule applies to 〈unref(T1) ⇒
unref(T2)〉l v , one of E REFL, E FUN, or E FORALL. Now all that remains are some
number of refinement checks, which can be dispatched by the E CHECK rule (and
other rules, of course, during the predicate checks themselves).

The E REFL rule merits some more discussion. At first, it appears that we can dis-
pense with this rule because a cast 〈T ⇒ T 〉lσ seems like it can’t do anything: any
value it applies must have already had type σ(T), so what could go wrong during any
checks? One might worry that adding such a cast will cause a different label to be
blamed. What we would have to prove is contextual equivalence of 〈T ⇒ T 〉lσ and
an identity function (in the absence of E REFL), for example, by following Belo et al.
[2011]3. We haven’t been able to prove parametricity (and the upcast lemma) for a
system without E REFL because our logical relation is defined for untyped terms.

3.3. Static typing
The type system comprises three mutually recursive judgments: context well formed-
ness (` Γ), type well formedness (Γ ` T), and term well typing (Γ ` e : T). The
rules for contexts and types are unsurprising. The rules for terms are mostly standard.

3Note that the upcast lemma in Belo et al. [2011] is for a system with E REFL and equivalence of 〈T ⇒ T 〉lσ
and an identity function is trivial.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:13

Context well formedness ` Γ

` ∅
WF EMPTY

` Γ Γ ` T

` Γ, x :T
WF EXTENDVAR

` Γ

` Γ, α
WF EXTENDTVAR

Type well formedness Γ ` T

` Γ

Γ ` B
WF BASE

` Γ α ∈ Γ

Γ ` α
WF TVAR

Γ, α ` T

Γ ` ∀α.T
WF FORALL

Γ ` T1 Γ, x :T1 ` T2

Γ ` x :T1 → T2
WF FUN

Γ ` T Γ, x :T ` e : Bool

Γ ` {x :T | e}
WF REFINE

Term typing Γ ` e : T

` Γ x :T ∈ Γ

Γ ` x : T
T VAR

` Γ

Γ ` k : ty(k)
T CONST

∅ ` T ` Γ

Γ ` ⇑l : T
T BLAME

Γ ` T1 Γ, x :T1 ` e12 : T2

Γ ` λx :T1. e12 : x :T1 → T2
T ABS

Γ ` e1 : (x :T1 → T2) Γ ` e2 : T1

Γ ` e1 e2 : [e2/x]T2
T APP

` Γ ty(op) = x1 : T1 → ... → xn : Tn → T
Γ ` ei : Ti [e1/x1, ..., ei−1/xi−1]

Γ ` op (e1, ... , en) : T [e1/x1, ..., en/xn]
T OP

Γ, α ` e : T

Γ ` Λα. e : ∀α.T
T TABS

Γ ` e1 : ∀α.T Γ ` T2

Γ ` e1 T2 : [T2/α]T
T TAPP

Γ ` σ(T1) Γ ` σ(T2) T1 ‖ T2 AFV(σ) ⊆ dom(Γ)

Γ ` 〈T1 ⇒ T2〉lσ : σ(T1)→ σ(T2)
T CAST

` Γ ∅ ` {x :T | e1} ∅ ` v : T ∅ ` e2 : Bool [v/x]e1 −→∗ e2
Γ ` 〈{x :T | e1}, e2, v〉l : {x :T | e1}

T CHECK

` Γ ∅ ` e : T ∅ ` T ′ T ≡ T ′

Γ ` e : T ′
T CONV

∅ ` v : {x :T | e} ` Γ

Γ ` v : T
T FORGET

` Γ ∅ ` v : T ∅ ` {x :T | e} [v/x]e −→∗ true
Γ ` v : {x :T | e}

T EXACT

Fig. 3. Typing rules for FσH

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Sekiyama et al.

First, the T CONST and T OP rules use the ty function to assign (possibly dependent)
monomorphic first-order types to constants and operations, respectively; we require
constants to satisfy the predicate (if any) of ty(k) and [[op]] to be a function that returns
a value satisfying the predicate of the codomain type of ty(op) when each argument
value satisfies the predicate of the corresponding domain type of ty(op). The T APP
rule is dependent, to account for dependent function types. The T CAST rule allows
casts between compatibly structured well formed types, demanding that both source
and target types after applying delayed substitution be well-formed. Compatibility of
type structures is defined in Figure 4; intuitively, compatible types are identical when
predicates in them are ignored. In particular, it is critical that type variables are com-
patible with only (refinements of) themselves because we have no idea what type will
be substituted for α. If we allow type variable α to be compatible with another type, say,
B , then the check with the cast from α to B would not work when α is replaced with a
function type or a quantified type. Moreover, this definition helps us avoid nontermi-
nation due to non-parametric operations (e.g., Girard’s J operator); it’s imperative that
a term like

let δ = Λα. λx :α. 〈α⇒ ∀β.β → β〉l α x in δ ∀β.β → β δ

isn’t well typed. Note that, in T CAST, we assign casts a non-dependent function type
and that we do not require well typedness/formedness of terms/types mapped by de-
layed substitution in a direct way—though well typed programs will start with and
preserve well typed substitutions. Finally, it’s critical that compatibility is substitu-
tive, i.e., that if T1 ‖ T2, then ([e/x]T1) ‖ T2 (Lemma A.27).

Some of the typing rules—T CHECK, T BLAME, T EXACT, T FORGET, and
T CONV—are “runtime only”. These rules aren’t needed to typecheck source programs,
but we need them to guarantee preservation. T CHECK, T EXACT, and T CONV are
excluded from source programs because we don’t want the typing of source programs
to rely on the evaluation relation; such an interaction is acceptable in this setting,
but disrupts the phase distinction and is ultimately incompatible with nontermina-
tion and effects. We exclude T BLAME because programs shouldn’t start with fail-
ures. Finally, we exclude T FORGET because we imagine that source programs have
all type changes explicitly managed by casts. Note that the conclusions of these rules
use a context Γ, but their premises don’t use Γ at all. Even though runtime terms and
their typing rules should only ever occur in an empty context, the T APP rule sub-
stitutes terms into types—so a runtime term could end up under a binder. We there-
fore allow the runtime typing rules to apply in any well formed context, so long as
the terms they typecheck are closed. The T BLAME rule allows us to give any type to
blame—this is necessary for preservation. The T CHECK rule types an active check,
〈{x :T | e1}, e2, v〉l . Such a term arises when a term like 〈T ⇒ {x :T | e1}〉l v reduces by
E CHECK. The premises of the rule are all intuitive except for [v/x]e1 −→∗ e2, which
is necessary to avoid nonsensical terms like 〈{x :T | x ≥ 0}, true,−1〉l , where the wrong
predicate gets checked. The T EXACT rule allows us to retype a closed value of type
T at {x :T | e} if [v/x]e −→∗ true. This typing rule guarantees type preservation for
E OK: 〈{x :T | e1}, true, v〉l −→ v . If the active check was well typed, then we know
that [v/x]e1 −→∗ true, so T EXACT applies. Earlier systems used most-specific types
and subtyping to show that the E OK rule preserves typing. While the “most spe-
cific” requirement is abstract, a constant k ∈ KB is typically given the selfified type
ty(k) = {x :B | x = k} [Ou et al. 2004]. But functions don’t admit a decidable equal-
ity, so there isn’t an obvious way to assign them most-specific types. T EXACT is a
suitably extensional,syntactic, and subtyping-free replacement for the earlier seman-
tic requirement: constants and functions can be assigned less specific types, but we
can use T EXACT in the preservation proof to remember successful checks.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:15

Type compatibility T1 ‖ T2

α ‖ α
SIM VAR

B ‖ B
SIM BASE

T1 ‖ T2

{x :T1 | e} ‖ T2
SIM REFINEL

T1 ‖ T2

T1 ‖ {x :T2 | e}
SIM REFINER

T11 ‖ T21 T12 ‖ T22

x :T11 → T12 ‖ x :T21 → T22
SIM FUN

T1 ‖ T2

∀α.T1 ‖ ∀α.T2
SIM FORALL

Conversion σ1 −→∗ σ2 T1 ≡ T2

σ1 −→∗ σ2 ⇐⇒
dom(σ1) = dom(σ2) ⊂ TmVar ∧
∀x ∈ dom(σ1). σ1(x) −→∗ σ2(x)

α ≡ α
C VAR

B ≡ B
C BASE

σ1 −→∗ σ2 T1 ≡ T2

{x :T1 | σ1(e)} ≡ {x :T2 | σ2(e)}
C REFINE

T1 ≡ T ′1 T2 ≡ T ′2
x :T1 → T2 ≡ x :T ′1 → T ′2

C FUN
T ≡ T ′

∀α.T ≡ ∀α.T ′
C FORALL

T2 ≡ T1

T1 ≡ T2
C SYM

T1 ≡ T2 T2 ≡ T3

T1 ≡ T3
C TRANS

Fig. 4. Type compatibility and conversion for FσH

Finally, the T CONV rule is introduced as a technical device to prove preservation.
This rule is motivated by reduction of an function application: v1 e2 −→ v1 e

′
2. Here,

the first term is typed at [e2/x]T2 (by T APP), but reapplying T APP types the second
term at [e ′2/x]T2. The T CONV rule allows terms to be retyped at convertible types in
order to type v1 e

′
2 at [e2/x]T2. We define a conversion relation ≡, which we also call

common-subexpression reduction, or CSR, using rules in Figure 4. Roughly speaking,
T1 and T2 are convertible when there is a common type T and subexpressions e1 and
e2 of T1 and T2 such that T1 = [e1/x]T and T2 = [e2/x]T and e1 −→∗ e2. In the case of
the function application above, T2 is a common type and e2 and e ′2 are subexpressions
to reduce. The only interesting rule is C REFINE, which says that refinement types
{x :T1 | e1} and {x :T2 | e2} are convertible when T1 and T2 are convertible and there
are some substitutions σ1, σ2 and a common subexpression e such that e1 = σ1(e)
and e2 = σ2(e) and each term mapped by σ1 reduces to one mapped by σ2 (this is
the reason why we call the relation ≡ CSR). We remark that this conversion relation is
different from that given in the original ESOP 2011 work [Belo et al. 2011], where their
conversion relation is defined in terms of parallel reduction. Unfortunately, however,
it turns out that parallel reduction does not quite have the properties we need. We
discuss this further in Section 7. Another remark is that Belo et al. [2011] also (falsely)
claimed that symmetry of convertible relation was not necessary for type soundness or
parametricity, but symmetry is in fact used in the proof of preservation (Lemma A.39,
when a term typed by T APP steps by E REDUCE/E REFL).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Sekiyama et al.

4. EXAMPLES
To better understand the semantics, we offer two examples: a closer look at the NAT
datatype and a “library as a language” that uses contracts to implement a type system.

4.1. Contracts for abstract datatypes
The standard polymorphic encodings of existential and product types transfer over to
FσH’s System F-style impredicative polymorphism without a problem. Indeed, depen-
dent functions allow us to go one step further and encode even dependent products
such as (x : Int) × {y :α List | length y = x}, which represents lists paired with their
lengths.

(x : T1)× T2 = ∀α.(x :T1 → T2 → α)→ α
(e1, e2)(x :T1)×T2

= Λα. λf :(x :T1 → T2 → α). f e1 e2

As in pure System F, we need to specify types on the encoding of pairs—we’ll omit
these types when they are clear from context. We also use record projection notation
and field names, to make the example clearer.

Let’s return to our simple example combining contracts and polymorphism—an ab-
stract datatype of natural numbers.

NAT : ∃α. (zero : α)× (succ : (α→ α))× (iszero : (α→ Bool))×
(pred : {x :α | not (iszero x)} → α)

We omit the implementation, a standard Church encoding, where α = ∀β.β → (β →
β) → β. The constructors zero and succ are standard; the operator iszero determines
whether a natural is zero; the operator pred yields the predecessor. We can encode
dependent sums as:

(x : T1)× T2 = ∀α.(x :T1 → T2 → α)→ α
(e1, e2) = Λα. λf :(x :T1 → T2 → α). f e1 e2

As we saw above, the standard representation the naturals is inadequate with re-
spect to the mathematical natural numbers, in particular with respect to pred . In
math, pred zero is undefined, but the implementation will return zero. The NAT interface
hides our encoding of the naturals behind an existential type, but to ensure adequacy,
we want to ensure that pred is only ever applied to terms of type {x :α | not (iszero x)}.
With contracts, this is easy enough:

NAT : ∃α. (zero : α)× (succ : (α→ α))× (iszero : (α→ Bool))×
(pred : {x :α | not (iszero x)} → α).

Recall that in the Church encoding, α will be instantiated with ∀β.β → (β → β) → β.
So the refinement {x :α | not (iszero x)} in the new type of pred is a refinement of a
polymorphic function type. These general refinement types are available in FσH, but
they were not in earlier manifest calculi.

To see why this more specific type for pred is useful, consider the following expres-
sion.

unpack NAT : ∃α. I as α,n in n.iszero (n.pred (n.zero)) : Bool

Here I is the interface we specified for NAT. We’ve “unpacked” the ADT to make its type
available as α; its constructors and operators are in the dependent pair n. We then ask
if the predecessor of 0 is 0, running n.iszero (n.pred (n.zero)). The inner application is
not well typed! We have that zero : α, but the domain type of pred is {x :α | not (iszero x)}.
In order to make the application well typed, we must insert a cast:

unpack NAT : ∃α. I as α,n in
n.iszero (n.pred (〈α⇒ {x :α | not (n.iszero x)}〉l n.zero)) : Bool

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:17

Naturally, this cast will ultimately raise ⇑l , because not (n.iszeron.zero) −→∗ false.
The example so far imposes constraints only on the use of the abstract datatype, in

particular on the use of pred. To have constraints imposed also on the implementation
of the abstract datatype, consider the extension of the interface with a subtraction
operation, sub, and a binary “less than or equal” operator, leq. Natural number sub-
traction sub x y is defined only when leq y x ; we can specify this pre-condition as before,
by refining the type of sub’s second argument. But subtraction comes with a guarantee,
as well: sub x y will always be less than or equal to x . That is, the result sub x y has the
refined type {z :α | leq z x}. We can specify both of these facts with the interface:

I ′ = I × (leq : α→ α→ Bool)× (sub : (x :α→ {y :α | leq y x} → {z :α | leq z x}))
The sub function’s contract requires that sub’s second argument is less than or equal
to the first; the contract requires that sub returns a result that is less than or equal to
the first argument.

How can we write an implementation to meet this interface? By putting casts in
the implementations. We can impose the contracts on pred and sub when we “pack
up” the implementation NAT. Writing nat for the type of the Church encoding ∀β.β →
(β → β) → β, we define the exported pred and sub in terms of the standard, unrefined
implementations, pred′ and sub′ .

pred = 〈nat→ nat⇒ {x :nat | not (iszero x)} → nat〉l pred′
sub = 〈nat→ nat→ nat⇒ x :nat→ {y :nat | leq y x} → {z :nat | leq z x}〉l sub′

Note, however, that the cast on pred′ will never actually check anything at runtime: if
we unfold the domain contract contravariantly, we see that 〈{x :nat | not (iszero x)} ⇒
nat〉l is a no-op, because we’re casting out of a refinement. Instead, clients of NAT
can only call pred with terms that are typed at {x :nat | not (iszero x)}, i.e., by checking
that values are nonzero with a cast into pred’s input type. The story is the same for
the contract on sub’s second argument—the contravariant cast won’t actually check
anything. The codomain contract on sub, however, could fail if sub′ mis-implemented
subtraction.

We can sum up the situation for contracts in abstract datatype interfaces as follows:
the positive parts of the interface type are checked by the datatype’s contract and
can raise blame—these parts are the responsibility of the ADT’s implementation; the
negative parts of the interface type are not checked by the datatype’s contract—these
parts are the responsibility of the ADT’s clients. Distributing obligations in this way
recalls Findler and Felleisen’s seminal idea of client and server blame [Findler and
Felleisen 2002].

4.2. Contracts as type systems
Inasmuch as abstract datatypes are little languages, contracts for abstract datatypes
are like type systems for little languages, following the ideas in Harper et al. [1993]. In
this section, we develop a toy combinator language of string transducers, which specify
mappings between regular languages.4 A type system for the transducer combinators
translates naturally to a contracted abstract datatype implementation.

Each transducer t : L1 ↪→ L2 maps from a (regular) domain dom t = L1 to a (regular)
range rng t = L2.

S ::= strings
L ::= regular expressions
t ::= copyL | deleteL | concat t1 t2 | seq t1 t2

4This is effectively a unidirectional version of Boomerang [Bohannon et al. 2008].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Sekiyama et al.

Let ε be the empty string, and let · be string concatenation. The combinators compose to
specify transducers. For this example, we only need two primitive combinators: copyL,
maps a string in the language L to itself; and deleteL which maps a string in the
language L to the empty string, ε. We can combine transducers in two ways: concat t1 t2
runs t1 on the first part of the input and t2 on the second; seq t1 t2 runs t2 on the output
t1. We can define a semantics for transducers easily enough, with a function run t that
takes strings in dom t to strings in rng t .

The copyL transducer has the simplest semantics: it just copies strings in the given
language, L. Its typing rule is straightforward.

run (copyL)S = S copyL : L ↪→ L
The deleteL transducer deletes a string in the language L; its typing rule indicates

that its range is the language containing only the empty string, {ε}.

run (deleteL)S = ε deleteL : L ↪→ {ε}
The concat t1 t2 combinator splits its input between its two sub-transducers. Splitting

up the input makes the semantics somewhat subtle: in general, S ∈ dom t1 ·dom t2 does
not imply that there is a unique way to split S. When two regular languages always
split uniquely, we say they are unambiguously splittable, written L1 ·!L2. Unambiguous
splittability of regular languages is decidable [Bohannon et al. 2008]; if we only con-
catenate transducers with unambiguously splittable domains, then the run function
will be unambiguous.

run (concat t1 t2) (S1 · S2) =
run t1 S1 · run t2 S2

where Si ∈ dom ti

t1 : L11 ↪→ L12

t2 : L21 ↪→ L22 L11 ·! L21

concat t1 t2 : L11 · L21 ↪→ L12 · L22

Finally, the seq t1 t2 combinator runs t2 on the output of t1. The typing rule requires
that the two sub-transducers match: rng t1 and dom t2 must be the same language.

run (seq t1 t2)S = run t2 (run t1 S) t1 : L1 ↪→ L2 t2 : L2 ↪→ L3

seq t1 t2 : L1 ↪→ L3

In order to facilitate programming with these transducers, we may try to embed
these combinators inside of a functional programming. It is rather difficult to general-
ize this combinator language—typing a lambda calculus with string regular expression
types is not easy [Tabuchi et al. 2003; Benzaken et al. 2003; Bierman et al. 2010]. It is
easy, however, to define an abstract datatype offering these operations, assuming we
have a type String of strings and Regex of regular expressions, with appropriate decision
procedures for unambiguous splittability and equality.

