
MANIFEST CONTRACTS
Michael Greenberg
A DISSERTATION

in
Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in

Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2013

Supervisor of Dissertation

Benjamin C. Pierce
Henry Salvatori Professor of CIS

Graduate Group Chairperson

Val Tannen
Professor of CIS

Dissertation Committee

Stephanie Weirich (Associate Professor of CIS; Committee Chair)

Rajeev Alur (Zisman Family Professor of CIS)

Greg Morrisett (Allen B. Cutting Professor of CS at Harvard)

Steve Zdancewic (Associate Professor of CIS)

Acknowledgments

I know you have faith in me; let me take it with me on the road
before me and I will be able to go on forever.

“Tang Qiaodi”
The Gourmet and Other Stories of Modern China

Lu Wenfu

Let me begin by thanking Benjamin Pierce for being a formative collaborator and
ally—for his teaching, advice, guidance, and forbearance.

Many people—members of the Penn PL Club and otherwise—have provided help-
ful and insightful comments along the way: Brian Aydemir and João Belo; Amal
Ahmed, Cătălin Hriţcu, Taro Sekiyama, Jianzhou Zhao; Ron Garcia, Fritz Henglein,
Jeremy Siek, Phil Wadler, and Brent Yorgey. My fellow travelers Chris Casinghino
and Adam Aviv have been welcome company. Nate Foster has, on several occasions,
helped me remember to stay on the wagon. I hope I have been equally supportive of
Arjun Ravi Narayan and Scott Kilpatrick.

Atsushi Igarashi and Stephanie Weirich have been a delight to work with as co-
authors, and I have learned a great deal from both. Atsushi and his student, Taro
Sekiyama, helped quash some serious bugs while being a pleasure to work with.

I am grateful for the attention, advice, and patience of my committee—Stephanie
Weirich (again), Steve Zdancewic, Rajeev Alur, and Greg Morrisett. Their efforts
have seriously improved the quality of my thesis.

I am interested in programming languages because of Dan Friedman. Dan insisted
that I let loose and have fun in college, and perhaps I’ve taken his advice too much
to heart, but he also insisted that I meet with Shriram Krishnamurthi, who formed
so much of my early research taste—and helped me find Benjamin in turn.

My friends here in Philadelphia and beyond form a broad family who, along with
my actual family, soothed and encouraged me. B2 was effectively my office, and its
baristi kindly put up with me.

Finally, Hannah de Keijzer literally and figuratively brings music into my life every
day, and there is no way for me to do that justice—not that I won’t try.

ii

ABSTRACT

MANIFEST CONTRACTS

Michael Greenberg

Benjamin Pierce

Eiffel [47] popularized design by contract, a software design philosophy where

programmers specify the requirements and guarantees of functions via executable

pre- and post-conditions written in code. Findler and Felleisen [26] brought con-

tracts to higher-order programming, inspiring the PLT Racket implementation of

contracts [56]. Existing approaches for runtime checking lack reasoning principles

and stop short of their full potential—most Racket contracts check only simple types.

Moreover, the standard algorithm for higher-order contract checking can lead to un-

bounded space consumption and can destroy tail recursion. In this dissertation, I

develop so-called manifest contract systems which integrate more coherently in the

type system, and relate them to Findler-and-Felleisen-style latent contracts. I extend

a manifest system with type abstraction and relational parametricity, and also show

how to integrate dynamic types and contracts in a space efficient way, i.e., in a way

that doesn’t destroy tail recursion. I put manifest contracts on a firm type-theoretic

footing, showing that they support extensions necessary for real programming. De-

veloping these principles is the first step in designing and implementing higher-order

languages with contracts and refinement types.

My work has been supported by the National Science Foundation under grants 0534592 Linguistic Foundations for XML View Update,
and 0915671 Contracts for Precise Types.

Some of the material in Chapter 4 was supported in part by the DARPA CRASH program through the United States Air Force
Research Laboratory (AFRL) under Contract No. FA8650-10-C-7090. The views expressed are my own and do not reflect the official
policy or position of the Department of Defense or the U.S. Government—and the more daylight between us, the better.

iii

Contents

1 Introduction 1
1.1 Latent and manifest contracts . 5
1.2 Contracts and abstraction . 7
1.3 Efficiency and contract checking . 8
1.4 Summary . 10
1.5 Notation and other conventions . 10

2 Contracts made manifest 11
2.1 The nondependent languages . 14

2.1.1 The language λC . 14
2.1.2 The language λH . 17

2.2 The nondependent translations . 21
2.3 The dependent languages . 23

2.3.1 Dependent λC . 23
2.3.2 Dependent λH . 27

2.4 The translations . 37
2.4.1 Translating λC to λH: φ . 38
2.4.2 Translating λH to λC: ψ . 39

2.5 Exact translations . 40
2.5.1 Translating picky λC to λH . 41
2.5.2 Translating λH to lax λC . 44

2.6 Inexact translations . 50
2.6.1 Translating lax λC to λH . 50
2.6.2 Translating λH to picky λC . 56
2.6.3 Alternative calculi . 61

2.7 Conclusion . 61

3 Polymorphic manifest contracts 63
3.1 Examples . 65
3.2 Defining FH . 72
3.3 Parametricity . 96
3.4 Subtyping and Upcast Elimination 113
3.5 Type conversion: parallel reduction vs. common subexpression reduction123

iv

3.6 Conclusion . 127

4 Space-efficient manifest contracts 129
4.1 Design philosophy . 134
4.2 A cast calculus . 136

4.2.1 Syntax and typing . 136
4.2.2 Operational semantics . 139
4.2.3 Proofs . 143

4.3 A näıve coercion calculus . 148
4.3.1 Syntax and typing . 149
4.3.2 Operational semantics . 153
4.3.3 Proofs . 157

4.4 Soundness of Naive with regard to Cast 167
4.5 A space-efficient coercion calculus . 178

4.5.1 Space-efficient coercions . 180
4.5.2 Operational semantics . 196
4.5.3 Proofs . 196

4.6 Soundness of Efficient with regard to Naive 200
4.7 Space efficiency . 215
4.8 Conclusion . 217

5 Related work 218
5.1 Contracts: a survey . 218

5.1.1 Refinement types and contracts 220
5.1.2 Situating λH . 221

5.2 FH: polymorphism and manifest metatheory 222
5.2.1 Dynamically checked polymorphism 222
5.2.2 FH and other manifest calculi 223

5.3 Space efficiency and gradual types . 225
5.3.1 Space efficiency, gradual typing, and refinement types 225
5.3.2 Coercions . 229

6 Conclusion and future work 230
6.1 Future work . 232

6.1.1 State and effects . 232
6.1.2 Datatypes . 232
6.1.3 Coercion insertion . 233
6.1.4 Theoretical curiosities . 233
6.1.5 Extensions for Efficient . 234

Bibliography 237

v

List of Tables

4.1 Cast cast reductions, by type . 142
4.2 Canonical coercions . 188

5.1 Comparison between contract systems 219
5.2 Comparison between gradual typing systems 226

vi

List of Figures

1.1 A queue module in Racket . 3
1.2 Contract checking destroys tail recursion 8

2.1 The axis of blame . 12
2.2 Base types and constants for λC and λH 14
2.3 Syntax and semantics for λC . 15
2.4 Syntax and semantics for λH . 18
2.5 Typing rules for λH . 19
2.6 Syntax and semantics for dependent λC 24
2.7 Typing rules for dependent λC . 25
2.8 Syntax and operational semantics for dependent λH 27
2.9 Typing rules for dependent λH . 29
2.10 Type and kind semantics for dependent λH 30
2.11 Parallel reduction for dependent λH 35
2.12 The translation φ from dependent λC to dependent λH 38
2.13 ψ mapping dependent λH to dependent λC 40
2.14 A blame-exact result/term correspondence 40
2.15 Blame-exact correspondence for φ from picky λC 41
2.16 Blame-exact correspondence for ψ into lax λC 45
2.17 Blame-inexact correspondence for φ from lax λC 51
2.18 Blame-inexact correspondence for ψ into picky λC 57

3.1 Syntax for FH . 72
3.2 Operational semantics for FH . 74
3.3 Typing rules for FH . 78
3.4 Type compatibility and conversion for FH 80
3.5 The logical relation for parametricity 97
3.6 Complexity of casts . 102
3.7 Subtyping, implication, and closing substitutions 114
3.8 Parallel reduction . 124
3.9 Type conversion via common subexpression reduction 125
3.10 Counterexamples to substitutivity of parallel reduction in FH 126

vii

4.1 The dyn/refine spectrum of cast expressiveness 130
4.2 Space-inefficient reduction . 132
4.3 Cast syntax . 136
4.4 Typing for Cast, part 1 . 137
4.5 Typing for Cast, part 2 . 138
4.6 Cast operational semantics (core rules) 140
4.7 Cast operational semantics (cast rules) 141
4.8 Naive syntax . 148
4.9 Typing for Naive . 150
4.10 Coercion typing . 151
4.11 Primitive coercions . 152
4.12 Naive operational semantics (core rules) 154
4.13 Naive operational semantics (coercion rules) 155
4.14 Naive reduction . 158
4.15 Translating from Cast to Naive . 168
4.16 Relating Cast and Naive . 169
4.17 Relating casts and Naive coercions 172
4.18 Updated syntax for Efficient . 179
4.19 Updated typing rules for Efficient 179
4.20 Coercion rewriting rules . 181
4.21 Merging coercions . 186
4.22 Efficient operational semantics . 195
4.23 Space-efficient reduction . 196
4.24 Relating Naive and Efficient . 201
4.25 Canonicalizing Naive terms . 203
4.26 Relating Naive coercions to canonical Efficient coercions 207

viii

The technical development in this dissertation comprises three pa-
pers: Greenberg et al. [35] (itself an extended version of Greenberg
et al. [34]), an extended and corrected version of Belo et al. [8], and
a rejected POPL 2013 submission, Greenberg [33].

This document is typeset in LATEX using Computer Modern. There
would be even more errors had I not used Sewell and Zappa Nardelli’s
OTT tool [62]. I also used Aydemir and Weirich’s LNGen tool [7]
for the Coq development of parallel reduction in Chapter 2.

ix

Chapter 1

Introduction

Master, I’ve filled my contract, wrought in Thy many lands;
Not by my sins wilt Thou judge me, but by the work of my hands.

The Song of the Wage-slave
Robert W. Service

Program specifications allow programmers to check their work. Data structure
invariants for, e.g., red-black trees, help programmers write correct implementations;
input/output specifications, also called pre- and post-conditions, offer a finer grained
checking, at the level of individual functions, e.g., is this function an ε-approximation
of the square-root function? Temporal logics allow programmers to specify the be-
havior of long-running and non-terminating programs, e.g., does every request packet
sent to a server get a response?

It is folklore that the mere act of writing down a specification is enough to help
with program correctness. Computer assisted checking adds a stronger guarantee:
sound specification checkers can, in an assisted or even entirely automated way, prove
that programs meet their specifications. Naturally, there are trade-offs: sound and
complete checkers (of nontrivial properties) can’t exist because of the halting problem.
As a result, program specification languages exist on a spectrum, where less precise
specifications are more robustly checkable—and, therefore, more often used.

Types are perhaps the most common form of program specification, even though
their use isn’t universal. Types occupy a sweet spot: they are easy for programmers
to understand, allow for compositional reasoning, and are machine checkable, if not
inferrable. Types also have a beautiful mathematical theory, and they are compelling
to study in their own right.

Assertions and pre/post-conditions are also common forms of specification during
the development cycle; they are very common when debugging, but perhaps less so
in deployed code. Written in code, typically as part of the program itself, asser-
tions and pre- and post-conditions allow for direct feedback at runtime. For example,
the pop operation of a stack might have a pre-condition checking that the stack

1

argument is non-empty. When the program calls pop with an empty stack, an in-
formative error message can be printed to the screen—or the debugger can kick in.
Eiffel [47] makes pre- and post-conditions an essential part of program development
in a method called design by contract. They use software contracts—pre- and post-
conditions—extensively, stating precise properties as concrete predicates written in
the same language as the rest of the program.

Eiffel’s contracts are first order, designed for an imperative, object-oriented lan-
guage. Findler and Felleisen [26] introduced “higher-order contracts” for functional
languages. These can take one of two forms: predicate contracts (also known as re-
finement types) like {x:Int | x > 0}, which denotes the positive numbers; and function
contracts like (x:Int)→ {y:Int | y > x}, which denotes functions over the integers that
return numbers larger than their inputs. Other examples might require that divisors
are non-zero:

div : Real→ {m:Real | m 6= 0} → Real

or that the square root function produces answers that are correct (up to some ε):

sqrt : (x:Real)→ {y:Real | abs(x− y2) < ε}

This last is a very strong contract; it entirely specifies the input/output behavior of
the sqrt function. We could have given a similarly strong contract for division:

div : (n:Real)→ {m:Real | m 6= 0} → {k:Real | m · k = n}

One feature of contracts is that within the framework of contracts, it’s possible to
express a wide range of specifications at varying levels of precision.

In this dissertation, I design higher-order languages combining conven-
tional type systems, like the simply typed lambda calculus and System F,
with contracts. Designing type systems supporting contracts bolsters the power
of abstractions defined by types. Before addressing my own work on the topic, I
want to discuss the state of the art—PLT Racket’s contract system [55, 56]—and its
shortcomings.

PLT Racket contracts are overwhelmingly just simple types. Racket’s
large codebase has many contracts, but 82% of the contracts in their standard library
merely recover simple types.1 Findler and Felleisen developed their contract system
to add a form of specification to PLT Racket. Racket is a Scheme [69], written in
S-expression syntax and dynamically typed. (They have gone on to develop slightly
more traditional type systems, Typed Racket [74] in particular.) In using contracts
for simple types, Racket contracts fall short of their full potential.

As an anecdote to bolster and clarify the data I collected, consider a typical Racket
file, shown in Figure 1.1. The file, adapted from the Racket standard library, defines
a queue data structure, and then exports (in Racket parlance, “provides”) several

1My own count, as of January 26th, 2011.

2

#lang racket/base

(struct queue (head tail) #:mutable)

(struct link (value [tail #:mutable]))

(define (make-queue) (queue #f #f))

(define (queue-empty? q) (not (queue-head q)))

(define (nonempty-queue? v) (and (queue? v) (queue-head v) #t))

(define (enqueue! q v)

(unless (queue? q) (raise-type-error enqueue! "queue" 0 q))

(let ([new (link v #f)])

(if (queue-head q)

(set-link-tail! (queue-tail q) new)

(set-queue-head! q new))

(set-queue-tail! q new)))

(define (dequeue! q)

(unless (queue? q) (raise-type-error dequeue! "queue" 0 q))

(let ([old (queue-head q)])

(unless old (error ’dequeue! "empty queue"))

(set-queue-head! q (link-tail old))

(link-value old)))

(define queue/c (flat-named-contract "queue" queue?))

(define nonempty-queue/c (flat-named-contract "nonempty-queue" nonempty-queue?))

(provide/contract

[queue/c flat-contract?]

[nonempty-queue/c flat-contract?]

[queue? (-> any/c boolean?)]

[make-queue (-> queue/c)]

[queue-empty? (-> queue/c boolean?)])

(provide enqueue! dequeue!)

Taken from collects/data/queue.rkt, as of November 6th 2011. Some comments have been
removed.

Figure 1.1: A queue module in Racket

3

things. This is where contracts are typically placed in PLT Racket definitions, for rea-
sons described below in Section 1.3. First, there are queue/c and nonempty-queue/c,
which are “flat” contracts on values, i.e., predicate contracts a/k/a refinement types.
Then the predicate queue? tests whether a given value is a queue: it has a function
contract, written in prefix form, that says that queue? accepts any value (any/c)
and returns a boolean (the predicate boolean?, which is automatically treated as a
contract). The constructor make-queue is a function of zero arguments that returns
a value that satisfies the contract queue/c. The predicate queue-empty? checks
whether or not the queue is empty: its sole argument must be a queue (queue/c) and
it returns a boolean. Notice that this interface is dependent : we provide queue/c and
then use it in the contracts for make-queue and queue-empty?.

The queue module also provides two non-contracted identifiers, enqueue! and
dequeue!.2 Looking at their definitions, enqueue! expects a queue and returns what-
ever the structure mutator set-queue-tail! returns—a unit value. So a good con-
tract for enqueue! would be (-> queue/c any/c). Similarly, dequeue! takes in a
queue and returns its head. What’s more, dequeue! expects a non-empty queue—if
given an empty queue, it will raise an error. So a good contract for dequeue! would
be (-> nonempty-queue/c any/c). The return contract of any/c makes sense, since
we don’t know anything about values in the queue.

As written, the contracts on the queue interface don’t enforce anything
more than a simple type system would, though they define a refined type
(nonempty-queue/c). I would reiterate that this isn’t cherry picking examples: four
out of five Racket contracts enforce nothing more than simple types.

PLT Racket’s use of contracts to recover simple types doesn’t teach us much
for the design of new languages: it’s already possible to check simple types
completely statically. While Racket’s solution helps with their pre-existing code,
why would a new language would follow suit? Why bother paying the runtime cost
of contract checking at runtime when static checking is available?

Dynamically typed languages create a “contracts for simple types bias”. Writing
specifications can be hard work—as hard as programming. It’s tempting to stop
at “good enough”—which in a dynamically typed language, may mean only simple
types. Moreover, dynamic typing and contracts leaves us without empty handed.
What are the reasoning principles for contracts? How does contract checking affect
execution? Are there limits on how much space and time contract checking can take?

In this dissertation, I explore what contracts look like when we treat con-
tracts as our type system, taking simple types for granted. Suppose we start
with a simply typed lambda calculus. Can we coherently integrate contracts into a
type system? In terms of the PLT Racket example above, I’d like to treat queue/c

as a type (just as it would be in ML)—and I’d also like to treat nonempty-queue/c

as a type. Treating contracts as types has many benefits. First, it gets rid of the
low bar for contracts in PLT Racket: if the programmer wants simple types, they

2The ! are a Racket naming convention for functions that mutate their inputs.

4

have them as a static check. Next, having contracts as part of type signatures al-
lows for operations on built-in abstract types to specify their abstractions totally;
dequeue! is a partial operation, and the type queue/c → unit doesn’t adequately
capture that partiality; the type nonempty-queue/c → unit does. A similar case
applies to built-in operations, e.g., the division operator. Finally, types and contracts
combine to yield strong reasoning principles, giving better guarantees to clients and
implementors of, e.g., the queue abstraction.

Two issues stand in the way of integrating contracts in types. What should the
semantics of a type system with “manifest” contracts be? Are such semantics practical
from an efficiency perspective?

The first issue, determining the semantics, is challenging because contracts contain
code. If contracts are to be part of the type system, we are left with a dependent type
system, one where treating nonempty-queue/c as a type forces the meaning of types to
depend on evaluation. The metatheory of dependent languages is notoriously difficult,
and is typically treated in rarified, “pure” settings, e.g., without nontermination or
effects. But we are interested in writing specifications for programs, where programs
may diverge or contracts may be unsatisfied—and therefore must signal errors. Early
attempts at hybrid type/contract systems had serious issues with the well-foundedness
of their definitions. If contracts and types are to coexist, the metatheory must
scale to impure core calculi.

The second issue, efficiency, is in fact a challenge for all contract systems. Contract
checking can change the asymptotic complexity of programs by accumulating too
many checks on functions or on the stack. If contracts are to be a core part
of language design, they must not affect the asymptotic complexity of
programs.

In this dissertation, I (a) situate type/contract systems in the design space, (b)
develop abstraction and reasoning principles (specifically, relational parametricity)
for a type/contract system, and (c) resolve issues with space consumption affecting
runtime checking of contracts. The rest of this introduction covers more specific
technical details. At the end of the introduction, I remark briefly on notations and
conventions (Section 1.5).

1.1 Latent and manifest contracts

Findler and Felleisen’s work sparked a resurgence of interest in contracts, and in
the intervening years a bewildering variety of related systems have been studied.
Broadly, these come in two different sorts. In systems with latent contracts, types
and contracts are orthogonal features. Examples of this style include Findler and
Felleisen’s original system, Hinze et al. [41], Blume and McAllester [11], Chitil and
Huch [16], Guha et al. [37], and Tobin-Hochstadt and Felleisen [74]. By contrast,
manifest contracts are integrated into the type system, which tracks, for each value,
the most recently checked contract. Hybrid types [28] are a well-known example in this

5

style; others include the work of Ou et al. [51], Wadler and Findler [78], and Knowles
et al. [45]. (I discuss related work at length in Chapter 5.)

Findler and Felleisen’s latent calculus annotates function definitions with con-
tracts; to actually check the contracts, they include terms like 〈{x :Int | pos x}〉l ,l ′ 1,
in which a boolean predicate, pos, is applied to a run-time value, 1. This term evalu-
ates to 1, since pos 1 returns true. On the other hand, the term 〈{x :Int | pos x}〉l ,l ′ 0
evaluates to blame, written ⇑l , signaling that a contract with label l has been vio-
lated. The other label on the contract, l ′, comes into play with function contracts,
c1 7→ c2. For example, the term

〈{x :Int | nonzero x} 7→ {x :Int | pos x}〉l ,l ′ (λx :Int. x − 1)

“wraps” the function λx :Int. x − 1 in a pair of checks: whenever the wrapped function
is called, the argument is checked to see whether it is nonzero; if not, the blame
term ⇑l ′ is produced, signaling that the context of the contracted term violated the
expectations of the contract. If the argument check succeeds, then the function is run
and its result is checked against the contract pos x , raising ⇑l if this fails (e.g., if the
wrapped function is applied to 1).

The key feature of manifest systems is that descriptions like {x :Int | nonzero x}
are incorporated into the type system as refinement types. Values of refinement type
are introduced via casts like 〈{x :Int | true} ⇒ {x :Int | nonzero x}〉l n, which has static
type {x :Int | nonzero x} and checks, dynamically, that n really is nonzero, raising ⇑l
otherwise. Similarly, 〈{x :Int | nonzero x} ⇒ {x :Int | pos x}〉l n casts an integer that
is statically known to be nonzero to one that is statically known to be positive.

The manifest analogue of function contracts is casts between function types. For
example, consider:

f = 〈dInte → dInte ⇒ {x :Int | pos x} → {x :Int | pos x}〉l (λx :dInte. x − 1),

where dInte = {x :Int | true}. The sequence of events when f is applied to some
argument n (of type P) is similar to what we saw before:

f n −→h 〈dInte ⇒ {x :Int | pos x}〉l ((λx :dInte. x − 1) (〈{x :Int | pos x} ⇒ dInte〉l n))

First, n is cast from {x :Int | pos x} to dInte (it happens that in this case the cast cannot
fail, since the target predicate is just true, but if it did, it would raise ⇑l); then the
function body is evaluated; and finally its result is cast from dInte to {x :Int | pos x},
raising ⇑l if this fails. The domain cast is contravariant and the codomain cast is
covariant.

One point to note here is that casts in the manifest system have just one label,
while contract checks in the latent system have two. This difference is not fundamen-
tal to the latent/manifest distinction—both latent and manifest systems can be given
more or less rich algebras of blame—but rather a question of the pragmatics of assign-
ing responsibility: contract checks (called obligations in Findler and Felleisen [26]) use

6

two labels, while casts use one. Informally, a function contract check 〈c1 7→ c2〉l ,l
′

f
divides responsibility for f ’s behavior between its body and its environment: the
programmer is saying “If f is ever applied to an argument that does not pass c1, I
refuse responsibility (⇑l ′), whereas if f ’s result for good arguments does not satisfy
c2, I accept responsibility (⇑l).” In a system with casts, the programmer who writes
〈R1 → R2 ⇒ S1 → S2〉l f is saying “Although all I know statically about f is that
its results satisfy R2 when it is applied to arguments satisfying R1, I assert that it’s
okay to use it on arguments satisfying S1 [because I believe that S1 implies R1] and
that its results will always satisfy S2 [because R2 implies S2].” In the latter case, the
programmer is taking responsibility for both assertions (so ⇑l makes sense in both
cases), while the additional responsibility for checking that arguments satisfy S1 will
be discharged elsewhere (by another cast, with a different label).

We compare and contrast the latent and manifest semantics in Chapter 2. This
lays the foundation: what are the semantics of contracts, and how do existing seman-
tics in the literature relate to each other?

1.2 Contracts and abstraction

In Chapter 3, I study how contracts and type abstraction interact. Type abstraction
is an essential part of language design, especially for higher-order languages. If we
are going to design programming languages with manifest contracts, it’s important
that we know that type abstraction still follows our intuition.

It turns out that manifest contracts not only enjoy relational parametricity, the
gold standard property of type abstraction, but that manifest contracts allow pro-
grammers to design particularly rich abstractions. Contracts and polymorphism make
a natural combination: programmers can give strong contracts to abstract types,
precisely stating pre- and post-conditions while hiding implementation details—for
example, an abstract type of stacks might specify that the pop operation requires
non-empty stacks as input, i.e., have the domain type {x:α Stack | not (empty? x)}.
That is, just as the type abstraction of ML was used to force sound reasoning in
proofs [32], we can use type abstraction to force sound uses of partial operations.

As one simple example, consider the following abstract type for natural numbers:

NAT : ∃α. (zero : α)× (succ : (α→ α))× (iszero : (α→ Bool))×
(pred : {x :α | not (iszero x)} → α).

Contracts have allowed us to specify a very precise type for pred—one which ensures
the correctness of the function, since pred zero isn’t a natural. Since these are manifest
contracts, the type system will track which values are known to be non-zero. In
Section 3.1, I develop a more extended example of an embedded domain-specific
language of transducers based on Boomerang [12].

Beyond these rich abstractions, subtyping and relational parametricity offer struc-
tured reasoning principles that are invaluable to compiler writers (for optimizations

7

odd 3
−→ (〈Dyn→Dyn⇒ Int→Bool〉 even) 2
−→ 〈Dyn⇒ Bool〉 (even (〈Int⇒ Dyn〉 2))
−→ 〈Dyn⇒ Bool〉 (even 2Int!)
−→ 〈Dyn⇒ Bool〉 ((〈Int→Bool⇒ Dyn→Dyn〉 (λx :Int. . . .)) 2Int!)
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 ((λx :Int. . . .) (〈Dyn⇒ Int〉 2Int!)))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 ((λx :Int. . . .) 2))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (odd 1))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 ((〈Dyn→Dyn⇒ Int→Bool〉 even) 0))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉 (even (〈Int⇒ Dyn〉 0))))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉 (even 0Int!)))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉

((〈Int→Bool⇒ Dyn→Dyn〉 (λx :Int. . . .)) 0Int!)))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉

((λx :Int. . . .) (〈Dyn⇒ Int〉 0Int!)))))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉

((λx :Int. . . .) 0))))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 true)))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉 trueBool!))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 true)
−→ 〈Dyn⇒ Bool〉 trueBool!
−→ true

Figure 1.2: Contract checking destroys tail recursion

to representations, deforestation, etc.) and programmers (for formally supported
reasoning). These principles are one of the payoffs of the manifest approach.

Finally, our development incorporates a significant technical improvement over
earlier presentations of contracts (e.g., Flanagan [28] and Greenberg et al. [34], which
is in effect Chapter 2): instead of introducing a denotational model to break a prob-
lematic circularity between typing, subtyping, and evaluation, I develop the metathe-
ory of contracts in a completely syntactic fashion, omitting subtyping from the core
system and recovering it post facto as a derived property.

1.3 Efficiency and contract checking

Since casts and checks have runtime effects, we must ask: what are the costs? Racket’s
contracts are essentially checked along the same lines as Findler and Felleisen’s plan,
as in the wrap function:3

(define (wrap ctc v)

(if (flat-contract? ctc)

(if ((flat-contract-pred ctc) v)

3For simplicity’s sake, I’ve omitted blame.

8

v

(error (flat-contract-err-info ctc)))

(let ([dom (fun-contract-dom ctc)]

[cod (fun-contract-cod ctc)])

(lambda (x)

(wrap cod (v (wrap dom x)))))))

That is, flat contracts (like nonempty-queue/c) just check the predicate; function
contracts η-expand their argument, wrapping the input in the domain contract and
the return value in the codomain contract. For example, wrapping queue? with its
(-> any/c boolean?) contract yields:

(lambda (x)

(wrap boolean? (queue? (wrap any/c x))))

This η-expanded lambda is called a function proxy. In PLT Racket (and all other for-
mulations of higher-order contracts), functions can accumulate an unbounded number
of function proxies—with serious ramifications for asymptotic space bounds. Simi-
larly, the codomain contract check in the function proxy can destroy tail recursion.

One longstanding problem with casts is space efficiency: contract checks, in their
näıve formulation, can consume unbounded amounts of space at runtime both through
excessive function proxies and through tail-recursion-breaking stack growth. This
unbounded use of space can lead to changes in the asymptotic space efficiency of
programs. Prior work [39, 40, 65, 68] offers space-efficient solutions exclusively in the
domain of gradual types [67]—type systems integrating simple types and the dynamic
type, Dyn.

As an example, take the mutually recursive definition of even and odd from Herman
et al. [39]. Here odd is written in a simply typed style, but even is written in a more
dynamically typed style.

even : Dyn→Dyn = 〈Int→Bool⇒ Dyn→Dyn〉 λx :Int.
if x = 0 then true else odd (x − 1)

odd : Int→Bool = λx :Int.
if x = 0 then false else (〈Dyn→Dyn⇒ Int→Bool〉 even) (x − 1)

We show how odd 3 reduces in Figure 1.2. Note how casts between Bool and Dyn
accumulate. Imagine writing even and odd in a surface language—how predictable
is cast insertion? What was written as tail recursive—and ought to use only O(1)
space—instead takes O(n) space.

This problem of contracts breaking tail recursion has very much informed the
design philosophy of PLT Racket’s contracts [56], where contracts are typically placed
at module boundaries. Calls between functions in the same module aren’t mediated
by contracts, so intra-module tail recursion still works. Calls between modules do
have contracts, though, so there’s no guarantee about tail recursion. Naturally, this

9

scheme is somewhat limiting: what about libraries with higher-order functions and
callbacks?

Following Herman et al. [39], I develop a space efficient scheme for a language
with manifest contracts and type Dyn in Chapter 4. We show that space efficiency
avoids some checks, failing and diverging less often than näıve calculi—but the two
are otherwise observationally equivalent.

1.4 Summary

In this thesis, I show that higher-order contracts are on a firm type-theoretic
footing and that they support extensions necessary for real programming.
Developing these principles is the first step in designing and implementing higher-
order languages with contracts and refinement types. In this dissertation, I:

• Study the relationship between the two families of core calculi for contracts
(Chapter 2),

• Extend one family so that it admits type abstraction and enjoys relational
parametricity (Chapter 3), and

• Resolve a show-stopping space-inefficiency (Chapter 4).

I discuss related work in Chapter 5 and conclude with a discussion of future work in
Chapter 6.

1.5 Notation and other conventions

There are many different calculi in this dissertation: five in Chapter 2, one in Chap-
ter 3, and three in Chapter 4. What’s more, all but two of these calculi use manifest
contracts, and all but two of those use casts. So there is a significant overlap in nota-
tion and names. It is easiest to interpret names as scoped by chapter: there are three
different rules named E App, but each is unique in its chapter. Well formedness and
typing rules are named WF ... and T ... (though sometimes also S ...); evaluation
rules are named E ..., but also F ... and G

We explain the notation in each chapter, but all of the calculi should be familiar
as extensions of the simply typed lambda calculus.

This document is thoroughly hyperlinked—references to chapters, sections, fig-
ures, theorems, and citations are all linked. While this document reads best in color
and on a device supporting linking, I have not marked the links in order to reduce
visual noise.

10

Chapter 2

Contracts made manifest

And something is happening here
But you don’t know what it is

Ballad of a Thin Man
Bob Dylan

Recall the distinction between latent and manifest systems made in Section 1.1:
latent contracts are orthogonal to the type system (if it exists), while manifest con-
tracts conflate contracts and types. While contract checks in latent systems may
seem intuitively to be much the same thing as casts in manifest systems, the formal
correspondence is not immediate. Manifest contracts used casts 〈S1 ⇒ S2〉l with
contravariant checking for functions; latent contracts used obligations 〈c〉l ,l ′ with an
invariant rule—but with polarized blame labels. How do these forms of checking and
blame relate? These questions have led to some confusion in the community about
the nature of contracts. Indeed, as we will see, matters become yet murkier in richer
languages with features such as dependency.

Gronski and Flanagan [36] initiated a formal investigation of the connection be-
tween the latent and manifest worlds. They defined a core calculus, λC, capturing
the essence of latent contracts in a simply typed lambda-calculus, and an analogous
manifest calculus λH. I will follow the naming scheme of their treatment. Both cal-
culi offer contract-like dynamic checks, but they differ in the exact structure of these
checks, in their treatment of “blame,” and in how dynamic checks and types interact.

In λC, dynamic checks occur when a contract is applied, as in 〈c〉l ,l ′ t . The
contract checks to make sure that t is treated and behaves like a c. To achieve the
same effect, λH applies a cast, 〈S1 ⇒ S2〉l s . This cast ensures that s—which used
to behave like an S1—is now treated and behaves like an S2, where S1 and S2 are
(very precise) types. For example, 〈{x :Int | pos x}〉l ,l ′ t ensures that t evaluates to a
positive integer; 〈{x :Int | nonzero x} ⇒ {x :Int | pos x}〉l s ensures that s—which we
know to be nonzero—is also positive.

To compare these systems, they introduced a type-preserving translation φ from
λC to λH. What makes φ interesting is that it relates the languages feature for feature:

11

Exact translations

lax λC λH picky λC

ψ

φ ψ

φ

Inexact translations, more blame in target language

Figure 2.1: The axis of blame

predicate contracts over base types are mapped to casts between refinements of base
type, and function contracts are mapped to function casts. The main result is that
φ preserves behavior, in the sense that if a term t in λC evaluates to a constant k or
blame ⇑l , then its translation φ(t) evaluates similarly.

In this chapter, I extend their work in two directions. First, I strengthen their
main result by introducing a new feature-for-feature translation ψ from λH to λC and
proving a similar correspondence theorem for ψ. (I also give a new, more detailed,
proof of the correspondence theorem for φ.) These correspondences show that the
manifest and latent approaches are effectively equivalent in the nondependent case.

Second, and more significantly, I extend the whole story to allow dependent func-
tion contracts in λC and dependent arrow types in λH. Dependency is extremely
handy in contracts, as it allows for precise specifications of how the results of func-
tions depend on their arguments. For example, here is a contract that we might use
with an implementation of vector concatenation:

z1:Vec 7→ z2:Vec 7→ {z3:Vec | vlen z3 = vlen z1 + vlen z2}

Adding dependent contracts to λC is easy: the dependency is all in the contracts
and the types stay simple. We have just one significant design choice: should domain
contracts be rechecked when the bound variable appears in the codomain contract?
This choice leads to two dialects of λC, one which does recheck (picky λC) and one
which does not (lax λC). The choice is not clear, so I consider both. The question
of which blame labels belong on this extra check is discussed at length in Dimoulas
et al. [22], which introduces indy blame. Indy blame is a variant of picky. I do not
consider it in depth here, since it does not affect whether or not blame is raised,
only which blame. I discuss this point more in Section 2.6.3. In λH, on the other
hand, dependency significantly complicates the metatheory, requiring the addition of
a denotational semantics for types and kinds (a unary logical relation with a term
model) to break a potential circularity in the definitions, plus an intricate sequence
of technical lemmas involving parallel reduction to establish type soundness.

Surprisingly, the tight correspondence between λC and λH breaks down in the
dependent case: the natural generalization of the translations does not preserve be-
havior exactly. Indeed, we can place λH between the two variants of λC on an “axis

12

of blame” (Figure 2.1), where evaluation behavior is preserved exactly when moving
left on the axis (from picky λC to λH to lax λC), but translated terms can blame more
than their pre-images when moving right.1 It is still the case that when a pre-image
raises blame, its translation blames as well—though not necessarily the same label.
The discrepancy arises in the case of abusive contracts, such as

f :({x :Int | nonzero x} 7→ {y :Int | true}) 7→ {z :Int | f 0 = 0}

This rather strange contract has the form f :c1 7→ c2, where c2 uses f in a way that
violates c1! In particular, if we apply it (in lax λC) to λf :Int → Int. 0 and then
apply the result to λx :Int. x and 5, the final result will be 5, since λx :Int. x does
satisfy the contract {x :Int | nonzero x} 7→ {y :Int | true} and 5 satisfies the contract
{z :Int | (λx :Int. x) 0 = 0}. However, running the translation of f in λH yields an
extra check, wrapping the occurrence of f in the codomain contract with a cast from
{x :Int | nonzero x} → {y :Int | true} to {x :Int | true} → {y :Int | true}, which fails when
the wrapped function is applied to 0. I discuss this phenomenon in greater detail in
Section 2.3.

We should note at the outset that, like Gronski and Flanagan [36], we are inter-
ested in translations that relate λC and λH feature for feature, i.e., mapping predicate
contracts to predicate contracts and function contracts to function contracts. Trans-
lations which don’t map feature for feature can give an exact treatment of blame.
Consider the following dependent version of the wrap operator from Findler and
Felleisen [26]. There are two cases: one for refinements of base types B , one for
dependent function contracts.

φ(〈{x :B | t}〉l ,l ′) = 〈dBe ⇒ {x :B | φ(t)}〉l

φ(〈x :c1 7→ c2〉l ,l
′
) = λf :dx :c1 7→ c2e.

λx:dc1e.
φ(〈c2〉l ,l

′
) (f (φ(〈c1〉l

′,l) x))

We can define a similar mapping function that implements λH’s semantics as predicate
contracts in lax or picky λC. It is unsurprising that an exact mapping exists: λC and
λH are lambda calculi that feature, among other things, a way to conditionally raise
exceptions. That these languages are interencodable is completely unsurprising. But
translations like these do not relate function contracts to function casts at all, so they
do not do much to tell us about how semantics of contracts and the semantics of casts
relate.

In summary, the main contributions of this chapter are (a) the translation ψ and
a symmetric version of Gronski and Flanagan’s behavioral correspondence theorem,
(b) the basic metatheory of (CBV, blame-sensitive) dependent λH, (c) dependent

1There might, in principle, be some other way of defining φ and ψ that (a) preserves types,
(b) maps feature for feature, and (c) induces an exact behavioral equivalence. After considering a
number of alternatives, we conjecture that no such φ and ψ exist.

13

B ::= Bool | . . . base types
k ::= true | false | . . . first-order constants

Figure 2.2: Base types and constants for λC and λH

versions of φ and ψ and their properties with regard to λH and both dialects of
λC, and (d) a weaker behavioral correspondence in the dependent case. I restrict
my attention to strongly normalizing programs, though I believe the results should
generalize readily to programs with recursion and nontermination. This chapter is an
extended adaptation of Greenberg et al. [34] and Greenberg et al. [35].

2.1 The nondependent languages

We begin in this section by defining the nondependent versions of λC and λH and
continue in Section 2.2 with the translations between them. The dependent lan-
guages, dependent translations, and their properties are developed in Sections 2.3,
2.5, and 2.6. Throughout this chapter, rules prefixed with an E or an F are oper-
ational rules for λC and λH, respectively. An initial T is used for λC typing rules;
typing rules beginning with an S belong to λH.

All of the languages will share a set of base types and first-order constants, given
in Figure 2.2. Let the set KB contain constants of base type B . We assume that Bool
is among the base types, with KBool = {true, false}.

2.1.1 The language λC

The language λC is the simply typed lambda calculus straightforwardly augmented
with contracts. Contracts c come in two forms: predicate contracts {x :B | t} over
a base type B and higher-order contracts c1 7→ c2, which check the arguments and
results of functions. We can use contracts in terms with the contract obligation 〈c〉l ,l ′ .
Applying a contract obligation 〈c〉l ,l ′ to a term t dynamically ensures that t and its
surrounding context satisfy c. If t does not satisfy c, then the positive label l will
be blamed and the whole term will reduce to ⇑ l ; on the other hand, if the context
does not treat 〈c〉l ,l ′ t as c demands, then the negative label l ′ will be blamed and
the term will reduce to ⇑ l ′. In contexts where it is unambiguous, I refer to contract
obligations simply as contracts.

The syntax and semantics of λC appears in Figure 2.3, with some common defi-
nitions (shared with λH) in Figure 2.2. Besides the contract term 〈c〉l ,l ′ , λC includes
first-order constants k , blame, and active checks 〈{x :B | t1}, t2, k〉l . Active checks do
not appear in source programs; they are a technical artifact of the small-step opera-
tional semantics, as I explain below. Also, note that my contracts only allow refine-
ments over base types B : we have function contracts, like {x :Int | pos x} 7→ {x :Int |

14

Syntax for λC

T ::= B | T1 → T2 types
c ::= {x :B | t} | c1 7→ c2 contracts

t ::= x | k | λx :T1. t2 | t1 t2 | terms

⇑ l | 〈c〉l,l′ | 〈{x :B | t1}, t2, k〉l

v ::= k | λx :T1. t2 | 〈c〉l,l
′ | 〈c1 7→ c2〉l,l

′
v values

r ::= v | ⇑ l results

E ::= [] t | v [] | 〈{x :B | t}, [] , k〉l evaluation contexts

Operational semantics for λC

(λx :T1. t2) v −→c t2{x := v} E Beta
k v −→c [[k]](v) E Const

〈{x :B | t}〉l,l′ k −→c 〈{x :B | t}, t{x := k}, k〉l E CCheck

〈{x :B | t}, true, k〉l −→c k E OK

〈{x :B | t}, false, k〉l −→c ⇑ l E Fail

(〈c1 7→ c2〉l,l
′
v) v ′ −→c 〈c2〉l,l

′
(v (〈c1〉l

′,l v ′)) E CDecomp
E [⇑ l] −→c ⇑ l E Blame
E [t1] −→c E [t2] when t1 −→c t2 E Compat

Typing rules for λC

Γ ` t : T

x :T ∈ Γ

Γ ` x : T
T Var

Γ ` k : tyc(k)
T Const

Γ ` ⇑ l : T
T Blame

Γ, x :T1 ` t2 : T2

Γ ` λx :T1. t2 : T1 → T2
T Lam

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2
T App

` c : T

Γ ` 〈c〉l,l′ : T → T
T Contract

∅ ` k : B ∅ ` t2 : Bool ` {x :B | t1} : B
t2 −→∗c true implies t1{x := k} −→∗c true

∅ ` 〈{x :B | t1}, t2, k〉l : B
T Checking

` c : T

x :B ` t : Bool

` {x :B | t} : B
T BaseC ` c1 : T1 ` c2 : T2

` c1 7→ c2 : T1 → T2
T FunC

Figure 2.3: Syntax and semantics for λC

15

nonzero x}, but not predicate contracts over functions themselves, like {f :Bool →
Bool | f true = f false}.

Values v include constants, abstractions, contracts, and function contracts applied
to values (more on these later); a result r is either a value or ⇑ l for some l . We
interpret constants using two constructions: the type-assignment function tyc, which
maps constants to first-order types of the form B1 → B2 → . . . → Bn (and which is
assumed to agree with KB); and the denotation function [[−]], which maps constants to
functions from constants to constants (or blame, to allow for partiality). Denotations
must agree with tyc, i.e., if tyc(k) = B1 → B2, then [[k]](k1) ∈ KB2 if k1 ∈ KB1 .

The operational semantics is given in Figure 2.3. It includes six rules for basic
(small-step, call-by-value) reductions, plus two rules that involve evaluation contexts
E (Figure 2.3). The evaluation contexts implement left-to-right evaluation for func-
tion application. If ⇑ l appears in the active position of an evaluation context, it is
propagated to the top level, like an uncatchable exception. As usual, values (and
results) do not step.

The first two basic rules are standard, implementing primitive reductions and
β-reductions for abstractions. In these rules, arguments must be values v . Since con-
stants are first-order, we know that when E Const reduces a well-typed application,
the argument is not just a value, but a constant.

The rules E CCheck, E OK, E Fail and E CDecomp, describe the semantics
of contracts. In E CCheck, predicate contracts applied to constants step to an
active check. Active checks include the original contract, the current state of the
check, the constant being checked, and a label to blame if necessary. I hold on
to the original contract as a technical device for the translation φ from λC to λH,
since λH needs to know the target type of an active check. If the check evaluates
to true, then E OK returns the initial constant. If false, the check has failed and a
contract has been violated, so E Fail steps the term to ⇑ l . Higher-order contracts
on a value v wait to be applied to an additional argument. This is why function
contracts applied to values are values. There is no substantial difference between this
approach and expanding function contracts into new lambdas. When that argument
has also been reduced to a value v ′, E CDecomp decomposes the function cast: the
argument value is checked with the argument part of the contract (switching positive
and negative blame, since the context is responsible for the argument), and the result
of the application is checked with the result contract.

The typing rules for λC (Figure 2.3) are mostly standard. We give types to
constants using the type-assignment function tyc. Blame expressions have all types.
Contracts are checked for well-formedness using the judgment ` c : T , comprising
the rules T BaseC, which requires that the checking term in a predicate contract
return a boolean value when supplied with a term of the right type, and T FunC.
Note that the predicate t in a contract {x :B | t} can contain at most x free, since
we are considering only nondependent contracts for now. Contract application, like
function application, is checked using T App.

16

The T Checking rule only applies in the empty context (active checks are only
created at the top level during evaluation). The rule ensures that the contract {x :B |
t1} has the right base type for the constant k , that the check expression t2 has a
boolean type, and that the check is actually checking the right contract. The latter
condition is formalized by the implication: t2 −→∗c true implies t1{x := k} −→∗c true
asserts that if t2 evaluates to true, then the original check t1{x := k} must also
evaluate to true. This requirement is needed for two reasons: first, nonsensical terms
like 〈{x :Int | pos x}, true, 0〉l should not be well typed; and second, I use this property
in showing that the translations are type preserving (see Section 2.5). One may
think that this rule makes typechecking for the full “internal language” with checks
undecidable—I certainly did—but in fact the entire language is strongly normalizing.2

I could give a more precise condition—for example, that t1{x := k} −→∗c t2—but
there is no need. We will find that this condition is more useful in the metatheory of
Chapters 3 and 4.

The language enjoys standard preservation and progress theorems. Together, these
ensure that evaluating a well-typed term to a normal form always yields a result r ,
which is either blame or a value of the appropriate type.

2.1.2 The language λH

The second calculus, nondependent λH, extends the simply typed lambda-calculus
with refinement types and cast expressions. The definitions appear in Figure 2.4
(syntax and semantics) and Figure 2.5. Unlike λC, which separates contracts from
types, λH combines them into refined base types {x :B | s1} and function types S1 →
S2. As for λC, I do not allow refinement types over functions nor refinements of
refinements. (We add these features to a dependent λH in Chapter 3.) Unrefined
base types B are not valid types; they must be wrapped in a trivial refinement, as
the raw type {x :B | true}. The terms of the language are mostly standard, including
variables, the same first-order constants as λC, blame, abstractions, and applications.
The cast expression 〈S1 ⇒ S2〉l dynamically checks that a term of type S1 can be
given type S2. Like λC, active checks are used to give a small-step semantics to cast
expressions.

The values of λH include constants, abstractions, casts, and function casts applied
to values. Results are either values or blame. We give meaning to constants as we
did in λC, reusing [[−]]. Type assignment is via tyh, which we assume produces well-
formed types (defined in Figure 2.5). To keep the languages in sync, I require that
tyh and tyc agree on “type skeletons”: if tyc(k) = B1 → B2, then tyh(k) = {x :B1 |
s1} → {x :B2 | s2}.

The small-step, call-by-value semantics in Figure 2.4 comprises six basic rules and
two rules involving evaluation contexts F . Each rule corresponds closely to its λC
counterpart.

2As observed by Stephan Zdancewic at my defense.

17

Syntax for λH

S ::= {x :B | s1} | S1 → S2 types/contracts

s ::= x | k | λx :S1. s2 | s1 s2 | terms

⇑ l | 〈S1 ⇒ S2〉l | 〈{x :B | s1}, s2, k〉l

w ::= k | λx :S1. s2 | 〈S1 ⇒ S2〉l | values

〈S11 → S12 ⇒ S21 → S22〉l w
q ::= w | ⇑ l results

F ::= [] s | w [] | 〈{x :B | s}, [] , k〉l evaluation contexts

Operational semantics for λH

(λx :S1. s2) w2 −→h s2{x := w2} F Beta
k w −→h [[k]](w) F Const

〈{x :B | s1} ⇒ {x :B | s2}〉l k −→h 〈{x :B | s2}, s2{x := k}, k〉l
F CCheck

〈{x :B | s}, true, k〉l −→h k F OK

〈{x :B | s}, false, k〉l −→h ⇑ l F Fail

(〈S11 → S12 ⇒ S21 → S22〉l w) w ′ −→h 〈S12 ⇒ S22〉l (w (〈S21 ⇒ S11〉l w ′))
F CDecomp

F [⇑ l] −→h ⇑ l F Blame
F [s1] −→h F [s2] F Compat

when s1 −→h s2

Figure 2.4: Syntax and semantics for λH

18

Typing rules for λH

∆ ` s : S

x :S ∈ ∆

∆ ` x : S
S Var

∆ ` k : tyh(k)
S Const

` S

∆ ` ⇑ l : S
S Blame

` S1 ∆, x :S1 ` s2 : S2

∆ ` λx :S1. s2 : S1 → S2
S Lam

∆ ` s1 : S1 → S2 ∆ ` s2 : S1

∆ ` s1 s2 : S2
S App

` S1 ` S2 bS1c = bS2c
∆ ` 〈S1 ⇒ S2〉l : S1 → S2

S Cast

∆ ` s : S1 ` S2 ` S1 <: S2

∆ ` s : S2
S Sub

∅ ` k : {x :B | true} ∅ ` s2 : {x :Bool | true} ` {x :B | s1}
s2 −→∗h true implies s1{x := k} −→∗h true

∅ ` 〈{x :B | s1}, s2, k〉l : {x :B | s1}
S Checking

` S1 <: S2

∀k ∈ KB . (s1{x := k} −→∗h true implies s2{x := k} −→∗h true)

` {x :B | s1} <: {x :B | s2}
SSub Refine

` S21 <: S11 ` S12 <: S22

` S11 → S12 <: S21 → S22
SSub Fun

` S

` {x :B | true}
SWF Raw ` S1 ` S2

` S1 → S2
SWF Fun

x :{x :B | true} ` s : {x :Bool | true}
` {x :B | s}

SWF Refine

Figure 2.5: Typing rules for λH

19

Notice how the decomposition rules compare. In λC, the term (〈c1 7→ c2〉l ,l
′

v) v ′

decomposes into two contract checks: c1 checks the argument v ′ and c2 checks the
result of the application. In λH the term (〈S11 → S12 ⇒ S21 → S22〉l w) w ′ decom-
poses into two casts: a contravariant cast on the argument and a covariant cast
on theresult. The contravariant cast 〈S21 ⇒ S11〉l w ′ makes w ′ a suitable input for
w , while 〈S12 ⇒ S22〉l casts the result from w applied to (the cast) w ′. Suppose
S21 = {x :Int | pos x} and S11 = {x :B | nonzero x}. Then the check on the argument
ensures that nonzero x −→∗h true—not, as one might expect, that pos w ′ −→∗h true.
While it is easy to read off from a λC contract exactly which checks will occur at
runtime, a λH cast must be carefully inspected to see exactly which checks will take
place. On the other hand, which label will be blamed is clearer with casts—there’s
only one!

The typing rules for λH (Figure 2.5) are also similar to those of λC. Just as the
λC rule T Contract checks to make sure that the contract has the right form, the
λH rule S Cast ensures that the two types in a cast are well-formed and have the
same simple-type skeleton, defined as b−c : S → T (pronounced “erase S”):

b{x :B | s}c = B

bS1 → S2c = bS1c → bS2c

This prevents “stupid” casts, like 〈dInte ⇒ dBoole〉l . I define a similar operator, d−e :
S → S (pronounced “raw S”), which trivializes all refinements:

d{x :B | s}e = {x :B | true}
dS1 → S2e = dS1e → dS2e

These operations apply to λC contracts and types in the natural way. Type well-
formedness in λH is similar to contract well-formedness in λC, though the WF Raw
case needs to be added to get things off the ground.

The active check rule S Checking plays a role analogous to the T Checking
rule in λC, again using an implication to guarantee that we only have sensible terms
in the predicate position. Note that we retain the target type in the active check,
and that S Checking gives active checks that type—technical moves necessary for
preservation.

An important difference is that λH has subtyping. The S Sub rule allows an ex-
pression to be promoted to any well-formed supertype. Refinement types are super-
types if, for all constants of the base type, their condition evaluates to true whenever
the subtype’s condition evaluates to true. For function types, we use the standard
contravariant subtyping rule. I do not consider source programs with subtyping, since
subtyping makes type checking undecidable3; subtyping is just a technical device for
ensuring type preservation. Consider the following reduction:

〈{x :Int | true} ⇒ {x :Int | pos x}〉l 1 −→∗h 1

3Flanagan [28] and Knowles and Flanagan [44] discuss trade-offs between static and dynamic
checking that allow for decidable type systems and subtyping.

20

The source term is well-typed at {x :Int | pos x}. Since it evaluates to 1, we would like
to have ∆ ` 1 : {x :Int | pos x}. To have type preservation in general, though, tyh(1)
must be a subtype of {x :Int | s} whenever s{x := 1} −→∗h true. That is, constants
of base type must have “most-specific” types. One way to satisfy this requirement
is to set tyh(k) = {x :B | x = k} for k ∈ KB ; then if s{x := k} −→∗h true, we have
` tyh(k) <: {x :B | s}. This approach is taken in Knowles and Flanagan [44] and Ou
et al. [51].

Standard progress and preservation theorems hold for λH. We can also obtain
a semantic type soundness theorem as a restriction of the one for dependent λH
(Theorem 2.3.12).

2.2 The nondependent translations

The latent and manifest calculi differ in a few respects. Obviously, λC uses contract
application and λH uses casts. Second, λC contracts have two labels—positive and
negative—where λH contracts have a single label. Finally, λH has a much richer type
system than λC. The translation ψ from λH to λC and Gronski and Flanagan’s φ
from λC to λH must account for these differences while carefully mapping “feature for
feature”.

Since I give the translations for the dependent languages in full in Section 2.3, I
merely sketch the main ideas here.

The interesting parts of the translations deal with contracts and casts. Everything
else is translated homomorphically, though the type annotation on lambdas must be
chosen carefully. The full definitions of these translations are in Section 2.4; the
nondependent definitions are a straightforward restriction, so I omit them.

For ψ, translating from λH’s rich types to λC’s simple types is easy: we just
erase the types to their simple skeletons. The interesting case is translating the cast
〈S1 ⇒ S2〉l to a contract by translating the pair of types together, 〈ψ(S1, S2)〉l ,l . I
define ψ as two mutually recursive functions: ψ(s) translates λH terms to λC terms;
ψ(S1, S2) translates a pair of λH types—effectively, a cast—to a λC contract. The
latter function is defined as follows:

ψ({x :B | s1}, {x :B | s2}) = {x :B | ψ(s2)}
ψ(S11 → S12, S21 → S22) = ψ(S21, S11) 7→ ψ(S12, S22)

We use the single label on the cast in both the positive and negative positions of the
resulting contract, i.e.:

ψ(〈S1 ⇒ S2〉l) = 〈ψ(S1, S2)〉l ,l .
When we translate a pair of refinement types, we produce a contract that will check
the predicate of the target type (like F CCheck); when translating a pair of function
types, we translate the domain contravariantly (like F CDecomp). For example,

〈{x :Int | nonzero x} → dInte ⇒ dInte → {y :Int | pos y}〉l

21

translates to 〈{x :Int | nonzero x} 7→ {y :Int | pos y}〉l ,l .
Translating from λC to λH, we are moving from a simple type system to a rich

one. The translation φ (essentially the same as Gronski and Flanagan’s) generates
terms in λH with raw types—λH types with trivial refinements, corresponding to λC’s
simple types. Since the translation targets raw types, the type preservation theorem
is stated as “if Γ ` t : T then dΓe ` φ(t) : dT e” (see Section 2.6.1).

Whereas the difficulty with ψ is ensuring that the checks match up, the difficulty
with φ is ensuring that the terms in λC and λH will blame the same labels. I deal with
this problem by translating a single contract with two blame labels into two separate
casts. Intuitively, the cast carrying the negative blame label will run all of the checks
in negative positions in the contract, while the cast with the positive blame label will
run the positive checks. Let

φ(〈c〉l ,l ′) = λx :dce. 〈φ(c)⇒ dce〉l
′

(〈dce ⇒ φ(c)〉l x),

where the translation of contracts to refined types is:

φ({x :B | t}) = {x :B | φ(t)}
φ(c1 7→ c2) = φ(c1)→ φ(c2)

The operation of casting into and out of raw types is a kind of “bulletproofing.”
Bulletproofing maintains the raw-type invariant: the positive cast takes the argument
out of dce and the negative cast returns it there. For example,

〈{x :Int | nonzero x} 7→ {y :Int | pos y}〉l ,l ′

translates to the λH term

λf :dInt→ Inte.
〈{x :Int | nonzero x} → {y :Int | pos y} ⇒ dInt→ Inte〉l

′

(〈dInt→ Inte ⇒ {x :Int | nonzero x} → {y :Int | pos y}〉l f).

Unfolding the domain parts of the casts on f , the domain of the negative cast en-
sures that f ’s argument is nonzero with 〈dInte ⇒ {x :Int | nonzero x}〉l

′
; the domain

of the positive cast does nothing, since 〈{x :Int | nonzero x} ⇒ dInte〉l has no effect.
Similarly, the codomain of the negative cast does nothing while the codomain of the
positive cast checks that the result is positive. Separating the checks allows λH to
keep track of blame labels, mimicking λC. Put more generally, in the positive cast,
the positive positions may fail because they are “down casts”, whereas the negative
positions are “up casts”, so they cannot fail. The opposite is true of the negative
cast. This embodies the idea of contracts as pairs of projections [25]. Note that bul-
letproofing is “overkill” at base type: for example, 〈{x :Int | nonzero x}〉l ,l ′ translates
to

λx:dInte.
〈{x :Int | nonzero x} ⇒ dInte〉l

′

(〈dInte ⇒ {x :Int | nonzero x}〉l x).