TRANS : ∃α. (dom : α→ Regex)× (rng : α→ Regex)×
(run : (α→ String→ String))×
(copy : Regex→ α)× (delete : (Regex→ α))×
(concat : α→ α→ α)× (seq : (α→ α→ α))

There is a problem, though: this datatype will let us write nonsensical combinators.
In particular, we can give concat transducers that don’t have unambiguously splittable
domains, or we can give seq transducers which don’t match up. For example, suppose
ε 6∈ L and S ∈ L. Let t = seq (deleteL) (copyL). Then:

run (seq (deleteL) (copyL))S = ε

Since ε 6∈ L, this means that run took a value in dom t = L and produced a value outside
of rng t = L.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:19

We are in a difficult position: we have a little language and a type system. But scaling
our transducer language’s type system up to the lambda calculus increases complexity,
and distracts us from what we’d like to be doing—writing transducer programs!

Contracts offer a middle way. By putting contracts on the TRANS interface, we can
ensure that all transducers are well formed.

TRANS : ∃α. (dom : α→ Regex)× (rng : α→ Regex)×
(run : (t :α→ {x :String | x ∈ dom t} → {x :String | x ∈ rng t}))×
(copy : Regex→ α)× (delete : (Regex→ α))×
(concat : (t1:α→ {t2:α | splittable (dom t1) (dom t2)} → α))×
(seq : (t1:α→ {t2:α | rng t1 = dom t2} → α))

The TRANS abstract datatype defines an embedded domain-specific language—with
its own domain-specific type system. For example, concat will only accept transducers
with unambiguously splittable domains, as discussed above; seq will only sequence
transducers that match up. The interface given here is only one of many: it checks
inputs but not outputs. For example, we could ensure that concat has our intended
behavior by giving its codomain the type {t3:α | (dom t3 = (dom t1) ◦ (dom t2)) ∧ (rng t3 =
(rng t1) ◦ (rng t2))}, where ◦ denotes regular expression concatenation.

The checks on run and seq are easy enough to build into our TRANS implementation.
But there is a distinct advantage to making the contracts explicit in the interface type:
the type system will keep track of unambiguous splittability checks. Programmers
can track relevant information in refinements in client modules, and we can statically
eliminate redundant checks via, e.g., subtyping.

In general, contracting abstract datatype interfaces allows for library designers to
extend the language’s type system with library-specific constraints. Clients then have
two choices: propagate the library’s contracts through their code, possibly avoiding
redundant checks; or ignore the contracts within their own code, allowing the checks
to happen whenever they call into the library. Either way, the library’s users can rest
assured that the contracts will guarantee the safety properties the library designers
desired.

If programmers are careful to program in a “cover your ass” (CYA) style, wherein
each library’s interface uses contracts that are strong enough to guarantee that other
libraries’ contracts are satisfied, then error messages greatly improve. When libraries
are stacked in a hierarchy several levels deep, CYA contracts in interfaces give pro-
grammers error messages earlier and at a higher level of abstraction.

As a final note before we begin the technical content: the foregoing is the current
implementation strategy for Boomerang [Bohannon et al. 2008], a language of bidirec-
tional string transducers called lenses. The semantic constraints on Boomerang com-
binators are decidable, but combining Boomerang’s typing rules with the lambda cal-
culus would be cumbersome—a hard open problem. Boomerang is a complex language,
and there is no room in the “complexity budget” for a statically checked type system:
lenses can already be difficult to program with and understand, and the complicated
constraints necessary for type checking will only add more to the programmer’s bur-
den. Instead, the Boomerang primitives have contracts that ensure that they produce
sane bidirectional transformations. The Boomerang libraries built atop these primi-
tives have contracts as well, in a CYA style. Even without optimizations to reduce the
number of dynamic checks, this improvement in error handling has proved quite use-
ful. Contracts are particularly suited to the phased nature of Boomerang, since the
contracts on Boomerang’s lens combinators are “quasi-static”. Lenses are constructed
only once and then run many times. Running a lens merely requires checking regular
language membership, so higher cost one-time checks can be amortized over many lens
runs.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Sekiyama et al.

5. PROPERTIES OF FσH
We show that well-typed programs don’t get stuck—a well typed term evaluates to a
result, i.e., a value or a blame (if evaluation terminates at all5)—via preservation and
progress [Wright and Felleisen 1994].

The following proof of type soundness is entirely syntactic, offering a new approach
to manifest calculi. In typical formulations of manifest calculi [Greenberg et al. 2010;
Flanagan 2006], subtyping is used instead of a conversion relation like our ≡ relation;
one of the contributions in this work is the insight that subtyping—with its accom-
panying metatheoretical complications that prevent a simple syntactic proof of type
soundness—is not an essential component of manifest calculi.

As Greenberg [2013] and Sekiyama et al. [2015] have pointed out, the “value inver-
sion” lemma (Lemma A.16), which says values typed at refinement types must satisfy
their refinements, is a critical component of any sound manifest contract system, es-
pecially for proving progress. The type soundness proof in Belo et al. [2011] is missing
this lemma—and can never have it, since its conversion relation does not enjoy coter-
mination. Greenberg [2013] leaves this lemma as a conjecture—which turns out to be
false. This value inversion lemma is not merely a technical device to prove progress.
Together with preservation and progress, it means that if a term typed at a refinement
type evaluates to a value, then it satisfies the predicate of the type, giving a slightly
stronger guarantee about well typed programs.

Perhaps surprisingly, the value inversion lemma is not trivial due to T CONV: we
must show that predicates of convertible refinement types are semantically equiva-
lent. The proof of this property rests on cotermination (Lemma 5.5), which says that
common-subexpression reduction does not change the behavior of terms. Cotermina-
tion also plays a significant role in showing parametricity. Finally, using these proper-
ties, we show progress (Theorem A.37) and preservation (Theorem A.39), which imply
type soundness (Theorem 5.19).

5.1. Cotermination
Next, we show cotermination, which both type soundness and parametricity rest on.
We discuss earlier conjectures concerning cotermination in Section 7; for the rest of this
section, we offer the new, correct definitions without direct reference to old versions
of FH. We first show that cotermination holds in the most simple situation, namely,
where the domain of substitutions is singleton, and then show cotermination. The key
observation in proving cotermination is that terms substituted by CSR evaluate to ones
substituted by the same CSR. We refer to implicitly determinism of the semantics.

5.1 Lemma [Determinism (Lemma A.5)]: If e −→ e1 and e −→ e2 then e1 = e2.

5.2 Lemma [Cotermination, left side (Lemma A.10)]: Suppose that e1 −→ e2. If
[e1/x]e −→ e ′, then [e2/x]e −→∗ [e2/x]e ′′ for some e ′′ such that e ′ = [e1/x]e ′′.

5.3 Lemma [Cotermination, right side (Lemma A.13)]: Suppose that e1 −→ e2. If
[e2/x]e −→ e ′, then [e1/x]e −→∗ [e1/x]e ′′ for some e ′′ such that e ′ = [e2/x]e ′′.

5.4 Lemma [Cotermination (Lemma A.14)]:— Suppose that e1 −→ e2.
(1) If [e1/x]e −→∗ true, then [e2/x]e −→∗ true.
(2) If [e2/x]e −→∗ true, then [e1/x]e −→∗ true.

— Suppose that e1 −→∗ e2.
(1) If [e1/x]e −→∗ true, then [e2/x]e −→∗ true.
(2) If [e2/x]e −→∗ true, then [e1/x]e −→∗ true.

5In fact, FσH is terminating, as we will discover in Section 6.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:21

5.5 Lemma [Cotermination at true]: Suppose that σ1 −→∗ σ2.

(1) If σ1(e) −→∗ true, then σ2(e) −→∗ true.
(2) If σ2(e) −→∗ true, then σ1(e) −→∗ true.

PROOF. By induction on the size of dom(σ1) with Lemma A.14.

5.2. Type soundness
Using cotermination, we show value inversion and then type soundness in a standard
syntactic way.

5.6 Lemma [Cotermination of refinement types (Lemma A.15)]: If {x :T1 | e1} ≡
{x :T2 | e2} then T1 ≡ T2 and [v/x]e1 −→∗ true iff [v/x]e2 −→∗ true, for all v .

5.7 Lemma [Value inversion (Lemma A.16)]: If ∅ ` v : T and unrefn(T) = {x :Tn |
en} then [v/x]en −→∗ true.

5.8 Lemma [Term substitutivity of conversion (Lemma A.22)]:
If T1 ≡ T2 and e1 −→∗ e2 then [e1/x]T1 ≡ [e2/x]T2.

5.9 Lemma [Type substitutivity of conversion (Lemma A.23)]:
If T1 ≡ T2 then [T/α]T1 ≡ [T/α]T2.

5.10 Lemma [Term weakening (Lemma A.24)]: If x is fresh and Γ ` T ′ then

(1) Γ,Γ′ ` e : T implies Γ, x :T ′,Γ ` e : T ,
(2) Γ,Γ′ ` T implies Γ, x :T ′,Γ′ ` T , and
(3) ` Γ,Γ′ implies ` Γ, x :T ′,Γ′.

5.11 Lemma [Type weakening (Lemma A.25)]: If α is fresh then

(1) Γ,Γ′ ` e : T implies Γ, α,Γ ` e : T ,
(2) Γ,Γ′ ` T implies Γ, α,Γ′ ` T , and
(3) ` Γ,Γ′ implies` Γ, α,Γ′.

5.12 Lemma [Term substitution (Lemma A.28)]: If Γ ` e ′ : T ′, then

(1) if Γ, x :T ′,Γ′ ` e : T then [e ′/x]Γ,Γ′ ` [e ′/x]e : [e ′/x]T ,
(2) if Γ, x :T ′,Γ′ ` T then [e ′/x]Γ,Γ′ ` [e ′/x]T , and
(3) if ` Γ, x :T ′,Γ′ then ` [e ′/x]Γ,Γ′.

5.13 Lemma [Type substitution (Lemma A.31)]: If Γ ` T ′ then

(1) if Γ, α,Γ′ ` e : T , then [T ′/α]Γ,Γ′ ` [T ′/α]e : [T ′/α]T ,
(2) if Γ, α,Γ′ ` T , then [T ′/α]Γ,Γ′ ` [T ′/α]T , and
(3) if ` Γ, α,Γ′, then ` [T ′/α]Γ,Γ′.

As is standard for type systems with conversion rules, we must prove inversion lem-
mas in order to reason about typing derivations in a syntax-directed way. We offer the
statement of inversion for functions here; the rest are in Section A.2.

5.14 Lemma [Lambda inversion (Lemma A.32)]: If Γ ` λx :T1. e12 : T , then

(1) Γ ` T1,
(2) Γ, x :T1 ` e12 : T2, and
(3) x :T1 → T2 ≡ unref(T).

Inversion lemmas in hand, we prove a canonical forms lemma to support a proof of
progress. The canonical forms proof is “modulo” the unref function: the shape of the
values of type {x :T | e} are determined by the inner type T .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Sekiyama et al.

5.15 Lemma [Canonical forms (Lemma A.36)]: If ∅ ` v : T , then:

(1) If unref(T) = B then v = k ∈ KB for some v
(2) If unref(T) = x :T1 → T2 then v is

(a) λx :T ′1. e12 and T ′1 ≡ T1 for some x ,T ′1 and e12, or
(b) 〈T ′1 ⇒ T ′2〉lσ and σ(T ′1) ≡ T1 and σ(T ′2) ≡ T2 for some T ′1,T

′
2, and l

(3) If unref(T) = ∀α.T ′ then v is Λα. e for some e.

5.16 Theorem [Progress (Theorem A.37)]: If ∅ ` e : T , then either

(1) e −→ e ′, or
(2) e is a result r , i.e., a value or blame.

The following regularity property formalizes an important property of the type sys-
tem: all contexts and types involved are well formed. This is critical for the proof of
preservation: when a term raises blame, we must show that the blame is well typed.
With regularity, we can immediately know that the original type is well formed.

5.17 Lemma [Context and type well formedness (Lemma A.38)]: (1) If Γ ` e :
T , then ` Γ and Γ ` T .

(2) If Γ ` T then ` Γ.

5.18 Theorem [Preservation (Theorem A.39)]: If ∅ ` e : T and e −→ e ′, then ∅ `
e ′ : T .

5.19 Theorem [Type Soundness]: If ∅ ` e : T and e −→∗ e ′ and e ′ does not reduce,
then e ′ is a result. Moreover, if e ′ = v and T = {x :T ′′ | e ′′}, then [v/x]e ′′ −→∗ true.

PROOF. The first half is shown by Theorems 5.16 and 5.18, and the second is by
∅ ` v : T and Lemma 5.7.

Requiring standard weakening, substitution, and inversion lemmas, the syntactic
proof of type soundness is straightforward. Note that value inversion (Lemma 5.7)
gives us a strong soundness property: if a term reduces to a value, it satisfies all of the
predicates in its refinement types. It is easy to restrict FσH to a simply typed calculus
with a similar type soundness proof. In fact, after cutting out universal types and re-
stricting refinements to base types, it’s possible to simplify the operational semantics
and to do away with the T FORGET rule, which is needed to deal with nested refine-
ment types. We don’t give the proof here because it is subsumed by type soundness in
FσH.

6. PARAMETRICITY
We prove relational parametricity for three reasons: (1) it yields powerful reasoning
techniques such as free theorems [Wadler 1989] and is the tool used for the upcast
lemma [Belo et al. 2011]; (2) it indicates that contracts don’t interfere with type ab-
straction, i.e., that FH supports polymorphism in the same way that System F does;
(3) we want to correct Belo et al. [2011] and Greenberg [2013]. The proof is mostly
standard: we define a (syntactic) logical relation on terms and types, where each type
is interpreted as a relation on terms and the relation at type variables is given as a
parameter.

We begin by defining two relations: r1 ∼ r2 : T ; θ; δ relates closed results, defined by
induction on types; e1 ' e2 : T ; θ; δ relates closed expressions which evaluate to results
in the first relation. The definitions are shown in Figure 5.6 Both relations have three
indices: a type T , a substitution θ for type variables, and a substitution δ for term

6To save space, we write ⇑l ∼ ⇑l : T ; θ; δ separately instead of manually adding such a clause for each type.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:23

Closed terms r1 ∼ r2 : T ; θ; δ e1 ' e2 : T ; θ; δ

k ∼ k : B ; θ; δ ⇐⇒ k ∈ KB

v1 ∼ v2 : α; θ; δ ⇐⇒ ∃RT1T2, α 7→ R,T1,T2 ∈ θ ∧ v1 R v2
v1 ∼ v2 : (x :T1 → T2); θ; δ ⇐⇒ ∀v ′1 ∼ v ′2 : T1; θ; δ, v1 v

′
1 ' v2 v

′
2 : T2; θ; δ[v ′1, v

′
2/x]

v1 ∼ v2 : ∀α.T ; θ; δ ⇐⇒ ∀RT1T2, v1 T1 ' v2 T2 : T ; θ[α 7→ R,T1,T2]; δ
v1 ∼ v2 : {x :T | e}; θ; δ ⇐⇒ v1 ∼ v2 : T ; θ; δ ∧

[v1/x]θ1(δ1(e)) −→∗ true ∧ [v2/x]θ2(δ2(e)) −→∗ true
⇑l ∼ ⇑l : T ; θ; δ

e1 ' e2 : T ; θ; δ ⇐⇒ ∃r1r2, e1 −→∗ r1 ∧ e2 −→∗ r2 ∧ r1 ∼ r2 : T ; θ; δ
RT ,θ,δ = {(r1, r2) | r1 ∼ r2 : T ; θ; δ}

Types T1 ' T2 : ∗; θ; δ

B ' B : ∗; θ; δ
α ' α : ∗; θ; δ

x :T11 → T12 ' x :T21 → T22 : ∗; θ; δ ⇐⇒ T11 ' T21 : ∗; θ; δ ∧
∀v1 ∼ v2 : T11; θ; δ,

T12 ' T22 : ∗; θ; δ[v1, v2/x]
∀α.T1 ' ∀α.T2 : ∗; θ; δ ⇐⇒ ∀RT ′1T ′2, T1 ' T2 : ∗; θ[α 7→ R,T ′1,T

′
2]; δ

{x :T1 | e1} ' {x :T2 | e2} : ∗; θ; δ ⇐⇒ T1 ' T2 : ∗; θ; δ ∧
∀v1 ∼ v2 : T1; θ; δ, [v1/x]θ1(δ1(e1)) ' [v2/x]θ2(δ2(e2)) : Bool; θ; δ

Open terms and types Γ ` θ; δ Γ ` e1 ' e2 : T Γ ` T1 ' T2 : ∗

Γ ` θ; δ ⇐⇒ ∀x :T ∈ Γ, θ1(δ1(x)) ' θ2(δ2(x)) : T ; θ; δ ∧
∀α ∈ Γ,∃RT1T2, α 7→ R,T1,T2 ∈ θ

Γ ` e1 ' e2 : T ⇐⇒ ∀Γ ` θ; δ, θ1(δ1(e1)) ' θ2(δ2(e2)) : T ; θ; δ
Γ ` T1 ' T2 : ∗ ⇐⇒ ∀Γ ` θ; δ, T1 ' T2 : ∗; θ; δ

Fig. 5. The logical relation for parametricity

variables. A type substitution θ, which gives the interpretation of free type variables
in T , maps a type variable to a triple (R,T1,T2) comprising a binary relation R on
terms and two closed types T1 and T2. A term substitution δ maps from variables to
pairs of closed values. We write projections δi (i = 1, 2) to denote projections from this
pair. We similarly write θi (i = 1, 2) for a substitution that maps a type variable α to Ti

where θ(α) = (R,T1,T2).
With these definitions out of the way, the term relation is mostly straightforward.

First, ⇑l is related to itself at every type. A base type B gives the identity relation on
KB , the set of constants of type B . A type variable α simply uses the relation assumed
in the substitution θ. Related functions map related arguments to related results. Type
abstractions are related when their bodies are parametric in the interpretation of the
type variable. Finally, two values are related at a refinement type when they are re-
lated at the underlying type and both satisfy the predicate; here, the predicate e gets
closed by applying the substitutions. We require that both values satisfy their refine-
ments rather than having the first satisfy the predicate iff the second does because I
want to know that values related at refinement types actually inhabit those types, i.e.,
actually satisfy the predicates of the refinement. The ∼ relation on results is extended
to the relation ' on closed terms in a straightforward manner: terms are related if and
only if they both terminate at related results. Divergent terms are not related to each
other—though we will discover that divergent terms do not exist in FH. We extend the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Sekiyama et al.

relation to open terms, written Γ ` e1 ' e2 : T , relating open terms that are related
when closed by any “Γ-respecting” pair of substitutions θ and δ (written Γ ` θ; δ, also
defined in Figure 5).

To show that (well-typed) casts yield related results when applied to related inputs,
we also need a relation on types T1 ' T2 : ∗; θ; δ; we define this relation in Figure 5.
We can use the logical relation on terms to handle the arguments of function types and
refinement types. Note that the T1 and T2 in this relation are not necessarily closed;
terms in refinement types, which should be related at Bool, are closed by applying
substitutions. In the function and refinement type cases, the relation on a smaller type
is universally quantified over logically related values. There are two choices of the
type at which they should be related (for example, the second line of the function type
case could change T11 to T21). It does not really matter which side we choose, since
they are related types. We are “left-leaning”. Finally, we lift the type relation to open
terms, writing Γ ` T1 ' T2 : ∗ when two types are equivalent for any Γ-respecting
substitutions.