22

Only the positive cast does anything—the negative cast into dInte always succeeds.
This asymmetry is consistent with λC, where predicate contracts also ignore the
negative label. In Section 2.3 I extend the bulletproofing translation to dependent
contracts—one of my main contributions.

Both φ and ψ preserve behavior in a strong sense: if Γ ` t : B , then either t
and φ(t) both evaluate to the same constant k or they both raise ⇑ l for the same l ;
and conversely for ψ. Interestingly, we need to set up this behavioral correspondence
before we can prove that the translations preserve well-typedness, because of the
T Checking and S Checking rules.

2.3 The dependent languages

We now extend λC to dependent function contracts and λH to dependent functions.
Very little needs to be changed in λC, since contracts and types barely interact; the
changes to E CDecomp and T FunC are the important ones. Adding dependency
to λH is more involved. In particular, adding contexts to the subtyping judgment
entails adding contexts to SSub Refine. To avoid a dangerous circularity, I define
closing substitutions in terms of a separate type semantics. Additionally, the new
F CDecomp rule has a slightly tricky (but necessary) asymmetry, explained below.

2.3.1 Dependent λC

Dependent λC has been studied since Findler and Felleisen [26]; it received a very
thorough treatment (with an untyped host language) in Blume and McAllester [11],
was ported to Haskell by Hinze et al. [41] and Chitil and Huch [16], and was used as
a specification language in Xu et al. [80]. Type soundness is not particularly difficult,
since types and contracts are kept separate. My formulation follows Findler and
Felleisen [26], with a few technical changes to make the proofs for φ easier.

We have marked the changed rules with a • next to their names. The new
T RefineC, T FunC, and E CDecomp rules in Figure 2.7 (typing) and Figure 2.6
(syntax and semantics) suffice to add dependency to λC. To help us work with the
translations, we also make some small changes to the bindings in contexts, adding a
new binding form to track the labels on a contract check throughout the contract well-
formedness judgment. Note that T FunC adds x :c1

l ′,l to the context when checking
the codomain of a function contract, swapping blame labels. I add a new variable
rule, T VarC, that treats x :c l ,l ′ as if it were its skeleton, x :bcc. While unnecessary
for λC’s metatheory, this new binding form helps φ preserve types when translating
from λH to picky λC; see Section 2.6.1.

Two different variants of the E CDecomp rule can be found in the literature:
they are lax and picky. The original rule in Findler and Felleisen [26] is lax (like
most other contract calculi): it does not recheck c1 when substituting v ′ into c2.
Blume and McAllester [11] used a picky semantics without observing their departure

23

Syntax for dependent λC

T ::= B | T1 → T2 types
c ::= {x :B | t} | x :c1 7→ c2 contracts•
Γ ::= ∅ | Γ, x :T | Γ, x :cl,l

′
typing contexts•

t ::= x | k | λx :T1. t2 | t1 t2 | ⇑l | 〈c〉l,l
′ | 〈{x :B | t1}, t2, k〉l terms

v ::= k | λx :T1. t2 | 〈c〉l,l
′ | 〈x :c1 7→ c2〉l,l

′
v values•

r ::= v | ⇑l results
E ::= [] t | v [] | 〈{x :B | t}, [] , k〉l evaluation contexts

Operational semantics for dependent λC t1 −→c t2

(λx :T1. t2) v −→c t2{x := v} E Beta
k v −→c [[k]](v) E Const

〈{x :B | t}〉l,l′ k −→c 〈{x :B | t}, t{x := k}, k〉l E CCheck

(〈x :c1 7→ c2〉l,l
′
v) v ′ −→lax 〈c2{x := v ′}〉l,l′ (v (〈c1〉l

′,l v ′))
E CDecompLax•

(〈x :c1 7→ c2〉l,l
′
v) v ′ −→picky 〈c2{x := 〈c1〉l

′,l v ′}〉l,l′ (v (〈c1〉l
′,l v ′))

E CDecompPicky•
〈{x :B | t}, true, k〉l −→c k E OK
〈{x :B | t}, false, k〉l −→c ⇑l E Fail

E [⇑l] −→c ⇑l E Blame
E [t1] −→c E [t2] when t1 −→c t2 E Compat

Contract erasure

b{x :B | t}c = B bx :c1 7→ c2c = bc1c → bc2c

Figure 2.6: Syntax and semantics for dependent λC

24

Typing rules for dependent λC

` Γ

` ∅
T Empty ` Γ

` Γ, x :T
T ExtVarT•

` Γ

` Γ, x :T
T ExtVarT•

Γ ` t : T

x :T ∈ Γ

Γ ` x : T
T VarT

x :cl,l
′ ∈ Γ

Γ ` x : bcc
T VarC• Γ ` k : tyc(k)

T Const

Γ, x :T1 ` t2 : T2

Γ ` λx :T1. t2 : T1 → T2
T Lam

Γ `l,l′ c : T

Γ ` 〈c〉l,l′ : T → T
T Contract•

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2
T App

Γ ` ⇑l : T
T Blame

` Γ ∅ ` k : B ∅ ` t2 : Bool ∅ `l,l′ {x :B | t1} : B
t2 −→c

∗ true implies t1{x := k} −→c
∗ true

Γ ` 〈{x :B | t1}, t2, k〉l : B
T Checking

Γ `l,l′ c : T

Γ, x :B ` t : Bool

Γ `l,l′ {x :B | t} : B
T RefineC

Γ `l′,l c1 : T1 Γ, x :c1
l′,l `l,l′ c2 : T2

Γ `l,l′ x :c1 7→ c2 : T1 → T2
T FunC

Figure 2.7: Typing rules for dependent λC

25

from Findler and Felleisen; Hinze et al. [41] choose to be picky as well, substituting
〈c1〉l

′,l v ′ into c2 because it makes their conjunction contract idempotent. We can
show (straightforwardly) that both enjoy standard progress and preservation prop-
erties. Below, we consider translations to and from both dialects of λC: picky λC
using only E CDecompPicky in Sections 2.5.1 and 2.6.2, and lax λC using only
E CDecompLax in Sections 2.5.2 and 2.6.1. Accordingly, I give two sets of evalu-
ation rules: −→lax and −→picky. When I write −→c, the metavariable c ranges over
picky and lax. I complete the type soundness proofs here generically, writing −→c for
the evaluation relation. For the translations in Section 2.4, I specify which evaluation
relation we use.

I make a standard assumption about constant denotations being well typed: if
Γ ` k v : T then Γ ` [[k]](v) : T .

2.3.1 Theorem [Progress]: If ∅ ` t : T then either t −→c t ′ or t = r (i.e., t = v
or t = ⇑l).

Proof: By induction on the typing derivation. �

For preservation, we prove confluence and substitution lemmas. Note that our
substitution lemma must now also cover contracts, since they are no longer closed.

2.3.2 Lemma [Determinacy]: Let −→c be either −→picky or −→lax. If t −→c t ′

and t −→c t ′′, then t ′ = t ′.

2.3.3 Corollary [Cotermination]: If Let −→c be either −→picky or −→lax. t −→c
∗

r and t −→c
∗ t ′, then t ′ −→c

∗ r .

2.3.4 Lemma [Term and contract substitution]: If ∅ ` v : T ′, then

1. if Γ, x :T ′,Γ′ ` t : T then Γ,Γ′{x := v} ` t{x := v} : T , and

2. if Γ, x :T ′,Γ′ `l ,l ′ c : T then Γ,Γ′{x := v} `l ,l ′ c{x := v} : T .

Proof: By mutual induction on the typing derivations for t and c. �

We omit the proof for x :c l ,l ′ bindings, which is similar.

2.3.5 Theorem [Preservation]: If ∅ ` t : T and t −→c t ′ then ∅ ` t ′ : T .

Proof: By induction on the typing derivation. This proof is straightforward because
typing and contracts hardly interact. �

26

Syntax for dependent λH

S ::= {x :B | s1} | x :S1 → S2 types/contracts•
∆ ::= ∅ | ∆, x :S typing contexts

s ::= x | k | λx :S1. s2 | s1 s2 | terms
⇑l | 〈S1 ⇒ S2〉l | 〈{x :B | s1}, s2, k〉l

w ::= k | λx :S1. s2 | 〈S1 ⇒ S2〉l | 〈x :S11 → S12 ⇒ x :S21 → S22〉l w values•
q ::= w | ⇑l results
F ::= [] s | w [] | 〈{x :B | s}, [] , k〉l evaluation contexts

Operational semantics for dependent λH s1 h s2

(λx :S1. s2) w2 h s2{x := w2} F Beta
k w h [[k]](w) F Const

〈{x :B | s1} ⇒ {x :B | s2}〉l k h 〈{x :B | s2}, s2{x := k}, k〉l F CCheck
(〈x :S11 → S12 ⇒ x :S21 → S22〉l w) w ′ h F CDecomp•

〈S12{x := 〈S21 ⇒ S11〉l w ′} ⇒ S22{x := w ′}〉l (w (〈S21 ⇒ S11〉l w ′))
〈{x :B | s}, true, k〉l h k F OK
〈{x :B | s}, false, k〉l h ⇑l F Fail

s1 −→h s2

s1 h s2

s1 −→h s2
F Reduce

s1 −→h s2

F [s1] −→h F [s2]
F Compat F [⇑l] −→h ⇑l

F Blame

Figure 2.8: Syntax and operational semantics for dependent λH

2.3.2 Dependent λH

Now we come to the challenging part: dependent λH and its proof of type soundness.
These results require the most complex metatheory in this chapter—in fact, in the
entirety of this dissertation—because we need some strong properties about call-by-
value evaluation.4 The full definitions are in Figures 2.8 and 2.9. As before, I have
marked the changed rules with a • next to their names.

Now we can enrich the type system with dependent function types, x :S1 → S2,
where x may appear in S2. The S Cast rule and the proofs need a notion of type
erasure, bSc; type height |S | will also be used in the proofs.

b−c : S → T | − | : S → N
b{x :B | s}c = B |{x :B | s}| = 1
bx :S1 → S2c = bS1c → bS2c |x :S1 → S2| = 1 + |S1|+ |S2|

4The benefit of a CBV semantics is a better treatment of blame; I would avoid the marriage of
lazy evaluation and exceptions found in Haskell, as I find it very confusing. By contrast, Knowles and
Flanagan [44] cannot treat failed casts as exceptions because that would destroy confluence. They
treat them as stuck terms. Readers familiar with the soundness proof of Knowles and Flanagan
[44] will notice that my proof is significantly different from theirs. I discuss this in related work,
Chapter 5.

27

A new dependent application rule, S App, substitutes the argument into the result
type of the application. I generalize WF Refine to allow refinement-type predicates
that use variables from the enclosing context. WF Fun adds the bound variable to
the context when checking the codomain of function types. In SSub Fun, subtyping
for dependent function types remains contravariant, but I also add the argument
variable to the context with the smaller type. This is similar to the function subtyping
rule of F<: [14].

We need to be careful when implementing higher-order dependent casts in the
rule F CDecomp. As the cast decomposes, the variables in the codomain types
of such a cast must be replaced. However, this substitution is asymmetric; on one
side, we cast the argument and on the other we do not. This behavior is required
for type soundness. For suppose we have ∆ ` x :S11 → S12 and ∆ ` x :S21 → S22

with equal skeletons, and values ∆ ` w : (x :S11 → S12) and ∆ ` w ′ : S21. Then
∆ ` (〈x :S11 → S12 ⇒ x :S21 → S22〉l w) w ′ : S22{x := w ′}. When we decompose the
cast, we must make some substitution into S12 and S22, but which? It is clear that
we must substitute w ′ into S22, since the original application has type S22{x := w ′}.
Decomposing the cast will produce the inner application ∆ ` w (〈S21 ⇒ S11〉l w ′) :
S12{x := 〈S21 ⇒ S11〉l w ′}; in order to apply the codomain cast to this term, we
must substitute 〈S21 ⇒ S11〉l w ′ into S12. This calculation determines the form of
F CDecomp.

While the operational semantics changes only in F CDecomp, we have split the
evaluation relation into two parts: reductions h and steps −→h. This is a technical
change that allows me to factor the proofs more cleanly (particularly for the parallel
reduction proofs).

The final change generalizes SSub Refine to open terms. We must close these
terms before we can compare their behavior, using closing substitutions σ and reading
∆ |= σ as “σ satisfies ∆”.

Care is needed here to prevent the typing rules from becoming circular: the typing
rule S Sub references the subtyping judgment, the subtyping rule SSub Refine ref-
erences the implication judgment, and the single implication rule S Imp has ∆ |= σ
in a negative position. This circularity would cause the typing rules to be non-
monotonic, and so the existence of a least or greatest fixed-point would not be imme-
diately obvious—the type system would not be well defined! To avoid this circularity,
∆ |= σ must not refer back to the other judgments. (The reader may wonder why
this was not a problem in λC, but notice that in λC, implication is only used in
T Checking—which has no (real) context. If we only needed implication in the
S Checking rule, we would not need contexts here, either—we can ensure that ac-
tive checks only occur at the top-level, with an empty context. But the SSub Refine
subtyping rule refers to S Imp, and subtyping may be used in arbitrary contexts.)

We can avoid the circularity and ensure that the type system is well defined by
building the syntactic rules on top of a denotational semantics for λH’s types.5 The

5Knowles and Flanagan [44] also introduce a type semantics, but theirs differs from mine in two

28

Typing rules

` ∆

` ∅
S Empty

` ∆ ∆ ` S

` ∆, x :S
S ExtVar

∆ ` s : S

x :S ∈ ∆

∆ ` x : S
S Var

∆ ` k : tyh(k)
S Const

∆ ` S1 ∆ ` S2
bS1c = bS2c

∆ ` 〈S1 ⇒ S2〉l : S1 → S2
S Cast

∆ ` S1 ∆, x :S1 ` s2 : S2

∆ ` λx :S1. s2 : (x :S1 → S2)
S Lam•

∆ ` s1 : (x :S1 → S2) ∆ ` s2 : S1

∆ ` s1 s2 : S2{x := s2}
S App•

∆ ` s : S1 ∆ ` S2
∆ ` S1 <: S2

∆ ` s : S2
S Sub•

` ∆
∅ ` k : {x :B | true} ∅ ` s2 : {x :Bool | true}
∅ ` {x :B | s1} ∅ ` s2 ⊃ s1{x := k}

∆ ` 〈{x :B | s1}, s2, k〉l : {x :B | s1}
S Checking•

∆ ` S

∆ ` {x :B | true}
SWF Raw ∆ ` S1 ∆, x :S1 ` S2

∆ ` x :S1 → S2
SWF Fun

∆, x :{x :B | true} ` s : {x :Bool | true}
∆ ` {x :B | s}

SWF Refine•

∆ ` S1 <: S2

∆, x :{x :B | true} ` s1 ⊃ s2

∆ ` {x :B | s1} <: {x :B | s2}
SSub Refine•

∆ ` S21 <: S11 ∆, x :S21 ` S12 <: S22

∆ ` x :S11 → S12 <: x :S21 → S22
SSub Fun•

∆ ` s1 ⊃ s2

∀σ. (∆ |= σ ∧ σ(s1) −→∗h true) implies σ(s2) −→∗h true

∆ ` s1 ⊃ s2
S Imp•

∆ |= σ ⇐⇒ ∀x ∈ dom(∆). σ(x) ∈ [[σ(∆(x))]]

Figure 2.9: Typing rules for dependent λH

29

Denotations of types

s ∈ [[{x :B | s0}]] ⇐⇒ s −→∗h ⇑l ∨ (∃k ∈ KB . s −→∗h k ∧ s0{x := k} −→∗h true)
s ∈ [[x :S1 → S2]] ⇐⇒ ∀q ∈ [[S1]]. s q ∈ [[S2{x := q}]]

Denotations of kinds

{x :B | s} ∈ [[?]] ⇐⇒ ∀k ∈ KB . s{x := k} ∈ [[{x :Bool | true}]]
x :S1 → S2 ∈ [[?]] ⇐⇒ S1 ∈ [[?]] ∧ ∀q ∈ [[S1]]. S2{x := q} ∈ [[?]]

Semantic judgments

∆ |= S1 <: S2 ⇐⇒ ∀σ s.t. ∆ |= σ, [[σ(S1)]] ⊆ [[σ(S2)]]
∆ |= s : S ⇐⇒ ∀σ s.t. ∆ |= σ, σ(s) ∈ [[σ(S)]]

∆ |= S ⇐⇒ ∀σ s.t. ∆ |= σ, σ(S) ∈ [[?]]

Figure 2.10: Type and kind semantics for dependent λH

idea is that the semantics of a type is a set of closed terms defined independently of
the syntactic typing relation, but that turns out to contain all closed well-typed terms
of that type. Thus, in the definition of ∆ |= σ, we quantify over a somewhat larger
set than strictly necessary—not just the syntactically well-typed terms of appropriate
type (which are all the ones that will ever appear in programs), but all semantically
well-typed ones.

The type semantics appears in Figure 2.10. It is defined by induction on type
skeletons. For refinement types, terms must either go to blame or produce a constant
that satisfies (all instances of) the given predicate. For function types, well typed
arguments must yield well-typed results. By construction, these sets include only
terminating terms that do not get stuck. In order to show that casts inhabit the
denotations of their types, we must also define a denotation of kinds. Since the only
kind is ∗, its denotation [[?]] directly defines semantic well-formedness in terms of the
denotations of types.

We must again make the assumption that constants have most-specific types:
if btyh(k)c = B and s{x := k} −→∗h true then ∅ ` tyh(k) <: {x :B | s}. We
make some other, more standard assumptions, as well. Constants must have closed,
well-formed types, and the types assigned must be well-formed. We require that
constants are semantically well typed: k ∈ [[tyh(k)]]; this requirement is true by
the “most-specific type” assumption at base types, but must be assumed at (first-

ways. First, because they cannot treat blame as an exception in their nondeterministic semantics,
they must restrict the terms in the semantics to be those that only get stuck at failed casts. They
do so by requiring the terms to be well-typed in the simply typed lambda calculus after all casts
have been erased. Secondly, their type semantics does not require strong normalization. However,
it is not clear whether their language actually admits nontermination—they include a fix constant,
but their semantic type soundness proof appears to break down in that case. The problem is not
insurmountable: either step indexing their semantics or a proof of unwinding as in Pitts [53] would
resolve the issue.

30

order) functions types. Note that this rules out including fix as a constant, since my
type semantics is inhabited only by strongly normalizing terms. We conjecture that
expanding the denotation of refinement types to allow for divergence or a step-indexed
logical relation [2] would allow us to consider nonterminating terms.

We introduce a few facts about the type semantics before proving semantic type
soundness.

2.3.6 Lemma [Determinacy]: If s −→h s ′ and s −→h s ′′, then s ′ = s ′

2.3.7 Corollary [Cotermination]: If s −→∗h s ′ and s −→∗h q , then s ′ −→∗h q .

2.3.8 Lemma [Expansion and contraction of [[S]]]: If s −→∗h s ′, then s ′ ∈ [[S]]
iff s ∈ [[S]].

Proof: By induction on |S |. �

2.3.9 Lemma [Blame inhabits all types]: For all S , ⇑l ∈ [[S]].

Proof: By induction on |S |. �

2.3.10 Corollary [Nonemptiness]: For all S , there exists some q such that q ∈
[[S]].

The normal forms of −→∗h are of the form q = w or ⇑l .

2.3.11 Lemma [Strong normalization]: If s ∈ [[S]], then there exists a q such
that s −→∗h q—i.e., either s −→∗h w or s −→∗h ⇑l .

Proof: By induction on |S |.

S = {x :B | s0}: Suppose s ∈ [[{x :B | s0}]]. By definition, either s −→∗h w or
s −→∗h ⇑l , so s normalizes.

S = x :S1 → S2: Suppose s ∈ [[x :S1 → S2]]. We know that for any q ∈ [[S1]] that
s q ∈ [[S2{x := q}]]. Since [[S1]] is nonempty (by Lemma 2.3.10), let q ∈ [[S1]]. By
the IH, s q −→∗h w or s q −→∗h ⇑l . By the definition of evaluation contexts and
−→∗h, the function position is evaluated first. If the application reduces to a value
(i.e., s q −→∗h w), then first s q −→∗h w ′ q , and so s −→∗h w ′. Alternatively, the
application could reduce to blame (i.e., s q −→∗h ⇑l). There are two ways for this to
happen: either s −→∗h ⇑l , or s −→∗h w ′ and q −→∗h ⇑l . In both cases, s normalizes.
�

31

Unlike the rest of the chapter, I take a top-down approach to the rest of type
soundness, to help motivate the steps. So: we are interested in relating the syntactic
type system and the type semantics by semantic type soundness: if ∅ ` s : S , then
s ∈ [[S]]. However, to prove this result, we must generalize it. In the bottom of
Figure 2.10, I define three semantic judgements that correspond to each of the three
typing judgments. (Note that the third one requires the definition of a kind seman-
tics that picks out well-behaved types—those whose embedded terms belong to the
type semantics.) We can then show that the typing judgments imply their semantic
counterparts.

2.3.12 Theorem [Semantic type soundness]:

1. If ∆ ` S1 <: S2 then ∆ |= S1 <: S2.

2. If ∆ ` s : S then ∆ |= s : S .

3. If ∆ ` S then ∆ |= S .

Proof: Proof of (1) is in Lemma 2.3.14. Proof of (2) and (3) is in Lemma 2.3.21.
�

The first part follows by induction on the subtyping judgment.

2.3.13 Lemma [Trivial refinements of constants]: If k ∈ KB , then k ∈ [[{x :B |
true}]].

2.3.14 Lemma [Semantic subtype soundness]: If ∆ ` S1 <: S2 then ∆ |= S1 <:
S2.

Proof: By induction on the subtyping derivation.

SSub Refine: We know ∆ ` {x :B | s1} <: {x :B | s2}, and must show the corre-
sponding semantic subtyping. Inversion of this derivation gives us ∆, x :{x :B | true} `
s1 ⊃ s2, which means:

∀σ. ((∆, x :{x :B | true} |= σ ∧ σ(s1) −→∗h true) implies σ(s2) −→∗h true) (∗)

We must show ∆ |= {x :B | s1} <: {x :B | s2}, i.e., that ∀σ. ∆ |= σ implies [[{x :B |
s1}]] ⊆ [[{x :B | s2}]]. Let σ be given such that ∆ |= σ. Suppose s ∈ [[σ({x :B | s1})]].
By definition, either s goes to ⇑l , or it goes to k ∈ KB such that s1{x := k} −→∗h true.
In the former case, ⇑l ∈ [[{x :B | s2}]] by definition. So consider the latter case, where
s −→∗h k .

We already know that k ∈ KB , so it remains to see that: σ(s2){x := k} −→∗h true.
We know by assumption that σ(s1){x := k} −→∗h true. By Lemma 2.3.13, k ∈ [[{x :B |
true}]].

Now observe that ∆, x :{x :B | true} |= σ{x := k}. Since σ′(s1) −→∗h true, we can
conclude that σ′(s2) −→∗h true by our assumption (*). This completes this case.

32

SSub Fun: ∆ ` (x :S11 → S12) <: (x :S21 → S22); by the IH, we have ∆ |= S21 <: S11

and ∆, x :S21 |= S12 <: S22. We must show that ∆ |= (x :S11 → S12) <: (x :S21 → S22).
Let ∆ |= σ and s ∈ [[σ(x :S11 → S12)]], for some σ. We must show, for all q , that

if q ∈ [[σ(S21)]] then s q ∈ [[σ(S22){x := q}]].
Let q ∈ [[σ(S21)]]. Then q ∈ [[σ(S11)]]. Since s ∈ [[σ(x :S11 → S12)]], we know that

s q ∈ [[σ(S12){x := q}]]. Finally, since ∆, x :S21 |= S12 <: S22 and ∆, x :S21 |= σ{x :=
q}, we can conclude that s q ∈ [[σ(S22){x := q}]], and so s ∈ [[σ(x :S21 → S22)]]. �

The proof semantic subtype soundess goes through easily, the first of the three parts of
semantic soundness (Theorem 2.3.12). We run into some complications with semantic
type and kind soundness, the second and third parts (which must be proven together).
The crux of the difficulty lies with the S App rule. Suppose the application s1 s2 was
well typed and s1 ∈ [[x :S1 → S2]] and s2 ∈ [[S1]]. According to S App, the application’s
type is S2{x := s2}. By the type semantics defined in Figure 2.10, if s1 ∈ [[x :S1 → S2]],
then s1 q ∈ [[S2{x := q}]] for any q ∈ [[S1]]. Sadly, s2 is not necessarily a result! We do
know, however, that s2 ∈ [[S1]], so s2 −→∗h q2 by strong normalization (Lemma 2.3.11).
We need to ask, then, how the type semantics of S2{x := s2} and S2{x := q2} relate.
(One might think that we can solve this by changing the type semantics to quantify
over terms, not results. But this just pushes the problem to the S Lam case.)

We can show that the two type semantics are in fact equal using a parallel re-
duction technique. I define a parallel reduction relation V on terms and types in
Figure 2.11 that allows redexes in different parts of a term (or type) to be reduced
in the same step, and then I prove that types that parallel-reduce to each other—like
S2{x := s2} and S2{x := q2}—have the same semantics. The definition of parallel
reduction is standard, though we need to be careful to make it respect call-by-value
reduction order: the β-redex (λx :S1. s1) s2 should not be contracted unless s2 is a
value, since doing so can change the order of effects. (Other redices within s1 and s2
can safely reduce.)6 The proof requires a longish sequence of technical lemmas that
essentially show that V commutes with −→∗h. Since the proofs require fussy sym-
bol manipulation, we have done these proofs in Coq. My development is available
at http://www.cis.upenn.edu/~mgree/papers/lambdah_parred.tgz. We restate
the critical results here.

Lemma [Substitution of parallel-reducing terms, Lemma A3 in thy.v]:
If w V w ′, then

1. if s V s ′ then s{x := w}V s ′{x := w ′}, and

2. if S V S ′ then S{x := w}V S ′{x := w ′}.

Lemma [Parallel reduction implies coevaulation, Lemma A20 in thy.v]:
If s1 V s2 then s1 −→∗h k iff s2 −→∗h k . Similarly, s1 −→∗h ⇑l iff s2 −→∗h ⇑l .

6I conjecture that the reflexive transitive closure of a similar “CBV-respecting” variant of full
β-reduction could be used in place of parallel reduction. It is not clear whether it would lead to
shorter proofs.

33

http://www.cis.upenn.edu/~mgree/papers/lambdah_parred.tgz

An alternative strategy would be to use V in the typing rules and −→h in the
operational semantics. This would simplify some of the metatheory, but it would
complicate the specification of the language. Using −→h in the typing rules gives a
clearer intuition and keeps the core system small.

2.3.17 Lemma [Single parallel reduction preserves type semantics]:
If S1 V S2 then [[S1]] = [[S2]].

Proof: By induction on |S1| (which is equal to |S2|), with a case analysis on the
final rule used to show S1 V S2. �

2.3.18 Corollary [Parallel reduction preserves type semantics]: If S1 V∗ S2

then [[S1]] = [[S2]].

2.3.19 Lemma [Partial semantic substitution]: If ∆1, x :S ′,∆2 |= s : S , and
∆1, x :S ′,∆2 |= S , and ∆1 |= s ′ : S ′ then ∆1,∆2{x := s ′} |= s{x := s ′} : S{x := s ′}
and ∆1,∆2{x := s ′} |= S{x := s ′}.

Proof: By the definition of ∆ |= σ. �

The semantic typing case for casts requires a separate induction.

2.3.20 Lemma [Semantic typing for casts]: If ∆ |= S1 and ∆ |= S2 and bS1c =
bS2c, then ∆ |= 〈S1 ⇒ S2〉l : x :S1 → S2 for fresh x .

Proof: By induction on |S1| = |S2|, going by cases on the shape of S2. Let ∆ |= σ;
we show that σ(〈S1 ⇒ S2〉l) ∈ [[σ(S1 → S2)]].

S2 = {x :B | σ(s2)}: Let q ∈ [[σ(S1)]]. If q = ⇑l ′, then the applied cast goes to ⇑l ′,
and we are done by Lemma 2.3.9. So q = k ∈ KB . By F CCheck 〈S1 ⇒ {x :B |
σ(s2)}〉l k −→h 〈{x :B | σ(s2)}, σ(s2){x := k}, k〉l . By the well-kinding of S2, we know
that σ(s2){x := k} ∈ [[{x :Bool | true}]], so by strong normalization (Lemma 2.3.11),
the predicate in the active check goes to blame or to a value. If it goes to blame, we
are done. If it goes to a value, that value must be true or false. If it goes to false,
then the whole term goes to blame and we are done. If it goes to true, then the check
will step to k . But σ(s2){x := k} −→∗h true, so k ∈ [[σ({x :B | s2})]] by definition.
Expansion (Lemma 2.3.8) completes the proof.

S2 = x :S21 → S22: We must have S1 = x :S11 → S12. Let q ∈ [[σ(S1)]]; if it is blame we
are done by Lemma 2.3.9, so let it be a value w . Let q ′ ∈ [[σ(S21)]]; if it is blame we
are done, so let it be a value w ′. By F CDecomp:

〈σ(S12){x := 〈S21 ⇒ S11〉l w ′} ⇒ σ(S22){x := w ′}〉l (w (〈σ(S21)⇒ σ(S11)〉l w ′))

By the IH, 〈σ(S21) ⇒ σ(S11)〉l is semantically well-typed, so we have 〈σ(S21) ⇒
σ(S11)〉l w ′ ∈ [[σ(S11)]]. By strong normalization (Lemma 2.3.11), this term reduces
(and therefore parallel reduces, by Lemma A4) to some q ′′.

34

s1 V s2

s V s
FP Refl

w V w ′

k w V [[k]](w ′)
FP RConst

s12 V s ′12 w2 V w ′2
(λx :S . s12) w2 V s ′12{x := w ′2}

FP RBeta

s2 V s ′2
〈{x :B | s1} ⇒ {x :B | s2}〉l k V 〈{x :B | s ′2}, s ′2{x := k}, k〉l

FP RCCheck

〈{x :B | s}, true, k〉l V k
FP ROK

〈{x :B | s}, false, k〉l V ⇑l
FP RFail

S11 V S ′11 S12 V S ′12 S21 V S ′21 S22 V S ′22 w1 V w ′1 w2 V w ′2
(〈x :S11 → S12 ⇒ x :S21 → S22〉l w1) w2 V
〈S ′12{x := 〈S ′21 ⇒ S ′11〉l w ′2} ⇒ S ′22{x := w ′2}〉l (w ′1 (〈S ′21 ⇒ S ′11〉l w ′2))

FP RCDecomp

S1 V S ′1 s12 V s ′12
λx :S1. s12 V λx :S ′1. s

′
12

FP Lam

s1 V s ′1 s2 V s ′2
s1 s2 V s ′1 s ′2

FP App

S1 V S ′1 S2 V S ′2
〈S1 ⇒ S2〉l V 〈S ′1 ⇒ S ′2〉l

FP Cast

S V S ′ s V s ′

〈S , s, k〉l V 〈S ′, s ′, k〉l
FP Check F [⇑l]V ⇑l

FP Blame

S1 V S2

S V S
FP SRefl s V s ′

{x :B | s}V {x :B | s ′}
FP SRefine

S1 V S ′1 S2 V S ′2
x :S1 → S2 V x :S ′1 → S ′2

FP SFun

Figure 2.11: Parallel reduction for dependent λH

35

We know that w q ′′ ∈ [[σ(S12){x := q ′′}]] by assumption. Using parallel re-
duction (Corollary 2.3.18), we have [[σ(S12){x := q ′′}]] = [[σ(S12){x := 〈σ(S21) ⇒
σ(S11)〉l w ′}]].

Before applying the IH, we note that ∆ |= S12{x := 〈S21 ⇒ S11〉l w ′} and ∆ |=
S22{x := w ′} by Lemma 2.3.19. Then, by the IH we see that 〈σ(S12){x := 〈S21 ⇒
S11〉l w ′} ⇒ σ(S22){x := w ′}〉l is semantically well-kinded, so

〈σ(S12){x := 〈S21 ⇒ S11〉l w ′} ⇒ σ(S22){x := w ′}〉l (w w ′′) ∈ [[σ(S22){x := w ′}]]

�

2.3.21 Lemma [Semantic type soundness]:

1. If ∆ ` s : S then ∆ |= s : S .

2. If ∆ ` S then ∆ |= S .

Proof: By induction on the typing and well-formedness derivations, using Corol-
lary 2.3.18 in the S App case and Lemma 2.3.14 in the S Sub case. �

Theorem 2.3.12 gives us type soundness, and it combines with Lemma 2.3.11 for
an even stronger result: well-typed programs always evaluate to values of appropriate
(semantic) type.

While one can prove progress and preservation theorems, I omit them: we already
have type soundness. Later proofs will require standard weakening and substitution
lemmas, though, so we can prove them now.

2.3.22 Lemma [Weakening]: If ∆ ` s : S and ∆ ` S , and dom(∆)∩ dom(∆′) = ∅
with ` ∆,∆′, then ∆,∆′ ` s : S and ∆,∆′ ` S .

Proof: By straightforward induction on s and |S |; we reuse the (critical) context
well-formedness derivation in the S Checking case. �

The substitution lemma has one complication: the operational judgment S Imp
requires the semantic type soundness theorem to show that a syntactically well-typed
term can be used in a closing substitution. It is otherwise straightforward.

2.3.23 Lemma [Substitution (implication)]: If ∆1, x :S ,∆2 ` s1 ⊃ s2 and ∆1 `
s : S , then ∆1,∆2{x := s} ` s1{x := s} ⊃ s2{x := s}.

Proof: Direct, unfolding the closing substitutions. �

2.3.24 Lemma [Substitution (subtyping)]: If ∆1, x :S ,∆2 ` S1 <: S2 and ∆1 `
s : S , then ∆1,∆2{x := s} ` S1{x := s} <: S2{x := s}.

Proof: By induction on the subtyping derivation. �

36

2.3.25 Lemma [Substitution (typing and well-formedness)]: If ∆1 ` s : S
then

1. if ∆1, x :S ,∆2 ` s1 : S1 then ∆1,∆2{x := s} ` s1{x := s} : S1{x := s},

2. if ∆1, x :S ,∆2 ` S1 then ∆1,∆2{x := s} ` S1{x := s}, and

3. if ` ∆1, x :S ,∆2 then ` ∆1,∆2{x := s}.

Proof: By mutual induction on the typing derivations. �

2.4 The translations

I divide treatment of the translations—φ from λH terms to λC terms and ψ from λC
terms to λH terms—in two parts. I define the translations below. The axis of blame
captures whether or not the translations exactly preserve semantics. The translations
are exact when moving left on the axis of blame, but they are inexact—sometimes
yielding more blame—moving right on the axis of blame.

Exact translations

lax λC λH picky λC

ψ

φ ψ

φ

Inexact translations, more blame in target language

I treat the exact translations in Section 2.5; the inexact translations are covered
in Section 2.6.

Each translation proof follows the same basic schema. First, I define a logical
relation between the two languages. Then we use the logical relation to prove a
lemma relating the translation, contracts, and casts. Finally, we prove that the
translation preserves evaluation behavior—that is, terms are logically related to their
translations—and typing. All of the proofs make extensive use of expansion and
contraction of evaluation and “cotermination” arguments. Every proof uses its own
contract/cast logical relation. The proofs for the inexact translations of Section 2.6
demand custom term logical relations, too. I used σ to range over closing substitutions
in λH; I use δ to range over dual closing substitutions in the logical relations.

37

Contexts φ : (` Γ)→ ∆

φ(` ∅) = ∅
φ(` Γ, x :T) = φ(` Γ), x :dTe

φ(` Γ, x :cl,l
′
) = φ(` Γ), x :φ(Γ `l,l′ c : bcc)

Terms φ : (Γ ` t : T)→ s

φ(Γ1, x :T ,Γ2 ` x : T) = x

φ(Γ1, x :cl,l
′
,Γ2 ` x : bcc) = 〈φ(Γ1 `l,l

′
c : bcc)⇒ dce〉l′ x

φ(Γ ` k : T) = k
φ(Γ ` λx :T1. t2 : T1 → T2) = λx :dT1e. φ(Γ, x :T1 ` t2 : T2)

φ(Γ ` t1 t2 : T2) = φ(Γ ` t1 : T1 → T2) φ(Γ ` t2 : T1)
φ(Γ ` ⇑l : T) = ⇑l

φ(∅ ` 〈c, t , k〉l : B) = 〈φ(∅ `l,l′ c : B), φ(∅ ` t : Bool), k〉l
φ(Γ ` 〈c〉l,l′ : T) = λx :dce. 〈φ(Γ `l′,l c : T)⇒ dce〉l′

(〈dce ⇒ φ(Γ `l,l′ c : T)〉l x)
where x is fresh

Types φ : (Γ `l,l′ c : T)→ S

φ(Γ `l,l′ {x :B | t} : B) = {x :B | φ(Γ, x :B ` t : Bool)}
φ(Γ `l,l′ x :c1 7→ c2 : T1 → T2) = x :φ(Γ `l′,l c1 : T1)→ φ(Γ, x :c1

l′,l `l,l′ c2 : T2)

Figure 2.12: The translation φ from dependent λC to dependent λH

2.4.1 Translating λC to λH: φ

We define the full φ for the dependent calculi in Figure 2.12. In the dependent case,
we need to translate derivations of well-formedness and well-typing of λC contexts,
terms, and contracts into λH contexts, terms, and types. I translate derivations to
ensure type preservation, translating T VarT and T VarC derivations differently:
I leave variables of simple type alone, but I cast variables bound to contracts.

To see why we need this distinction, consider the function contract f :(x :{x :Int |
pos x} 7→ {y :Int | true}) 7→ {z :Int | f 0 = 0}. Note that this contract is well-formed
in λC, but that the codomain “abuses” the bound variable. A naive translation
will not be well-typed in λH. The term f 0 will not be typeable when f has type
x :{x :Int | pos x} → dInte, since f only accepts positive arguments. The problem is
that WF Fun can add a (possibly refined) type to the context when checking the
codomain, so we need to restore the “variables have raw types” invariant—something
we can’t always rely on subtyping to do, since types are not in general subtypes of
their raw type. By tracking which variables were bound by contracts in λC, we can
be sure to cast them to raw types when they’re referenced. We therefore translate the
contract above to f :S → {z :Int | (〈S ⇒ dInt→ Inte〉l ′ f) 0 = 0}, where S = x :{x :Int |
pos x} → dInte. This (partially) motivates the x :c l ,l ′ binding form in dependent λC.

38

Bulletproofing uses raw types, defined here for the dependent system.

d{x :B | s}e = {x :B | true} dx :S1 → S2e = dS1e → dS2e
dBe = {x :B | true} dT1 → T2e = dT1e → dT2e

d{x :B | t}e = {x :B | true} dx :c1 7→ c2e = dc1e → dc2e

Note that dependency is eliminated.
We could write the translation on terms instead of derivations, defining

φ(x :c1 7→ c2) = x :φ(c1)→ φ(c2){x := 〈φ(c1)⇒ dc1e〉l x}

but the proofs are easier if we translate derivations.
Constants translate to themselves. One technical point: to maintain the raw type

invariant, we need λH’s higher-order constants to have typings that can be seen as
raw by the subtyping relation, i.e., ∆ ` tyh(k) <: dtyc(k)e. This can be proven at
base types (since we have already assumed that tyh(k) is the “most specific type”
for each k), but must be assumed for first-order constant functions. This slightly
restricts the types we might assign to constants, e.g., we cannot say tyh(sqrt) =
x :{x :Float | x >= 0} → {y :Float | (y ∗ y) = x}, since it is not the case that
∆ ` tyh(sqrt) <: dFloat → Floate. Since its domain cannot be refined, [[sqrt]] must
be defined for all k ∈ KFloat, e.g., [[sqrt]](−1) must be defined. We have already
required that denotations be total over their simple types in λC, and λH uses the
same denotation function [[−]], so this requirement does not seem too severe. In any
case, we can define it to be equal to ⇑l0, for some l0. We could instead translate k
to 〈tyh(k) ⇒ dtyh(k)e〉l0 k ; however, in this case the nondependent fragments of the
languages would no longer correspond exactly.

When translating a term with φ, the image behaves the same as the pre-image
when we interpret the pre-image using picky λC semantics (proved in Section 2.5.1).
When the pre-image is interpreted in the lax λC semantics, however, we find that the
image can raise blame when the pre-image returns a value (proved in Section 2.6.1).

2.4.2 Translating λH to λC: ψ

In this section, I formally define ψ for the dependent versions of lax λC and λH. I
prove that ψ is type preserving and induces behavioral correspondence.

The full definition of ψ is in Figure 2.13. Most terms are translated homomorphi-
cally. In abstractions, the annotation is translated by erasing the refined λH type to its
skeleton. As we mentioned in Section 2.2, the trickiest part is the translation of casts
between function types: when generating the codomain contract from a cast between
two function types, we perform the same asymmetric substitution as F CDecomp.
Since ψ inserts new casts, we need to pick a blame label: ψ(〈S1 ⇒ S2〉l) passes l as
an index to ψl(S1, S2).

I show that ψ preserves semantics exactly when its image is interpreted as lax λC
in Section 2.5.2; I show that the picky λC interpretation of a term’s ψ-image may
blame more often than the original term in Secton 2.6.2.

39

Term translation ψ : s → t

ψ(x) = x ψ(k) = k
ψ(λx :S . s) = λx :bSc. ψ(s) ψ(s1 s2) = ψ(s1) ψ(s2)

ψ(〈S1 ⇒ S2〉l) = 〈ψl(S1,S2)〉l,l ψ(⇑l) = ⇑l
ψ(〈{x :B | s1}, s2, k〉l) = 〈{x :B | ψ(s1)}, ψ(s2), k〉l

Cast translation ψ : S × S × l → T

ψl({x :B | s1}, {x :B | s2}) = {x :B | ψ(s2)}
ψl(x :S11 → S12, x :S21 → S22) = x :ψl(S21,S11) 7→ ψl(S12{x := 〈S21 ⇒ S11〉l x},S22)

Figure 2.13: ψ mapping dependent λH to dependent λC

Result correspondence r ≈ q : T

k ≈ k : B ⇐⇒ k ∈ KB

v ≈ w : T1 → T2 ⇐⇒ ∀t ∼ s : T1. v t ∼ w s : T2

⇑l ≈ ⇑l : T

Term correspondence t ∼ s : T

t ∼ s : T ⇐⇒ t −→c
∗ r ∧ s −→∗h q ∧ r ≈ q : T

Figure 2.14: A blame-exact result/term correspondence

2.5 Exact translations

Translations moving left on the axis of blame—from picky λC to λH, and from λH to
lax λC—are exact. That is, we can show a tight behavioral correspondence between
terms and their translations (see Figure 2.14). I read t ∼ s : T as “t corresponds
with s at type T ”.

The correspondence is a standard logical relation, defined in two intertwined parts:
a relation on results, r ≈ q : T and its closure with respect to evaluation, t ∼ s : T .
The term correspondence is defined directly: terms correspond when they reduce to
corresponding results. We write −→c in this single definition: in Section 2.5.1 I use
this definition taking −→c to be −→picky; in Section 2.5.2 I use this definition taking
−→c to be −→lax. The result correspondence is defined inductively over λC’s simple
types. Blame corresponds to itself at any type. At B , constants in KB correspond to
themselves; results at T1 → T2 correspond when they applying them to corresponding
terms yields corresponding terms. Stratifying the definition this way simplifies some
of the proofs later. We call this correspondence exact because terms corresponding

40

Contract/type correspondence c ∼l,l′ S : T

{x :B | t} ∼l,l′ {x :B | s} : B ⇐⇒ ∀k ∈ KB . t{x := k} ∼ s{x := k} : Bool

x :c1 7→ c2 ∼l,l′ x :S1 → S2 : T1 → T2 ⇐⇒ c1 ∼l′,l S1 : T1 ∧
∀t ∼ s : T1.c2{x := 〈c1〉l

′,l t} ∼l,l′ S2{x := 〈dS1e ⇒ S1〉l
′
s} : T2

Dual closing substitutions

Γ |= δ ⇐⇒

∀x :T ∈ Γ. δ1(x) ∼ δ2(x) : T

∀x :cl,l
′ ∈ Γ. δ1(x) = 〈δ1(c)〉l,l′ t ∧ δ2(x) = 〈dce ⇒ δ2(S)〉l s
where S = φ(Γ `l,l′ c : bcc) ∧ t ∼ s : bcc

Lifted to open terms

Γ ` t ∼ s : T ⇐⇒ ∀δ. (Γ |= δ implies δ1(t) ∼ δ2(s) : T)

Γ ` c ∼l,l′ S : T ⇐⇒ ∀δ. (Γ |= δ implies δ1(c) ∼l,l′ δ2(S) : T)

Figure 2.15: Blame-exact correspondence for φ from picky λC

at base type yield identical results.
Note that I define the correspondence here on closed (or harmlessly open) terms.

In the following two sections, I define translation specific extensions of the correspon-
dence to open terms and contracts.

2.5.1 Translating picky λC to λH

We extend the term correspondence of Figure 2.14 to contracts and types, lifting
the correspondences to open terms using dual closing substitutions. Recall that we
interpret the term correspondence as using −→picky. For a binding x :c l ,l ′ ∈ Γ, we use φ
to insert the negative cast (labelled with l ′) and closing substitutions (in Figure 2.15)
to insert the positive cast (labelled with l). Do not be confused by the label used
for function contract correspondence—this definition does, in fact, match up with
closing substitutions. A binding x :c l ,l ′ ∈ Γ must have come from the domain of an
application of T FunC, so the labels on the binding are already swapped when φ
or Γ |= δ sees them. In the definition of function contract correspondence, we swap
manually—whence the l ′ on the inserted cast. It helps to think of polarity in terms
of position rather than the presence or absence of a prime.

2.5.1 Lemma [Expansion and contraction]: If t −→picky
∗ t ′, and s −→∗h s ′ then

t ∼ s : T iff t ′ ∼ s ′ : T .

2.5.2 Lemma [Constants self-correspond]: For all k , k ∼ k : tyc(k).

2.5.3 Lemma [Equivalence is closed under parallel reduction]: If s V s ′,
then t ∼ s : T iff t ∼ s ′ : T . Similarly, if S V S ′ then c ∼l ,l ′ S : T iff c ∼l ,l ′ S ′ : T .

41

Proof: In both cases, by induction on T , using the first to prove the second. �

2.5.4 Lemma [Trivial casts]: If t ∼ s : B and bSc = B , then t ∼ 〈S ⇒ dBe〉l s :
B .

2.5.5 Lemma [Related base casts]: If {x :B | t} ∼l0,l1 {x :B | s} : B and t ′ ∼ s ′ :
B and bSc = B , then 〈{x :B | t}〉l ,l ′ t ′ ∼ 〈S ⇒ {x :B | s}〉l s ′ : B .

Proof: Direct. Note that l0 and l1 are entirely irrelevant. �

2.5.6 Lemma [Bulletproofing]: If t ∼ s : T and c ∼l ,l ′ S : T then 〈c〉l ,l ′ t ∼
〈S ⇒ dSe〉l ′ 〈dSe ⇒ S 〉l s : T .

Proof: By induction on T . First, observe that either both t and s go to ⇑l ′′ or
both t and s go to values related at T . In the former case, the outer terms also go to
blame. So we only consider the case where t −→picky

∗ v , s −→∗h w , and v ≈ w : T .

T = B : So c = {x :B | t1} and S = {x :B | s1} and S ′ = {x :B | s2}. By
Lemma 2.5.5 we have 〈c〉l ,l ′ t ∼ 〈dSe ⇒ S 〉l s : B . By Lemma 2.5.4 we can add the
extra, trival cast 〈S ⇒ dSe〉l ′ .

T = T1 → T2: We know that c = x :c1 7→ c2 and S = x :S1 → S2. Let t ′ ∼
s ′ : T1. We only need to consider the case where t ′ −→picky

∗ v ′ and s ′ −→∗h w ′—if
t ′ −→picky

∗ ⇑l ′′ and s ′ −→∗h ⇑l ′′ the outer terms correspond because both blame l ′′.

On the λC side, (〈c〉l ,l ′ t) t ′ −→picky
∗ 〈c2{x := 〈c1〉l

′,l v ′}〉l ,l ′ (v (〈c1〉l
′,l v ′)). In

λH, we can see

(〈S ⇒ dSe〉l ′ 〈dSe ⇒ S 〉l s) s ′ −→∗h
〈S2{x := 〈dS1e ⇒ S1〉l

′
w ′} ⇒ dS2e〉l

′
((〈dSe ⇒ S 〉l w) (〈dS1e ⇒ S1〉l

′
w ′))

We cannot determine where the redex is until we know the shape of T1—does the
negative argument cast step to an active check, or do we decompose the positive cast?

– T1 = B . Since v ′ ≈ w ′ : B , we must have v ′ = w ′ = k ∈ KB . By Lemma 2.5.5
and c1 ∼l ′,l S1 : B , we know that 〈c1〉l

′,l v ′ ∼ 〈dS1e ⇒ S1〉l
′

w ′ : B . Both terms goes
to blame or to the same value—which must be k , from inspection of the contract and
cast evaluation rules.. The former case is immediate, since the outer terms then go to
blame. So suppose 〈c1〉l

′,l k −→picky
∗ k and 〈dS1e ⇒ S1〉l

′
k −→∗h k . Now the terms

evaluate like so:

〈c2{x := 〈c1〉l
′,l v ′}〉l ,l ′ (v (〈c1〉l

′,l v ′))−→picky
∗

〈c2{x := 〈c1〉l
′,l k}〉l ,l ′ (v k)

〈S2{x := 〈dS1e ⇒ S1〉l
′

k} ⇒ dS2e〉l
′

((〈dSe ⇒ S 〉l w) (〈dS1e ⇒ S1〉l
′

k)) −→∗h
〈S2{x := 〈dS1e ⇒ S1〉l

′
k} ⇒ dS2e〉l

′

〈dS2e ⇒ S2{x := k}〉l (w (〈S1 ⇒ dS1e〉l k))

42

By Lemma 2.5.4, k ∼ 〈S1 ⇒ dS1e〉l k : B , so v k ∼ w (〈S1 ⇒ dS1e〉l k) : T2.

We have by definition (and k ∼ k : B) that c2{x := 〈c1〉l
′,l k} ∼l ,l ′ S2{x :=

〈dS1e ⇒ S1〉l
′

k} : T2. Recall that 〈dS1e ⇒ S1〉l
′

k −→∗h k . This implies 〈dS1e ⇒
S1〉l

′
k V∗ k (Lemma A4 in the Coq). We can then see that S2{x := 〈dS1e ⇒

S1〉l
′

k}V∗ S2{x := k} by Lemma A1 in the Coq. By extension with the congruence
rules:

〈S2{x := 〈dS1e ⇒ S1〉l
′

k} ⇒ dS2e〉l
′

〈dS2e ⇒ S2{x := 〈dS1e ⇒ S1〉l
′

k}〉l (w (〈S1 ⇒ dS1e〉l k))V
〈S2{x := 〈dS1e ⇒ S1〉l

′
k} ⇒ dS2e〉l

′

〈dS2e ⇒ S2{x := k}〉l (w (〈S1 ⇒ dS1e〉l k))

By the IH 〈c2{x := 〈c1〉l
′,l k}〉l ,l ′ (v k) corresponds to the former, which means

it is related to the latter by Lemma 2.5.3. We conclude the case with expansion
(Lemma 2.5.1).

– T1 = T11 → T12. We continue with an application of F CDecomp in λH:

〈S2{x := 〈dS1e ⇒ S1〉l
′

w ′} ⇒ dS2e〉l
′

((〈dSe ⇒ S 〉l w) (〈dS1e ⇒ S1〉l
′

w ′)) −→∗h
〈S2{x := 〈dS1e ⇒ S1〉l

′
w ′} ⇒ dS2e〉l

′

〈dS2e ⇒ S2{x := 〈dS1e ⇒ S1〉l
′

w ′}〉l
(w (〈S1 ⇒ dS1e〉l (〈dS1e ⇒ S1〉l

′
w ′)))

By the IH on c1 ∼l ′,l S1 : T1 and v ′ ∼ w ′ : T1, we can find what we need for the
domain: 〈c1〉l

′,l v ′ ∼ 〈S1 ⇒ dS1e〉l (〈dS1e ⇒ S1〉l
′

w ′) : T1. By assumption, the results
of applying v and w to these values correspond. (And they are values, since function
contracts/casts applied to values are values.)

We have c2{x := 〈c1〉l
′,l v ′} ∼l ,l ′ S2{x := 〈dS1e ⇒ S1〉l

′
w ′} : T2 by assumption,

so the IH tells us that the codomain contract and bulletproofing correspond. We
conclude by expansion (Lemma 2.5.1). �

Having characterized how contracts and pairs of related casts relate, we show that
terms correspond to their translation.

2.5.7 Theorem [Behavioral correspondence]: If ` Γ, then:

1. If φ(Γ ` t : T) = s then Γ ` t ∼ s : T .

2. If φ(Γ `l ,l ′ c : T) = S then Γ ` c ∼l ,l ′ S : T .

Proof: We simultaneously show both properties by induction on the depth of φ’s
recursion. �

We can now prove that φ preserves types, using Theorem 2.5.7 to show that φ pre-
serves the implication judgment. As a preliminary, I use the behavioral correspon-
dence to show that φ preserves the implication judgment.

43

2.5.8 Lemma: If t1 −→picky
∗ true implies t2 −→picky

∗ true then ∅ ` φ(∅ ` t1 :
Bool) ⊃ φ(∅ ` t1 : Bool).

Proof: By the logical relation. �

The type preservation proof is very similar to the correspondence proof of Theo-
rem 2.5.7.

2.5.9 Theorem [Type preservation for φ]: If φ(` Γ) = ∆, then:

1. ` ∆.

2. If φ(Γ ` t : T) = s then ∆ ` s : dT e.

3. If φ(Γ `l ,l ′ c : T) = S then ∆ ` S .

Proof: We prove all three properties simultaneously, by induction on the depth of
φ’s recursion.

The proof is by cases on the λC context well-formedness/term typing/contract
well-formedness derivations, which determine the branch of φ taken. �

2.5.2 Translating λH to lax λC

We reuse the term correspondence t ∼ s : T (Figure 2.14), interpreting it as using
−→lax. and define a new contract/cast correspondence c ∼ S1 ⇒l S2 : T (Fig-
ure 2.16), relating contracts and pairs of λH types—effectively, casts. This correspon-
dence uses the term correspondence in the base type case and follows the pattern of
F CDecomp in the function case. Since it inserts a cast in the function case, I index
the relation with a label, just like ψ. Note that the correspondence is blame-exact,
relating λC and λH terms that either blame the same label or go to corresponding
values.I define closing substitutions ignoring the contracts in the context; we lift the
relation to open terms in the standard way.

We begin with some standard properties of the term correspondence relation.

2.5.10 Lemma [Expansion and contraction]: If t −→lax
∗ t ′, and s −→∗h s ′ then

t ∼ s : T iff t ′ ∼ s ′ : T .

2.5.11 Lemma [Blame corresponds to blame]: For all T , ⇑l ∼ ⇑l : T .

2.5.12 Lemma [Constants self-correspond]: For all k , k ≈ k : tyc(k).

As a corollary of Lemma 2.5.11 and Lemma 2.5.10, if two terms evaluate to blame,
then they correspond. This will be used extensively in the proofs below, as it allows
us to eliminate many cases.

44

Contract/type correspondence

c ∼ S1 ⇒l S2 : T

{x :B | t} ∼ {x :B | s1} ⇒l {x :B | s2} : B ⇐⇒
∀k ∈ KB . t{x := k} ∼ s2{x := k} : Bool

x :c1 7→ c2 ∼ x :S11 → S12 ⇒l S21 → S22 : T1 → T2 ⇐⇒ c1 ∼ S21 ⇒l S11 : T1 ∧
∀t ∼ s : T1.c2{x := t} ∼ S12{x := 〈S21 ⇒ S11〉l s} ⇒l S22{x := s} : T2

Dual closing substitutions

Γ |= δ ⇐⇒
{
∀x :T ∈ Γ, δ1(x) ∼ δ2(x) : T

∀x :cl,l
′ ∈ Γ, δ1(x) ∼ δ2(x) : bcc

Lifted to open terms

Γ ` t ∼ s : T ⇐⇒ ∀δ. (Γ |= δ implies δ1(t) ∼ δ2(s) : T)

Γ ` c ∼ S1 ⇒l S2 : T ⇐⇒ ∀δ. (Γ |= δ implies δ1(c) ∼ δ2(S1)⇒l δ2(S2) : T)

Figure 2.16: Blame-exact correspondence for ψ into lax λC

2.5.13 Lemma [Corresponding terms coevaluate]: If t ∼ s : T then t −→lax
∗

v ∧ s −→∗h w or t −→lax
∗ ⇑l ∧ s −→∗h ⇑l ; moreover, t −→lax

∗ r and s −→∗h q such
that r ≈ q : T .

2.5.14 Lemma [Contract/cast correspondence]: If c ∼ S1 ⇒l S2 : T and t ∼
s : T then 〈c〉l ,l t ∼ 〈S1 ⇒ S2〉l s : T .

Proof: By induction on T . We reason via expansion (Lemma 2.5.10), showing that
the initial terms reduce to corresponding terms.

T = B : So c = {x :B | t1}, S1 = {x :B | s1}, and S2 = {x :B | s2}. Since t ∼ s : B ,
we know that they either both reduce to k ∈ KB or ⇑l ′. If the latter is the case, we
are done. So suppose t −→lax

∗ k along with s −→∗h k .

We can step our terms into active checks as follows, then:

〈{x :B | t1}〉l ,l t −→lax
∗ 〈{x :B | t1}, t1{x := k}, k〉l

〈{x :B | s1} ⇒ {x :B | s2}〉l s −→∗h 〈{x :B | s2}, s2{x := k}, k〉l

By inversion of the contract/cast correspondence, we know that t1{x := k} ∼ s2{x :=
k} : Bool, so these terms go to blame or to a Bool together. If they go to ⇑l ′, we are
done. If they go to false, then both the obligation and the cast will go to ⇑l . Finally,
if they both go to true, then both terms will evaluate to k .