It is worth discussing two points peculiar to this formulation: terms in the logical
relation are untyped, and the type indices are open.

We allow any relation on terms to be used in θ; terms related at T need not be well
typed at T . The standard formulation of a logical relation is well typed throughout,
requiring that the relation R in every triple be well typed, only relating values of type
T1 to values of type T2 (e.g., [Pitts 2005a]). We suspect that part of the reason this proof
of parametricity works is its similarity to Girard’s untyped reducibility candidates.
We have two motivations for leaving the relations untyped. First, functions of type
x :T1 → T2 must map related values (v1 ∼ v2 : T1) to related results...but at what type?
While [v1/x]T2 and [v2/x]T2 are related in the type relation, terms that are well typed
at one type won’t necessarily be well typed at the other, whether definitions are left-
or right-leaning. Second, this parametricity relation is design to that upcasts have no
effect: if T1 <: T2, then 〈T1 ⇒ T2〉l ∼ λx :T1. x : T1 → T2. That is, we want a cast
〈T1 ⇒ T2〉l , of type T1 → T2, to be related to the identity λx :T1. x , of type T1 → T1.
There is one small hitch: λx :T1. x has type T1 → T1, not T1 → T2! We therefore
don’t demand that two expressions related at T be well typed at T , and we allow any
relation to be chosen as R.

The type indices of the term relation are not necessarily closed. Instead, just as the
interpretation of free type variables in the logical relation’s type index are kept in a
substitution θ, we keep δ as a substitution for the free term variables that can appear
in type indices. Keeping this substitution separate avoids a problem in defining the
logical relation at function types. Consider a function type x :T1 → T2: the logical rela-
tion says that values v1 and v2 are related at this type when they take related values
to related results, i.e. if v ′1 ∼ v ′2 : T1; θ; δ, then we should be able to find v1 v

′
1 ' v2 v

′
2 at

some type. The question here is which type index we should use. If we keep type indices
closed (with respect to term variables), we cannot use T2 on its own—we have to choose
a binding for x ! Knowles and Flanagan [Knowles and Flanagan 2010] deal with this
problem by introducing the “wedge product” operator, which merges two types—one
with v ′1 substituted for x and the other with v ′2 for x—into one. Instead of substitut-
ing eagerly, we put both bindings in δ and apply them when needed—the refinement
type case. We think this formulation is more uniform with regard to free term/type
variables, since eager substitution is a non-starter for type variables, anyway.

As we developed the original proof [Belo et al. 2011], we found that the E REFL rule
〈T ⇒ T 〉l v v is not just a convenient way to skip decomposing a trivial cast into
smaller trivial casts (when T is a polymorphic or dependent function type); E REFL
is, in fact, crucial to obtaining parametricity in this syntactic setting. On the one
hand, the evaluation of well-typed programs never encounters casts with uninstan-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:25

Complexity of casts

cc(〈T ⇒ T 〉l) = 1
cc(〈x :T11 → T12 ⇒ x :T21 → T22〉l) = cc(〈[〈T21 ⇒ T11〉l x/x]T12 ⇒ T22〉l) +

cc(〈T21 ⇒ T11〉l) + 1
cc(〈∀α.T1 ⇒ ∀α.T2〉l) = cc(〈T1 ⇒ T2〉l) + 1
cc(〈{x :T1 | e} ⇒ T2〉l) = cc(〈T1 ⇒ T2〉l) + 1

(if T2 6= {x :T1 | e} and T2 6= {y :{x :T1 | e} | e ′})
cc(〈T1 ⇒ {x :T1 | e}〉l) = 1
cc(〈T1 ⇒ {x :T2 | e}〉l) = cc(〈T1 ⇒ T2〉l) + 2

(if T1 6= T2 and T1 is not a refinement type)

Fig. 6. Complexity of casts

tiated type variables—a key property of our evaluation relation. On the other hand,
by parametricity, we expect every value of type ∀α.α → α to behave the same as the
polymorphic identity function. One of the values of this type is Λα. 〈α ⇒ α〉l . Without
E REFL, however, applying this type abstraction to a compound type, say Bool→ Bool,
and a function f of type Bool → Bool would return, by E FUN, a wrapped version of
f that is syntactically different from the f we passed in—that is, the function broke
parametricity! We expect the returned value should behave the same as the input,
though—the results are just syntactically different. With E REFL, 〈T ⇒ T 〉l returns
the input immediately, regardless of T—just as the identity function. So, this rule is
a technical necessity, ensuring that casts containing type variables behave parametri-
cally.

Now we can set about proving parametricity (Lemma A.47). We begin with compo-
sitionality theorems relating the closing substitutions θ and δ to substitution in terms
(Lemma A.40) and types (Lemma A.43); convertibility shows that our logical relation
relates terms at convertible types (Lemma A.44); after some lemmas about casts and
a separate induction relating casts between related types (Lemma A.46), we prove
parametricity.

6.1 Lemma [Term compositionality (Lemma A.40)]: If δ1(e) −→∗ e1 and
δ2(e) −→∗ e2 then r1 ∼ r2 : T ; θ; δ[e1, e2/x] iff r1 ∼ r2 : [e/x]T ; θ; δ.

6.2 Lemma [Type compositionality (Lemma A.43)]:
r1 ∼ r2 : T ; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ iff r1 ∼ r2 : [T ′/α]T ; θ; δ.

6.3 Lemma [Convertibility (Lemma A.44)]: If T1 ≡ T2 then r1 ∼ r2 : T1; θ; δ iff
r1 ∼ r2 : T2; θ; δ.

Before we can show parametricity (Lemma A.47), we prove in a separate induction
that casts between related types are related (Lemma A.46).

We show that (well typed) casts relate to themselves by induction a cast complex-
ity metric, cc, defined in Figure 6. The complexity of a cast is the number of steps it
and its subparts can take. This definition is carefully dependent on our definition of
type compatibility and our cast reduction rules. Doing induction on this metric greatly
simplifies the proof: we show that stepping casts at related types yields either related
non-casts, or lower complexity casts between related types. Note that we omit the σ,
since the evaluation of casts doesn’t depend on delayed substitutions. It may be easier
for the reader to think of cc(〈T1 ⇒ T2〉l) as a three argument function—taking two
types and a blame label—rather than a single argument function taking a cast.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Sekiyama et al.

6.4 Lemma [Cast reflexivity (Lemma A.46)]: If ` Γ and T1 ‖ T2 and Γ ` σ(T1) '
σ(T1) : ∗ and Γ ` σ(T2) ' σ(T2) : ∗ and AFV(σ) ⊆ dom(Γ), then Γ ` 〈T1 ⇒ T2〉lσ '
〈T1 ⇒ T2〉lσ : σ(:T1 → T2).

Finally, we can prove relational parametricity—every well-typed term (under Γ) is
related to itself for any Γ-respecting substitutions.

6.5 Theorem [Parametricity (Theorem A.47)]: (1) If Γ ` e : T then Γ ` e ' e : T ,
and

(2) If Γ ` T then Γ ` T ' T : ∗.
We refer readers to [Sekiyama and Igarashi 2014] for a significantly expanded ac-

count of parametricity for FH with recursion. There, they have proved that their logical
relation based on >>-closure [Pitts 2005b] is sound7 with respect to contextual equiv-
alence. Since the details of their technical developments are different from what we
present here, we can only conjecture that our logical relation is also sound with re-
spect to contextual equivalence.

We do have that logically related programs are by definition behaviorally equivalent:
if ∅ ` e1 ' e2 : T , then e1 and e2 coterminate at related results. When the results are
constants or blame, the results are not only logically related, but equal.

6.1. Subtyping
We elide the proofs of subtyping—we believe those in Belo et al. [2011] and Greenberg
et al. [2010] adapt straightforwardly, since the parametricity relation hasn’t materially
changed in FσH. Sekiyama and Igarashi [2014] offer a complete account of an FH-like
system with recursion, a parametricity relation that has a clear relationship to contex-
tual equivalence, and proofs of subtyping.

7. THREE VERSIONS OF FH

We discuss comparison of FσH with two prior formulations of FH without delayed sub-
stitution: Belo et al. [2011] from ESOP 2011 and Greenberg’s thesis [Greenberg 2013].
Both of these defined variants of FH, showing type soundness, parametricity and up-
cast elimination. All of these results depend on two properties of the FH type conver-
sion relation: substitutivity (Lemma A.22) and cotermination (Lemma 5.5).

7.1. FH 1.0: Belo et al. [2011]
Belo et al. [2011] got rid of subtyping and explicitly used the symmetric, transitive
closure of parallel reduction V (Figure 7) as the conversion relation. (Parallel reduc-
tion is reflexive by definition.) The use of parallel reduction is inspired by Greenberg
et al. [2010], in which type soundness of λH is proved by using cotermination and an-
other property called substitutivity (if e1 V e2 and e ′1 V e ′2 then [e ′1/x]e1 V [e ′2/x]e2) of
parallel reduction. These properties were needed also for type soundness of FH. Unfor-
tunately, it turns out that parallel reduction in FH is not substitutive—the proof was
wrong—and cotermination, which was left as a conjecture ([Belo et al. 2011], p. 15),
does not hold, either. Figure 8 offers three counterexamples: two to substitutivity, and
one to both substitutivity and cotermination.

Why doesn’t substitutivity hold in FH, when it did (so easily) in λH? Sources of the
trouble are that (1) the FH cast rules depend upon certain (syntactic) equalities be-
tween types and that (2) parallel reduction is defined over open terms. As a result,
substitution may change reduction rules to be applied—both counterexamples to sub-
stitutivity in Figure 8 take advantage of it.

7And also complete, under certain conditions.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:27

Parallel term reduction e1 V e2

vi V v ′i
op (v1, ... , vn)V [[op]] (v ′1, ... , v

′
n)

EP ROP
e12 V e ′12 v2 V v ′2

(λx :T . e12) v2 V [v ′2/x]e ′12
EP RBETA

e V e ′ T2 V T ′2
(Λα. e)T2 V [T ′2/α]e ′

EP RTBETA
v V v ′

〈T ⇒ T 〉l v V v ′
EP RREFL

T2 6= {x :T1 | e} T2 6= {y :{x :T1 | e} | e2} T1 V T ′1 T2 V T ′2 v V v ′

〈{x :T1 | e} ⇒ T2〉l v V 〈T ′1 ⇒ T ′2〉l v ′
EP RFORGET

T1 6= T2 T1 6= {x :T | e} T1 V T ′1 T2 V T ′2 e V e ′ v V v ′

〈T1 ⇒ {x :T2 | e}〉l v V 〈T ′2 ⇒ {x :T ′2 | e ′}〉l (〈T ′1 ⇒ T ′2〉l v ′)
EP RPRECHECK

T V T ′ e V e ′ v V v ′

〈T ⇒ {x :T | e}〉l v V 〈{x :T ′ | e ′}, [v ′/x]e ′, v ′〉l EP RCHECK

v V v ′

〈{x :T | e1}, true, v〉l V v ′
EP ROK 〈{x :T | e1}, false, v〉l V ⇑l

EP RFAIL

x :T11 → T12 6= x :T21 → T22

T11 V T ′11 T12 V T ′12 T21 V T ′21 T22 V T ′22 v V v ′

〈x :T11 → T12 ⇒ x :T21 → T22〉l v V
λx :T ′21. (〈[〈T ′21 ⇒ T ′11〉l x/x]T ′12 ⇒ T ′22〉l (v ′ (〈T ′21 ⇒ T ′11〉l x)))

EP RFUN

∀α.T1 6= ∀α.T2 T1 V T ′1 T2 V T ′2 v V v ′

〈∀α.T1 ⇒ ∀α.T2〉l v V Λα. (〈T ′1 ⇒ T ′2〉l (v ′ α))
EP RFORALL

e V e
EP REFL

T1 V T ′1 e12 V e ′12
λx :T1. e12 V λx :T ′1. e

′
12

EP ABS
e1 V e ′1 e2 V e ′2

e1 e2 V e ′1 e
′
2

EP APP

e V e ′

Λα. e V Λα. e ′
EP TABS

e1 V e ′1 T2 V T ′2
e1 T2 V e ′1 T

′
2

EP TAPP

ei V e ′i
op (e1, ... , en)V op (e ′1, ... , e

′
n)

EP OP
T1 V T ′1 T2 V T ′2

〈T1 ⇒ T2〉l V 〈T ′1 ⇒ T ′2〉l
EP CAST

T V T ′ e V e ′

〈T , e, k〉l V 〈T ′, e ′, k〉l EP CHECK
E [⇑l]V ⇑l EP BLAME

Parallel type reduction T1 V T2

T V T
EP TREFL

σ1 −→∗ σ2 T1 V T2

{x :T1 | σ1(e)}V {x :T2 | σ2(e)} EP TREFINE

T1 V T ′1 T2 V T ′2
x :T1 → T2 V x :T ′1 → T ′2

EP TFUN
T V T ′

∀α.T V ∀α.T ′ EP TFORALL

Fig. 7. Parallel reduction (for open terms).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Sekiyama et al.

Counterexample 1: substitutivity
Let T be a type with a free variable x .

e1 = 〈T ⇒ {y :[5/x]T | true}〉l 0
e2 = 〈[5/x]T ⇒ {y :[5/x]T | true}〉l (〈T ⇒ [5/x]T 〉l 0)

e ′1 = e ′2 = 5

Observe that e ′1 V e ′2 (by EP REFL) and e1 V e2 (by EP RPRECHECK) but
[5/x]e1 = 〈[5/x]T ⇒ {y :[5/x]T | true}〉l 0V 〈{y :[5/x]T | true}, true, 0〉l by EP RCHECK,
not [5/x]e2. Note that the definition of substitution [e ′/x]e is a standard one, in which
substitution goes down into casts.

Counterexample 2: substitutivity
Let T2 be a type with a free variable x .

e1 = 〈T1 → T2 ⇒ [5/x]T1 → T2〉l v
e2 = λy :T1. 〈T2 ⇒ [5/x]T2〉l (v (〈T1 ⇒ T1〉l y))

e ′1 = e ′2 = 5

Observe that e ′1 V e ′2 (by EP REFL) and e1 V e2 (by EP RFUN). We have
[5/x]e1 = 〈[5/x]T1 → T2 ⇒ [5/x]T1 → T2〉l v V [5/x]v by EP RREFL, not [5/x]e2.

Counterexample 3: cotermination

e = 〈{x :Bool | false} ⇒ {x :Bool | y}〉l true
e1 = 0 = 5
e2 = false

Observe that e1 −→ e2 (and so e1 V e2, by EP ROP) and cotermination says that
[e1/y]e terminates at a value iff so does [e2/x]e. Here, by E CHECK,
[e1/y]e −→ 〈{x :Bool | e1}, e1, true〉l −→∗ ⇑l but by E REFL, [e2/x]e −→ true.

Fig. 8. Counterexamples to substitutivity and cotermination of parallel reduction in FH

Cotermination breaks also because substitutions can affect which reduction rule ap-
plies to a cast, which in turn can force us to perform checks under one substitution
that aren’t performed under another, related one (counterexample 3 in Figure 8).

7.2. FH 2.0: Greenberg’s thesis
In his thesis, Greenberg tried to correct this problem using a fix due to Sekiyama: he
takes common-subexpression reduction (CSR) as the conversion relation [Greenberg
2013]. We repeat FσH’s identical definition of CSR (Figure 4) again here, in Figure 9.
As we can see from the definition, CSR is designed to be substitutive (and is substi-
tutive). However, cotermination still fails: we can construct untyped terms that don’t
satisfy cotermination in Greenberg’s operational semantics—they look like the term
in counterexample 3 (Figure 8). The essential issue is that we can fire E REFL under
one substitution and force a check under another. If the term is ill typed, then we have
no way of knowing whether the argument of the cast satisfies its input type—so the
check can fail where E REFL succeeded. Well typed terms don’t have this problem, but
we need our conversion relation to prove progress and preservation—we can’t use ar-
guments about typing in our proof of cotermination. In short, Greenberg’s Conjecture
3.2.1 on page 88 is false; it seems that the evaluation relation is defined in such a way
that substitutions can’t affect which cast reduction rules are chosen.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:29

Conversion σ1 −→∗ σ2 T1 ≡ T2

σ1 −→∗ σ2 ⇐⇒
dom(σ1) = dom(σ2) ⊂ TmVar ∧
∀x ∈ dom(σ1). σ1(x) −→∗ σ2(x)

α ≡ α
C VAR

B ≡ B
C BASE

σ1 −→∗ σ2 T1 ≡ T2

{x :T1 | σ1(e)} ≡ {x :T2 | σ2(e)}
C REFINE

T1 ≡ T ′1 T2 ≡ T ′2
x :T1 → T2 ≡ x :T ′1 → T ′2

C FUN
T ≡ T ′

∀α.T ≡ ∀α.T ′
C FORALL

T2 ≡ T1

T1 ≡ T2
C SYM

T1 ≡ T2 T2 ≡ T3

T1 ≡ T3
C TRANS

Fig. 9. Type conversion via common-subexpression reduction

7.3. FσH
Our calculus, FσH, can see statically which cast reduction rule is chosen thanks to our
definition of substitution (Definition 3.1). In Lemma 5.5, we show that terms related
by CSR coterminate at true using FσH’s substitution semantics; this is enough to prove
type soundness and parametricity.

FH tried to use entirely syntactic techniques to achieve type soundness, avoiding the
semantic techniques necessary for λH. But we failed: we need to prove cotermination
to get type soundness; our proof amounts to showing that type conversion is a weak
bisimulation. Our metatheory is, on the one hand, simpler than that of Greenberg et al.
[2010], which needs cotermination and semantic type soundness. On the other hand,
we must use a nonstandard substitution operation, which is a hassle.

7.4. Discussion
Introducing explicit tagging is an attractive alternative approach. In an explicitly
tagged manifest contract system, the only values inhabiting refinement types are
tagged as such, e.g., (v, {x :T | e}); the operational semantics then manages tags on
values, tagging in E CHECKOK and untagging in E FORGET. Explicit tagging has
several advantages: it clarifies the staging of the operational semantics; it eliminates
the need for a T FORGET rule; it gives value inversion directly (Lemma A.16). Such a
semantics would need to get stuck when casts are applied to inappropriately tagged
arguments, since typing can’t be used in the proof of cotermination.

Finally: what kind of calculus wouldn’t have cotermination at true for well typed
terms? In a nondeterministic language, CSR may make one choice with σ1 and another
with σ2. Fortunately, FH is deterministic. In a deterministic language, cotermination at
true may not hold for CSR if the evaluation relation misuses equalities between terms,
e.g., if some rules predicate reduction on subterm equalities which other rules ignore.
FσH is careful to fix the types in its casts early, delaying substitutions so that they don’t
affect reduction—the intuition underlying our proof of cotermination.

8. RELATED WORK
We discuss work related to FσH in two parts. First, we contrast our work with the un-
typed contract systems that enforce parametric polymorphism dynamically, rather
than statically as FσH does. We then discuss how FσH differs from existing manifest
contract calculi in greater detail.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Sekiyama et al.

8.1. Dynamically checked polymorphism
The FσH type system enforces parametricity with type abstractions and type variables,
while refinements are dynamically checked. Another line of work omits refinements,
seeking instead to dynamically enforce parametricity—typically with some form of
sealing (à la Pierce and Sumii [2000]).

Guha et al. [2007] define contracts with polymorphic signatures, maintaining ab-
straction with sealed “coffers”; they do not prove parametricity. Matthews and Ahmed
[2008] prove parametricity for a polymorphic multi-language system with a similar
policy. Neis et al. [2009] use dynamic type generation to restore parametricity in the
presence of intensional type analysis. FσH’s contracts are subordinate to the type sys-
tem, so the parametricity result does not require dynamic type generation. Ahmed
et al. [2009] prove parametricity for a gradual typing [Siek and Taha 2006] calculus
which enforces polymorphism with a set of global runtime seals. Ahmed et al. [2011]
define a polymorphic calculus for gradual typing, using local syntactic “barriers” in-
stead of global seals. The type bindings in that work inspired the delayed substitution
in this one. It is probably possible to combine FσH with the barrier calculus of Ahmed
et al., yielding a polymorphic blame calculus [Wadler and Findler 2009]. How to prove
parametricity of such a calculus remains an open question.

8.2. FσH and other manifest calculi
Five existing manifest calculi with dependent function types ([Flanagan 2006; Green-
berg et al. 2010; Knowles and Flanagan 2010; Ou et al. 2004; Strub et al. 2012]) use
subtyping and theorem provers as part of the definition of their type systems. All five
of these calculi have complicated metatheory to overcome the same two impediments
in the preservation proof: preservation after active checks and after congruence steps
in the argument position of applications (see the discussion on T EXACT and T CONV
in Section 3.3). Ou et al. [2004] restrict refinements and arguments of dependent func-
tions to a conservative approximation of pure terms; they also place strong require-
ments on their prover. Strub et al. [2012] restrict dependency to values. Knowles and
Flanagan [2010] as well as Greenberg et al. [2010] use subtyping to resolve these is-
sues and introduce type semantics to give a firm foundation of subtyping to earlier
work [Flanagan 2006]. We consider three systems in more detail: Knowles and Flana-
gan’s λH (KF); Greenberg et al.’s λH (which we write here as GPW); and FσH. (For a
comparison of FσH to earlier versions of FH, see Section 7). The rest of this subsection
addresses the differences between KF, GPW, and FσH. More concretely, we discuss (1)
how subtyping in KF and GPW is defined and used, (2) why denotational semantics is
needed, and (3) how FσH avoids complications introduced by subtyping and denotational
semantics.

KF and GPW use a rule like the following for refinement subtyping:8

∀Γ, x :{x :B | true} ` σ. σ(e1) −→∗ true impliesσ(e2) −→∗ true
Γ ` {x :B | e1} <: {x :B | e2}

(Note that B is a base type, while FσH allows refinements of any type.) Combined with
a “constants get most specific types” requirement—for example, assigning n the type
{x :Int | x = n}—subtyping allows n to be typed at any predicate contract it satisfies,
resolving the first issue of showing preservation after active checks. For example, if
〈Int ⇒ {x :Int | x > 0}〉l n −→∗ n, then n can be given type {x :Int | x > 0} (because
n > 0 −→∗ true). Subtyping is used in KF and GPW also to address the second issue,

8Readers familiar with the systems will recognize that we’ve folded the implication judgment into the rele-
vant subtyping rule.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:31

which amounts to showing the equivalence of types [e/x]T and [e ′/x]T when e −→ e ′.
Both KF and GPW relate reduction and subtyping, showing that types that reduce to
each other are mutual subtypes. KF use full beta reduction throughout their system.
GPW use call-by-value reduction in their operational semantics, showing that parallel
reducing types are mutual subtypes, separately relating CBV and parallel reduction.
Once these two difficulties are resolved, both preservation proofs are standard, given
appropriate subtyping inversion lemmas.

So much for motivation for subtyping. Now, why do KF and GPW need a denota-
tional semantics for types? Spelled out pedantically, the subtyping rule above has the
following premise:

∀σ. Γ, x :{x :B | true} ` σ implies (σ(e1) −→∗ true impliesσ(e2) −→∗ true)

That is, the well formedness of the closing substitution σ, i.e., substitution of “well-
typed” closed values for term variables, is in a negative position. Where do well-formed
closing substitutions come from? We cannot use syntactic typing, as this would be
ill-defined: term typing requires subtyping via subsumption; subtyping requires well-
formed closing substitutions in a negative position via the refinement case; but well-
formed closing substitutions require typing. We need another source of “well-typed”
values: hence, the denotations of types. Both KF and GPW define syntactic term mod-
els of types to use as a source of values for closing substitutions, though the specifics
differ.

After adding subtyping and denotational semantics, both KF and GPW are well de-
fined and have syntactic proofs of type soundness. But in the process of proving syn-
tactic type soundness, both languages proved semantic soundness theorems:

Γ ` e : T and Γ ` σ implies σ(e) ∈ [[σ(T)]]

in particular

∅ ` e : T implies e ∈ [[T]].

This theorem suffices for soundness of the language... so why bother with a syntactic
proof? In light of this, GPW only proves semantic soundness. The situation in KF and
GPW is somewhat unsatisfying. We set out to prove syntactic type soundness and
ended up proving semantic type soundness along the way. While not a serious burden
for a language as small as λH, having to use semantic techniques throughout makes
adding some features—polymorphism, state and other effects, concurrency—difficult.
For example, a semantic proof of type soundness for FσH would be very close to a proof
of parametricity—must we prove parametricity while proving type soundness?

FσH solves the problem by avoiding subtyping—which is what forced the presence of
closing substitutions and denotational semantics in the first place—and introducing
T EXACT, T CONV, and convertibility ≡ instead. We would like to note that T EXACT

` Γ ∅ ` v : T ∅ ` {x :T | e} [v/x]e −→∗ true
Γ ` v : {x :T | e}

T EXACT

needs some care to avoid vicious circularity: it is crucial to stipulate v and {x :T |
e} be closed. If we “bit the bullet” and allowed non-empty contexts there, then we
would need to apply a closing substitution to [v/x]e before checking if it reduces to
true but it would lead to the same circularity as subtyping we discussed above. As for
T CONV and convertibility, convertibility is much simpler than GPW and Belo et al.
[2011]. It doesn’t, unfortunately, completely simplify the proof: we must prove that
our conversion relation is a weak bisimulation to establish cotermination (Lemma 5.5)
before proving type soundness.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Sekiyama et al.

Another consequence of dropping subtyping is that the type system of FσH is not a
superset of that of λH.9 In particular, λH builds in subsumption, while FσH only has a
subsumption principle post facto, per the proofs in prior version of FH [Belo et al. 2011;
Greenberg 2013]. We can, however, take a λH typing derivation and eliminate every
occurrence of subsumption: by the upcast lemma, the two programs are equivalent,
even if one of them is not well typed. That is, we have taken subsumption out of the
type system and proved subsumption safe as an optimization—and, in doing so, greatly
simplified the type system.

9. CONCLUSION
FσH offers a simpler approach to combining parametric polymorphism and manifest
contracts. When we say “parametrically” polymorphic, we mean in particular that
the relation R used to related terms at type variables in the logical relation is a pa-
rameter of the logical relation, which admits any instantiation of R.10 We offer the
first conjecture-free, completely correct operational semantics for general refinements,
where refinements can apply to any type, not just base types.

We hope to extend FH with barriers for dynamically checked polymorphism [Ahmed
et al. 2011], and with and state. (Though we acknowledge that state is a difficult open
problem.) We also hope that FH’s operational semantics and (relatively) simple type
system will help developers implement contracts. With the introduction of abstract
types, there is room to draw connections between the client/server blame from Sec-
tion 1 and Findler and Felleisen-style client/server blame. Finally, we are curious to
see what we can do with a contract language with the reasoning principles derivable
from relational parametricity.

Acknowledgments
João Felipe Belo and Benjamin Pierce helped do the original work on FH. Stephanie
Weirich provided many insights throughout. Jianzhou Zhao’s help with parametric-
ity was invaluable; and a conversation about parametricity with Amal Ahmed and
Stephanie Weirich was particularly illuminating. A conversation with Cătălin Hriţcu
led to the functional interpretation of cast semantics.

REFERENCES

AHMED, A., FINDLER, R. B., MATTHEWS, J., AND WADLER, P. 2009. Blame for all. In
Workshop on Script-to-Program Evolution (STOP).

AHMED, A., FINDLER, R. B., SIEK, J., AND WADLER, P. 2011. Blame for all. In
Principles of Programming Languages (POPL).

BELO, J. F., GREENBERG, M., IGARASHI, A., AND PIERCE, B. C. 2011. Polymorphic
contracts. In European Symposium on Programming (ESOP).

BENZAKEN, V., CASTAGNA, G., AND FRISCH, A. 2003. CDuce: an XML-centric
general-purpose language. In International Conference on Functional Programming
(ICFP). ACM, New York, NY, USA, 51–63.

BIERMAN, G. M., GORDON, A. D., HRIŢCU, C., AND LANGWORTHY, D. 2010. Semantic
subtyping with an SMT solver. In International Conference on Functional Program-
ming (ICFP).

9The FσH operational semantics is essentially a superset of λH from Greenberg et al. [2010], barring some
slight differences in the function cast decomposition rule.
10Earlier versions [Belo et al. 2011] only admit relations that respect parallel reduction, but that restriction
has been relaxed.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:33

BOHANNON, A., FOSTER, J. N., PIERCE, B. C., PILKIEWICZ, A., AND SCHMITT, A.
2008. Boomerang: resourceful lenses for string data. In Principles of Programming
Languages (POPL).

FELLEISEN, M. AND HIEB, R. 1992. The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science (TCS) 103, 2, 235–271.

FINDLER, R. B. AND FELLEISEN, M. 2002. Contracts for higher-order functions. In
International Conference on Functional Programming (ICFP).

FLANAGAN, C. 2006. Hybrid type checking. In Principles of Programming Languages
(POPL).

FLATT, M. AND PLT. 2010. Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT Design
Inc. http://racket-lang.org/tr1/.

GREENBERG, M. 2013. Manifest contracts. Ph.D. thesis, University of Pennsylvania.
GREENBERG, M., PIERCE, B. C., AND WEIRICH, S. 2010. Contracts made manifest.

In Principles of Programming Languages (POPL).
GRONSKI, J. AND FLANAGAN, C. 2007. Unifying hybrid types and contracts. In Trends

in Functional Programming (TFP).
GUHA, A., MATTHEWS, J., FINDLER, R. B., AND KRISHNAMURTHI, S. 2007.

Relationally-parametric polymorphic contracts. In Dynamic Languages Symposium
(DLS).

HARPER, R., HONSELL, F., AND PLOTKIN, G. 1993. A framework for defining logics.
J. ACM 40, 1, 143–184.

KNOWLES, K. AND FLANAGAN, C. 2010. Hybrid type checking. ACM Trans. Program.
Lang. Syst. 32, 6:1–6:34.

MATTHEWS, J. AND AHMED, A. 2008. Parametric polymorphism through run-time
sealing or, theorems for low, low prices! In European Symposium on Programming
(ESOP).

NEIS, G., DREYER, D., AND ROSSBERG, A. 2009. Non-parametric parametricity. In
International Conference on Functional Programming (ICFP).

OU, X., TAN, G., MANDELBAUM, Y., AND WALKER, D. 2004. Dynamic typing with
dependent types. In IFIP Conference on Theoretical Computer Science (TCS).

PIERCE, B. AND SUMII, E. 2000. Relating cryptography and polymorphism.
PITTS, A. M. 2005a. Typed operational reasoning. In Advanced Topics in Types and

Programming Languages, B. C. Pierce, Ed. The MIT Press, Chapter 7, 245–289.
PITTS, A. M. 2005b. Typed operational reasoning. In Advanced Topics in Types and

Programming Languages, B. C. Pierce, Ed. The MIT Press, Chapter 7.
PLT 2014. Racket contract system.
SEKIYAMA, T. AND IGARASHI, A. 2014. Logical relations for a manifest calculus, fixed.

In preparation for submission.
SEKIYAMA, T., NISHIDA, Y., AND IGARASHI, A. 2015. Manifest contracts for

datatypes. In Principles of Programming Languages (POPL).
SIEK, J. G. AND TAHA, W. 2006. Gradual typing for functional languages. In Scheme

and Functional Programming Workshop.
STRUB, P.-Y., SWAMY, N., FOURNET, C., AND CHEN, J. 2012. Self-certification: Boot-

strapping certified typecheckers in F* with Coq. In Principles of Programming Lan-
guages (POPL). ACM.

TABUCHI, N., SUMII, E., AND YONEZAWA, A. 2003. Regular expression types for
strings in a text processing language. Electronic Notes in Theoretical Computer Sci-
ence. International Workshop in Types in Programming.

WADLER, P. 1989. Theorems for free! In Conference on Functional Programming and
Computer Architecture (FPCA).

WADLER, P. AND FINDLER, R. B. 2009. Well-typed programs can’t be blamed. In
European Symposium on Programming (ESOP).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://racket-lang.org/tr1/

A:34 Sekiyama et al.

WRIGHT, A. K. AND FELLEISEN, M. 1994. A syntactic approach to type soundness.
Information and Computation 115, 38–94.

A. PROOFS
A.1. Cotermination
We first start with proving standard properties about free variables and substitution
because they are non-standard and slightly tricky.

A.1 Lemma: Let σ be a substitution.

(1) For any term e, FV(σ(e)) = (FV(e) \ dom(σ)) ∪ FV(σ | AFV(e)).
(2) For any type T , FV(σ(T)) = (FV(T) \ dom(σ)) ∪ FV(σ | AFV(T)).

PROOF. By structural induction on e and T .

A.2 Lemma: Let σ be a substitution.

(1) For any term e, FTV(σ(e)) = (FTV(e) \ dom(σ)) ∪ FTV(σ | AFV(e)).
(2) For any type T , FTV(σ(T)) = (FTV(T) \ dom(σ)) ∪ FTV(σ | AFV(T)).

PROOF. By structural induction on e and T .

A.3 Lemma: Let σ be a substitution.

(1) If AFV(e) ∩ dom(σ) = ∅, then σ(e) = e.
(2) If AFV(T) ∩ dom(σ) = ∅, then σ(T) = T .

PROOF. By structural induction on e and T .

A.4 Lemma: Let σ1 and σ2 be substitutions. Suppose that dom(σ1) ∩ dom(σ2) = ∅ and
AFV(σ2) ∩ dom(σ1) = ∅.
(1) For any term e, σ2(σ1(e)) = (σ2(σ1))(σ2(e)).
(2) For any type T , σ2(σ1(T)) = (σ2(σ1))(σ2(T)).

PROOF. By structural induction on e and T with Lemma A.3.

A.5 Lemma [Determinism (Lemma 5.1)]: If e −→ e1 and e −→ e2 then e1 = e2.

PROOF. By case analysis for and induction on e −→ e1.

A.6 Lemma: Suppose that e1 and e2 are closed terms and that e ′1, [e1/x]e ′2 and [e2/x]e ′2
are values. If [e1/x](e ′1 e

′
2) −→ e, then [e2/x](e ′1 e

′
2) −→ [e2/x]e ′ for some e ′ such that

e = [e1/x]e ′.

PROOF. By case analysis on e ′1. Note that e ′1 takes the form of either lambda ab-
straction or cast since the application term [e1/x](e ′1 e

′
2) takes a step. We give just two

emblematic cases: E FUN and E PRECHECK.

e ′1 = 〈y :T11 → T12 ⇒ y :T21 → T22〉lσ where y :T11 → T12 6= y :T21 → T22: Without loss
of generality, we can suppose that y and variables of dom(σ) are fresh. Let z be a
fresh variable and i , j ∈ {1, 2}. Moreover, let σi be

[ei/x]σ] ([ei/x] | (AFV(y :T11 → T12) ∪ AFV(y :T21 → T22)) \ dom(σ))

and σij be σi | AFV(T1j) ∪ AFV(T2j). Then, [ei/x]e ′1 = 〈y :T11 → T12 ⇒ y :T21 →
T22〉lσi

and, by E REDUCE/E FUN, [ei/x](e ′1 e
′
2) −→ e ′′i where

e ′′i = λy :σi(T21). let z : σi(T11) = 〈T21 ⇒ T11〉lσi1
y in 〈[z/y]T12 ⇒ T22〉lσi2

([ei/x]e ′2 z).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:35

Here, let σ′j = σ | AFV(T1j) ∪ AFV(T2j) and e ′ be

λy :σ(T21). let z : σ(T11) = 〈T21 ⇒ T11〉lσ′
1
y in 〈[z/y]T12 ⇒ T22〉lσ′

2
(e ′2 z)

for some fresh variable z .
We show [ei/x]e ′ = e ′′i . By Lemma A.4, [ei/x]σ(T21) = ([ei/x]σ)([ei/x]T21) = σi(T21)
and, similarly, [ei/x]σ(T11) = σi(T11). Also, letting Sj = AFV(T1j) ∪ AFV(T2j),

[ei/x]σ′j] ([ei/x] | Sj \ dom(σ′j))
= [ei/x]σ′j] ([ei/x] | Sj \ dom(σ)) (because Sj \ dom(σ′j) = Sj \ dom(σ))
= ([ei/x]σ | Sj)] ([ei/x] | Sj \ dom(σ))
= (σi | dom(σ) ∩ Sj)] ([ei/x] | Sj \ dom(σ))
= (σij | dom(σ))] ([ei/x] | Sj \ dom(σ))
= σij .

The last equation is derived from the fact that

x ∈ dom(σij) ⇐⇒ x ∈ Sj ∩ dom(σi)
⇐⇒ x ∈ Sj ∩ ((AFV(y :T11 → T12) ∪ AFV(y :T21 → T22)) \ dom(σ))
⇐⇒ x ∈ (Sj ∩ (AFV(y :T11 → T12) ∪ AFV(y :T21 → T22))) \ dom(σ)
⇐⇒ x ∈ Sj \ dom(σ).

e ′1 = 〈T1 ⇒ {y :T2 | e}〉lσ: Here T1 6= {y :T2 | e} and T1 6= T2 and T1 6= {z :T ′ | e ′} for
any z , T ′ and e ′. Let i ∈ {1, 2} and

σi = [ei/x]σ] ([ei/x] | (AFV(T1) ∪ AFV({y :T2 | e})) \ dom(σ))

σi1 = σi | AFV({y :T2 | e})
σi2 = σi | AFV(T1) ∪ AFV(T2).