T = T1 → T2: c = x :c1 7→ c2, S1 = x :S11 → S12, and S2 = x :S21 → S22. We
know by inversion of the contract/cast relation that c1 ∼ S21 ⇒l S11 : T1 and that
for all t ∼ s : T1, c2{x := t} ∼ S12{x := 〈S21 ⇒ S11〉l s} ⇒l S22{x := s} : T2. We

45

want to prove that 〈c〉l ,l ∼ 〈S1 ⇒ S2〉l s : T1 → T2. First, we can assume t −→lax
∗ v

and s −→∗h w where v ∼ w : T1 → T2—if not, both cast and contracted terms go to
blame and we are done.

We show that the decomposition of the contract and cast terms correspond for all
inputs. Let t ′ ∼ s ′ : T1. Again, we can assume that they reduce to v ′ ∼ w ′ : T1, or
else we are done by blame lifting. On the λC side, we have

(〈c〉l ,l t) t ′ −→lax
∗ 〈c2{x := v ′}〉l ,l (v (〈c1〉l ,l v ′))

In λH, we find

(〈S1 ⇒ S2〉l s) s ′ −→∗h
〈S12{x := 〈S21 ⇒ S11〉l w} ⇒ S22{x := w ′}〉l (w (〈S21 ⇒ S11〉l w ′))

By the IH, we know that 〈c1〉l ,l v ′ ∼ 〈S21 ⇒ S11〉l w ′ : T1. Since v ∼ w : T1 → T2,
we have v (〈c1〉l ,l v ′) ∼ w (〈S21 ⇒ S11〉l w ′) : T2. Again by the IH, we can see
that 〈c2{x := v ′}〉l ,l (v (〈c1〉l ,l v ′)) ∼ 〈S12{x := 〈S21 ⇒ S11〉l w ′} ⇒ S22{x :=
w ′}〉l w (〈S21 ⇒ S11〉l w ′) : T2. �

We prove three more technical lemmas necessary for the behavioral and type
correspondence.

2.5.15 Lemma [Skeletal equality of subtypes]: If ∆ ` S1 <: S2, then bS1c =
bS2c.

2.5.16 Lemma: If bS1c = bS2c = T , then bψl(S1, S2)c = T .

2.5.17 Lemma: If ∆1 ` S1 and ∆1 ` S2, where bS1c = bS2c then

1. If ∆1, x :S1,∆2 ` s : S then ∆1, x :S2,∆2{x := 〈S2 ⇒ S1〉l x} ` s{x := 〈S2 ⇒
S1〉l x} : S{x := 〈S2 ⇒ S1〉l x}, and

2. If ∆1, x :S1,∆2 ` S then ∆1, x :S2,∆2{x := 〈S2 ⇒ S1〉l x} ` S{x := 〈S2 ⇒
S1〉l x}.

We use the correspondence relations to show that s and its translation ψ(s)
correspond—i.e., that ψ faithfully translates the λH semantics. We must choose the
subject of induction carefully, however, to ensure that we can apply the IH in the
case for function casts. An induction on the height of the well-formedness derivation
is tricky because of the “extra” substitution that ψ does. Instead, we do induction
on the depth of ψ’s recursion, (and also derivation height, for the S Sub case).

2.5.18 Theorem [Behavioral correspondence]:

1. If ∆ ` s : S then b∆c ` ψ(s) ∼ s : bSc.

46

2. If ∆ ` S1 and ∆ ` S2, where bS1c = bS2c = bSc, then b∆c ` ψl(S1, S2) ∼ S1 ⇒l

S2 : bSc (for all l).

Proof: By induction on the lexicographically ordered pairs (m,n), where m is the
depth of the recursion of the translation ψ(s) (for part 1) or ψl(S1, S2) (for part 2)
and n is either |∆ ` s : S | (for part 1) or |∆ ` S1| + |∆ ` S2| (for part 2). The first
component decreases in all uses of the IH except for the S Sub case, where only the
second component decreases. Part (1) of the proof proceeds by case analysis on the
final rule used in the typing derivation ∆ ` s : S . Which rule was used determines
the shape of ψ(s) in all cases but S Sub.

We give only the most interesting cases for the first part: S Cast, S Checking,
and S Sub.

S Cast: ∆ ` 〈S1 ⇒ S2〉l : S1 → S2 and ψ(〈S1 ⇒ S2〉l) = 〈ψl(S1, S2)〉l ,l . By inversion,
∆ ` S1 and ∆ ` S2, where bS1c = bS2c.

By the IH for proposition (2), b∆c ` ψl(S1, S2) ∼ S1 ⇒l S2 : bS2c.
Let b∆c |= δ; we must show δ1(〈ψl(S1, S2)〉l ,l) ∼ δ2(〈S1 ⇒ S2〉l) : bS1c → bS2c. Let

t ∼ s : bS1c. We have δ1(〈ψl(S1, S2)〉l ,l) t ∼ δ2(〈S1 ⇒ S2〉l) s : bS2c by Lemma 2.5.14.

S Checking: We have ∆ ` 〈{x :B | s1}, s2, k〉l : {x :B | s1}; translating yields
ψ(〈{x :B | s1}, s2, k〉l) = 〈{x :B | ψ(s1)}, ψ(s2), k〉l . Recall that the terms of the active
check are closed. By inversion we have ∅ ` s2 : {x :Bool | true} and ∅ ` k : {x :B | true},
so k ∈ KB .

By the IH, ψ(s2) ∼ s2 : Bool. These two terms coevaluate to blame or a boolean
constant. There are three cases, all of which result in the active checks evaluating to
≈-corresponding values:

• If they go to ⇑l ′, then the checks do too, and ⇑l ′ ≈ ⇑l ′ : B .

• If they go to false, then the checks go to ⇑l , and ⇑l ≈ ⇑l : B .

• If they go to true, then the checks go to k ∈ KB , and k ≈ k : B .

S Sub: ∆ ` s : S ; we do not know anything about the shape of ψ(s). By inversion,
∆ ` s : S ′ and ∆ ` S ′ <: S . By Lemma 2.5.15, bS ′c = bSc.

Since the sub-derivation ∆ ` s : S ′ is smaller, by the IH b∆c ` ψ(s) ∼ s : bS ′c.
But bS ′c = bSc, so we are done.

Part (2) of this proof proceeds by cases on ψl(S1, S2) = c.

ψl(S1, {x :B | s2}) = {x :B | ψ(s2)}: Note that S2 = {x :B | s2}. By inversion of ∆ `
{x :B | s2}, we have ∆, x :{x :B | true} ` s2 : {x :Bool | true}.

By the IH for proposition (1), b∆c, x :B ` ψ(s2) ∼ s2 : Bool.
We must show b∆c ` {x :B | ψ(s2)} ∼ S1 ⇒l {x :B | s2} : B . Let b∆c |= δ; we

prove that δ1({x :B | ψ(s2)}) ∼ δ2(S1)⇒l δ2({x :B | s2}) : B , i.e., for all k ∈ KB , that
δ1(ψ(s2)){x := k} ∼ δ2(s2){x := k} : Bool. Since k ∼ k : B , we can see this last by
the IH.

47

ψl(x :S11 → S12, x :S21 → S22) = x :ψl(S21, S11) 7→ ψl(S12{x := 〈S21 ⇒ S11〉l x}, S22):
We can see S2 = x :S21 → S22 and so S1 = x :S11 → S12, where bS21c = bS11c and

bS22c = bS12c. By inversion, we have the following well-formedness derivations:

∆ ` S21 ∆ ` S11

∆, x :S21 ` S22 ∆, x :S22 ` S12

We can apply the IH (contravariantly) to see

b∆c ` ψl(S21, S11) ∼ S21 ⇒l S11 : bS11c (*)

By weakening (Lemma 2.3.22), we can see ∆, x :S21 ` S21 and ∆, x :S21 ` S11.
We can reapply the IH to show b∆c, x :bS21c ` ψl(S21, S11) ∼ S21 ⇒l S11 : bS11c.
Now ∆, x :S21 ` 〈S21 ⇒ S11〉l : S21 → S11 and ∆, x :S21 ` 〈S21 ⇒ S11〉l x : S11. By
Lemma 2.5.17, we can substitute this last into ∆, x :S11 ` S12, finding ∆, x :S21 `
S12{x := 〈S21 ⇒ S11〉l x}.

We apply the IH for proposition (2) on ∆, x :S21 ` S12{x := 〈S21 ⇒ S11〉l x} and
∆, x :S21 ` S22, showing

b∆c, x :bS21c ` ψl(S12{x := 〈S21 ⇒ S11〉l x}, S22) ∼
S12{x := 〈S21 ⇒ S11〉l x} ⇒l S22 : bS22c (**)

We now combine (*) and (**) to show b∆c ` ψl(x :S11 → S12, x :S21 → S22) ∼
x :S11 → S12 ⇒l x :S21 → S22 : bS2c. Let b∆c |= δ. We can apply (*) to see
δ1(ψ

l(S21, S11)) ∼ δ2(S21)⇒l δ2(S11) : bS11c. For the codomain we must show, for all
t ∼ s : bS11c, that

δ1(ψ
l(S12{x := 〈S21 ⇒ S11〉l x}, S22)){x := t} ∼

δ2(S12){x := 〈S21 ⇒ S11〉l s} ⇒l δ2(S22){x := s} : bS22c

Let t ∼ s : bS11c. Recalling that bS11c = bS21c, observe b∆c, x :bS21c |= δ{x := t , s}.
Call this δ′. By (**) we see

δ′1(ψ
l(S12{x := 〈S21 ⇒ S11〉l x}, S22)) ∼

δ′2(S12{x := 〈S21 ⇒ S11〉l x})⇒l δ′2(S22) : bS22c

which we can rewrite to

δ1(ψ
l(S12{x := 〈S21 ⇒ S11〉l x}, S22)){x := t} ∼

δ2(S12){x := 〈S21 ⇒ S11〉l s} ⇒l δ2(S22){x := s} : bS22c

This is exactly what we needed to finish the proof of correspondence. �

As a preliminary to type-preservation, we can use behavioral correspondence to
show that the implication judgment is preserved.

48

2.5.19 Lemma: If ∅ ` s1 : {x :Bool | true} and ∅ ` s2 : {x :Bool | true} and ∅ ` s1 ⊃
s2, then ψ(s1) −→lax

∗ true implies ψ(s2) −→lax
∗ true.

Proof: By the logical relation. �

The type preservation proof is very similar to the correspondence proof of Theo-
rem 2.5.18, though the function case of the type/contract correspondence is intricate.

2.5.20 Theorem [Type preservation for ψ]:

1. If ∆ ` s : S then b∆c ` ψ(s) : bSc.

2. If ∆ ` S1, ∆ ` S2, where bS1c = bS2c = T , then b∆c `l ,l ′ ψl(S1, S2) : T .

Proof: By induction on the lexicographically ordered pair containing (a) the depth
of the recursion of the translation ψ or ψ(s), and (b) |∆ ` s : S | or |∆ ` S1|+|∆ ` S2|.

Part (1) of the proof proceeds by case analysis on the final rule of ∆ ` s : S ,
which determines the shape of ψ(s) = t in all cases but S Sub. Part (2) of the proof
proceeds by case analysis on ψl(S1, S2) = c.

ψl(x :S11 → S12, x :S21 → S22) = x :ψl(S21, S11) 7→ ψl(S12{x := 〈S21 ⇒ S11〉l x}, S22):
We must have S2 = x :S21 → S22 and S1 = x :S11 → S12, where bS21c = bS11c and

bS22c = bS12c. By inversion, we have the following well-formedness derivations:

∆ ` S21 ∆ ` S11

∆, x :S21 ` S22 ∆, x :S22 ` S12

By the IH b∆c `l ′,l ψl(S21, S11) : bS11c. Note that bψl(S21, S11)c = bS21c.
By weakening, we can see ∆, x :S21 ` S21 and ∆, x :S21 ` S11. We can reapply the

IH to show b∆c, x :bS21c `l
′,l ψl(S21, S11) : bS11c. Now ∆, x :S21 ` 〈S21 ⇒ S11〉l : S21 →

S11. Next ∆, x :S21 ` 〈S21 ⇒ S11〉l x : S11. By Lemma 2.5.17, we can substitute this
last into ∆, x :S11 ` S12, finding ∆, x :S21 ` S12{x := 〈S21 ⇒ S11〉l x}.

By the IH for proposition (2) on ∆, x :S21 ` S12{x := 〈S21 ⇒ S11〉l x} and
∆, x :S21 ` S22,

b∆c, x :bS21c `l ,l
′
ψl(S12{x := 〈S21 ⇒ S11〉l x}, S22) : bS22c

By Lemma 2.5.16, bψl(S21, S11)c = bS21c, so we can rewrite the above derivation to

b∆c, x :ψl(S21, S11)
l ′,l `l ,l ′ ψl(S12{x := 〈S21 ⇒ S11〉l x}, S22) : bS22c

Now by T FunC

b∆c `l ,l ′ x :ψl(S21, S11) 7→ ψl(S12{x := 〈S21 ⇒ S11〉l x}, S22) : bS21c → bS22c

�

49

2.6 Inexact translations

The same translations φ and ψ can be used to move right on the axis of blame
(Figure 2.1). However, in this direction the images of these translations blame strictly
more than their pre-images. We were able to use the same correspondence for both
exact proofs in Section 2.5, but the following two proofs use custom correspondences:
one where lax λC terms correspond to λH terms (with possibly more blame), and one
where λH terms correspond to picky λC terms (with possibly more blame). In both
cases, the λC terms will be on the left and the λH terms on the right.

2.6.1 Translating lax λC to λH

Translating with φ from terms in picky λC to exactly corresponding terms in λH
was a relatively straightforward generalization of the nondependent case; things get
more interesting when we consider the translation φ from lax λC to dependent λH.
We can prove that it preserves types (for terms without active checks), but we can
only show a weaker behavioral correspondence: sometimes lax λC terms terminate
with values when their φ-images go to blame. This weaker property is a consequence
of bulletproofing, the asymmetrically substituting F CDecomp rule, and the extra
casts inserted for type preservation (i.e., for T VarC derivations). This is not a
weakness of my proof technique—I give a counterexample, a lax λC term ∅ ` t : T
such that t −→lax

∗ v and φ(∅ ` t : T) −→∗h ⇑l .
We can show the behavioral correspondence using a blame-inexact logical relation,

defined in Figure 2.17. The behavioral correspondence here, though weaker than
before, is still pretty strong: if t ∼� s : B (read “t blames no more than s at type
B”), then either s −→∗h ⇑l or t and s both go to k ∈ KB . This correspondence differs
slightly in construction from the earlier exact one—we define ≈� as a relation on
values, while ≈ is a relation on results. Doing so simplifies the inexact treatment of
blame—in particular, Lemma 2.6.2. We again use the term correspondence to relate
contracts and λH types. We then lift the correspondences to open terms (Figure 2.17).
Closing substitutions map variables to corresponding terms of appropriate type. Note
that closing substitutions ignore the contract part of x :c l ,l ′ bindings, treating them
as if they were x :bcc.

2.6.1 Lemma [Expansion and contraction]: If t −→lax
∗ t ′, and s −→∗h s ′ then

t ∼� s : T iff t ′ ∼� s ′ : T .

Note that there are corresponding terms at every type. We can prove a much
stronger lemma than we did for ∼ in Lemma 2.5.11, since the correspondence here is
much weaker.

2.6.2 Lemma [Everything corresponds to blame]: For all t and T , t ∼� ⇑l ′ :
T .

50

Value correspondence v ≈� w : T

k ≈� k : B ⇐⇒ k ∈ KB

v ≈� w : T1 → T2 ⇐⇒ ∀t ∼� s : T1. v t ∼� w s : T2

Term correspondence t ∼� s : T

t ∼� s : T ⇐⇒ s −→∗h ⇑l ∨ (t −→lax
∗ v ∧ s −→∗h w ∧ v ≈� w : T)

Contract/type correspondence c ∼� S : T

{x :B | t} ∼� {x :B | s} : B ⇐⇒ ∀k ∈ KB . t{x := k} ∼� s{x := k} : Bool

x :c1 7→ c2 ∼� x :S1 → S2 : T1 → T2 ⇐⇒ c1 ∼� S1 : T1 ∧
∀t ∼� s : T1. c2{x := t} ∼� S2{x := s} : T2

Dual closing substitutions

Γ |=� δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼� δ2(x) : bΓ(x)c

Lifted to open terms

Γ ` t ∼� s : T ⇐⇒ ∀δ. (Γ |=� δ implies δ1(t) ∼� δ2(s) : T)
Γ ` c ∼� S : T ⇐⇒ ∀δ. (Γ |=� δ implies δ1(c) ∼� δ2(S) : T)

Figure 2.17: Blame-inexact correspondence for φ from lax λC

51

2.6.3 Lemma [Constants self-correspond]: For all k , k ≈� k : tyc(k).

Proof: By induction on tyc(k), recalling that constants are first order. �

As a corollary of Lemma 2.6.2 and Lemma 2.6.1, if two terms evaluate to blame—
or even just the λH side!—then they correspond. This will be used extensively in the
proofs below, as it allows us to eliminate many cases.

We prove three lemmas about contracts and casts at base types. The first two
characterize contracts and casts at base types.

2.6.4 Lemma [Trivial casts]: If t ∼� s : B , then t ∼� 〈S ⇒ dBe〉l s : B for all S .

2.6.5 Lemma [Related base casts]: If {x :B | t} ∼� {x :B | s} : B and t ′ ∼� s ′ :
B , then 〈{x :B | t}〉l ,l ′ t ′ ∼� 〈S ⇒ {x :B | s}〉l s ′ : B for all S .

The third lemma shows that correspondence is closed under adding extra casts to
the λH term, due to the inexactness of the behavioral correspondence. Since λH terms
can go to blame more often than corresponding lax λC terms, we can add “extra” casts
to λH terms. We formalize this in the following lemma, which captures the asymmetric
treatment of blame by the ∼� relation. We use it to show that the cast substituted
in the codomain by F CDecomp does not affect behavioral correspondence. Note
that the statement of the lemma requires that the types of the cast correspond to
some contracts at the same type T , but we never use the contracts in the proof—they
witness the well-formedness of the λH types.

2.6.6 Lemma [Extra casts]: If t ∼� s : T and c1 ∼� S1 : T and c2 ∼� S2 : T ,
then t ∼� 〈S1 ⇒ S2〉l s : T .

Proof: The proof is by induction on T . Note that we do not use c1 or c2 at all in
the proof, but instead they are witnesses to the well-formedness of S1 and S2.
bS1c = bS2c = T . Either s −→∗h ⇑l ′ or t and s both go to corresponding values

at T . If s −→∗h ⇑l ′, then 〈S1 ⇒ S2〉l s −→∗h ⇑l ′ and t ∼� ⇑l ′ : T since everything is
related to blame (Lemma 2.6.2).

Therefore, suppose that t −→lax
∗ v and s −→∗h w and v ≈� w : T in each of the

following cases of the induction.

T = B : So S2 = {x :B | s2}, and c2 = {x :B | t2}.
So t −→lax

∗ k and s −→∗h k for k ∈ KB . If t and s both go to k , then 〈S1 ⇒
S2〉l s −→∗h 〈{x :B | s2}, s2{x := k}, k〉l . By c2 ∼� S2 : B we see (in particular)
t2{x := k} ∼� s2{x := k} : Bool. So s2{x := k} either goes to ⇑l ′ or s2{x := k}
(and, irrelevantly, t2{x := k}) go to some k ′ ∈ KBool. In the former case, 〈{x :B |
s2}, s2{x := k}, k〉l −→∗h ⇑l ′ and we are done (by Lemma 2.6.2). In the latter case,
the λH term either goes to ⇑l (and everything is related to blame) or goes to k—but
so does t , and k ≈� k : B .

52

T = T1 → T2: We have:

S1 = x :S11 → S12 S2 = x :S21 → S22

c1 = x :c11 7→ c12 c2 = x :c21 7→ c22

We have t −→lax
∗ v and s −→∗h w , where v ≈� w : T1 → T2.

Let t ′ ∼� s ′ : T1; we wish to see that v t ′ ∼� (〈S1 ⇒ S2〉l w) s ′ : T2. Either
s ′ −→∗h ⇑l ′ or both go to values. In the former case the whole cast goes to ⇑l ′ we are
done by Lemma 2.6.2, so let t ′ −→lax

∗ v ′ and s ′ −→∗h w ′.

Decomposing the cast in λH,

(〈S1 ⇒ S2〉l w) s ′ −→∗h
〈S12{x := 〈S21 ⇒ S11〉l w ′} ⇒ S22{x := w ′}〉l (w (〈S21 ⇒ S11〉l w ′))

We have c21 ∼� S21 : T1 and c11 ∼� S11 : T1, so v ′ ∼� 〈S21 ⇒ S11〉l w ′ : T1 by the
IH. Since v ≈� w : T1 → T2, we can see that v v ′ ∼� w (〈S21 ⇒ S11〉l w ′) : T2.

Furthermore, we know that for all t ′′ ∼� s ′′ : T1 that

– c12{x := t ′′} ∼� S12{x := s ′′} : T2 and

– c22{x := t ′′} ∼� S22{x := s ′′} : T2.

We know that v ′ ∼� w ′ : T1 and v ′ ∼� 〈S21 ⇒ S11〉l w ′ : T1, so we can see

– c12{x := v ′} ∼� S12{x := w ′} : T2 and

– c22{x := v ′} ∼� S22{x := 〈S21 ⇒ S11〉l w ′} : T2.

So by the IH,

v v ′ ∼� 〈S12{x := 〈S21 ⇒ S11〉l w ′} ⇒ S22{x := w ′}〉l (w (〈S21 ⇒ S11〉l w ′)) : T2

and we are done by expansion (Lemma 2.6.1). �

To apply the extra cast lemma, we’ll need these “witness” contracts for raw types;
to that end we define trivial contracts. These contracts are lifted from types, and are
the λC correlate to λH’s raw types.

B↑ = {x :B | true}
(T1 → T2)↑ = (T1↑) 7→ (T2↑)

2.6.7 Lemma [Lifted types logically relate to raw types]: For all T , T↑ ∼�
dT e : T .

The “bulletproofing” lemma is the key to the behavioral correspondence proof.
I show that a contract application corresponds to bulletproofing with related types.
Note that I allow for different types in the two casts. This is necessary due to an
asymmetric substitution that occurs when T = B → T2.

53

2.6.8 Lemma [Bulletproofing]: If t ∼� s : T and c ∼� S : T and c ∼� S ′ : T ,
then 〈c〉l ,l ′ t ∼� 〈S ′ ⇒ dS ′e〉l

′ 〈dSe ⇒ S 〉l s : T .

Proof: By induction on T . First, observe that either s −→∗h ⇑l ′′ or both t and s
go to values related at T . In the former case, 〈S ′ ⇒ dS ′e〉l ′ 〈dSe ⇒ S 〉l s −→∗h ⇑l ′′,
and everything is related to blame (Lemma 2.6.2). So t −→lax

∗ v , s −→∗h w , and
v ≈� w : T .

T = B : So c = {x :B | t1} and S = {x :B | s1} and S ′ = {x :B | s2}. By
Lemma 2.6.5 we have 〈c〉l ,l ′ t ∼� 〈dSe ⇒ S 〉l s : B . By Lemma 2.6.4 we can add the
extra, trivial cast.

T = T1 → T2: We know that c = x :c1 7→ c2, S = x :S1 → S2 and S ′ = x :S ′1 →
S ′2. Let t ′ ∼� s ′ : T1. By Lemma 2.6.2, we only need to consider the case where
t ′ −→lax

∗ v ′ and s ′ −→∗h w ′—if s ′ −→∗h ⇑l ′′ we are done.

On the λC side, (〈c〉l ,l ′ t) t ′ −→lax
∗ 〈c2{x := v ′}〉l ,l ′ (v (〈c1〉l

′,l v ′)). In λH, we can
see

(〈S ′ ⇒ dS ′e〉l ′ 〈dSe ⇒ S 〉l s) s ′ −→∗h
〈S ′2{x := 〈dS ′1e ⇒ S ′1〉l

′
w ′} ⇒ dS ′2e〉l

′
((〈dSe ⇒ S 〉l w) (〈dS ′1e ⇒ S ′1〉l

′
w ′))

We cannot determine where the redex is until we know the shape of T1—does the
negative argument cast step to an active check, or do we decompose the positive cast?

– T1 = B .

By Lemma 2.6.5 and c1 ∼� S ′1 : B , we know that 〈c1〉l
′,l v ′ ∼� 〈dS ′1e ⇒ S ′1〉l

′
w ′ :

B . The λH term goes to blame or both terms go to the same value, v ′ = w ′ = k ∈ KB .
In the former case, the entire λH term goes to blame and we are done by Lemma 2.6.2.
So suppose 〈c1〉l

′,l k −→lax
∗ k and 〈dS ′1e ⇒ S ′1〉l

′
w ′ −→∗h k . Now the terms evaluate

like so:
〈c2{x := v ′}〉l ,l ′ (v (〈c1〉l

′,l v ′)) −→lax
∗ 〈c2{x := k}〉l ,l ′ (v k)

〈S ′2{x := 〈dS ′1e ⇒ S ′1〉l
′

w ′} ⇒ dS ′2e〉l
′

((〈dSe ⇒ S 〉l w) (〈dS ′1e ⇒ S ′1〉l
′

w ′)) −→∗h
〈S ′2{x := 〈dS ′1e ⇒ S ′1〉l

′
w ′} ⇒ dS ′2e〉l

′

〈dS2e ⇒ S2{x := k}〉l (w (〈S1 ⇒ dS1e〉l k))

By Lemma 2.6.4, k ∼� 〈S1 ⇒ dS1e〉l k : B , so v k ∼� w (〈S1 ⇒ dS1e〉l k) : T2.

Noting that k ∼� k : B and k ∼� 〈dS1e ⇒ S1〉l k : B , we can see that c2{x :=
k} ∼� S2{x := k} : T2 and c2{x := k} ∼� S ′2{x := 〈dS1e ⇒ S1〉l k} : T2. Now the IH
shows that 〈c2{x := k}〉l ,l ′ (v k) ∼� 〈S ′2{x := 〈dS ′1e ⇒ S ′1〉l

′
w ′} ⇒ dS ′2e〉l

′ 〈dS2e ⇒
S2{x := k}〉l (w (〈S1 ⇒ dS1e〉l k)) : T2, and we conclude the case with expansion
(Lemma 2.6.1).

54

– T1 = T11 → T12. We can continue with an application of F CDecomp in λH
and find:

〈S ′2{x := 〈dS ′1e ⇒ S ′1〉l
′

w ′} ⇒ dS ′2e〉l
′

((〈dSe ⇒ S 〉l w) (〈dS ′1e ⇒ S ′1〉l
′

w ′)) −→∗h
〈S ′2{x := 〈dS ′1e ⇒ S ′1〉l

′
w ′} ⇒ dS ′2e〉l

′

〈dS2e ⇒ S2{x := 〈dS ′1e ⇒ S ′1〉l
′

w ′}〉l
(w (〈S1 ⇒ dS1e〉l 〈dS ′1e ⇒ S ′1〉l

′
w ′))

By the IH, 〈c1〉l
′,l v ′ ∼� 〈S1 ⇒ dS1e〉l 〈dS ′1e ⇒ S ′1〉l

′
w ′ : T1. By assumption, the

results of applying v and w to these values correspond. (And they are values, since
function contracts/casts applied to values are values.)

We know c1 ∼� S ′1 : T1, and by Lemma 2.6.7 T1↑ ∼� dS ′1e : T1. Since v ′ ∼�
w ′ : T1, Lemma 2.6.6 shows v ′ ∼� 〈dS ′1e ⇒ S ′1〉l

′
w ′ : T1. This lets us see that

c2{x := v ′} ∼� S ′2{x := 〈dS ′1e ⇒ S ′1〉l
′

w ′} : T2 and c2{x := v ′} ∼� S2{x := 〈dS ′1e ⇒
S ′1〉l

′
w ′} : T2. Now the IH and expansion (Lemma 2.6.1) complete the proof. �

Having characterized how contracts and pairs of related casts relate, we show that
translated terms correspond to their sources.

2.6.9 Theorem [Behavioral correspondence]: If ` Γ, then:

1. If φ(Γ ` t : T) = s then Γ ` t ∼� s : T .

2. If φ(Γ `l ,l ′ c : T) = S then Γ ` c ∼� S : T .

Proof: We simultaneously show both properties by induction on the depth of φ’s
recursion. To show Γ ` t ∼� s : T , let Γ |= δ—we will show δ1(t) ∼� δ2(s) : T .

The proof proceeds by case analysis on the final rule of the translated typing and
well-formedness derivations. �

We find a weak corollary: φ(Γ ` t : B) −→∗h k implies t −→lax
∗ k : if the λH term

does not go to blame, then the original λC term must go to the same constant.
We can also show type preservation for terms not containing active checks. (We do

not know that translated active checks are well typed, because Theorem 2.6.9 is not
strong enough to preserve the implication judgment. We only expect these checks to
occur at runtime, so this is good enough: φ preserves the types of source programs.)