Then, by E REDUCE/E PRECHECK, [ei/x](e ′1 e
′
2) −→ e ′′i where

e ′′i = 〈T2 ⇒ {y :T2 | e}〉lσi1
(〈T1 ⇒ T2〉lσi2

[ei/x]e ′2).

Letting

σ′1 = σ | AFV({y :T2 | e})
σ′2 = σ | AFV(T1) ∪ AFV(T2)

e ′ = 〈T2 ⇒ {y :T2 | e}〉lσ′
1

(〈T1 ⇒ T2〉lσ′
2
e ′2),

it suffices to show that [ei/x]e ′ = e ′′i . We can show that [ei/x]σ′1]([ei/x] | AFV({y :T2 |
e}) \ dom(σ′1)) = σi1 and and [ei/x]σ′2] ([ei/x] | (AFV(T1) ∪ AFV(T2)) \ dom(σ′2)) =
σi2 similarly to the above, and so we finish.

A.7 Lemma: Suppose that e1 −→ e2 and that [e1/x]e ′1, [e1/x]e ′2 and [e2/x]e ′2 are values.

(1) If [e1/x](e ′1 e
′
2) −→ e, then [e2/x](e ′1 e

′
2) −→ [e2/x]e ′ for some e ′ such that e =

[e1/x]e ′.
(2) If [e2/x](e ′1 e

′
2) −→ e, then [e1/x](e ′1 e

′
2) −→ [e1/x]e ′ for some e ′ such that e =

[e2/x]e ′.

PROOF. Since [e1/x]e ′1 is a value, and e1 is not a value from e1 −→ e2, we have e ′1
is not a variable, and thus e ′1 is a value from the assumption that so is [e1/x]e ′1. Since
evaluation relation is defined over closed terms, we finish by Lemma A.6.

A.8 Lemma: Suppose that e1 and e2 are closed terms and that e is a value. If
[e1/x](e T) −→ e ′, then [e2/x](e T) −→ [e2/x]e ′′ for some e ′′ such that e ′ = [e1/x]e ′′.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 Sekiyama et al.

PROOF. Since the type application term [e1/x](e T) takes a step, e takes the form of
type abstraction. Let e = Λα. e ′. Without loss of generality, we can suppose that α is
fresh. Let i ∈ {1, 2}. By E REDUCE/E TBETA, [ei/x](e T) −→ [[ei/x]T/α][ei/x]e ′. Since
ei is closed, we have [[ei/x]T/α][ei/x]e ′ = [ei/x][T/α]e ′ by Lemma A.4 (1), and thus we
finish.

A.9 Lemma: Suppose that e1 −→ e2 and that [e1/x]e is a value.

(1) If [e1/x](e T) −→ e ′, then [e2/x](e T) −→ [e2/x]e ′′ for some e ′′ such that e ′ =
[e1/x]e ′′.

(2) If [e2/x](e T) −→ e ′, then [e1/x](e T) −→ [e1/x]e ′′ for some e ′′ such that e ′ =
[e2/x]e ′′.

PROOF. By Lemma A.8 because it is found that e is a value and that e1 and e2 are
closed terms.

A.10 Lemma: Suppose that e1 −→ e2. If [e1/x]e −→ e ′, then [e2/x]e −→∗ [e2/x]e ′′ for
some e ′′ such that e ′ = [e1/x]e ′′.

PROOF. By structural induction on e. Note that e1 is not a value from e1 −→ e2.

e = x : Since [e1/x]e = e1 and [e2/x]e = e2, we finish by Lemma A.3 when letting
e ′′ = e2 because e2 is closed.
e = v , y where x 6= y or ⇑l : Contradiction from [e1/x]e −→ e ′.
e = op (e ′1, .. , e

′
n): If all terms [e1/x]e ′i are values, then they are constants since

[e1/x] op (e ′1, ... , e
′
n) takes a step. Since e1 is not a value, e ′i = ki for some ki . Thus,

[e1/x]e = [e2/x]e = op (k1, ... , kn) and so we finish.
Otherwise, we suppose that some [e1/x]e ′i is not a value and all terms to the left
of [e1/x]e ′i are values. From that, we can show that all terms to the left of [e2/x]e ′i
are values since e1 is not a value. If [e1/x]e ′i gets stuck, then contradiction because
[e1/x]e takes a step. If [e1/x]e ′i −→ e ′′, then, by the IH, [e2/x]e ′i −→∗ [e2/x]e ′′i for some
e ′′i such that e ′′ = [e1/x]e ′′i . Thus, we finish by E COMPAT. Otherwise, if [e1/x]e ′i = ⇑l ,
then [e2/x]e ′i = ⇑l because e ′i = ⇑l by e1 6= ⇑l , which follows from e1 −→ e2. Thus, we
finish by E BLAME.
e = e ′1 e

′
2: We can show the case where either [e1/x]e ′1 or [e1/x]e ′2 is not a value simi-

larly to the above. Otherwise, if they are values, we can find that so are [e2/x]e ′1 and
[e2/x]e ′2, and thus we finish by Lemma A.7 (1).
e = e ′1 T2: Similarly to the case of function application, with Lemma A.9 (1).
e = 〈{y :T | e ′1}, e ′2, v〉l : Similarly to the above.

A.11 Lemma: If e1 −→ e2, and [e2/x]e is a value, then there exists some e ′ such that

— [e1/x]e −→∗ [e1/x]e ′,
— [e1/x]e ′ is a value, and
— [e2/x]e = [e2/x]e ′.

PROOF. By case analysis on e.

A.12 Lemma: If e1 −→ e2, and [e2/x]e = ⇑l , then [e1/x]e −→∗ ⇑l .

PROOF. By case analysis on e.

A.13 Lemma [Cotermination]: (Lemma 5.3)
Suppose that e1 −→ e2. If [e2/x]e −→ e ′, then [e1/x]e −→∗ [e1/x]e ′′ for some e ′′ such

that e ′ = [e2/x]e ′′.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:37

PROOF. By structural induction on e.

e = x : Since [e1/x]e = e1 and [e2/x]e = e2, we finish by Lemma A.3 when letting
e ′′ = e ′.
e = v , y where x 6= y or ⇑l : Contradiction from [e2/x]e −→ e ′.
e = op (e ′1, .. , e

′
n): If all terms [e2/x]e ′i are values, then they are constants since

[e2/x] op (e ′1, ... , e
′
n) takes a step. By Lemma A.11, [e1/x] op (e ′1, ... , e

′
n) −→∗

[e1/x] op (e ′′1 , ... , e
′′
2) for some e ′′1 , ..., e

′′
n such that [e2/x] op (e ′1, ... , e

′
n) =

[e2/x] op (e ′′1 , ... , e
′′
n). Since e1 is not a value from e1 −→ e2, e ′′i = ki for some

ki . Thus, we finish.
Otherwise, we suppose that some [e2/x]e ′i is not a value and all terms to the left
of [e2/x]e ′i are values. By Lemma A.11, each term [e1/x]e ′j to the left of [e1/x]e ′i
evaluates to a value [e1/x]e ′′j for some e ′′j such that [e2/x]e ′j = [e2/x]e ′′j . If [e2/x]e ′i
gets stuck, then contradiction because [e2/x]e takes a step. If [e2/x]e ′i = ⇑l , then
[e1/x]e ′i −→∗ ⇑l by Lemma A.12. Thus, we finish by E BLAME. Otherwise, if
[e2/x]e ′i −→ e ′′, then we finish by the IH and E COMPAT.
e = e ′1 e

′
2: We can show the case where either [e2/x]e ′1 or [e2/x]e ′2 is not a value simi-

larly to the above. Otherwise, if they are values, we can find, by Lemma A.11, that
[e1/x]e ′1 and [e1/x]e ′2 evaluates to values [e1/x]e ′′1 and [e1/x]e ′′2 for some e ′′1 and e ′′2
such that [e2/x]e ′1 = [e2/x]e ′′1 and [e2/x]e ′2 = [e2/x]e ′′2 , respectively. Then, we finish by
Lemma A.7 (2).
e = e ′1 T2: Similarly to the case of function application, with Lemma A.9 (2).
e = 〈{y :T | e ′1}, e ′2, v〉l : Similarly to the above.

A.14 Lemma [Cotermination]: (Lemma 5.4)

(1) Suppose that e1 −→ e2.
(a) If [e1/x]e −→∗ true, then [e2/x]e −→∗ true.
(b) If [e2/x]e −→∗ true, then [e1/x]e −→∗ true.

(2) Suppose that e1 −→∗ e2.
(a) If [e1/x]e −→∗ true, then [e2/x]e −→∗ true.
(b) If [e2/x]e −→∗ true, then [e1/x]e −→∗ true.

PROOF.

(1) By induction on the number of evaluation steps of [e1/x]e and [e2/x]e with
Lemma A.10 and Lemmas A.11 and A.13, respectively.

(2) By induction on the number of evaluation steps of e1 with the first case.

A.15 Lemma [Cotermination of refinement types (Lemma 5.6)]: If {x :T1 | e1} ≡
{x :T2 | e2} then T1 ≡ T2 and [v/x]e1 −→∗ true iff [v/x]e2 −→∗ true, for any closed value
v .

PROOF. By induction on the equivalence. There are three cases.
(C REFINE): We have T1 ≡ T2 by assumption. We know that e1 = σ1(e) and e2 =
σ2(e) for σ1 −→∗ σ2. It is trivially true that v −→∗ v , so [v/x]σ1 −→∗ [v/x]σ2. By
cotermination (Lemma 5.5), we know that [v/x]σ1(e) −→∗ true iff [v/x]σ2(e) −→∗ true.
(C SYM): By the IH.
(C TRANS): By the IHs and transitivity of ≡ and cotermination.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 Sekiyama et al.

A.2. Type soundness
A.16 Lemma [Value inversion (Lemma 5.7)]: If ∅ ` v : T and unrefn(T) = {x :Tn |
en} then [v/x]en −→∗ true.

PROOF. By induction on the height of the typing derivation; we list all the cases
that could type values.
(T CONST): By assumption of valid typing of constants.
(T ABS): Contradictory—the type is wrong.
(T TABS): Contradictory—the type is wrong.
(T CAST): Contradictory—the type is wrong.
(T CONV): By applying Lemma A.15 on the stack of refinements on T .
(T FORGET): By the IH on ∅ ` v : {x :T | e}, adjusting each of the n down by one to
cover the stack of refinements on T .
(T EXACT): By assumption for the outermost refinement; by the IH on ∅ ` v : T for the
rest.

A.17 Lemma [Reflexivity of conversion]:
T ≡ T for all T .

PROOF. By induction on T .

A.18 Lemma [Like-type arrow conversion]: If x :T11 → T12 ≡ T then T =
x :T21 → T22.

PROOF. By induction on the conversion relation. Only C FUN applies, and C SYM
and C TRANS are resolved by the IH.

A.19 Lemma [Conversion arrow inversion]: If x :T11 → T12 ≡ x :T21 → T22 then
T11 ≡ T21 and T12 ≡ T22.

PROOF. By induction on the conversion derivation, using Lemma A.18.

A.20 Lemma [Like-type forall conversion]: If ∀α.T1 ≡ T then T = ∀α.T2.

PROOF. By induction on the conversion relation. Only C FORALL applies, and
C SYM and C TRANS are resolved by the IH.

A.21 Lemma [Conversion forall inversion]: If ∀α.T1 ≡ ∀α.T2 then T1 ≡ T2.

PROOF. By induction on the conversion derivation, using Lemma A.20.

A.22 Lemma [Term substitutivity of conversion (Lemma 5.8)]:
If T1 ≡ T2 and e1 −→∗ e2 then [e1/x]T1 ≡ [e2/x]T2.

PROOF. By induction on T1 ≡ T2.
(C VAR): By C VAR.
(C BASE): By C BASE.
(C REFINE): T1 = {y :T ′1 | σ1(e)} and T2 = {y :T ′2 | σ2(e)} such that T ′1 ≡ T ′2 and
σ1 −→∗ σ2. By the IH on T ′1 ≡ T ′2, we know that [e1/x]T ′1 ≡ [e2/x]T ′2. Since e1 −→∗ e2,
we know that σ1] [e1/x] −→∗ σ2] [e2/x], and we are done by C REFINE.
(C FUN): By the IHs and C FUN.
(C FORALL): By the IH and C FORALL.
(C TRANS): By the IHs and C TRANS.
(C SYM): By the IHs and C SYM.

A.23 Lemma [Type substitutivity of conversion (Lemma 5.9)]:
If T1 ≡ T2 then [T/α]T1 ≡ [T/α]T2.

PROOF. By induction on T1 ≡ T2.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:39

(C VAR): If T1 = T2 = α, then by reflexivity (Lemma A.17). Otherwise, by C VAR.
(C BASE): By C BASE.
(C REFINE): T1 = {y :T ′1 | σ1(e)} and T2 = {y :T ′2 | σ2(e)} such that T ′1 ≡ T ′2 and
σ1 −→∗ σ2. By the IH on T ′1 ≡ T ′2, we know that [T/α]T ′1 ≡ [T/α]T ′2. Since [T/α]σ1 = σ1
and [T/α]σ2 = σ2, so we are done by C REFINE.
(C FUN): By the IHs and C FUN.
(C FORALL): By the IH and C FORALL, possibly varying the bound variable name.
(C SYM): By the IH and C SYM.
(C TRANS): By the IHs and C TRANS.

A.24 Lemma [Term weakening (Lemma 5.10)]: If x is fresh and Γ ` T ′ then

(1) Γ,Γ′ ` e : T implies Γ, x :T ′,Γ ` e : T ,
(2) Γ,Γ′ ` T implies Γ, x :T ′,Γ′ ` T , and
(3) ` Γ,Γ′ implies ` Γ, x :T ′,Γ′.

PROOF. By induction on e, T , and Γ′. The only interesting case is for terms where
a runtime rule applies:
(T CONV,T EXACT,T FORGET): The argument is the same for all terms, so: since
` Γ, x :T ′,Γ′, we can reapply T CONV, T EXACT, or T FORGET, respectively. In the
rest of this proof, we won’t bother considering these rules.

A.25 Lemma [Type weakening (Lemma 5.11)]: If α is fresh then

(1) Γ,Γ′ ` e : T implies Γ, α,Γ ` e : T ,
(2) Γ,Γ′ ` T implies Γ, α,Γ′ ` T , and
(3) ` Γ,Γ′ implies` Γ, α,Γ′.

PROOF. By induction on e, T , and Γ′. The proof is similar to term weakening,
Lemma A.24.

A.26 Lemma [Compatibility is symmetric]: T1 ‖ T2 iff T2 ‖ T1.

PROOF. By induction on T1 ‖ T2.
(SIM VAR): By SIM VAR.
(SIM BASE): By SIM BASE.
(SIM REFINEL): By SIM REFINER and the IH.
(SIM REFINER): By SIM REFINEL and the IH.
(SIM FUN): By SIM FUN and the IHs.
(SIM FORALL): By the IH and SIM FORALL.

A.27 Lemma [Substitution preserves compatibility]:
If T1 ‖ T2, then [e/x]T1 ‖ T2.

PROOF. By induction on the compatibility relation.
(SIM VAR): By SIM VAR.
(SIM BASE): By SIM BASE.
(SIM REFINEL): By SIM REFINEL and the IH.
(SIM REFINER): By SIM REFINER and the IH.
(SIM FUN): By SIM FUN and the IHs.
(SIM FORALL): By SIM FORALL and the IH.

A.28 Lemma [Term substitution (Lemma 5.12)]: If Γ ` e ′ : T ′, then

(1) if Γ, x :T ′,Γ′ ` e : T then [e ′/x]Γ,Γ′ ` [e ′/x]e : [e ′/x]T ,
(2) if Γ, x :T ′,Γ′ ` T then [e ′/x]Γ,Γ′ ` [e ′/x]T , and
(3) if ` Γ, x :T ′,Γ′ then ` [e ′/x]Γ,Γ′.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 Sekiyama et al.

PROOF. By induction on e, T , and Γ′. In the first two clauses, we are careful to leave
Γ′ as long as it is well formed.

A.29 Lemma [Type substitution preserves compatibility]: If T1 ‖ T2 then
[T ′/α]T1 ‖ [T ′/α]T2.

PROOF. By induction on the compatibility relation.
(SIM VAR): By SIM VAR or reflexivity of the compatibility (proved easily).
(SIM BASE): By SIM BASE.
(SIM REFINEL): By SIM REFINEL and the IH.
(SIM REFINER): By SIM REFINER and the IH.
(SIM FUN): By SIM FUN and the IHs.
(SIM FORALL): By SIM FORALL and the IH.

A.30 Lemma [Identity type substitution on one side preserves compatibility]:
If T1 ‖ T2 then [α/α]T1 ‖ T2.

PROOF. Similar to Lemma A.29.

A.31 Lemma [Type substitution]: If Γ ` T ′ then

(1) if Γ, α,Γ′ ` e : T , then [T ′/α]Γ,Γ′ ` [T ′/α]e : [T ′/α]T ,
(2) if Γ, α,Γ′ ` T , then [T ′/α]Γ,Γ′ ` [T ′/α]T , and
(3) if ` Γ, α,Γ′, then ` [T ′/α]Γ,Γ′.

PROOF. By induction on e, T , and Γ′.

A.32 Lemma [Lambda inversion (Lemma 5.14)]: If Γ ` λx :T1. e12 : T , then

(1) Γ ` T1,
(2) Γ, x :T1 ` e12 : T2, and
(3) x :T1 → T2 ≡ unref(T).

PROOF. By induction on the typing derivation. Cases not mentioned only apply to
terms which are not lambdas.
(T ABS): By inversion, we have Γ ` T1 and Γ, x :T1 ` e12 : T2. We find conversion
immediately by reflexivity (Lemma A.17), since unref(T) = T = x :T1 → T2.
(T CONV): We have Γ ` λx :T1. e12 : T ; by inversion, T ≡ T ′ and ∅ ` λx :T1. e12 : T ′. By
the IH on this second derivation, we find ∅ ` T1 and x :T1 ` e12 : T2 where, unref(T ′) ≡
x :T1 → T2. By weakening, we have Γ ` T1 and Γ, x :T1 ` e12 : T2. Since T ′ ≡ T , we
have x :T1 → T2 ≡ unref(T ′) ≡ unref(T) by C TRANS.
(T EXACT): T = {x :T ′ | e}, and we have Γ ` λx :T1. e12 : {x :T ′ | e}; by inversion,
∅ ` λx :T1. e12 : T ′. By the IH, ∅ ` T1 and x :T1 ` e12 : T2, where x :T1 → T2 ≡ unref(T ′).
By weakening, Γ ` T1 and Γ, x :T1 ` e12 : T2. Since unref(T ′) = unref({x :T ′ | e}), we
have the conversion by C TRANS): x :T1 → T2 ≡ unref(T ′) = unref({x :T ′ | e}).
(T FORGET): We have Γ ` λx :T1. e12 : T ; by inversion, ∅ ` λx :T1. e12 : {x :T | e}. By
the IH on this latter derivation, we ∅ ` T1 and x :T1 ` e12 : T2, where x :T1 → T2 ≡
unref({x :T | e}). By weakening, Γ ` T1 and Γ, x :T1 ` e12 : T2. Since unref({x :T | e}) =
unref(T), we have by C TRANS that x :T1 → T12 ≡ unref({x :T | e}) = unref(T).