2.6.10 Theorem [Type preservation for φ]: For programs without active checks,
if φ(` Γ) = ∆, then:

1. ` ∆.

2. ∆ ` φ(Γ ` t : T) : dT e.

3. ∆ ` φ(Γ `l ,l ′ c : T).

55

Proof: We prove all three properties simultaneously, by induction on the depth of
φ’s recursion.

The proof is by cases on the λC context well-formedness/term typing/contract
well-formedness derivations, which determine the branch of φ taken. �

To see that the φ in Figure 2.12 does not give us exact blame, let us look at two
counterexamples; in both cases, a lax λC term goes to a value while its translation
goes to blame. In the first example, blame is raised in λH due to bulletproofing. In
the second, blame is raised due to the extra cast from the translation of T VarC. In
both examples, the contracts are abusive: higher-order contracts where the codomain
places a contradictory requirement on the domain. For the first counterexample, let

c = f :(x :{x :Int | true} 7→ {y :Int | nonzero y}) 7→ {z :Int | f 0 = 0}
S1 = x :{x :Int | true} → {y :Int | nonzero y}
S = φ(∅ `l ,l c : (Int→ Int)→ Int)

= f :S1 → {z :Int | (〈S1 ⇒ dS1e〉l f) 0 = 0}.

Here, the contradiction comes when the codomain requires that f 0 yield 0, but f ’s
contract says it will return a non-zero value. We find 〈c〉l ,l (λf.0) (λx.0)−→lax

∗0 but

(λx :dce. 〈S ⇒ dSe〉l (〈dSe ⇒ S 〉l x)) (λf.0) (λx.0) −→∗h ⇑l .

For the second counterexample, let

c ′ = f :(x :{x :Int | nonzero x} 7→ {y :Int | true}) 7→ {z :Int | f 0 = 0}
S ′1 = x :{x :Int | nonzero x} → {y :Int | true}
S ′ = φ(∅ `l ,l c ′ : (Int→ Int)→ Int)

= f :S ′1 → {z :Int | (〈S ′1 ⇒ dS ′1e〉l f) 0 = 0}.

This time, the contradiction comes from the codomain applying f to 0, while the do-
main contract requires that f ’s input be non-zero. We find 〈c ′〉l ,l (λf.0) (λx.0)−→lax

∗0
but

(λx :dc ′e. 〈S ′ ⇒ dc ′e〉l (〈dSe ⇒ dc ′e〉l x)) (λf.0) (λx.0) −→∗h ⇑l .

The extra casts that φ inserts are all necessary—none can be removed. So while
variations on this φ are possible, they can only add more casts, which won’t resolve
the problem that λH blames more.

2.6.2 Translating λH to picky λC

Terms in λH and their ψ-images in lax λC correspond exactly, as shown Section 2.5.2.
When we change the operational semantics of λC to be picky, however, ψ(s) blames
(strictly) more often than s . Nevertheless, we can show an inexact correspondence,
as we did for φ and lax λC in Section 2.6.1. I use a logical relation ∼≺ for ψ into
picky λC (Figure 2.18). Here I have reversed the asymmetry: picky λC may blame

56

Value correspondence v ≈≺ w : T

k ≈≺ k : B ⇐⇒ k ∈ KB

v ≈≺ w : T1 → T2 ⇐⇒ ∀t ∼≺ s : T1. v t ∼≺ w s : T2

Term correspondence t ∼≺ s : T

t ∼≺ s : T ⇐⇒ t −→picky
∗ ⇑l ∨ t −→picky

∗ v ∧ s −→∗h w ∧ v ≈≺ w : T

Contract/type correspondence c ∼≺ S1 ⇒ S2 : T

{x :B | t} ∼≺ {x :B | s1} ⇒ {x :B | s2} : B ⇐⇒
∀k ∈ KB . t{x := k} ∼≺ s2{x := k} : Bool

x :c1 7→ c2 ∼≺ x :S11 → S12 ⇒ x :S21 → S22 : T1 → T2 ⇐⇒ c1 ∼≺ S21 ⇒ S11 : T1 ∧
∀l.∀t ∼≺ s : T1. c2{x := t} ∼≺ S12{x := 〈S21 ⇒ S11〉l s} ⇒ S22{x := s} : T2

Dual closing substitutions

Γ |= δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼≺ δ2(x) : bΓ(x)c

Lifted to open terms

Γ ` t ∼≺ s : T ⇐⇒ ∀δ. (Γ |= δ implies δ1(t) ∼≺ δ2(s) : T)
Γ ` c ∼≺ S1 ⇒ S2 : T ⇐⇒ ∀δ. (Γ |= δ implies δ1(c) ∼≺ δ2(S1)⇒ δ2(S) : T)

Figure 2.18: Blame-inexact correspondence for ψ into picky λC

57

more than λH. The proof follows the same general pattern: we first show that it is
safe to add extra contract checks, then we show that contracts and casts correspond
(inexactly), then the correspondence for well-typed terms. We can also show type
preservation for source programs (excluding active checks).

2.6.11 Lemma [Expansion and contraction]: If t −→picky
∗ t ′ and s −→∗h s ′ then

t ∼≺ s : T iff t ′ ∼≺ s ′ : T .

2.6.12 Lemma [Blame corresponds to everything]: For all T , ⇑l ∼≺ s : T .

2.6.13 Lemma [Constants self-correspond]: For all k , k ≈≺ k : tyc(k).

Proof: By induction on tyc(k), recalling that constants are first order. �

As a corollary of Lemma 2.6.12 and Lemma 2.6.11, if a picky λC term evaluates
to blame, then it corresponds to any λH term. This will be used extensively in the
proofs below, as it allows us to eliminate many cases.

2.6.14 Lemma [Extra contracts]: If t ∼≺ s : T and c ∼≺ S1 ⇒ S2 : T then
〈c〉l ,l ′ t ∼≺ s : T .

Proof: By induction on T . If t −→picky
∗ ⇑l ′′ we are done, so let t −→picky

∗ v and
s −→∗h w such that v ≈≺ w : T .

T = B : So c = {x :B | t2} and S2 = {x :B | s2}. Moreover, v = w = k ∈ KB ,
since those are the only corresponding values at B .

We can step and see 〈c〉l ,l ′ t −→picky
∗ 〈c, t2{x := k}, k〉l . We know that t2{x :=

k} ∼≺ s2{x := k} : Bool. There are two possibilities: either t2{x := k} −→picky
∗ ⇑l ′′

or both terms go to corresponding Bools. In the former case, the whole λC term goes
to blame and we are done by Lemma 2.6.12. If both go to false, then the outer λC
term evaluates to ⇑l and we are done by Lemma 2.6.12 again. If both go to true, then
both outer terms go to k , and k ≈≺ k : B .

T = T1 → T2: So c = x :c1 7→ c2 and S1 = x :S11 → S12 and S2 = x :S21 → S22.
Let t ′ ∼≺ s ′ : T1. If t ′ −→picky

∗ ⇑l ′′ we are done by Lemm 2.6.12, so let t ′ −→picky
∗ v ′

and s ′ −→∗h w ′, where v ′ ≈≺ w ′ : T1. We want to prove (〈c〉l ,l ′ t) t ′ ∼≺ s s ′ : T2,
which is true iff:

〈c2{x := 〈c1〉l
′,l v ′}〉l ,l ′ (v (〈c1〉l

′,l v ′)) ∼≺ w w ′ : T2

By the IH on v ∼≺ w ′ : T1 and c1 ∼≺ S21 ⇒ S11 : T1, we have 〈c1〉l
′,l v ′ ∼≺ w ′ : T1.

By definition, applying v and w yields related terms at T2. Since 〈c1〉l
′,l v ′ ∼≺ w ′ : T1,

we have c2{x := 〈c1〉l
′,l v ′} ∼≺ S12{x := 〈S21 ⇒ S11〉l

′′
w ′} ⇒ S22{x := w ′} : T2. We

can now apply the IH and see:

〈c2{x := 〈c1〉l
′,l v ′}〉l ,l ′ (v (〈c1〉l

′,l v ′)) ∼≺ w w ′ : T2

�

58

2.6.15 Lemma [Contract/cast correspondence]: If c ∼≺ S1 ⇒ S2 : T and t ∼≺
s : T then 〈c〉l ,l ′ t ∼≺ 〈S1 ⇒ S2〉l

′′
s : T .

Proof: By induction on T . We reason via expansion (Lemma 2.6.11), showing that
the initial terms reduce to corresponding terms.

T = B : So c = {x :B | t1}, S1 = {x :B | s1}, and S2 = {x :B | s2}. Since
t ∼≺ s : B , we know that they either both reduce to k ∈ KB or t −→picky

∗ ⇑l ′. If the
latter is the case, we are done. So suppose t −→picky

∗ k along with s −→∗h k .

We can step our terms into active checks as follows, then:

〈{x :B | t1}〉l ,l t −→picky
∗ 〈{x :B | t1}, t1{x := k}, k〉l

〈{x :B | s1} ⇒ {x :B | s2}〉l s −→∗h 〈{x :B | s2}, s2{x := k}, k〉l

By the contract/cast correspondence, we know that t1{x := k} ∼≺ s2{x := k} : Bool,
so either t1{x := k} goes to blame or both terms go to a Bool together. In the
former case, the outer λC term goes to blame and we are done by Lemma 2.6.12..
If they go to false, then both the active check goes to ⇑l and we are done, again
by Lemma 2.6.12. Finally, if they both go to true, then both terms will evaluate to
k ∈ KB , and k ≈≺ k : B .

T = T1 → T2: c = x :c1 7→ c2, S1 = x :S11 → S12, and S2 = x :S21 → S22. We
know by inversion of the contract/cast relation that c1 ∼≺ S21 ⇒ S11 : T1 and that for
all l ′′ and t ∼≺ s : T1, c2{x := t} ∼≺ S12{x := 〈S21 ⇒ S11〉l

′′
s} ⇒ S22{x := s} : T2.

We want to prove that 〈c〉l ,l ∼≺ 〈S1 ⇒ S2〉l s : T1 → T2. First, we can assume
t −→picky

∗ v and s −→∗h w where v ∼≺ w : T1 → T2—if not, both the contracted
term goes to blame and we are done by Lemma 2.6.12.

We show that the decomposition of the contract and cast terms correspond for all
inputs. Let t ′ ∼≺ s ′ : T1. Again, we can assume that they reduce to v ′ ∼≺ w ′ : T1,
or else we are done by blame lifting in λC. On the λC side, we have

(〈c〉l ,l ′ t) t ′ −→picky
∗ 〈c2{x := 〈c1〉l

′,l v ′}〉l ,l ′ (v (〈c1〉l
′,l v ′))

In λH, we find

(〈S1 ⇒ S2〉l
′′

s) s ′ −→∗h
〈S12{x := 〈S21 ⇒ S11〉l

′′
w} ⇒ S22{x := w ′}〉l ′′ (w (〈S21 ⇒ S11〉l

′′
w ′))

By the IH, we know that 〈c1〉l
′,l v ′ ∼≺ 〈S21 ⇒ S11〉l

′′
w ′ : T1. Since v ∼≺ w : T1 → T2,

we have v (〈c1〉l
′,l v ′) ∼≺ w (〈S21 ⇒ S11〉l

′′
w ′) : T2. By Lemma 2.6.14, 〈c1〉l

′,l v ′ ∼≺
w ′ : T1. We can then see that c2{x := 〈c1〉l

′,l v ′} ∼≺ S12{x := 〈S21 ⇒ S11〉l
′′

w ′} ⇒
S22{x := w ′} : T2. By the IH, we therefore have

〈c2{x := 〈c1〉l
′,l v ′}〉l ,l ′ (v (〈c1〉l

′,l v ′)) ∼≺
〈S12{x := 〈S21 ⇒ S11〉l

′′
w ′} ⇒ S22{x := w ′}〉l ′′ w (〈S21 ⇒ S11〉l

′′
w ′) : T2

�

59

2.6.16 Theorem [Behavioral correspondence]:

1. If ∆ ` s : S then b∆c ` ψ(s) ∼≺ s : bSc.

2. If ∆ ` S1 and ∆ ` S2, where bS1c = bS2c = bSc, then b∆c ` ψl(S1, S2) ∼≺
S1 ⇒ S2 : bSc.

Proof: By an induction similar to the proof Theorem 2.5.18. �

2.6.17 Theorem [Type preservation for ψ]: For programs with no active checks,
if ` ∆, then:

1. If ∆ ` s : S then b∆c ` ψ(s) : bSc.

2. If ∆ ` S1, ∆ ` S2, where bS1c = bS2c = T , then b∆c `l ,l ′ ψl(S1, S2) : T .

Proof: By an induction similar to the proof Theorem 2.5.20. �

Here is an example where a λH term reduces to a value while its ψ-image in picky
λC term reduces to blame. As before, this counterexample uses an abusive contract:
a higher-order contract where the codomain puts a contradictory requirement on the
domain. Here, the contradiction is that f claims to return a non-zero value, but the
codomain requires that it return 0.

S1 = f :S11 → S12

= f :(x :dInte → {y :Int | nonzero y})→ dInte
S2 = f :S21 → S22

= f :(x :dInte → dInte)→ {z :Int | f 0 = 0}
c = ψl(S1, S2)

= f :ψl(S21, S11) 7→ ψl(S12{f := 〈S21 ⇒ S11〉l f }, S22)
= f :(x :{x :Int | true} 7→ {y :Int | nonzero y}) 7→ {z :Int | f 0 = 0}

Let w = (λf :(x :{x :Int | true} → {y :Int | nonzero y}). 0) and w ′ = (λx :{x :Int |
true}. 0). The term is well typed: we can show ∅ ` w : S1 and ∅ ` w ′ : S21. Therefore
∅ ` (〈S1 ⇒ S2〉l w) w ′ : S22{f := w ′}. Translating, we find

ψ((〈S1 ⇒ S2〉l w) w ′) = (〈ψl(S1, S2)〉l ,l ψ(w)) ψ(w ′) = (〈c〉l ,l λf :Int. 0) λx :Int. 0.

On the one hand (〈S1 ⇒ S2〉l w) w ′ −→∗h 0, while (〈c〉l ,l λf :Int. 0) λx :Int. 0 −→picky
∗

⇑l . This means we cannot hope to use ψ as an exact correspondence between λH and
picky λC. (Removing the extra cast ψ inserts into S12 does not affect the example,
since ψ ignores S12 here.) For example,

ψl({z :Int | true}{f := 〈S21 ⇒ S11〉l f }, {z :Int | f 0 = 0}) = {x :B | ψ(f 0 = 0)}.

60

2.6.3 Alternative calculi

There are three alternative calculi I have not considered here: indy λC [22], superpicky
λH, and nonterminating calculi. I describe them in detail below, but I leave them as
future work.

Dimoulas et al. [22] add a third blame label to λC, representing the contract itself;
I write it here as a subscript. They accordingly change the picky E CDecomp rule:

(〈x :c1 7→ c2〉l,l
′

l′′ v1) v2 −→indy 〈c2{x := 〈c1〉l
′′,l
l′′ v2}〉l,l

′

l′′ (v1 (〈c1〉l
′,l
l′′ v2))

In the substitution in the codomain, note that the blame label on the domain contract
uses the contract’s blame label l ′′. The intuition here is that any problem arising in
c2 is in the contract’s context (label l ′′), not the original negative context (label l ′).
I conjecture (but have not proven) that indy λC is in the same position on the axis
of blame as picky λC. We should only need to change the labels on the contracts φ
inserts to have an exact correspondence; however, ψ will remain inexact.

Superpicky λH reworks the F CDecomp rule in an attempt to harmonize λH and
picky λC semantics:7

(〈x :S11 → S12 ⇒ x :S21 → S22〉l w1) w2 h

〈S12{x := 〈S21 ⇒ S11〉l w2} ⇒ S22{x := 〈S11 ⇒ S21〉l (〈S21 ⇒ S11〉l w2)}〉l
(w1 (〈S21 ⇒ S11〉l w2))

This seems to resolve the problem with ψ into picky λC, but it poses problems in the
proof of semantic type soundness for λH: how do S22{x := w2} and S22{x := 〈S11 ⇒
S21〉l (〈S21 ⇒ S11〉l w2)} relate?

Finally, I have been careful to ensure that all of the calculi are strongly normal-
izing. I do not believe this to be essential, though I would have to change the logical
relations—λH’s type semantics and the correspondences—to account for nontermina-
tion. Step-indexing [2] should suffice.

2.7 Conclusion

The main contributions of the work in this chapter are (1) the dependent translations
φ and ψ and their properties, and (2) the formulation and metatheory of dependent
λH. (Dependent λC is not a contribution on its own: many similar systems have been
studied, and in any case its properties are simple.) The nondependent part of our φ
translation essentially coincides with the one studied by Gronski and Flanagan [36],
and our behavioral correspondence theorem is essentially the same as theirs (though
our proof is substantially different—and more detailed). Our ψ translation completes
their story for the nondependent case, establishing a tight connection between the
systems. The full dependent forms of φ and ψ studied in this chapter are novel, as

7This idea is due to Jeremy Siek (personal communication, January 2010).

61

is the observation that the correspondence between the latent and manifest worlds is
more problematic in this setting.

We can faithfully encode dependent λH into λC—the behavioral correspondence is
tight. λH’s F CDecomp rule forces us to accept a weaker behavioral correspondence
when encoding λC into λH, so I conclude that the manifest and latent approaches are
not equivalent in the dependent case. I do find, however, that the two approaches are
entirely inter-encodable in the nondependent restriction.

62

Chapter 3

Polymorphic manifest contracts

And even the Abstract Entities
Circumambulate her charm;
But our lot crawls between dry ribs
To keep our metaphysics warm.

Whispers of Immortality
T.S. Eliot

Contracts are particularly useful at interfaces, allowing programmers to specify
expectations and guarantees in code, rather than merely in comments. For example,
consider an abstract datatype (ADT) modeling the natural numbers:

NAT : ∃α.(zero : α)× (succ : (α→ α))× (iszero : (α→ Bool))× (pred : (α→ α))

The type NAT (with its existential quantification and products) can be encoded
straightforwardly in System F. It is an abstract datatype because the actual rep-
resentation of α is hidden: users of NAT interact with it through the constructors and
operations provided. The zero constructor represents 0; the succ constructor takes a
natural and produces its successor. The predicate iszero determines whether a given
natural is zero. The pred operation takes a natural number and returns its predeces-
sor. There are many ways to define an ADT matching NAT’s signature, but we can
suppose here that NAT is implemented using the standard Church encoding

α = ∀β.β → (β → β)→ β.

Under the standard definition, pred zero −→∗ zero, even though the mathematical
natural-number predecessor operation isn’t defined for zero. That is, the pred function
is only mostly correct: pred n will return the same result as the mathematical natural-
number predecessor so long as n 6= 0. Using contracts, we can specify this constraint
explicitly, as we did in the introduction (Section 1.2):

NAT : ∃α. (zero : α)× (succ : (α→ α))× (iszero : (α→ Bool))×
(pred : {x :α | not (iszero x)} → α)

63

In addition to requirements, we can also express guarantees. For example, the inter-
face could indicate that successors are non-zero by giving succ the type α → {x :α |
not (iszero x)}. Both of these encodings rely on dependent types: we need to be able
to refer back to iszero in the contracts for pred and succ. Fortunately, dependent
functions can encode dependent sums:

(x : T1)× T2 = ∀α.(x :T1 → T2 → α)→ α
(e1, e2) = Λα. λf :(x :T1 → T2 → α). f e1 e2

Finally, note that to put a refinement type on the codomain of succ, we would have
to rearrange the dependent sum above so succ came after iszero.

This chapter presents a new core calculus for contracts and polymorphism, FH

(so named since it extends the manifest-contract core calculus, λH, with the type
abstractions/impredicative polymorphism of System F). The example I’ve just given
puts contracts inside types, so it is manifest—a sensible choice for combining contracts
and abstract datatypes. Abstract datatypes already use the type system to mediate
access to abstractions; manifest contracts allow types to exercise a still finer grained
control.

FH is a polymorphic manifest contract calculus. In designing FH, I take a new
metatheoretical approach, since earlier manifest calculi don’t scale up to polymor-
phism easily—for two reasons.

First, the metatheory for existing calculi has been too complicated to extend eas-
ily [34, 44]. Previous approaches proved semantic type soundness, using denotational
techniques. The denotational semantics used are harder to scale than standard syn-
tactic methods (i.e., progress and preservation). I explain the complexity in detail in
related work (Section 5.2), but, briefly, the problem is subtyping. In both Greenberg
et al. and Knowles and Flanagan, subtyping between refinement types is what ulti-
mately requires denotational semantics. The denotational semantics is used to avoid
a dangerous circularity in the mutually recursive definition of the typing and subtyp-
ing judgments. The heart of my new technique is to replace subtyping with a simpler
conversion relation, which allows for a simpler, more scalable, syntactic metatheory.
Eliminating subtyping doesn’t lose useful reasoning principles: in Section 3.4, I define
subtyping post facto and recover an “upcast” lemma from Knowles and Flanagan [44]
showing that casts from subtypes to supertypes never fail.

Second, look again at our NAT abstract datatype. If we pare away the ADT’s
type abstraction to the underlying Church encoding, we find

{x :α | not (iszero x)} = {x :∀β.β → (β → β)→ β | not (iszero x)}.

If we can put contracts on type variables, then the contracts on our ADTs will need
to allow refinements on function and forall types. These so-called “general refine-
ments” aren’t possible in existing manifest calculi, which restrict refinements to base
types like Bool and Int. More specifically, earlier metatheory retains type preservation

64

by assigning constants most-specific types, but this approach doesn’t scale to refine-
ments of functions. My new metatheory for FH takes a different approach to type
preservation that supports general refinements. (For more detail, see the discussion
of T Exact in Section 3.2.)

In Section 3.1, I develop longer and more detailed examples. I describe FH and
prove type soundness in Section 3.2. I prove parametricity in Section 3.3 and the
upcast lemma in Section 3.4.

3.1 Examples

In this section, I offer some longer examples, in order to develop an intuition for
how contracts work in general and with polymorphism in particular. I introduce the
mechanisms used to enforce contracts first; then I look at the NAT datatype in greater
depth; I offer a “library as a language” as a final example.

Like other manifest calculi, FH uses casts to dynamically enforce contracts. Ap-
plying a cast 〈T1 ⇒ T2〉l to a value of type T1 will ensure that the value behaves like
a T2. I call T1 the source type and T2 the target type. The l superscript is a blame
label, used to differentiate between different casts and identify the source of failures.
These failures are indicated by blame, an uncatchable exception with a blame label
attached; I write this exception ⇑l and pronounce it “blame l”.

At base types, casts do one of two things: they either return the value they
were applied to, or “raise blame”. For example, consider a cast from integers Int to
positive integers, {x :Int | x > 0}. I write this cast 〈Int ⇒ {x :Int | x > 0}〉l , picking
an arbitrary label l . If we apply this cast to 5, we expect to get 5 back, since 5 > 0.
That is,

〈Int⇒ {x :Int | x > 0}〉l 5 −→∗ 5.

On the other hand, suppose we apply the same cast to 0. This cast fails, since 0 is
certainly not greater than itself. When the cast fails, it will raise blame with its label:

〈Int⇒ {x :Int | x > 0}〉l 0 −→∗ ⇑l .

Checking predicate contracts with casts is easy. When we run 〈T ⇒ {x :T | e}〉l v ,
we simply check if v satisfies the predicate, i.e., whether e[v/x] −→∗ true. If it does,
then the entire application goes to v ; if not, then the program aborts, raising ⇑l .
When checking predicate contracts, only the target type matters—the type system
will guarantee that whatever value we have is well typed at the source type, i.e.,
satisfies any predicates it has. For example, we’ll always have

〈{x :Int | x > 0} ⇒ Int〉l v −→ v

immediately, for all values v . The application will only be well typed if v actually
is a positive number, but, operationally, the left-hand side doesn’t matter from the
perspective of function refinements.

65

Unlike casts between base types and refinements, casts between function types
aren’t checked immediately. Instead, casts at function types wrap their argument up,
decomposing the function cast into two parts: one cast for the domain and one for the
codomain. In this way, checking is deferred until the cast function is called. Suppose
we have a function f of type Int→ Int and we want to ensure that maps positives to
numbers greater than 5, casting it to {x :Int | x > 0} → {y :Int | y > 5}. The cast
decomposes as follows:

〈Int→ Int⇒ {x :Int | x > 0} → {y :Int | y > 5}〉l f −→
λx :{x :Int | x > 0}. (〈Int⇒ {y :Int | y > 5}〉l (f (〈{x :Int | x > 0} ⇒ Int〉l x))).

Both casts in the wrapper have the same blame label as the original cast. Notice that
the domains of the function types are treated contravariantly; note the inner term
in the wrapped term: f (〈{x :Int | x > 0} ⇒ Int〉l x). In this case, the domain cast
〈{x :Int | x > 0} ⇒ Int〉l x will never fail: every positive integer is also an integer. The
codomain cast is covariant: 〈Int ⇒ {y :Int | y > 5}〉l checks that f returns a number
greater than 5. Since not every integer is greater than 5, this cast will fail if f returns
a number less than or equal to 5.

Let’s consider a few concrete choices of the function f . First, we cast the identity
function to {x :Int | x > 0} → {y :Int | y > 5}. We can safely apply the cast function
to six:

〈Int→ Int⇒ {x :Int | x > 0} → {y :Int | y > 5}〉l (λx :Int. x) 6 −→∗ 6.

In general, the identity function does not take positives to numbers greater than five.
But when we apply the cast function to 6, which happens to satisfy the codomain
contract, no blame is raised. However, when we apply the cast identity function to a
value that doesn’t satisfy the codomain contract, say 2, blame will be raised:

〈Int→ Int⇒ {x :Int | x > 0} → {y :Int | y > 5}〉l (λx :Int. x) 2 −→∗ ⇑l .

Contrast this with the sorts of static checks offered by type systems: contract systems
raise blame only when a violation is detected ; type systems are usually conservative,
signaling errors when a violation is possible.

Some functions will never work. If we cast the constant zero function to {x :Int |
x > 0} → {y :Int | y > 5}, it will raise blame for any value:

〈Int→ Int⇒ {x :Int | x > 0} → {y :Int | y > 5}〉l (λx :Int. 0) 6 −→∗ ⇑l .

The constant zero function, which never returns a value satisfying the codomain
contract {y :Int | y > 5}. No matter what value we apply the cast function to, it will
always raise blame. Cast at function types are deferred, though: if we never call the
cast function, it never has the opportunity to raise blame. Since casts check contracts
dynamically, they only detect errors in parts of the program that are explored at
runtime.

66

FH’s type system rules out directly applying a function with domain type {x :Int |
x > 0} to 0. It is an important property of FH that 0 doesn’t have type {x :Int | x > 0}!
One can try to cast 0 from Int to {x :Int | x > 0}, but this will always fail:

〈Int→ Int⇒ {x :Int | x > 0} → {y :Int | y > 5}〉l
(λx :Int. 0) (〈Int⇒ {x :Int | x > 0}〉l ′ 0)

−→∗ ⇑l ′

Finally, FH supports dependent function types. For example, the type x :Int →
{y :Int | y > x} is inhabited by functions over integers which produce results greater
than their inputs. Dependent functions allow for very precise specifications. For
example, x :Float → {y :Float | |y2 − x | < ε} specifies the square-root function. The
exact unwinding rule for dependent functions is slightly subtle—see the discussion of
E Fun in Section 3.2.

With the basic operational ideas behind manifest contracts established, I offer two
examples of contracts for abstract datatypes.

Contracts for abstract datatypes

The standard polymorphic encodings of existential and product types transfer over
to FH’s System F-style impredicative polymorphism without a problem. Indeed,
dependent functions allow us to go one step further and encode even dependent
products such as (x : Int) × {y :α List | length y = x}, which represents lists paired
with their lengths.

(x : T1)× T2 = ∀α.(x :T1 → T2 → α)→ α
(e1, e2)(x :T1)×T2 = Λα. λf :(x :T1 → T2 → α). f e1 e2

As in pure System F, we need to specify types on the encoding of pairs—I’ll omit
these types when they are clear from context. I also use record projection notation
and field names, to make the example clearer.

Let’s return to our simple example combining contracts and polymorphism—an
abstract datatype of natural numbers.

NAT : ∃α. (zero : α)× (succ : (α→ α))× (iszero : (α→ Bool))×
(pred : {x :α | not (iszero x)} → α)

I omit the implementation, a standard Church encoding, where α = ∀β.β → (β →
β)→ β. The constructors zero and succ are standard; the operator iszero determines
whether a natural is zero; the operator pred yields the predecessor. As we saw above,
the standard representation the naturals is inadequate with respect to the mathe-
matical natural numbers, in particular with respect to pred . In math, pred zero is
undefined, but the implementation will return zero. The NAT interface hides our
encoding of the naturals behind an existential type, but to ensure adequacy, we want

67

to ensure that pred is only ever applied to terms of type {x :α | not (iszero x)}. With
contracts, this is easy enough:

NAT : ∃α. (zero : α)× (succ : (α→ α))× (iszero : (α→ Bool))×
(pred : {x :α | not (iszero x)} → α).