A.33 Lemma [Cast inversion]: If Γ ` 〈T1 ⇒ T2〉lσ : T , then

(1) Γ ` σ(T1),
(2) Γ ` σ(T2),
(3) T1 ‖ T2

(4) :σ(T1) → σ(T2) ≡ unref(T) (i.e., T2 does not mention the dependent variable),
and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:41

(5) AFV(σ) ⊆ dom(Γ).

PROOF. By induction on the typing derivation, as for A.32.

A.34 Lemma [Type abstraction inversion]: If Γ ` Λα. e : T , then

(1) Γ, α ` e : T ′ and
(2) ∀α.T ′ ≡ unref(T).

PROOF. By induction on the typing derivation, as for A.32.

A.35 Lemma [Conversion of unrefined types]: If T1 ≡ T2 then unref(T1) ≡
unref(T2).

PROOF. By induction on the derivation of T1 ≡ T2.

A.36 Lemma [Canonical forms (Lemma 5.15)]: If ∅ ` v : T , then:

(1) If unref(T) = B then v = k ∈ KB for some v
(2) If unref(T) = x :T1 → T2 then v is

(a) λx :T ′1. e12 and T ′1 ≡ T1 for some x ,T ′1 and e12, or
(b) 〈T ′1 ⇒ T ′2〉lσ and σ(T ′1) ≡ T1 and σ(T ′2) ≡ T2 for some T ′1,T

′
2, and l

(3) If unref(T) = ∀α.T ′ then v is Λα. e for some e.

PROOF. By induction on the typing derivation.
(T VAR): Contradictory: variables are not values.
(T CONST): ∅ ` k : T and unref(T) = B ; we are in case 1. By assumption, k ∈ KB .
(T OP): Contradictory: op (e1, ... , en) is not a value.
(T ABS): ∅ ` λx :T1. e12 : T and T = unref(T) = x :T1 → T2; we are in case 2a. Conver-
sion is by reflexivity (Lemma A.17).
(T APP): Contradictory: e1 e2 is not a value.
(T TABS): ∅ ` Λα. e : ∀α.T ; we are in case 3. It is immediate that v = Λα. e, and
conversion is by reflexivity (Lemma A.17).
(T TAPP): Contradictory: e T is not a value.
(T CAST): ∅ ` 〈T1 ⇒ T2〉lσ : :σ(T1) → σ(T2); we are in case 2b. It is immediate that
v = 〈T1 ⇒ T2〉lσ. Conversion is by reflexivity (Lemma A.17).
(T CHECK): Contradictory: 〈{x :T | e1}, e2, v〉l is not a value.
(T BLAME): Contradictory: ⇑l is not a value.
(T CONV): ∅ ` v : T ; by inversion, ∅ ` v : T ′ and T ′ ≡ T . We find an appropriate form
for unref(T ′) by the IH on ∅ ` v : T ′. We go by cases, in each case reproving whatever
case was found in the IH and finding conversions by C TRANS.

Case 1: unref(T) = B and v = k ∈ KB . Since unref(T ′) ≡ unref(T), we know that
unref(T ′) = B , which is all we needed to show.
Case 2a: unref(T) = x :T1 → T2 and v = λx :T ′′1 . e12 and T ′′1 ≡ T1. Since T ′ ≡ T , we
have unref(T ′) ≡ unref(T) (Lemma A.35) and so unref(T ′) = x :T ′1 → T ′2 for some
T ′1 and T ′2 such that T ′1 ≡ T1 (Lemma A.19); by C TRANS, we have T ′′1 ≡ T ′1.
Case 2b: unref(T) = x :T1 → T2 and v = 〈T ′1 ⇒ T ′2〉l and T ′1 ≡ T1 and T ′2 ≡ T2.
Since T ′ ≡ T , we have unref(T ′) ≡ unref(T) (Lemma A.35) and so unref(T ′) =
x :T ′′1 → T ′′2 for some T ′′1 and T ′′2 such that T ′′1 ≡ T1 and T ′′2 ≡ T2 (Lemma A.19); by
C TRANS, we have T ′1 ≡ T ′′1 and T ′2 ≡ T ′′2 as required.
Case 3: unref(T) = ∀α.T0 and v is Λα. e. Since T ′ ≡ T , then unref(T ′) ≡ unref(T)
(Lemma A.35).

(T EXACT): ∅ ` v : {x :T | e}; by inversion, ∅ ` v : T . Noting that unref({x :T |
e}) = unref(T), we apply the IH. Unlike the previous case, we need not change the
conversion—it’s in terms of the unrefined type.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 Sekiyama et al.

(T FORGET): ∅ ` v : T ; by inversion ∅ ` v : {x :T | e}. By the IH (noting unref({x :T |
e}) = unref(T)), so we use the IH’s conversion directly.

A.37 Theorem [Progress (Theorem 5.16)]: If ∅ ` e : T , then either

(1) e −→ e ′, or
(2) e is a result r , i.e., a value or blame.

PROOF. By induction on the typing derivation.
(T VAR): Contradictory: there is no derivation ∅ ` x : T .
(T CONST): ∅ ` k : ty(k). In this case, e = k is a result.
(T OP): ∅ ` op (e1, ... , en) : σ(T), where ty(op) = x1 : T1 → ... → xn : Tn → T . By
inversion, ∅ ` ei : σ(Ti). Applying the IH from left to right, each of the ei either steps
or is a result.

Suppose everything to the left of ei is a value. Then either ei steps or is a result. If
ei −→ e ′i , then op(v1, ... , vi−1, ei , ... , en) −→ op(v1, ... , vi−1, e

′
i , ... , en) by E COMPAT.

One the other hand, if ei is a result, there are two cases. If ei = ⇑l , then the original
expression steps to ⇑l by E BLAME. If ei is a value, we can continue this process for
each of the operation’s arguments. Eventually, all of the operations arguments are val-
ues. By value inversion (Lemma A.16), we know that we can type each of these values
at the exact refinement types we need by T EXACT. We assume that if op (v1, ... , vn) is
well defined on values satisfying the refinements in its type, so E OP applies.
(T ABS): ∅ ` λx :T1. e12 : (x :T1 → T2). In this case, e = λx :T1. e12 is a result.
(T APP): ∅ ` e1 e2 : [e2/x]T2; by inversion, ∅ ` e1 : (x :T1 → T2) and ∅ ` e2 : T1.

By the IH on the first derivation, e1 steps or is a result. If e1 steps, then the entire
term steps by E COMPAT. In the latter case, if e1 is blame, we step by E BLAME. So e1
is a value, v1.

By the IH on the second derivation, e2 steps or is a result. If e2 steps, then by
E COMPAT. Otherwise, if e2 is blame, we step by E BLAME. So e2 is a value, v2.

By canonical forms (Lemma A.36) on ∅ ` e1 : (x :T1 → T2), there are two cases:

(e1 = λx :T ′1. e12 and T ′1 ≡ T1): In this case, (λx :T ′1. e12) v2 −→ [v2/x]e12 by E BETA.
(e1 = 〈T ′1 ⇒ T ′2〉lσ and σ(T ′1) ≡ T1 and σ(T ′2) ≡ T2): We know that T ′1 ‖ T ′2 by cast
inversion (Lemma A.33). We determine which step is taken by cases on T ′1 and T ′2.

(T ′1 = B):
(T ′2 = B ′): It must be the case that B = B ′, since B ‖ B ′. By E REFL, 〈B ⇒
B〉lσ v2 −→ v2.
(T ′2 = α or x :T21 → T22 or ∀α.T22): Incompatible; contradictory.
(T ′2 = {x :T ′′2 | e}): If T ′′2 = B , then by E CHECK, 〈B ⇒ {x :B | e}〉lσ v2 −→
〈σ({x :B | e}), σ([v2/x]e), v2〉l . Otherwise, by E PRECHECK, we have:

〈B ⇒ {x :T ′′2 | e}〉lσ v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉lσ1
(〈B ⇒ T ′′2 〉lσ2

v2)

where σ1 = σ | AFV({x :T ′′2 | e}) and σ2 = σ | AFV(T ′′2).
(T ′1 = α):

(T ′2 = α′): It must be the case that α = α′, since α ‖ α′. By E REFL, 〈α ⇒
α〉lσ v2 −→ v2.
(T ′2 = B or x :T21 → T22 or ∀α.T22): Incompatible; contradictory.
(T ′2 = {x :T ′′2 | e}): If T ′′2 = α, then by E CHECK, 〈α ⇒ {x :α | e}〉lσ v2 −→
〈σ({x :α | e}), σ([v2/x]e), v2〉l . Otherwise,

〈α⇒ {x :T ′′2 | e}〉lσ v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉lσ1
(〈α⇒ T ′′2 〉lσ2

v2)

where σ1 = σ | AFV({x :T ′′2 | e}) and σ2 = σ | AFV(T ′′2), by E PRECHECK.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:43

(T ′1 = x :T11 → T12):
(T ′2 = B or α or ∀α.T22): Incompatible; contradictory.
(T ′2 = x :T21 → T22): If T ′1 = T ′2, then 〈T ′1 ⇒ T ′1〉lσ v2 −→ v2 by E REFL. If not,
then
〈x :T11 → T12 ⇒ x :T21 → T22〉lσ v2 −→
λx :σ(T21). let y : σ(T11) = 〈T21 ⇒ T11〉lσ1

x in (〈[y/x]T12 ⇒ T22〉lσ2
(v2 y))

for some fresh variable y , where σi = σ | AFV(T1i) ∪ AFV(T2i) (i ∈ {1, 2}),
by E FUN.
(T ′2 = {x :T ′′2 | e}): If T ′1 = T ′′2 , then 〈T ′1 ⇒ {x :T ′1 | e}〉lσ v2 −→ 〈σ({x :T ′1 |
e}), σ([v2/x]e), v2〉l by E CHECK. If not, then

〈T ′1 ⇒ {x :T ′′2 | e}〉lσ v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉lσ1
(〈T ′1 ⇒ T ′′2 〉lσ2

v2)

, where σ1 = σ | AFV({x :T ′′2 | e}) and σ2 = σ | AFV(T ′1) ∪ AFV(T ′′2), by
E PRECHECK.

(T ′1 = ∀α.T12):
(T ′2 = B or α or x :T21 → T22): Incompatible; contradictory.
(T ′2 = ∀α.T22): If T ′1 = T ′2, then 〈T ′1 ⇒ T ′2〉lσ v2 −→ v2 by E REFL. If not, then
〈∀α.T11 ⇒ ∀α.T22〉lσ v2 −→ Λα. (〈[α/α]T11 ⇒ T22〉lσ (v2 α)) by E FORALL.
(T ′2 = {x :T ′′2 | e}): If T ′1 = T ′′2 , then 〈T ′1 ⇒ {x :T ′1 | e}〉lσ v2 −→ 〈σ({x :T ′1 |
e}), σ([v2/x]e), v2〉l by E CHECK. If not, then 〈T ′1 ⇒ {x :T ′′2 | e}〉lσ v2 −→
〈T ′′2 ⇒ {x :T ′′2 | e}〉lσ1

(〈T ′1 ⇒ T ′′2 〉lσ2
v2) where σ1 = σ | AFV({x :T ′′2 | e})

and σ2 = σ | AFV(T ′1) ∪ AFV(T ′′2), by E PRECHECK.
(T ′1 = {x :T ′′1 | e ′1}):

(T ′2 = B or α or x :T21 → T22 or ∀α.T22): We see

〈{x :T ′′1 | e ′1} ⇒ T ′2〉lσ v2 −→ 〈T ′′1 ⇒ T ′2〉lσ′ v2

where σ′ = σ | AFV(T ′′1) ∪ AFV(T ′2), by E FORGET.
(T ′2 = {x :T ′′2 | e ′2}): If T ′1 = T ′2, then we immediately have 〈T ′1 ⇒ T ′2〉lσ v2 −→
v2 by E REFL. If T ′1 = T ′′2 , then

〈T ′1 ⇒ {x :T ′1 | e ′2}〉lσ v2 −→ 〈σ({x :T ′1 | e ′2}), σ([v2/x]e ′2), v2〉l

by E CHECK. Otherwise,
〈{x :T ′′1 | e ′1} ⇒ {x :T ′′2 | e ′2}〉lσ v2 −→ 〈T ′′1 ⇒ {x :T ′′2 | e ′2}〉lσ′ v2

where σ′ = σ | AFV(T ′′1) ∪ AFV({x :T ′′2 | e ′2}), by E FORGET.

(T TABS): ∅ ` Λα. e ′ : ∀α.T . In this case, Λα. e ′ is a result.
(T TAPP): ∅ ` e1 T2 : [T2/α]T1; by inversion, ∅ ` e1 : ∀α.T1 and ∅ ` T2. By the IH on the
first derivation, e1 steps or is a result. If e1 −→ e ′1, then e1 T2 −→ e ′1 T2 by E COMPAT.
If e1 = ⇑l , then ⇑l T2 −→ ⇑l by E BLAME.

If e1 = v1, then we know that v1 = Λα. e ′1 by canonical forms (Lemma A.36). We can
see (Λα. e ′1)T2 −→ [T2/α]e ′1 by E TBETA.
(T CAST): ∅ ` 〈T1 ⇒ T2〉lσ : T1 → T2. In this case, 〈T1 ⇒ T2〉lσ is a result.
(T CHECK): ∅ ` 〈{x :T | e1}, e2, v〉l : {x :T | e1}; by inversion, ∅ ` e2 : Bool. By the
IH, either e2 −→ e ′2 steps or e2 = r2. In the first case, 〈{x :T | e1}, e2, v〉l −→ 〈{x :T |
e1}, e ′2, v〉l by E COMPAT. In the second case, either r2 = ⇑l or r2 = v2. If we have blame,
then the entire term steps by E BLAME. If we have a value, then we know that v2 is
either true or false, since it’s typed at Bool. If it’s true, we step by E OK. Otherwise we
step by E FAIL.
(T BLAME): ∅ ` ⇑l : T . In this case, ⇑l is a result.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 Sekiyama et al.

(T CONV): ∅ ` e : T ′; by inversion, ∅ ` e : T . By the IH, we see that e −→ e ′ or e = r .
(T EXACT): ∅ ` v : {x :T | e}. Here, v is a result by assumption.
(T FORGET): ∅ ` v : T . Again, v is a result by assumption.

A.38 Lemma [Context and type well formedness (Lemma 5.17)]: (1) If Γ ` e :
T , then ` Γ and Γ ` T .

(2) If Γ ` T then ` Γ.

PROOF. By induction on the typing and well formedness derivations.

A.39 Theorem [Preservation (Theorem 5.18)]: If ∅ ` e : T and e −→ e ′, then ∅ `
e ′ : T .

PROOF. By induction on the typing derivation.
(T VAR): Contradictory—we can’t have ∅ ` x : T .
(T CONST): ∅ ` k : ty(k). Contradictory—values don’t step.
(T OP): ∅ ` op (e1, ... , en) : σ(T). By cases on the step taken:

(E REDUCE/E OP): op (v1, ... , vn) −→ [[op]] (v1, ... , vn). This case is by assumption.
(E BLAME): ei = ⇑l , and everything to its left is a value. By context and type well
formedness (Lemma A.38), ∅ ` σ(T). So by T BLAME, ∅ ` ⇑l : σ(T).
(E COMPAT): Some ei −→ e ′i . By the IH and T OP, using T CONV to show that
σ(T) ≡ σ′(T) (Lemma A.22).

(T ABS): ∅ ` λx :T1. e12 : (x :T1 → T2). Contradictory—values don’t step.
(T APP): ∅ ` e1 e2 : [e2/x]T ′2, with ∅ ` e1 : (x :T ′1 → T ′2) and ∅ ` e2 : T ′1, by inversion. By
cases on the step taken.

(E REDUCE/E BETA): (λx :T1. e12) v2 −→ [v2/x]e12. First, we have ∅ ` λx :T1. e12 :
(x :T ′1 → T ′2). By inversion for lambdas (Lemma A.32), x :T1 ` e12 : T2. Moreover,
x :T1 → T2 ≡ x :T ′1 → T ′2, which means T2 ≡ T ′2 (Lemma A.19).

By substitution, ∅ ` [v2/x]e12 : [v2/x]T2. We then see that [v2/x]T2 ≡ [v2/x]T ′2
(Lemma A.22), so T CONV completes this case.
(E REDUCE/E REFL): 〈T ⇒ T 〉lσ v2 −→ v2. By cast inversion (Lemma A.33),

:σ(T) → σ(T) ≡ x :T ′1 → T ′2 and ∅ ` σ(T). In particular, we have σ(T) ≡ T ′2
and σ(T) ≡ T ′1 (Lemma A.19). By substitutivity of conversion (Lemma A.22),
[v2/x]σ(T) ≡ [v2/x]T ′2. Since σ(T) is closed, we really know that σ(T) ≡ [v2/x]T ′2.

By C SYM and C TRANS, we have T ′1 ≡ σ(T) ≡ [v2/x]T ′2. By T CONV on ∅ ` v2 :
T ′1, we have ∅ ` v2 : [v2/x]T ′2.
(E REDUCE/E FORGET): 〈{x :T1 | e} ⇒ T2〉lσ v2 −→ 〈T1 ⇒ T2〉lσ′ v2 where σ′ = σ |
AFV(T1) ∪ AFV(T2). We have σ(T1) = σ′(T1) and σ(T2) = σ′(T2). We restate the
typing judgment and its inversion:

∅ ` 〈{x :T1 | e} ⇒ T2〉lσ v2 : [v2/y]T ′2
∅ ` 〈{x :T1 | e} ⇒ T2〉lσ : (y :T ′1 → T ′2)
∅ ` v2 : T ′1

By cast inversion (Lemma A.33), we know that ∅ ` σ(T1) from ∅ ` σ({x :T1 | e}) and
∅ ` σ(T2)—as well as :σ({x :T1 | e})→ σ(T2) ≡ y :T ′1 → T ′2 and {x :T1 | e} ‖ T2 and
AFV(σ) ⊆ ∅. Inverting this conversion (Lemma A.19), finding σ({x :T1 | e}) ≡ T ′1
and σ(T2) ≡ T ′2. Then by T CONV and C SYM, ∅ ` v2 : σ({x :T1 | e}); by T FORGET,
∅ ` v2 : σ(T1).

By T CAST, we have ∅ ` 〈T1 ⇒ T2〉lσ′ : y :σ(T1) → σ(T2), with T1 ‖ T2 iff {x :T1 |
e} ‖ T2, and AFV(σ′) ⊆ AFV(σ) ⊆ ∅. (Note, however, that y does not appear in
σ(T2)—we write it to clarify the substitutions below.)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:45

By T APP, we find ∅ ` 〈T1 ⇒ T2〉lσ′ v2 : [v2/y]σ(T2). Since σ(T2) ≡ T ′2, we have
[v2/y]σ(T2) ≡ [v2/y]T ′2 by Lemma A.22. We are done by T CONV.
(E REDUCE/E PRECHECK):

〈T1 ⇒ {x :T2 | e}〉lσ v2 −→
〈T2 ⇒ {x :T2 | e}〉lσ1

(〈T1 ⇒ T2〉lσ2
v2)

where σ1 = σ | AFV({x :T2 | e}) and σ2 = σ | AFV(T1) ∪ AFV(T2). We have
σ(T1) = σ2(T1) and σ(T2) = σ1(T2) = σ2(T2) and σ({x :T2 | e}) = σ1({x :T2 | e}). We
restate the typing judgment and its inversion:

∅ ` 〈T1 ⇒ {x :T2 | e}〉lσ v2 : [v2/y]T ′2
∅ ` 〈T1 ⇒ {x :T2 | e}〉lσ : y :T ′1 → T ′2
∅ ` v2 : T ′1

By cast inversion (Lemma A.33), ∅ ` σ(T1) and ∅ ` σ({x :T2 | e}), and y :σ(T1) →
σ({x :T2 | e}) ≡ y :T ′1 → T ′2 Also, T1 ‖ {x :T2 | e} and AFV(σ) ⊆ ∅.

By inversion on ∅ ` σ({x :T2 | e}), we find ∅ ` σ(T2). Next, T1 ‖ T2 iff T1 ‖
{x :T2 | e}, and AFV(σ2) ⊆ AFV(σ) ⊆ ∅. Now by T CAST, we find ∅ ` 〈T1 ⇒ T2〉lσ2

:
y :σ(T1)→ σ(T2). Note, however, that y doesn’t occur in σ(T2).

We can take the convertible function types and see that their parts are con-
vertible: σ(T1) ≡ T ′1 and σ({x :T2 | e}) ≡ T ′2. Using the first conversion, we find
∅ ` v2 : σ(T1) by T CONV. By T APP, ∅ ` 〈T1 ⇒ T2〉lσ2

v2 : [v2/y]σ(T2), where
[v2/y]σ(T2) = σ(T2).

By reflexivity of compatibility (easily proved) and SIM REFINER, σ(T2) ‖
σ({x :T2 | e}). We have well formedness derivations for both types and AFV(σ1) ⊆
AFV(σ) ⊆ ∅, as well, so ∅ ` 〈T2 ⇒ {x :T2 | e}〉lσ1

: y :σ(T2) → σ({x :T2 | e}) by
T CAST. Again, y does not appear in σ(e) or σ(T2). By T APP, we have ∅ ` 〈T2 ⇒
{x :T2 | e}〉lσ1

(〈T1 ⇒ T2〉lσ2
v2) : [〈T1 ⇒ T2〉lσ2

v2/y]σ({x :T2 | e}).
Since y isn’t in σ({x :T2 | e}), we can see:

[〈T1 ⇒ T2〉lσ2
v2/y]σ({x :T2 | e}) = σ({x :T2 | e}) = [v2/y]σ({x :T2 | e})

By substitutivity of conversion (Lemma A.22), we have [v2/y]σ({x :T2 | e}) ≡
[v2/y]T ′2. We can now apply T CONV to find ∅ ` 〈T2 ⇒ {x :T2 | e}〉lσ1

(〈T1 ⇒
T2〉lσ2

v2) : [v2/y]T ′2.
(E REDUCE/E CHECK): 〈T ⇒ {x :T | e}〉lσ v2 −→ 〈σ({x :T | e}), σ([v2/x]e), v2〉l

′
.

Without loss of generality, we can suppose that x is fresh for σ. We restate the
typing judgment with its inversion:

∅ ` 〈T ⇒ {x :T | e}〉lσ v2 : [v2/y]T ′2
∅ ` 〈T ⇒ {x :T | e}〉lσ : y :T ′1 → T ′2
∅ ` v2 : T ′1

By cast inversion (Lemma A.33), ∅ ` σ({x :T | e}) and ∅ ` σ(T) and AFV(σ) ⊆ ∅.
Moreover, y :σ(T) → σ({x :T | e}) ≡ y :T ′1 → T ′2, where y doesn’t occur in σ({x :T |
e}). This means that σ(T) ≡ T ′1 and σ({x :T | e}) ≡ T ′2.

Using T CONV and C SYM with the first conversion shows ∅ ` v2 : σ(T).
By inversion on ∅ ` σ({x :T | e}), we see x :σ(T) ` σ(e) : Bool. By term sub-
stitution (Lemma A.28), we find ∅ ` [v2/x]σ(e) : Bool. Since [v2/x]σ = σ, By
Lemma A.4 (1), [v2/x]σ(e) = σ([v2/x]e). Finally, σ([v2/x]e) −→∗ σ([v2/x]e) by re-
flexivity (Lemma A.17).

T CHECK (with WF EMPTY) shows ∅ ` 〈σ({x :T | e}), σ([v2/x]e), v2〉l : σ({x :T |
e}). By substitutivity of conversion (Lemma A.22), [v2/y]σ({x :T | e}) ≡ [v2/y]T ′2.
Since y doesn’t occur in σ({x :T | e}), we know that [v2/y]σ({x :T | e}) = σ({x :T |

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46 Sekiyama et al.

e}), so we can show that σ({x :T | e}) ≡ [v2/y]T ′2 by C SYM, and now ∅ ` 〈σ({x :T |
e}), σ([v2/x]e), v2〉l : [v2/y]T ′2 by T CONV.
(E REDUCE/E FUN):

〈x :T11 → T12 ⇒ x :T21 → T22〉lσ v2 −→
λx :σ(T21). let z : σ(T11) = 〈T21 ⇒ T11〉lσ1

x in (〈[z/x]T12 ⇒ T22〉lσ2
(v2 z))

for some fresh variable z , where σi = σ | AFV(T1i) ∪ AFV(T2i) (i ∈ {1, 2}). Without
loss of generality, we can suppose that x is fresh for σ. We have σ(Tji) = σi(Tji)
(j ∈ {1, 2}). We restate the typing judgment with its inversion:

∅ ` 〈x :T11 → T12 ⇒ x :T21 → T22〉lσ v2 : [v2/y]T ′2
∅ ` 〈x :T11 → T12 ⇒ x :T21 → T22〉lσ : (y :T ′1 → T ′2)
∅ ` v2 : T ′1

By cast inversion on the first derivation:
∅ ` σ(x :T11 → T12) ∅ ` σ(x :T21 → T22)

x :T11 → T12 ‖ x :T21 → T22 AFV(σ) ⊆ ∅
:σ(x :T11 → T12)→ σ(x :T21 → T22) ≡ y :T ′1 → T ′2

By inversion of this last (Lemma A.19):
σ(x :T11 → T12) ≡ T ′1 σ(x :T21 → T22) ≡ T ′2

So by T CONV and C SYM, we have ∅ ` v2 : σ(x :T11 → T12). By weakening
(Lemma A.24), x :σ(T21), z :σ(T11) ` v2 : σ(x :T11 → T12).

By inversion of the well formedness of the function types:
∅ ` σ(T11) x :σ(T11) ` σ(T12) ∅ ` σ(T21) x :σ(T21) ` σ(T22)

By weakening (Lemma A.24), we find x :σ(T21) ` σ(T11) and x :σ(T21) ` σ(T21). By
compatibility:

T11 ‖ T21 T12 ‖ T22

Since AFV(σ1) ⊆ AFV(σ) ⊆ ∅, we have x :σ(T21) ` 〈T21 ⇒ T11〉lσ1
: (:σ(T21) →

σ(T11)) by T CAST (notice that compatibility is symmetric, per Lemma A.26). By
T APP and T VAR, we can see x :σ(T21) ` 〈T21 ⇒ T11〉lσ1

x : [x/]σ(T11) = σ(T11).
Again by T APP, we have x :σ(T21), z :σ(T11) ` v2 z : [z/x]σ(T12). By weakening
(Lemma A.24) and substitution (Lemma A.28), we have the following two deriva-
tions:

x :σ(T21), z :σ(T11) ` [z/x]σ(T12) = [z/x]σ2(T12) = σ2([z/x]T12)
x :σ(T21), z :σ(T11) ` σ(T22)

By T CAST and Lemma A.27:

x :σ(T21), z :σ(T11) ` 〈[z/x]T12 ⇒ T22〉lσ2
: (y :[z/x]σ(T12)→ σ(T22))

Noting that y is free here. By T APP:
x :σ(T21), z :σ(T11) ` 〈[z/x]T12 ⇒ T22〉l (v2 z)

: [v2 z/y]T22(= T22)

Finally, by T ABS and T APP:

∅ ` λx :σ(T21).
let z : σ(T11) = 〈T21 ⇒ T11〉lσ1

x in
〈[z/x]T12 ⇒ T22〉lσ2

(v2 z)
: x :σ(T21)→ σ(T22)

since [〈T21 ⇒ T11〉lσ1
x/z]σ(T22) = σ(T22).

Since y isn’t in x :σ(T21) → σ(T22), we can see that x :σ(T21) → σ(T22) =
[v2/y](x :σ(T21) → σ(T22)). Using this fact with substitutivity of conversion

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:47

(Lemma A.22), we find x :σ(T21) → σ(T22) ≡ [v2/y]T ′2. So—finally—by T CONV
we have:
∅ ` λx :σ(T21). let z : σ(T11) = 〈T21 ⇒ T11〉lσ1

x in 〈[z/x]T12 ⇒ T22〉lσ2
(v2 z) : [v2/y]T ′2

(E REDUCE/E FORALL): 〈∀α.T1 ⇒ ∀α.T2〉lσ v2 −→ (Λα. 〈[α/α]T1 ⇒ T2〉lσ (v α))
Without loss of generality, we can suppose that α is fresh for σ. We restate the
typing and its inversion:

∅ ` 〈∀α.T1 ⇒ ∀α.T2〉lσ v2 : [v2/x]T ′2
∅ ` 〈∀α.T1 ⇒ ∀α.T2〉lσ : x :T ′1 → T ′2
∅ ` v2 : T ′1

By cast inversion (Lemma A.33):
∅ ` σ(∀α.T1) ∅ ` σ(∀α.T2)
∀α.T1 ‖ ∀α.T2 AFV(σ) ⊆ ∅

:σ(∀α.T1)→ σ(∀α.T2) ≡ x :T ′1 → T ′2
By inversion of this last σ(∀α.T1) ≡ T ′1 and σ(∀α.T2) ≡ T ′2 (Lemma A.19). By
T CONV and C SYM, ∅ ` v2 : σ(∀α.T1) = ∀α.σ(T1). By type variable weakening
(Lemma A.25), WF TVAR, and T TAPP, we have:

α ` v2 α : [α/α]σ(T1) = σ([α/α]T1)

. Note that σ([α/α]T1) may be different from σ(T1). By inversion of the universal
type’s well formedness, compatibility, type weakening (Lemma A.25), type substi-
tution (Lemma A.31) and Lemma A.30:

α ` σ([α/α]T1) α ` σ(T2) [α/α]T1 ‖ T2

So by T CAST, α ` 〈[α/α]T1 ⇒ T2〉lσ : (x :σ([α/α]T1) → σ(T2)), noting that x
doesn’t occur in σ(T2). By T APP, α ` 〈[α/α]T1 ⇒ T2〉lσ (v2 α) : [v2 α/x]σ(T2) =
σ(T2). By T TABS, ∅ ` Λα. (〈[α/α]T1 ⇒ T2〉lσ (v α)) : ∀α.σ(T2).

We know that ∀α.σ(T2) ≡ T ′2, so by type variable substitutivity of conversion
(Lemma A.23), [v2/x]∀α.σ(T2) ≡ [v2/x]T ′2. Since x isn’t in ∀α.σ(T2), we know that
∀α.σ(T2) ≡ [v2/x]T ′2 (by way of Lemma A.22). Now we can see by T CONV that
∅ ` Λα. (〈[α/α]T1 ⇒ T2〉lσ (v α)) : [v2/x]T ′2.
(E COMPAT): E [e] −→ E [e ′] when e −→ e ′ By cases on E:

(E = [] e2, e1 −→ e ′1): By the IH and T APP.
(E = v1 [], e2 −→ e ′2): By the IH, T APP, and T CONV, since [e2/x]T2 ≡ [e ′2/x]T2

by reflexivity (Lemma A.17) and substitutivity (Lemma A.22).
(E BLAME): E [⇑l] −→ ⇑l ∅ ` E [⇑l] : T by assumption. By type well formedness
(Lemma A.38), we know that ∅ ` T . We then have ∅ ` ⇑l : T by T BLAME.

(T TABS): ∅ ` Λα. e : ∀α.T . This case is contradictory—values don’t step.
(T TAPP): ∅ ` e T : [T/α]T ′. By cases on the step taken.

(E REDUCE/E TBETA): (Λα. e ′)T −→ [T/α]e ′ We restate the typing derivation
and its inversion:

∅ ` (Λα. e ′)T : [T/α]T ′ ∅ ` Λα. e ′ : ∀α.T ′ ∅ ` T

By type abstraction inversion (Lemma A.34): α ` e ′ : T ′′ and ∀α.T ′′ ≡ ∀α.T ′; by
inversion of this last (Lemma A.21), T ′′ ≡ T ′.

By type variable substitution (Lemma A.31), ∅ ` [T/α]e ′ : [T/α]T ′′. By type
substitutivity of conversion (Lemma A.23), [T/α]T ′′ ≡ [T/α]T ′. T CONV gives us
∅ ` [T/α]e ′ : [T/α]T ′ as desired.
(E COMPAT): E [e] −→ E [e ′], where E = []T . By the IH and T TAPP.
(E BLAME): E [⇑l] −→ ⇑l . ∅ ` E [⇑l] : T by assumption. By type well formedness
(Lemma A.38), we know that ∅ ` T . So we see ∅ ` ⇑l : T by T BLAME.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48 Sekiyama et al.

(T CAST): ∅ ` 〈T1 ⇒ T2〉lσ : σ(T1) → σ(T2). This case is contradictory—values don’t
step.
(T CHECK): ∅ ` 〈{x :T | e1}, e2, v〉l : {x :T | e1}. By cases on the step taken.

(E REDUCE/E OK): 〈{x :T | e1}, true, v〉l −→ v . By inversion, ∅ ` v : T and ∅ `
{x :T | e}; we also have [v/x]e1 −→∗ true. By WF EMPTY and the assumption that
[v/x]e −→∗ true, we can find ∅ ` v : {x :T | e} by T EXACT.
(E REDUCE/E FAIL): 〈{x :T | e1}, false, v〉l −→ ⇑l We have ∅ ` {x :T | e} by inver-
sion. By WF EMPTY and T BLAME, ∅ ` ⇑l : {x :T | e}.
(E COMPAT): E [e] −→ E [e ′], where E = 〈{x :T | e1}, [] , v〉l. By the IH on e, we
know that ∅ ` e ′ : Bool. We still have ∅ ` {x :T | e1} and ∅ ` v : T from our original
derivation. Since [v/x]e1 −→∗ e and e −→ e ′, then [v/x]e1 −→∗ e ′. Therefore, ∅ `
〈{x :T | e1}, e ′, v〉l : {x :T | e1} by T CHECK.
(E BLAME): E [⇑l] −→ ⇑l . ∅ ` E [⇑l] : T by assumption. By type well formedness
(Lemma A.38), we know that ∅ ` T . So ∅ ` ⇑l : T by T BLAME.

(T BLAME): ∅ ` ⇑l : T . This case is contradictory—blame doesn’t step.
(T CONV): ∅ ` e : T ′; by inversion we have ∅ ` e : T and T ≡ T ′ and ∅ ` T ′ (and,
trivially, ` ∅). By the IH on the first derivation, we know that ∅ ` e ′ : T . By T CONV,
we can see that ∅ ` e ′ : T ′.
(T EXACT): ∅ ` v : {x :T | e}. This case is contradictory—values don’t step.
(T FORGET): ∅ ` v : T . This case is contradictory—values don’t step.

A.3. Parametricity
A.40 Lemma [Term compositionality (Lemma 6.1)]: If δ1(e) −→∗ e1 and
δ2(e) −→∗ e2 then r1 ∼ r2 : T ; θ; δ[e1, e2/x] iff r1 ∼ r2 : [e/x]T ; θ; δ.

PROOF. By induction on the (simple) structure of T , proving both directions simul-
taneously. We treat the case where r1 = r2 = ⇑l separately from the induction, since
it’s the same easy proof in all cases: ⇑l ∼ ⇑l : T ; θ; δ irrespective of T and δ. So for the
rest of proof, we know r1 = v1 and r2 = v2. Only the refinement case is interesting.
(T = {y :T ′ | e ′}): We show both directions simultaneously, where x 6= y , i.e., y is fresh.
By the IH for T ′, we know that

v1 ∼ v2 : T ′; θ; δ[e1, e2/x] iff v1 ∼ v2 : [e/x]T ′; θ; δ.

It remains to show that the values satisfy their refinements.
That is, we must show:

θ1(δ1([v1/y][e1/x]e ′)) −→∗ true iff θ1(δ1([v1/y][e/x]e ′)) −→∗ true

θ2(δ2([v2/y][e2/x]e ′)) −→∗ true iff θ2(δ2([v2/y][e/x]e ′)) −→∗ true
So let:

σ1 = θ1δ1[δ1(e)/x , v1/y] −→∗ θ1δ1[e1/x , v1/y] = σ′1
σ2 = θ2δ2[δ2(e)/x , v2/y] −→∗ θ2δ2[e2/x , v2/y] = σ′2

We have σ1 −→∗ σ′1 by reflexivity except for δ1(e) −→∗ e1, which we have by assump-
tion; likewise, we have σ2 −→∗ σ′2. Then σi(e

′) and σ′i(e
′) coterminate (Lemma 5.5),

and we are done.

A.41 Lemma [Term Weakening/Strengthening]: If x 6∈ T , then r1 ∼ r2 :
T ; θ; δ[e1, e2/x] iff r1 ∼ r2 : T ; θ; δ.

PROOF. Similar to Lemma A.40.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:49

A.42 Lemma [Type Weakening/Strengthening]: If α 6∈ T , then r1 ∼ r2 : T ; θ[α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ iff r1 ∼ r2 : T ; θ; δ.

PROOF. Similar to Lemma A.40.

A.43 Lemma [Type compositionality (Lemma 6.2)]:
r1 ∼ r2 : T ; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ iff r1 ∼ r2 : [T ′/α]T ; θ; δ.

PROOF. By induction on the (simple) structure of T , proving both directions simul-
taneously. As for Lemma A.40, we treat the case where r1 = r2 = ⇑l separately from
the induction, since it’s the same easy proof in all cases: ⇑l ∼ ⇑l : T ; θ; δ irrespective
of T and δ. So for the rest of proof, we know r1 = v1 and r2 = v2. Here, the interesting
case is for function types, where we must deal with some asymmetries in the definition
of the logical relation. We also include the case for quantified types.
(T = x :T1 → T2): There are two cases:

(⇒): Given v1 ∼ v2 : (x :T1 → T2); θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ, we wish
to show that v1 ∼ v2 : [T ′/α](x :T1 → T2); θ; δ. Let v ′1 ∼ v ′2 : [T ′/α]T1; θ; δ. We must
show that v1 v ′1 ' v2 v

′
2 : [T ′/α]T2; θ; δ[v ′1, v

′
2/x]. By the IH on T1, v ′1 ∼ v ′2 : T1; θ[α 7→

RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. By assumption,
v1 v

′
1 ' v2 v

′
2 : T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[v ′1, v

′
2/x].