Recall that in the Church encoding, α will be instantiated with ∀β.β → (β → β)→ β.
So the refinement {x :α | not (iszero x)} in the new type of pred is a refinement of a
polymorphic function type. These general refinement types are available in FH, but
they were not in earlier manifest calculi.

To see why this more specific type for pred is useful, consider the following expres-
sion.

unpack NAT : ∃α. I as α, n in n.iszero (n.pred (n.zero)) : Bool

Here I is the interface we specified for NAT. We’ve “unpacked” the ADT to make
its type available as α; its constructors and operators are in the dependent pair n.
We then ask if the predecessor of 0 is 0, running n.iszero (n.pred (n.zero)). The inner
application is not well typed ! We have that zero : α, but the domain type of pred is
{x :α | not (iszero x)}. In order to make the application well typed, we must insert a
cast:

unpack NAT : ∃α. I as α, n in
n.iszero (n.pred (〈α⇒ {x :α | not (n.iszero x)}〉l n.zero)) : Bool

Naturally, this cast will ultimately raise ⇑l , because not (n.iszero n.zero) −→∗ false.
The example so far imposes constraints only on the use of the abstract datatype, in

particular on the use of pred. To have constraints imposed also on the implementation
of the abstract datatype, consider the extension of the interface with a subtraction
operation, sub, and a binary “less than or equal” operator, leq. Natural number
subtraction sub x y is defined only when leq y x ; we can specify this pre-condition as
before, by refining the type of sub’s second argument. But subtraction comes with a
guarantee, as well: sub x y will always be less than or equal to x . That is, the result
sub x y has the refined type {z :α | leq z x}. We can specify both of these facts with
the interface:

I ′ = I × (leq : α→ α→ Bool)× (sub : (x :α→ {y :α | leq y x} → {z :α | leq z x}))

The sub function’s contract requires that sub’s second argument is less than or equal
to the first; the contract requires that sub returns a result that is less than or equal
to the first argument.

How can we write an implementation to meet this interface? By putting casts
in the implementations. We can impose the contracts on pred and sub when we
“pack up” the implementation NAT. Writing nat for the type of the Church encoding
∀β.β → (β → β)→ β, we define the exported pred and sub in terms of the standard,
unrefined implementations, pred′ and sub′ .

pred = 〈nat→ nat⇒ {x :nat | not (iszero x)} → nat〉l pred′

sub = 〈nat→ nat→ nat⇒ x :nat→ {y :nat | leq y x} → {z :nat | leq z x}〉l sub′

68

Note, however, that the cast on pred′ will never actually check anything at runtime: if
we unfold the domain contract contravariantly, we see that 〈{x :nat | not (iszero x)} ⇒
nat〉l is a no-op, because we’re casting out of a refinement. Instead, clients of NAT can
only call pred with terms that are typed at {x :nat | not (iszero x)}, i.e., by checking
that values are nonzero with a cast into pred’s input type. The story is the same for
the contract on sub’s second argument—the contravariant cast won’t actually check
anything. The codomain contract on sub, however, could fail if sub′ mis-implemented
subtraction.

I can sum up the situation for contracts in abstract datatype interfaces as follows:
the positive parts of the interface type are checked by the datatype’s contract and
can raise blame—these parts are the responsibility of the ADT’s implementation; the
negative parts of the interface type are not checked by the datatype’s contract—these
parts are the responsibility of the ADT’s clients. Distributing obligations in this way
recalls Findler and Felleisen’s seminal idea of client and server blame [26].

Contracts as type systems

Inasmuch as abstract datatypes are little languages, contracts for abstract datatypes
are like type systems for little languages. In this section, I develop a toy combinator
language of string transducers, which specify mappings between regular languages.1

A type system for the transducer combinators translates naturally to a contracted
abstract datatype implementation.

Each transducer t : L1 ↪→ L2 maps from a (regular) domain dom t = L1 to a
(regular) range rng t = L2.

S ::= strings
L ::= regular expressions
t ::= copyL | deleteL | concat t1 t2 | seq t1 t2

Let ε be the empty string, and let · be string concatenation. The combinators compose
to specify transducers. For this example, we only need two primitive combinators:
copyL, maps a string in the language L to itself; and deleteL which maps a string
in the language L to the empty string, ε. We can combine transducers in two ways:
concat t1 t2 runs t1 on the first part of the input and t2 on the second; seq t1 t2 runs
t2 on the output t1. We can define a semantics for transducers easily enough, with a
function run t that takes strings in dom t to strings in rng t .

The copyL transducer has the simplest semantics: it just copies strings in the
given language, L. Its typing rule is straightforward.

run (copyL)S = S copyL : L ↪→ L

The deleteL transducer deletes a string in the language L; its typing rule indicates
that its range is the language containing only the empty string, {ε}.

1This is effectively a unidirectional version of Boomerang [12].

69

run (deleteL)S = ε deleteL : L ↪→ {ε}

The concat t1 t2 combinator splits its input between its two sub-transducers. Split-
ting up the input makes the semantics somewhat subtle: in general, S ∈ dom t1 ·dom t2
does not imply that there is a unique way to split S. When two regular languages
always split uniquely, I say they are unambiguously splittable, written L1 ·! L2. Un-
ambiguous splittability of regular languages is decidable [12]; if we only concatenate
transducers with unambiguously splittable domains, then the run function will be
unambiguous.

run (concat t1 t2) (S1 · S2) =
run t1 S1 · run t2 S2

where Si ∈ dom ti

t1 : L11 ↪→ L12
t2 : L21 ↪→ L22 L11 ·! L21

concat t1 t2 : L11 · L21 ↪→ L12 · L22

Finally, the seq t1 t2 combinator runs t2 on the output of t1. The typing rule
requires that the two sub-transducers match: rng t1 and dom t2 must be the same
language.

run (seq t1 t2)S = run t2 (run t1 S)
t1 : L1 ↪→ L2 t2 : L2 ↪→ L3

seq t1 t2 : L1 ↪→ L3

In order to facilitate programming with these transducers, we may try to em-
bed these combinators inside of a functional programming. It is rather difficult to
generalize this combinator language—typing a lambda calculus with string regular
expression types is not easy [72, 9, 10]. It is easy, however, to define an abstract
datatype offering these operations, assuming we have a type String of strings and
Regex of regular expressions, with appropriate decision procedures for unambiguous
splittability and equality.

TRANS : ∃α. (dom : α→ Regex)× (rng : α→ Regex)×
(run : (α→ String→ String))×
(copy : Regex→ α)× (delete : (Regex→ α))×
(concat : α→ α→ α)× (seq : (α→ α→ α))

There is a problem, though: this datatype will let us write nonsensical combinators.
In particular, we can give concat transducers that don’t have unambiguously splittable
domains, or we can give seq transducers which don’t match up. For example, suppose
ε 6∈ L and S ∈ L. Let t = seq (deleteL) (copyL). Then:

run (seq (deleteL) (copyL))S = ε

Since ε 6∈ L, this means that run took a value in dom t = L and produced a value
outside of rng t = L.

We are in a difficult position: we have a little language and a type system. But
scaling our transducer language’s type system up to the lambda calculus increases

70

complexity, and distracts us from what we’d like to be doing—writing transducer
programs!

Contracts offer a middle way. By putting contracts on the TRANS interface, we
can ensure that all transducers are well formed.

TRANS : ∃α. (dom : α→ Regex)× (rng : α→ Regex)×
(run : (t :α→ {x :String | x ∈ dom t} → {x :String | x ∈ rng t}))×
(copy : Regex→ α)× (delete : (Regex→ α))×
(concat : (t1:α→ {t2:α | splittable (dom t1) (dom t2)} → α))×
(seq : (t1:α→ {t2:α | rng t1 = dom t2} → α))

The TRANS abstract datatype defines an embedded domain-specific language—with
its own domain-specific type system. For example, concat will only accept transduc-
ers with splittable domains; seq will only sequence transducers that match up. The
interface given here is only one of many: it checks inputs but not outputs. For ex-
ample, we could ensure that concat has our intended behavior by giving its codomain
the type {t3:α | (dom t3 = (dom t1) ◦ (dom t2)) ∧ (rng t3 = (rng t1) ◦ (rng t2))}, where
◦ denotes regular expression concatenation.

The checks on run and seq are easy enough to build into our TRANS implemen-
tation. But there is a distinct advantage to making the contracts explicit in the
interface type: the type system will keep track of unambiguous splittability checks.
Programmers can track relevant information in refinements in client modules, and we
can statically eliminate redundant checks (see Section 3.4).

In general, contracting abstract datatype interfaces allows for library designers to
extend the language’s type system with library-specific constraints. Clients then have
two choices: propagate the library’s contracts through their code, possibly avoiding
redundant checks; or ignore the contracts within their own code, allowing the checks
to happen whenever they call into the library. Either way, the library’s users can rest
assured that the contracts will guarantee the safety properties the library designers
desired.

If programmers are careful to program in a “cover your ass” (CYA) style, wherein
each library’s interface uses contracts that are strong enough to guarantee that other
libraries’ contracts are satisfied, then error messages greatly improve. When libraries
are stacked in a hierarchy several levels deep, CYA contracts in interfaces give pro-
grammers error messages earlier and at a higher level of abstraction.

As a final note before we begin the technical content: the foregoing is the cur-
rent implementation strategy for Boomerang [12], a language of bidirectional string
transducers called lenses. The semantic constraints on Boomerang combinators are
decidable, but combining Boomerang’s typing rules with the lambda calculus would
be cumbersome—a hard open problem. Boomerang is a complex language, and I
believe there is no room in the “complexity budget” for a statically checked type
system: lenses can already be difficult to program with and understand, and the
complicated constraints necessary for type checking will only add more to the pro-
grammer’s burden. Instead, the Boomerang primitives have contracts that ensure

71

Terms and contexts
T ::= B | α | x :T1 → T2 | ∀α.T | {x :T | e}
Γ ::= ∅ | Γ, x :T | Γ, α
Terms, values, results, and evaluation contexts
e ::= x | k | op (e1, ... , en) | λx :T . e | Λα. e | e1 e2 | e T |

〈T1 ⇒ T2〉l | ⇑l | 〈{x :T | e1}, e2, v〉l
v ::= k | λx :T . e | Λα. e | 〈T1 ⇒ T2〉l
r ::= v | ⇑l
E ::= [] e2 | v1 [] | []T | 〈{x :T | e}, [] , v〉l | op(v1, ..., vi−1 , [] , ei+1, ..., en)

Figure 3.1: Syntax for FH

that they produce sane bidirectional transformations. The Boomerang libraries built
atop these primitives have contracts as well, in a CYA style. Even without optimiza-
tions to reduce the number of dynamic checks, this improvement in error handling
has proved quite useful. Contracts are particularly suited to the phased nature of
Boomerang, since the contracts on Boomerang’s lens combinators are “quasi-static”.
Lenses are constructed only once and then run many times. Running a lens merely
requires checking regular language membership, so higher cost one-time checks can
be amortized over many lens runs.

3.2 Defining FH

The syntax of FH is given in Figure 3.1. For unrefined types we have: base types
B , which must include Bool; type variables α; dependent function types x :T1 → T2

where x is bound in T2; and universal types ∀α.T , where α is bound in T . Aside from
dependency in function types, these are just the types of the standard polymorphic
lambda calculus. As usual, we write T1 → T2 for x :T1 → T2 when x does not appear
free in T2. We also have predicate contracts, or refinement types, written {x :T | e}.
Conceptually, {x :T | e} denotes values v of type T for which e[v/x] reduces to true.
For each B , I fix a set KB of the constants in that type; I require the typing rules
for constants and the typing and evaluation rules for operations to respect this set. I
also require that KBool = {true, false}.

In the syntax of terms, the first line is standard for a call-by-value polymorphic
language: variables, constants, several monomorphic first-order operations op (i.e.,
destructors of one or more base-type arguments), term and type abstractions, and
term and type applications. The second line offers the standard constructs of a
manifest contract calculus [28, 34, 44], with a few alterations, discussed below.

Casts are the distinguishing feature of manifest contract calculi. When applied to
a value of type T1, the cast 〈T1 ⇒ T2〉l ensures that its argument behaves—and is
treated—like a value of type T2. When a cast detects a problem, it raises blame, a
label-indexed uncatchable exception written ⇑l . The label l allows us to trace blame
back to a specific cast. (While labels here are drawn from an arbitrary set, in practice
l will refer to a source-code location.) Finally, we use active checks 〈{x :T | e1}, e2, v〉l

72

to support a small-step semantics for checking casts into refinement types. In an active
check, {x :T | e1} is the refinement being checked, e2 is the current state of checking,
and v is the value being checked. The type in the first position of an active check isn’t
necessary for the operational semantics, but I keep it around as a technical aid to type
soundness. If checking succeeds, the check will return v ; if checking fails, the check
will blame its label, raising ⇑l . Active checks and blame are not intended to occur in
source programs—they are runtime devices. (In a real programming language based
on this calculus, casts will probably not appear explicitly either, but will be inserted
by an elaboration phase. The details of this process are beyond my present scope.)

The values in FH are constants, term and type abstractions, and casts. We also
define results, which are either values or blame. (Type soundness—a consequence of
Theorems 3.2.25 and 3.2.27 below—will show that evaluation produces a result, but
not necessarily a value.) In Chapter 2, casts between function types applied to values
were themselves considered values. I make the other choice here: excluding appli-
cations from the possible syntactic forms of values simplifies our inversion lemmas.
Instead, casts between function types will η-expand their argument. This makes the
notion of “function proxy” explicit: the cast semantics adds many new closures. I
address this issue in Chapter 4, where I make manifest contracts space-efficient.

There are two notable features relative to existing manifest calculi: first, any type
(even a refinement type) can be refined, not just base types (as in [28, 34, 36, 44, 51]);
second, the third part of the active check form 〈{x :T | e1}, e2, v〉l can be any value,
not just a constant. Both of these changes are motivated by the introduction of
polymorphism. In particular, to support refinement of type variables we must allow
refinements of all types, since any type can be substituted for a variable.

Operational semantics

The call-by-value operational semantics in Figure 3.2 are given as a small-step rela-
tion, split into two sub-relations: one for reductions () and one for congruence and
blame lifting (−→).

The latter relation is standard. The E Reduce rule lifts reductions into −→;
the E Compat rule turns −→ into a congruence over evaluation contexts; and the
E Blame rule lifts blame, treating it as an uncatchable exception. The reduction
relation is more interesting. There are four different kinds of reductions: the stan-
dard lambda calculus reductions, structural cast reductions, cast staging reductions,
and checking reductions.

The E Beta, and E TBeta rules should need no explanation—these are the
standard call-by-value polymorphic lambda calculus reductions. The E Op rule uses
a denotation function [[−]] to give meaning to the first-order operations.

The E Refl, E Fun, and E Forall rules reduce casts structurally. E Refl
eliminates a cast from a type to itself; intuitively, such a cast should always succeed
anyway. (I discuss this rule more in Section 3.3.) When a cast between function types
is applied to a value v , the E Fun rule produces a new lambda, wrapping v with

73

Reduction rules e1 e2

op (v1, ... , vn) [[op]] (v1, ... , vn) E Op
(λx :T1. e12) v2 e12[v2/x] E Beta

(Λα. e)T e[T/α] E TBeta

〈T ⇒ T 〉l v v E Refl
〈x :T11 → T12 ⇒ x :T21 → T22〉l v E Fun

λx :T21. (〈T12[〈T21 ⇒ T11〉l x/x]⇒ T22〉l (v (〈T21 ⇒ T11〉l x)))
when x :T11 → T12 6= x :T21 → T22

〈∀α.T1 ⇒ ∀α.T2〉l v Λα. (〈T1 ⇒ T2〉l (v α)) E Forall
when ∀α.T1 6= ∀α.T2

〈{x :T1 | e} ⇒ T2〉l v 〈T1 ⇒ T2〉l v E Forget
when T2 6= {x :T1 | e} and T2 6= {y :{x :T1 | e} | e2}

〈T1 ⇒ {x :T2 | e}〉l v 〈T2 ⇒ {x :T2 | e}〉l (〈T1 ⇒ T2〉l v) E PreCheck
when T1 6= T2 and T1 6= {x :T ′ | e ′}

〈T ⇒ {x :T | e}〉l v 〈{x :T | e}, e[v/x], v〉l E Check

〈{x :T | e}, true, v〉l v E OK
〈{x :T | e}, false, v〉l ⇑l E Fail

Evaluation rules e1 −→ e2

e1 e2

e1 −→ e2
E Reduce

e1 −→ e2

E [e1] −→ E [e2]
E Compat

E [⇑l] −→ ⇑l
E Blame

Figure 3.2: Operational semantics for FH

a contravariant cast on the domain and covariant cast on the codomain. The extra
substitution in the left-hand side of the codomain cast may seem suspicious, but in
fact the rule must be this way in order for type preservation to hold (see [34] for an
explanation). The E Forall rule is similar to E Fun, generating a type abstraction
with the necessary covariant cast. Side conditions on E Forall and E Fun ensure
that these rules apply only when E Refl doesn’t.

The E Forget, E PreCheck, and E Check rules are cast-staging reductions,
breaking a complex cast down to a series of simpler casts and checks. All of these
rules require that the left- and right-hand sides of the cast be different—if they are
the same, then E Refl applies. The E Forget rule strips a layer of refinement
off the left-hand side; in addition to requiring that the left- and right-hand sides are
different, the preconditions require that the right-hand side isn’t a refinement of the
left-hand side. The E PreCheck rule breaks a cast into two parts: one that checks
exactly one level of refinement and another that checks the remaining parts. We only

74

apply this rule when the two sides of the cast are different and when the left-hand
side isn’t a refinement. The E Check rule applies when the right-hand side refines
the left-hand side; it takes the cast value and checks that it satisfies the right-hand
side. (We don’t have to check the left-hand side, since that’s the type we’re casting
from.)

Before explaining how these rules interact in general, I offer a few examples. First,
here is a reduction using E Check, E Compat, E Op, and E OK:

〈Int⇒ {x :Int | x ≥ 0}〉l 5 −→ 〈{x :Int | x ≥ 0}, 5 ≥ 0, 5〉l
−→ 〈{x :Int | x ≥ 0}, true, 5〉l −→ 5

A failed check will work the same way until the last reduction, which will use E Fail
rather than E OK:

〈Int⇒ {x :Int | x ≥ 0}〉l (−1) −→ 〈{x :Int | x ≥ 0},−1 ≥ 0,−1〉l
−→ 〈{x :Int | x ≥ 0}, false,−1〉l −→ ⇑l

Notice that the blame label comes from the cast that failed. Here is a similar reduction
that needs some staging, using E Forget followed by the first reduction we gave:

〈{x :Int | x = 5} ⇒ {x :Int | x ≥ 0}〉l 5 −→ 〈Int⇒ {x :Int | x ≥ 0}〉l 5
−→ 〈{x :Int | x ≥ 0}, 5 ≥ 0, 5〉l −→∗ 5

There are two cases where we need to use E PreCheck. First, when multiple
refinements are involved:

〈Int⇒ {x :{y :Int | y ≥ 0} | x = 5}〉l 5 −→
〈{y :Int | y ≥ 0} ⇒ {x :{y :Int | y ≥ 0} | x = 5}〉l (〈Int⇒ {y :Int | y ≥ 0}〉l 5) −→∗

〈{y :Int | y ≥ 0} ⇒ {x :{y :Int | y ≥ 0} | x = 5}〉l 5 −→
〈{x :{y :Int | y ≥ 0} | x = 5}, 5 = 5, 5〉l −→∗

5

Second, when casting a function or universal type into a refinement of a different
function or universal type.

〈Bool→ {x :Bool | x} ⇒ {f :Bool→ Bool | f true = f false}〉l v −→
〈Bool→ Bool⇒ {f :Bool→ Bool | f true = f false}〉l

(〈Bool→ {x :Bool | x} ⇒ Bool→ Bool〉l v)

E Refl is necessary for simple cases, like 〈Int⇒ Int〉l 5 −→ 5. Hopefully, such a silly
cast would never be written, but it could arise as a result of E Fun or E Forall.
(We also need E Refl in our proof of parametricity; see Section 3.3.)

I offer two higher level ways to understand the interactions of these complicated
cast rules. First, we can see the reduction rules as an unfolding of a recursive function,

75

choosing the first clause in case of ambiguity. That is, the operational semantics
unfolds a cast 〈T1 ⇒ T2〉l v like C l(T1,T2, v):

C l(T ,T , v) = v
C l({x :T1 | e},T2, v) = C l(T1,T2, v)
C l(T1, {x :T2 | e}, v) = let x = C l(T1,T2, v) in 〈{x :T2 | e}, e, x 〉l
C l(∀α.T1,∀α.T2, v) = Λα. C l(T1,T2, v)

C l(x :T11 → T12, x :T21 → T22, v) =
λx :T21. C l(T12[C l(T21,T11, x)/x],T22, v C l(T21,T11, x))

Alternatively, the rules firing during the evaluation of a cast in the small-step seman-
tics obeys the following regular schema:

Refl | (Forget∗ (Refl | (PreCheck∗ (Refl | Fun | Forall)? Check∗)))

Let’s consider the cast 〈T1 ⇒ T2〉l v . To simplify the following discussion, I define
unref(T) as T without any outer refinements (though refinements on, e.g., the domain
of a function would be unaffected); I write unrefn(T) when we remove only the n
outermost refinements:

unref(T) =

{
unref(T ′) if T = {x :T ′ | e}
T otherwise

First, if T1 = T2, we can apply E Refl and be done with it. If that doesn’t work,
we’ll reduce by E Forget until the left-hand side doesn’t have any refinements.
(N.B. we may not have to make any of these reductions.) Either all of the refinements
will be stripped away from the source type, or E Refl eventually applies and the
entire cast disappears. Assuming E Refl doesn’t apply, we now have 〈unref(T1)⇒
T2〉l v . Next, we apply E PreCheck until the cast is completely decomposed into
one-step casts, once for each refinement in T2:

〈unref1(T2)⇒ T2〉l(〈unref2(T2)⇒ unref1(T2)〉l
(... (〈unref(T1)⇒ unref(T2)〉l v) ...))

As our next step, we apply whichever structural cast rule applies to 〈unref(T1) ⇒
unref(T2)〉l v , one of E Refl, E Fun, or E Forall. Now all that remains are some
number of refinement checks, which can be dispatched by the E Check rule (and
other rules, of course, during the predicate checks themselves).

The E Refl rule merits some more discussion. On the face of it, a cast 〈T ⇒ T 〉l
seems like it can’t do anything: any value it applies must have already had type T ,
so what could go wrong during any checks? One might worry that adding such a cast
will cause a different label to be blamed. In fact, we will find that such casts have no
effect in Section 3.4, using the parametricity logical relation. But this safety proof is
for a system where E Refl was there in the first place! I haven’t been able to prove
parametricty for a system without E Refl. Including it in the system, however, is
a weaker assumption than including subsumption, as earlier systems did [34, 44]. It
may be possible to further weaken the E Refl by restricting it to base types.

76

Static typing

The type system comprises three mutually recursive judgments: context well formed-
ness, type well formedness, and term well typing. The rules for contexts and types
are unsurprising. The rules for terms are mostly standard. First, the T App rule is
dependent, to account for dependent function types. We have no need for a value
restriction because FH doesn’t have effects; any effectful extension, even nontermi-
nation, would force such a restriction. The T Cast rule is standard for manifest
calculi, allowing casts between compatibly structured well formed types. Compati-
bility of type structures is defined in Figure 3.4; in short, compatible types erase to
identical simple type skeletons. I discuss type compatibility and type conversion (as
used in T Conv) below. Note that I assign casts a non-dependent function type.
The T Op rule uses the ty function to assign (possibly dependent) monomorphic
first-order types to operations; I require that ty(op) and [[op]] agree.

Some of the typing rules—T Check, T Blame, T Exact, T Forget, and
T Conv—are “runtime only”. These rules aren’t needed to type check source pro-
grams, but we need them to guarantee preservation. T Check, T Exact, and
T Conv are excluded from source programs because I don’t want the typing of
source programs to rely on the evaluation relation; such an interaction is acceptable
in this setting, but disrupts the phase distinction and is ultimately incompatible with
nontermination and effects. I exclude T Blame because programs shouldn’t start
with failures. Finally, I exclude T Forget because I imagine that source programs
have all type changes explicitly managed by casts. In explicitly tagged calculus, as
described in Section 3.5 and Chapter 4, we are able to abandon the T Forget rule in
its entirety. Note that the conclusions of these rules use a context Γ, but their premises
don’t use Γ at all. Even though runtime terms and their typing rules should only ever
occur in an empty context, the T App rule substitutes terms into types—so a run-
time term could end up under a binder. I therefore allow the runtime typing rules to
apply in any well formed context, so long as the terms they type check are closed. The
T Blame rule allows us to give any type to blame—this is necessary for preservation.
The T Check rule types an active check, 〈{x :T | e1}, e2, v〉l . Such a term arises when
a term like 〈T ⇒ {x :T | e1}〉l v reduces by E Check. The premises of the rule are
all intuitive except for e1[v/x] −→∗ e2, which is necessary to avoid nonsensical terms
like 〈{x :T | x ≥ 0}, true,−1〉l , where the wrong predicate gets checked. In Chapter 2,
we have a similar but looser requirement: e2 −→∗ true implies e1[v/x] −→∗ true. The
proofs don’t change radically, but I use the more syntactic requirement here because
I aim to keep the system as syntactic as possible. The T Exact rule allows us to
retype a closed value of type T at {x :T | e} if e[v/x] −→∗ true. This typing rule guar-
antees type preservation for E OK: 〈{x :T | e1}, true, v〉l −→ v . If the active check
was well typed, then we know that e1[v/x] −→∗ true, so T Exact applies. Earlier
systems used most-specific types and subtyping to show that the E OK rule pre-
serves typing. While the “most specific” requirement is abstract, a constant k ∈ KB

is typically given the selfified type ty(k) = {x :B | x = k} [51]. But functions don’t

77

Context well formedness ` Γ

` ∅
WF Empty

` Γ Γ ` T

` Γ, x :T
WF ExtendVar

` Γ

` Γ, α
WF ExtendTVar

Type well formedness Γ ` T

` Γ

Γ ` B
WF Base

` Γ α ∈ Γ

Γ ` α
WF TVar

Γ, α ` T

Γ ` ∀α.T
WF Forall

Γ ` T1 Γ, x :T1 ` T2

Γ ` x :T1 → T2
WF Fun

Γ ` T Γ, x :T ` e : Bool

Γ ` {x :T | e}
WF Refine

Term typing Γ ` e : T

` Γ x :T ∈ Γ

Γ ` x : T
T Var

` Γ

Γ ` k : ty(k)
T Const

∅ ` T ` Γ

Γ ` ⇑l : T
T Blame

Γ ` T1 Γ, x :T1 ` e12 : T2

Γ ` λx :T1. e12 : x :T1 → T2
T Abs

Γ ` e1 : (x :T1 → T2) Γ ` e2 : T1

Γ ` e1 e2 : T2[e2/x]
T App

` Γ ty(op) = x1 : T1 → ... → xn : Tn → T
Γ ` ei : Ti [e1/x1, ..., ei−1/xi−1]

Γ ` op (e1, ... , en) : T [e1/x1, ..., en/xn]
T Op

Γ, α ` e : T

Γ ` Λα. e : ∀α.T
T TAbs

Γ ` e1 : ∀α.T Γ ` T2

Γ ` e1 T2 : T [T2/α]
T TApp

Γ ` T1 Γ ` T2 T1 ‖ T2

Γ ` 〈T1 ⇒ T2〉l : T1 → T2
T Cast

` Γ ∅ ` {x :T | e1} ∅ ` v : T ∅ ` e2 : Bool e1[v/x] −→∗ e2
Γ ` 〈{x :T | e1}, e2, v〉l : {x :T | e1}

T Check

` Γ ∅ ` e : T ∅ ` T ′ T ≡ T ′

Γ ` e : T ′
T Conv

∅ ` v : {x :T | e} ` Γ

Γ ` v : T
T Forget

` Γ ∅ ` v : T ∅ ` {x :T | e} e[v/x] −→∗ true

Γ ` v : {x :T | e}
T Exact

Figure 3.3: Typing rules for FH

78

admit a decidable equality, so there isn’t an obvious way to assign them most-specific
types. T Exact is a suitably extensional,syntactic, and subtyping-free replacement
for the earlier semantic requirement: constants and functions can be assigned less spe-
cific types, but we can use T Exact in the preservation proof to remember successful
checks. Finally, the T Conv rule allows us to retype expressions at convertible types:
if ∅ ` e : T and T ≡ T ′, then ∅ ` e : T ′ (or in any well formed context Γ). I define
≡ as an explicitly substitutive but otherwise structural type conversion relation in
Figure 3.4. The T Conv rule is necessary to prove preservation in the case where
e1 e2 −→ e1 e ′2. Why? The first term is typed at T2[e2/x] (by T App), but reapplying
T App types the second term at T2[e

′
2/x].