These normalize to r ′1 ∼ r ′2 : T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[v ′1, v
′
2/x].

Since x 6∈ T ′, Lemma A.41 gives RT ′,θ,δ = RT ′,θ,δ[v ′
1,v

′
2/x]

and so

r ′1 ∼ r ′2 : T2; θ[α 7→ RT ′,θ,δ[v ′
1,v

′
2/x]

, θ1(δ1([v ′1/x]T ′)), θ2(δ2([v ′2/x]T ′))]; δ[v ′1, v
′
2/x].

By the IH on T2, r ′1 ∼ r ′2 : [T ′/α]T2; θ; δ[v ′1, v
′
2/x]. By expansion, v1 v

′′
1 ' v2 v

′′
2 :

[T ′/α]T2; θ; δ[v ′1, v
′
2/x].

(⇐): This case is similar: Given v1 ∼ v2 : [T ′/α](x :T1 → T2); θ; δ, we wish to show
that v1 ∼ v2 : (x :T1 → T2); θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. Let v ′1 ∼ v ′2 :
T1; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. We must show that

v1 v
′
1 ' v2 v

′
2 : T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[v ′1, v

′
2/x].

By the IH on T1, v ′1 ∼ v ′2 : [T ′/α]T1; θ; δ. By assumption, v1 v
′
1 ' v2 v

′
2 :

[T ′/α]T2; θ; δ[v ′1, v
′
2/x]. These normalize to r ′1 ' r ′2 : [T ′/α]T2; θ; δ[v ′1, v

′
2/x]. By the

IH on T2,
r ′1 ' r ′2 : [T ′/α]T2;

θ[α 7→ RT ′,θ,δ[v ′
1,v

′
2/x]

, θ1(δ1([v ′1/x]T ′)), θ2(δ2([v ′2/x]T ′))];
δ[v ′1, v

′
2/x].

Since x 6∈ T ′, Lemma A.41 gives
r ′1 ' r ′2 : [T ′/α]T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[v ′1, v

′
2/x].

Finally, by expansion
v1 v

′
1 ' v2 v

′
2 : [T ′/α]T2;

θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))];
δ[v ′1, v

′
2/x].

(T = ∀α′.T0): There are two cases:

(⇒): Given v1 ∼ v2 : ∀α′.T0; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ, we wish
to show that v1 ∼ v2 : ∀α′.([T ′/α]T0); θ; δ. Let a relation R and closed types
T1 and T2 be given. By assumption, we know that v1 T1 ' v2 T2 : T0; θ[α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))][α′ 7→ R,T1,T2]; δ. They normalize to r ′1 ∼ r ′2 :
T0; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))][α′ 7→ R,T1,T2]; δ. By the IH, r ′1 ∼ r ′2 :

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:50 Sekiyama et al.

[T ′/α]T0; θ[α′ 7→ R,T1,T2]; δ. By expansion, v1 T1 ' v2 T2 : [T ′/α]T0; θ[α′ 7→
R,T1,T2]; δ. Then, v1 ∼ v2 : ∀α′.([T ′/α]T0); θ; δ.
(⇐): This case is similar: given v1 ∼ v2 : ∀α′.([T ′/α]T0); θ; δ, we wish to
show that v1 ∼ v2 : ∀α′.T0; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. Let a re-
lation R and closed types T1 and T2 be given. By assumption, we know that
v1 T1 ' v2 T2 : [T ′/α]T0; θ[α′ 7→ R,T1,T2]; δ. They normalize to r ′1 ∼ r ′2 :
[T ′/α]T0; θ[α′ 7→ R,T1,T2]; δ. By the IH, r ′1 ∼ r ′2 : T0; θ[α′ 7→ R,T1,T2][α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. By expansion, v1 T1 ' v2 T2 : T0; θ[α′ 7→
R,T1,T2][α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. Then, v1 ∼ v2 : ∀α′.T0; θ[α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ.

A.44 Lemma [Convertibility (Lemma 6.3)]: If T1 ≡ T2 then r1 ∼ r2 : T1; θ; δ iff
r1 ∼ r2 : T2; θ; δ.

PROOF. By induction on the conversion relation, leaving θ and δ general. The case
where r1 = r2 = ⇑l is immediate, so we only need to consider the case where r1 = v1
and r2 = v2.
(C VAR): It must be that T1 = T2 = α, so we are done immediately.
(C BASE): It must be that T1 = T2 = B , so we are done immediately.
(C REFINE): We have that T1 = {x :T ′1 | σ1(e)} and T2 = {x :T ′2 | σ2(e)}, where T ′1 ≡ T ′2
and σ1 −→∗ σ2.

By cotermination (Lemma 5.5):

[v1/x](θ1(δ1(σ1(e)))) −→∗ true iff [v1/x](θ1(δ1(σ2(e)))) −→∗ true
[v2/x](θ2(δ2(σ1(e)))) −→∗ true iff [v2/x](θ2(δ2(σ2(e)))) −→∗ true.

Note that [vi/x](θi(δi(σj (e)))) = σj ([vi/x](θi(δi(e)))) for i, j ∈ {1, 2} since all substitu-
tions here are closing.
(C FUN): We have that T1 = x :T11 → T12 ≡ x :T21 → T22 = T2.

Let v ′1 ∼ v ′2 : T21; θ; δ be given; we must show that v1 v ′1 ' v2 v
′
2 : T22; θ; δ[v ′1, v

′
2/x].

By the IH, we know that v ′1 ∼ v ′2 : T11; θ; δ, so we know that v1 v
′
1 ' v2 v

′
2 :

T12; θ; δ[v ′1, v
′
2/x]. We are done by another application of the IH.

The other direction is similar.
(C FORALL): We have that T1 = ∀α.T ′1 ≡ ∀α.T ′2 = T2.

Let R, T , and T ′ be given. We must show that v1 T ' v2 T
′ : T ′2; θ[α 7→ R,T ,T ′]; δ.

We know that v1 T ' v2 T
′ : T ′1; θ[α 7→ R,T ,T ′]; δ, so we are done by the IH.

The other direction is similar.
(C SYM): By the IH.
(C TRANS): By the IHs.

A.45 Lemma [Cast substitution]: If ` Γ, x :T1, Γ, x :T1 ` 〈T1 ⇒ T2〉lσ ' 〈T1 ⇒ T2〉lσ :
T2, and Γ, x :T2 ` e1 ' e2 : T then Γ1, x :T1,Γ2 ` e1[〈T1 ⇒ T2〉lσ x/x] ' e2[〈T1 ⇒
T2〉lσ x/x] : T .

PROOF. Let Γ ` θ; δ. We must show that

θ1(δ1([〈T1 ⇒ T2〉lσ x/x]e1)) ' θ2(δ2([〈T1 ⇒ T2〉lσ x/x]e2)) : T ; θ; δ.

Now θ1(δ1(x)) ' θ2(δ2(x)) : T1; θ; δ by definition. By assumption, θ1(δ1(〈T1 ⇒
T2〉lσ x)) ' θ2(δ2(〈T1 ⇒ T2〉lσ x)) : T2; θ; δ. So let δ′ be δ[δ1(〈T1 ⇒ T2〉lσ x), δ2(〈T1 ⇒
T2〉lσ x)/x]. We have Γ, x :T2 ` θ; δ′, so by assumption we have that θ1(δ′1(e1)) '
θ2(δ′2(e2)) : T ; θ; δ, which is the same as θ1(δ1([〈T1 ⇒ T2〉lσ x/x]e1)) ' θ2(δ2([〈T1 ⇒
T2〉lσ x/x]e2)) : T ; θ; δ, and we are done.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:51

A.46 Lemma [Cast reflexivity (Lemma 6.4)]: If ` Γ and T1 ‖ T2 and Γ ` σ(T1) '
σ(T1) : ∗ and Γ ` σ(T2) ' σ(T2) : ∗ and AFV(σ) ⊆ dom(Γ), then Γ ` 〈T1 ⇒ T2〉lσ '
〈T1 ⇒ T2〉lσ : σ(:T1 → T2).

PROOF. By induction on cc(〈T1 ⇒ T2〉l). We omit the majority of this proof, but we
leave in the case when T1 = T2 to highlight the need for the E REFL reduction rule.
(T1 = T2): Given Γ ` θ; δ, we wish to show that

〈θ1(δ1(T1))⇒ θ1(δ1(T1))〉lσ ' 〈θ2(δ2(T1))⇒ θ2(δ2(T1))〉lσ : σ(T1 → T1); θ; δ.

Let v1 ∼ v2 : σ(T1); θ; δ. We must show that

〈θ1(δ1(T1))⇒ θ1(δ1(T1))〉lσ v1 '
〈θ2(δ2(T1))⇒ θ2(δ2(T1))〉lσ v2 : σ(T1); θ; δ[v1, v2/z]

for fresh z . By E REFL, these normalize to v1 ∼ v2 : σ(T1); θ; δ[v1, v2/z]. Lemma A.41
finishes the case.

A.47 Theorem [Parametricity (Theorem 6.5)]: (1) If Γ ` e : T then Γ ` e ' e : T ,
and

(2) If Γ ` T then Γ ` T ' T : ∗.

PROOF. By simultaneous induction on the derivations with case analysis on the last
rule used.
(T VAR): Let Γ ` θ; δ. We wish to show that θ1(δ1(x)) ' θ2(δ2(x)) : T ; θ; δ, which follows
from the assumption.
(T CONST): By the assumption that constants are assigned correct types.
(T OP): By the assumption that operators are assigned correct types (and the IHs for
the operator’s arguments).
(T ABS): We have e = λx :T1. e12 and T = x :T1 → T2 and Γ, x :T1 ` e12 : T2. Let Γ ` θ; δ.
We wish to show that

θ1(δ1(λx :T1. e12)) ∼ θ2(δ2(λx :T1. e12)) : (x :T1 → T2); θ; δ.

Let v1 ∼ v2 : T1; θ; δ. We must show that

(λx :θ1(δ1(T1)). θ1(δ1(e12))) v1 ' (λx :θ2(δ2(T1)). θ2(δ2(e12))) v2 : T2; θ; δ[v1, v2/x].

Since

(λx :θ1(δ1(T1)). θ1(δ1(e12))) v1 −→ [v1/x]θ1(δ1(e12))

(λx :θ2(δ2(T1)). θ2(δ2(e12))) v2 −→ [v2/x]θ2(δ2(e12)),

it suffices to show

[v1/x]θ1(δ1(e12)) ' [v2/x]θ2(δ2(e12)) : T2; θ; δ[v1, v2/x].

By the IH, Γ, x :T1 ` e12 ' e12 : T2. The fact that Γ, x :T1 ` θ; δ[v1, v2/x] finishes the case.
(T APP): We have e = e1 e2 and Γ ` e1 : x :T1 → T2 and Γ ` e2 : T1 and T = [e2/x]T2.
Let Γ ` θ; δ. We wish to show that

θ1(δ1(e1 e2)) ' θ2(δ2(e1 e2)) : [e2/x]T2; θ; δ.

By the IH,

θ1(δ1(e1)) ' θ2(δ2(e2)) : x :T1 → T2; θ; δ, and
θ1(δ1(e2)) ' θ2(δ2(e2)) : T1; θ; δ.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:52 Sekiyama et al.

These normalize to r11 ∼ r12 : x :T1 → T2; θ; δ and r21 ' r22 : T1; θ; δ, respectively. If
r11 = r12 = ⇑l or r21 = r22 = ⇑l for some l , then we are done:

θ1(δ1(e1 e2)) −→∗ ⇑l
θ2(δ2(e1 e2)) −→∗ ⇑l .

So let rij = vij . By definition,

v11 v21 ' v12 v22 : T2; θ; δ[v21, v22/x].

These normalize to r ′1 ∼ r ′2 : T2; θ; δ[v21, v22/x]. By Lemma A.40,

r ′1 ∼ r ′2 : [e2/x]T2; θ; δ.

By expansion, we can then see

θ1(δ1(e1 e2)) ' θ2(δ2(e1 e2)) : [e2/x]T2; θ; δ.

(T TABS): We have e = Λα. e0 and T = ∀α.T0 and Γ, α ` e0 : T0. Let Γ ` θ; δ. We wish
to show that

θ1(δ1(Λα. e0)) ∼ θ2(δ2(Λα. e0)) : ∀α.T0; θ; δ.

Let R,T1,T2 be given. We must show that

θ1(δ1(Λα. e0))T1 ' θ2(δ2(Λα. e0))T2 : T0; θ[α 7→ R,T1,T2]; δ.

Since

θ1(δ1(Λα. e0))T1 −→ [T1/α]θ1(δ1(e0))

θ2(δ2(Λα. e0))T2 −→ [T2/α]θ2(δ2(e0))

it suffices to show that

[T1/α]θ1(δ1(e0)) ' [T2/α]θ2(δ2(e0)) : T0; θ[α 7→ R,T1,T2]; δ.

Since Γ, α ` θ[α 7→ R,T1,T2]; δ, the IH finishes the case with Γ, α ` e0 ' e0 : T0.
(T TAPP): We have e = e1 T2 and Γ ` e1 : ∀α.T0 and Γ ` T2 and T = [T2/α]T0. Let
Γ ` θ; δ. We wish to show that

θ1(δ1(e1 T2)) ' θ2(δ2(e1 T2)) : [T2/α]T0; θ; δ.

By the IH,

θ1(δ1(e1)) ' θ2(δ2(e1)) : ∀α.T0; θ; δ.

These normalize to r1 ∼ r2 : ∀α.T0; θ; δ. If both results are blame, θ1(δ1(e1 T2)) and
θ2(δ2(e1 T2)) also normalize to blame, and we are done. So let r1 = v1 and r2 = v2.
Then, by definition,

v1 T
′
1 ' v2 T

′
2 : T0; θ[α 7→ R,T ′1,T

′
2]; δ

for any R,T ′1,T
′
2. In particular,

v1 θ1(δ1(T2)) ' v2 θ2(δ2(T2)) : T0; θ[α 7→ RT2,θ,δ, θ1(δ1(T2)), θ2(δ2(T2))]; δ.

These normalize to

r ′1 ∼ r ′2 : T0; θ[α 7→ RT2,θ,δ, θ1(δ1(T2)), θ2(δ2(T2))]; δ.

By Lemma A.43, r ′1 ∼ r ′2 : [T2/α]T0; θ; δ. By expansion,

θ1(δ1(e1 T2)) ' θ2(δ2(e1 T2)) : [T2/α]T0; θ; δ.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Polymorphic Manifest Contracts A:53

(T CAST): We have e = 〈T1 ⇒ T2〉lσ and ` Γ and T1 ‖ T2 and Γ ` T1, Γ ` T2 and
T = T1 → T2. By the IH, Γ ` T1 ' T1 : ∗ and Γ ` T2 ' T2 : ∗. By Lemma A.46,

Γ ` 〈T1 ⇒ T2〉lσ ' 〈T1 ⇒ T2〉lσ : σ(T1 → T2),

which is exactly what we were looking for.
(T BLAME): Immediate.
(T CHECK): We have e = 〈{x :T1 | e1}, e2, v〉l and ∅ ` v : T1 and ∅ ` e2 : Bool, ` Γ and
∅ ` {x :T1 | e1} and [v/x]e1 −→∗ e2 and T = {x :T1 | e1}. Let Γ ` θ; δ. We wish to show
that

θ1(δ1(〈{x :T1 | e1}, e2, v〉l)) ' θ2(δ2(〈{x :T1 | e1}, e2, v〉l)) : {x :T1 | e1}; θ; δ.
By the IH,

θ1(δ1(e2)) ' θ2(δ2(e2)) : Bool; θ; δ

and these normalize to the same result. If the result is false or ⇑l ′ for some l ′, then, for
some l ′′,

θ1(δ1(〈{x :T1 | e1}, e2, v〉l)) −→∗ ⇑l ′′

θ2(δ2(〈{x :T1 | e1}, e2, v〉l)) −→∗ ⇑l ′′.
Otherwise, the result is true. Then, by the IH, v ∼ v : T1; θ; δ and ∅ ` {x :T1 | e1} '
{x :T1 | e1} : ∗. By definition,

[v/x]θ1(δ1(e1)) ' [v/x]θ2(δ2(e1)) : Bool; θ; δ[v , v/x].

Then, we have

[v/x]θ1(δ1(e1)) = [v/x]e1 −→∗ true

[v/x]θ2(δ2(e1)) = [v/x]e1 −→∗ true.

By definition, v ' v : {x :T1 | e1}; θ; δ. By expansion,

θ1(δ1(〈{x :T1 | e1}, e2, v〉l)) ' θ2(δ2(〈{x :T1 | e1}, e2, v〉l)) : {x :T1 | e1}; θ; δ.
(T CONV): By Lemma A.44.
(T EXACT): We have e = v and ∅ ` v : T and ∅ ` {x :T0 | e0} and [v/x]e0 −→∗ true and
T = {x :T0 | e0}. Let Γ ` θ; δ. We wish to show that

v ∼ v : {x :T0 | e0}; θ; δ.
By the IH, v ∼ v : T0; θ; δ. Since ∅ ` {x :T0 | e0}, the only free variable in e0 is x and

[v/x]θ1(δ1(e0)) = [v/x]e0 −→∗ true

[v/x]θ2(δ2(e0)) = [v/x]e0 −→∗ true.

By definition, v ∼ v : {x :T0 | e0}; θ; δ.
(T FORGET): By the IH, ∅ ` v ' v : {x :T | e}, which implies Γ ` v ' v : T .
(WF BASE): Trivial.
(WF TVAR): Trivial.
(WF FUN): By the IH.
(WF FORALL): By the IH.
(WF REFINE): By the IH.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

	1 Introduction
	1.1 Contributions and Outline

	2 Technical overview
	2.1 Basics of casts
	2.2 Extending manifest contracts to polymorphism
	2.3 Delayed substitution semantics

	3 Defining F_Hsigma
	3.1 Syntax
	3.2 Operational semantics
	3.3 Static typing

	4 Examples
	4.1 Contracts for abstract datatypes
	4.2 Contracts as type systems

	5 Properties of F_Hsigma
	5.1 Cotermination
	5.2 Type soundness

	6 Parametricity
	6.1 Subtyping

	7 Three versions of F_H
	7.1 F_H 1.0: Belo11fh
	7.2 F_H 2.0: Greenberg's thesis
	7.3 F_Hsigma
	7.4 Discussion

	8 Related work
	8.1 Dynamically checked polymorphism
	8.2 F_Hsigma and other manifest calculi

	9 Conclusion
	A Proofs
	A.1 Cotermination
	A.2 Type soundness
	A.3 Parametricity