In the original ESOP 2011 work [8], we noted that T2[e2/x] parallel reduces to
T2[e

′
2/x], so we took parallel reduction as type conversion. It turns out that parallel

reduction doesn’t quite have the properties we need. I discuss this further in Sec-
tion 3.5. Here, I define a type conversion relation in Figure 3.4 that uses what I call
common subexpression reduction, or CSR.. Belo et al. [8] also (falsely) claimed that
symmetry wasn’t necessary for type soundness or parametricity, but symmetry is in
fact used in the proof of preservation (Lemma 3.2.27, when a term typed by T App
steps by E Reduce/E Refl).

The following proof of type soundness is (almost) entirely syntactic [79], offering
a new approach to manifest calculi. In Chapter 2, we use subtyping instead of the ≡
relation; one of the contributions in this work is the insight that subtyping—with its
accompanying metatheoretical complications that prevent a simple syntactic proof of
type soundness—is not an essential component of manifest calculi.

I say almost entirely because both type soundness and parametricty rest on a
conjecture about a semantic property which I call cotermination.

3.2.1 Conjecture [Cotermination at true]: If σ −→∗ σ′ then σ(e) −→∗ true iff
σ′(e) −→∗ true.

That is, if σ and σ′ are common subexpression reductions, then terms behave equiva-
lently when substituted with either. We discuss this conjecture further in Section 3.5.

I define type compatibility and type conversion in Figure 3.4. It is critical to
understand that type variables are compatible only with themselves and refinements
of themselves. To understand why this is, recall that compatibility determines when it
is permissible to cast between two types. We can’t allow a cast between α and a base
type B , a function type x :T1 → T2, or a quantified type ∀β.T —we have no idea what
type will fill in for α, and it’s critical that compatibility is substitutive, i.e., that if
T1 ‖ T2, then T1[e/x] ‖ T2 (Lemma 3.2.17). Moreover, we must avoid nontermination
due to non-paremetric operations (e.g., Girard’s J operator); it’s imperative that a
term like

let δ = Λα. λx :α. 〈α⇒ ∀β.β → β〉l α x in δ ∀β.β → β δ

isn’t well typed.

3.2.2 Lemma [Determinism]: If e −→ e1 and e −→ e2 then e1 = e2.

79

Type compatibility T1 ‖ T2

α ‖ α
Sim Var

B ‖ B
Sim Base

T1 ‖ T2

{x :T1 | e} ‖ T2
Sim RefineL

T1 ‖ T2

T1 ‖ {x :T2 | e}
Sim RefineR

T11 ‖ T21 T12 ‖ T22

x :T11 → T12 ‖ x :T21 → T22
Sim Fun

T1 ‖ T2

∀α.T1 ‖ ∀α.T2
Sim Forall

Conversion σ1 −→∗ σ2 T1 ≡ T2

σ1 −→∗ σ2 ⇐⇒
dom(σ1) = dom(σ2) ∧
∀x ∈ dom(σ1). σ1(x) −→∗ σ2(x) ∧
∀α ∈ dom(σ1). σ1(α) = σ2(α)

α ≡ α
C Var

B ≡ B
C Base

σ1 −→∗ σ2 T1 ≡ T2

{x :T1 | σ1(e)} ≡ {x :T2 | σ2(e)}
C Refine

T1 ≡ T ′1 T2 ≡ T ′2
x :T1 → T2 ≡ x :T ′1 → T ′2

C Fun
T ≡ T ′

∀α.T ≡ ∀α.T ′
C Forall

T2 ≡ T1

T1 ≡ T2
C Sym

T1 ≡ T2 T2 ≡ T3

T1 ≡ T3
C Trans

Figure 3.4: Type compatibility and conversion for FH

3.2.3 Lemma [Reflexivity of conversion]:
T ≡ T for all T .

Proof: By induction on T .

(T = α): By C Var.

(T = B): By C Base.

(T = {x :T ′ | e}): By the IH on T ′, we have T ′ ≡ T ′. With an empty σ, we have
σ −→∗ σ trivially. We are done by C Refine.

(T = x :T1 → T2): By the IH on T1 and T2 and C Fun.

(T = ∀α.T): By the IH on T and C Forall. �

3.2.4 Lemma [Like-type arrow conversion]: If x :T11 → T12 ≡ T then T =
x :T21 → T22.

Proof: By induction on the conversion relation. Only C Fun applies, and C Sym
and C Trans are resolved by the IH. �

80

3.2.5 Lemma [Conversion arrow inversion]: If x :T11 → T12 ≡ x :T21 → T22

then T11 ≡ T21 and T12 ≡ T22.

Proof: By induction on the conversion derivation.

(C Fun): Immediate.

(C Sym): By the IH and C Sym.

(C Trans): It must be the case that T2 is an arrow type (Lemma 3.2.4), so by the
IH and C Trans. �

3.2.6 Lemma [Like-type forall conversion]: If ∀α.T1 ≡ T then T = ∀α.T2.

Proof: By induction on the conversion relation. Only C Forall applies, and
C Sym and C Trans are resolved by the IH. �

3.2.7 Lemma [Conversion forall inversion]: If ∀α.T1 ≡ ∀α.T2 then T1 ≡ T2.

Proof: By induction on the conversion derivation.

(C Forall): Immediate.

(C Sym): By the IH and C Sym.

(C Trans): By Lemma 3.2.6, we know that the intermediate type is a forall type,
so by the IH and C Trans. �

3.2.8 Lemma [Term substitutivity of conversion]:
If T1 ≡ T2 and e1 −→∗ e2 then T1[e1/x] ≡ T2[e2/x].

3.2.9 Lemma [Type substitutivity of conversion]:
If T1 ≡ T2 then T1[T/α] ≡ T2[T/α].

3.2.10 Lemma [Cotermination of refinement types]: If {x :T1 | e1} ≡ {x :T2 |
e2} then T1 ≡ T2 and e1[v/x] −→∗ true iff e2[v/x], for all v .

Proof: By induction on the equivalence. There are three cases.

(C Refine): We have T1 ≡ T2 by assumption. We know that e1 = σ1(e) and
e2 = σ2(e) for σ1 −→∗ σ2. It is trivially true that v −→∗ v , so σ1[v/x] −→∗ σ2[v/x].
By cotermination (Lemma 3.2.1), we know that σ1(e)[v/x] −→∗ true iff σ2(e)[v/x].

(C Sym): By the IH.

(C Trans): By the IHs and transitivity of ≡ and cotermination. �

3.2.11 Lemma [Value inversion]: If ∅ ` v : T and unrefn(T) = {x :Tn | en} then
en [v/x] −→∗ true.

Proof: By induction on the height of the typing derivation; we list all the cases
that could type values.

81

Proof:

(T Const): By assumption of valid typing of constants.

(T Abs): Contradictory—the type is wrong.

(T TAbs): Contradictory—the type is wrong.

(T Cast): Contradictory—the type is wrong.

(T Conv): By applying Lemma 3.2.10 on the stack of refinements on T .

(T Forget): By the IH on ∅ ` v : {x :T | e}, adjusting each of the n down by one
to cover the stack of refinements on T .

(T Exact): By assumption for the outermost refinement; by the IH on ∅ ` v : T
for the rest. �

3.2.12 Lemma [Term weakening]: If x is fresh and Γ ` T ′ then

1. Γ,Γ′ ` e : T implies Γ, x :T ′,Γ ` e : T ,

2. Γ,Γ′ ` T implies Γ, x :T ′,Γ′ ` T , and

3. ` Γ,Γ′ implies ` Γ, x :T ′,Γ′.

Proof: By induction on e, T , and Γ′. The only interesting case is for terms where
a runtime rule applies:

(T Conv,T Exact,T Forget): The argument is the same for all terms, so: since
` Γ, x :T ′,Γ′, we can reapply T Conv, T Exact, or T Forget, respectively. In
the rest of this proof, we won’t bother considering these rules. �

3.2.13 Lemma [Type weakening]: If α is fresh then

1. Γ,Γ′ ` e : T implies Γ, α,Γ ` e : T ,

2. Γ,Γ′ ` T implies Γ, α,Γ′ ` T , and

3. ` Γ,Γ′ implies` Γ, α,Γ′.

Proof: By induction on e, T , and Γ′. The proof is similar to term weakening,
Lemma 3.2.12. �

3.2.14 Lemma [Compatibility is symmetric]: T1 ‖ T2 iff T2 ‖ T1.

Proof: By induction on T1 ‖ T2.

(Sim Var): By Sim Var.

(Sim Base): By Sim Base.

(Sim RefineL): By Sim RefineR and the IH.

82

(Sim RefineR): By Sim RefineL and the IH.

(Sim Fun): By Sim Fun and the IHs.

(Sim Forall): By the IH and Sim Forall. �

3.2.15 Lemma [Substitution preserves compatibility]:
If T1 ‖ T2, then T1[e/x] ‖ T2.

Proof: By induction on the compatibility relation.

(Sim Var): By Sim Var.

(Sim Base): By Sim Base.

(Sim RefineL): By Sim RefineL and the IH.

(Sim RefineR): By Sim RefineR and the IH.

(Sim Fun): By Sim Fun and the IHs.

(Sim Forall): By Sim Forall and the IH. �

3.2.16 Lemma [Term substitution]: If Γ ` e ′ : T ′, then

1. if Γ, x :T ′,Γ′ ` e : T then Γ,Γ′[e ′/x] ` e[e ′/x] : T [e ′/x],

2. if Γ, x :T ′,Γ′ ` T then Γ,Γ′[e ′/x] ` T [e ′/x], and

3. if ` Γ, x :T ′,Γ′ then ` Γ,Γ′[e ′/x].

Proof: By induction on e, T , and Γ′. In the first two clauses, we are careful to
leave Γ′ as long as it is well formed. �

3.2.17 Lemma [Type substitution preserves compatibility]: If T1 ‖ T2 then
T1[T

′/α] ‖ T2.

Proof: By induction on the compatibility relation.

(Sim Var): By Sim Var.

(Sim Base): By Sim Base.

(Sim RefineL): By Sim RefineL and the IH.

(Sim RefineR): By Sim RefineR and the IH.

(Sim Fun): By Sim Fun and the IHs.

(Sim Forall): By Sim Forall and the IH.
�

3.2.18 Lemma [Type substitution]: If Γ ` T ′ then

1. if Γ, α,Γ′ ` e : T , then Γ,Γ′[T ′/α] ` e[T ′/α] : T [T ′/α],

83

2. if Γ, α,Γ′ ` T , then Γ,Γ′[T ′/α] ` T [T ′/α], and

3. if ` Γ, α,Γ′, then ` Γ,Γ′[T ′/α].

Proof: By induction on e, T , and Γ′. �

As is standard for type systems with conversion rules, we must prove inversion
lemmas in order to reason about typing derivations in a syntax-directed way.

3.2.19 Lemma [Lambda inversion]: If Γ ` λx :T1. e12 : T , then

1. Γ ` T1,

2. Γ, x :T1 ` e12 : T2, and

3. x :T1 → T2 ≡ unref(T).

Proof: By induction on the typing derivation. Cases not mentioned only apply to
terms which are not lambdas.

(T Abs): By inversion, we have Γ ` T1 and Γ, x :T1 ` e12 : T2. We find conversion
immediately by reflexivity (Lemma 3.2.3), since unref(T) = T = x :T1 → T2.

(T Conv): We have Γ ` λx :T1. e12 : T ; by inversion, T ≡ T ′ and ∅ ` λx :T1. e12 : T ′.
By the IH on this second derivation, we find ∅ ` T1 and x :T1 ` e12 : T2 where,
unref(T ′) ≡ x :T1 → T2. By weakening, we have Γ ` T1 and Γ, x :T1 ` e12 : T2. Since
T ′ ≡ T , we have x :T1 → T2 ≡ unref(T ′) ≡ unref(T) by C Trans.

(T Exact): T = {x :T ′ | e}, and we have Γ ` λx :T1. e12 : {x :T ′ | e}; by inversion,
∅ ` λx :T1. e12 : T ′. By the IH, ∅ ` T1 and x :T1 ` e12 : T2, where x :T1 →
T2 ≡ unref(T ′). By weakening, Γ ` T1 and Γ, x :T1 ` e12 : T2. Since unref(T ′) =
unref({x :T ′ | e}), we have the conversion by C Trans): x :T1 → T2 ≡ unref(T ′) =
unref({x :T ′ | e}).
(T Forget): We have Γ ` λx :T1. e12 : T ; by inversion, ∅ ` λx :T1. e12 : {x :T |
e}. By the IH on this latter derivation, we ∅ ` T1 and x :T1 ` e12 : T2, where
x :T1 → T2 ≡ unref({x :T | e}). By weakening, Γ ` T1 and Γ, x :T1 ` e12 : T2. Since
unref({x :T | e}) = unref(T), we have by C Trans that x :T1 → T12 ≡ unref({x :T |
e}) = unref(T). �

3.2.20 Lemma [Cast inversion]: If Γ ` 〈T1 ⇒ T2〉l : T , then

1. Γ ` T1,

2. Γ ` T2,

3. T1 ‖ T2, and

4. :T1 → T2 ≡ unref(T) (i.e., T2 does not mention the dependent variable).

84

Proof: By induction on the typing derivation. Cases not mentioned only apply to
syntactically distinct terms.

(T Cast): T = :T1 → T2, and the derivation is by inversion. Conversion is by
reflexivity (Lemma 3.2.3). T2 does not mention the variable.

(T Conv): Γ ` 〈T1 ⇒ T2〉l : T ; by inversion, ∅ ` 〈T1 ⇒ T2〉l : T ′ and T ′ ≡ T . By
the IH, we have ∅ ` T1 and ∅ ` T2 (which weaken to the derivations we want), as
well as T1 ‖ T2 and :T1 → T2 ≡ unref(T ′). But unref(T ′) ≡ unref(T), so we have
the conversion we want by C Trans.

(T Exact): Γ ` 〈T1 ⇒ T2〉l : {x :T | e}; by inversion, ∅ ` 〈T1 ⇒ T2〉l : T . By the
IH, we have ∅ ` T1 and ∅ ` T2 (which weaken to the derivations we want). We also
have T1 ‖ T2 and :T1 → T2 ≡ unref(T) — which is equal to unref({x :T | e}), so
we’re done.

(T Forget): Γ ` 〈T1 ⇒ T2〉l : T ; by inversion, ∅ ` 〈T1 ⇒ T2〉l : {x :T | e}. By the
IH, ∅ ` T1 and ∅ ` T2, so we find the derivations we want by weakening. We also
have T1 ‖ T2 and :T1 → T2 ≡ unref(T), which is equal unref({x :T | e}), so this
case is complete.

�

3.2.21 Lemma [Application inversion]: If Γ ` e1 e2 : T , then

1. Γ ` e1 : (x :T1 → T2),

2. Γ ` e2 : T1, and

3. T2[e2/x] ≡ T .

Proof: By induction on the typing derivation. Cases not mentioned only apply to
syntactically distinct terms.

(T App): We find the typings we want by inversion. Since T = T2[e2/x], conversion
is by reflexivity (Lemma 3.2.3).

(T Conv): By the IH on ∅ ` e1 e2 : T ′, we find the typings we want (up to
weakening), and T2[e2/x] ≡ T ′. By inversion, T ′ ≡ T , so by C Trans we have
T2[e2/x] ≡ T .

(T Exact): Only applies to values, and e1 e2 cannot be a value.

(T Forget): Only applies to values, and e1 e2 cannot be a value. �

3.2.22 Lemma [Type abstraction inversion]: If Γ ` Λα. e : T , then

1. Γ, α ` e : T ′ and

2. ∀α.T ′ ≡ unref(T).

85

Proof: By induction on the typing derivation. Cases not mentioned only apply to
syntactically distinct terms.

(T TAbs): T = ∀α.T ′. Conversion is by reflexivity (Lemma 3.2.3).

(T Conv): By the IH on ∅ ` Λα. e : T ′′, using weakening to recover the typing
derivation and using transitivity of conversion through unref to find unref(T ′′) ≡
unref(T) by C Trans.

(T Exact): T = {x :T0 | e0} for some T0 and e0. By the IH on ∅ ` Λα. e : T0, using
weakening for the derivation and the fact that unref({x :T0 | e0}) = unref(T0) to find
conversion.

(T Forget): By the IH on ∅ ` Λα. e : {x :T | e0}, using weakening for the derivation
and the fact that unref({x :T | e0}) = unref(T) to find conversion. �

Inversion lemmas in hand, we prove a canonical forms lemma to support a proof
of progress. The canonical forms proof is “modulo” the unref function: the shape of
the values of type {x :T | e} are determined by the inner type T .

3.2.23 Lemma [Conversion of unrefined types]: If T1 ≡ T2 then unref(T1) ≡
unref(T2).

Proof: By induction on the derivation of T1 ≡ T2. �

3.2.24 Lemma [Canonical forms]: If ∅ ` v : T , then:

1. If unref(T) = B then v = k ∈ KB for some v

2. If unref(T) = x :T1 → T2 then v is

(a) λx :T ′1. e12 and T ′1 ≡ T1 for some x ,T ′1 and e12, or

(b) 〈T ′1 ⇒ T ′2〉l and T ′1 ≡ T1 and T ′2 ≡ T2 for some T ′1,T
′
2, and l

3. If unref(T) = ∀α.T ′ then v is Λα. e for some e.

Proof: By induction on the typing derivation.

(T Var): Contradictory: variables are not values.

(T Const): ∅ ` k : T and unref(T) = B ; we are in case 1. By assumption, k ∈ KB .

(T Op): Contradictory: op (e1, ... , en) is not a value.

(T Abs): ∅ ` λx :T1. e12 : T and T = unref(T) = x :T1 → T2; we are in case 2a.
Conversion is by reflexivity (Lemma 3.2.3).

(T App): Contradictory: e1 e2 is not a value.

(T TAbs): ∅ ` Λα. e : ∀α.T ; we are in case 3. It is immediate that v = Λα. e, and
conversion is by reflexivity (Lemma 3.2.3).

86

(T TApp): Contradictory: e T is not a value.

(T Cast): ∅ ` 〈T1 ⇒ T2〉l : :T1 → T2; we are in case 2b. It is immediate that

v = 〈T1 ⇒ T2〉l . Conversion is by reflexivity (Lemma 3.2.3).

(T Check): Contradictory: 〈{x :T | e1}, e2, v〉l is not a value.

(T Blame): Contradictory: ⇑l is not a value.

(T Conv): ∅ ` v : T ; by inversion, ∅ ` v : T ′ and T ′ ≡ T . We find an appropriate
form for unref(T ′) by the IH on ∅ ` v : T ′. We go by cases, in each case reproving
whatever case was found in the IH and finding conversions by C Trans.

Case 1: unref(T) = B and v = k ∈ KB . Since unref(T ′) ≡ unref(T), we know
that unref(T ′) = B , which is all we needed to show.

Case 2a: unref(T) = x :T1 → T2 and v = λx :T ′′1 . e12 and T ′′1 ≡ T1. Since
T ′ ≡ T , we have unref(T ′) ≡ unref(T) (Lemma 3.2.23) and so unref(T ′) =
x :T ′1 → T ′2 for some T ′1 and T ′2 such that T ′1 ≡ T1 (Lemma 3.2.5); by C Trans,
we have T ′′1 ≡ T ′1.

Case 2b: unref(T) = x :T1 → T2 and v = 〈T ′1 ⇒ T ′2〉l and T ′1 ≡ T1 and
T ′2 ≡ T2. Since T ′ ≡ T , we have unref(T ′) ≡ unref(T) (Lemma 3.2.23) and so
unref(T ′) = x :T ′′1 → T ′′2 for some T ′′1 and T ′′2 such that T ′′1 ≡ T1 and T ′′2 ≡ T2

(Lemma 3.2.5); by C Trans, we have T ′1 ≡ T ′′1 and T ′2 ≡ T ′′2 as required.

Case 3: unref(T) = ∀α.T0 and v is Λα. e. Since T ′ ≡ T , then unref(T ′) ≡
unref(T) (Lemma 3.2.23).

(T Exact): ∅ ` v : {x :T | e}; by inversion, ∅ ` v : T . Noting that unref({x :T |
e}) = unref(T), we apply the IH. Unlike the previous case, we need not change the
conversion—it’s in terms of the unrefined type.

(T Forget): ∅ ` v : T ; by inversion ∅ ` v : {x :T | e}. By the IH (noting
unref({x :T | e}) = unref(T)), so we use the IH’s conversion directly. �

3.2.25 Theorem [Progress]: If ∅ ` e : T , then either

1. e −→ e ′, or

2. e is a result r , i.e., a value or blame.

Proof: By induction on the typing derivation.

(T Var): Contradictory: there is no derivation ∅ ` x : T .

(T Const): ∅ ` k : ty(k). In this case, e = k is a result.

87

(T Op): ∅ ` op (e1, ... , en) : σ(T), where ty(op) = x1 : T1 → ... → xn : Tn → T .
By inversion, ∅ ` ei : σ(Ti). Applying the IH from left to right, each of the ei either
steps or is a result.

Suppose everything to the left of ei is a value. Then either ei steps or is a
result. If ei −→ e ′i , then op (v1, ... , vi−1 , ei , ... , en) −→ op(v1, ... , vi−1 , e

′
i , ... , en) by

E Compat. One the other hand, if ei is a result, there are two cases. If ei = ⇑l , then
the original expression steps to ⇑l by E Blame. If ei is a value, we can continue
this process for each of the operation’s arguments. Eventually, all of the operations
arguments are values. By value inversion (Lemma 3.2.11), we know that we can type
each of these values at the exact refinement types we need by T Exact. We assume
that if op (v1, ... , vn) is well defined on values satisfying the refinements in its type,
so E Op applies.

(T Abs): ∅ ` λx :T1. e12 : (x :T1 → T2). In this case, e = λx :T1. e12 is a result.

(T App): ∅ ` e1 e2 : T2[e2/x]; by inversion, ∅ ` e1 : (x :T1 → T2) and ∅ ` e2 : T1.
By the IH on the first derivation, e1 steps or is a result. If e1 steps, then the entire

term steps by E Compat. In the latter case, if e1 is blame, we step by E Blame.
So e1 is a value, v1.

By the IH on the second derivation, e2 steps or is a result. If e2 steps, then by
E Compat. Otherwise, if e2 is blame, we step by E Blame. So e2 is a value, v2.

By canonical forms (Lemma 3.2.24) on ∅ ` e1 : (x :T1 → T2), there are two cases:

(e1 = λx :T ′1. e12 and T ′1 ≡ T1): In this case, (λx :T ′1. e12) v2 −→ e12[v2/x] by
E Beta.

(e1 = 〈T ′1 ⇒ T ′2〉l and T ′1 ≡ T1 and T ′2 ≡ T2): We know that T ′1 ‖ T ′2 by cast
inversion (Lemma 3.2.20). We determine which step is taken by cases on T ′1
and T ′2.

(T ′1 = B):

(T ′2 = B ′): It must be the case that B = B ′, since B ‖ B ′. By E Refl,

〈B ⇒ B〉l v2 −→ v2.

(T ′2 = α or x :T21 → T22 or ∀α.T22): Incompatible; contradictory.

(T ′2 = {x :T ′′2 | e}): If T ′′2 = B , then by E Check, 〈B ⇒ {x :B |
e}〉l v2 −→ 〈{x :B | e}, e[v2/x], v2〉l . Otherwise, by E PreCheck, we
have:

〈B ⇒ {x :T ′′2 | e}〉l v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉l (〈B ⇒ T ′′2 〉l v2)

(T ′1 = α):

(T ′2 = α′): It must be the case that α = α′, since α ‖ α′. By E Refl,

〈α⇒ α〉l v2 −→ v2.

(T ′2 = B or x :T21 → T22 or ∀α.T22): Incompatible; contradictory.

88

(T ′2 = {x :T ′′2 | e}): If T ′′2 = α, then by E Check, 〈α ⇒ {x :α |
e}〉l v2 −→ 〈{x :α | e}, e[v2/x], v2〉l . Otherwise,

〈α⇒ {x :T ′′2 | e}〉l v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉l (〈α⇒ T ′′2 〉l v2)

by E PreCheck.

(T ′1 = x :T11 → T12):

(T ′2 = B or α or ∀α.T22): Incompatible; contradictory.

(T ′2 = x :T21 → T22): If T ′1 = T ′2, then 〈T ′1 ⇒ T ′1〉l v2 −→ v2 by
E Refl. If not, then

〈x :T11 → T12 ⇒ x :T21 → T22〉l v2 −→
λx :T21. (〈T12[〈T21 ⇒ T11〉l x/x]⇒ T22〉l (v2 (〈T21 ⇒ T11〉l x)))

by E Fun.

(T ′2 = {x :T ′′2 | e}): If T ′1 = T ′′2 , then 〈T ′1 ⇒ {x :T ′1 | e}〉l v2 −→
〈{x :T ′1 | e}, e[v2/x], v2〉l by E Check. If not, then

〈T ′1 ⇒ {x :T ′′2 | e}〉l v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉l (〈T ′1 ⇒ T ′′2 〉l v2)

by E PreCheck.

(T ′1 = ∀α.T12):

(T ′2 = B or α or x :T21 → T22): Incompatible; contradictory.

(T ′2 = ∀α.T22): If T ′1 = T ′2, then 〈T ′1 ⇒ T ′2〉l v2 −→ v2 by E Refl.

If not, then 〈∀α.T11 ⇒ ∀α.T22〉l v2 −→ Λα. (〈T11 ⇒ T22〉l (v2 α)) by
E Forall.

(T ′2 = {x :T ′′2 | e}): If T ′1 = T ′′2 , then 〈T ′1 ⇒ {x :T ′1 | e}〉l v2 −→
〈{x :T ′1 | e}, e[v2/x], v2〉l by E Check. If not, then 〈T ′1 ⇒ {x :T ′′2 |
e}〉l v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉l (〈T ′1 ⇒ T ′′2 〉l v2) by E PreCheck.

(T ′1 = {x :T ′′1 | e ′1}):
(T ′2 = B or α or x :T21 → T22 or ∀α.T22): We see

〈{x :T ′′1 | e ′1} ⇒ T ′2〉l v2 −→ 〈T ′′1 ⇒ T ′2〉l v2

by E Forget.

(T ′2 = {x :T ′′2 | e ′2}): If T ′1 = T ′2, then we immediately have 〈T ′1 ⇒
T ′2〉l v2 −→ v2 by E Refl. If T ′1 = T ′′2 , then

〈T ′1 ⇒ {x :T ′1 | e ′2}〉l v2 −→ 〈{x :T ′1 | e ′2}, e ′2[v2/x], v2〉l

by E Check. Otherwise,

〈{x :T ′′1 | e ′1} ⇒ {x :T ′′2 | e ′2}〉l v2 −→ 〈T ′′1 ⇒ {x :T ′′2 | e ′2}〉l v2

by E Forget.

89

(T TAbs): ∅ ` Λα. e ′ : ∀α.T . In this case, Λα. e ′ is a result.

(T TApp): ∅ ` e1 T2 : T1[T2/α]; by inversion, ∅ ` e1 : ∀α.T1 and ∅ ` T2. By the IH
on the first derivation, e1 steps or is a result. If e1 −→ e ′1, then e1 T2 −→ e ′1 T2 by
E Compat. If e1 = ⇑l , then ⇑l T2 −→ ⇑l by E Blame.

If e1 = v1, then we know that v1 = Λα. e ′1 by canonical forms (Lemma 3.2.24).
We can see (Λα. e ′1) T2 −→ e ′1[T2/α] by E TBeta.

(T Cast): ∅ ` 〈T1 ⇒ T2〉l : T1 → T2. In this case, 〈T1 ⇒ T2〉l is a result.

(T Check): ∅ ` 〈{x :T | e1}, e2, v〉l : {x :T | e1}; by inversion, ∅ ` e2 : Bool. By the

IH, either e2 −→ e ′2 steps or e2 = r2. In the first case, 〈{x :T | e1}, e2, v〉l −→ 〈{x :T |
e1}, e ′2, v〉l by E Compat. In the second case, either r2 = ⇑l or r2 = v2. If we have
blame, then the entire term steps by E Blame. If we have a value, then we know
that v2 is either true or false, since it’s typed at Bool. If it’s true, we step by E OK.
Otherwise we step by E Fail.

(T Blame): ∅ ` ⇑l : T . In this case, ⇑l is a result.

(T Conv): ∅ ` e : T ′; by inversion, ∅ ` e : T . By the IH, we see that e −→ e ′ or
e = r .

(T Exact): ∅ ` v : {x :T | e}. Here, v is a result by assumption.

(T Forget): ∅ ` v : T . Again, v is a result by assumption.
�

The following regularity property formalizes an important property of the type
system: all contexts and types involved are well formed. This is critical for the proof
of preservation: when a term raises blame, we must show that the blame is well typed.
With regularity, we can immediately know that the original type is well formed.

3.2.26 Lemma [Context and type well formedness]: 1. If Γ ` e : T , then
` Γ and Γ ` T .

2. If Γ ` T then ` Γ.

Proof: By induction on the typing and well formedness derivations. �

3.2.27 Theorem [Preservation]: If ∅ ` e : T and e −→ e ′, then ∅ ` e ′ : T .

Proof: By induction on the typing derivation.

(T Var): Contradictory—we can’t have ∅ ` x : T .

(T Const): ∅ ` k : ty(k). Contradictory—values don’t step.

(T Op): ∅ ` op (e1, ... , en) : σ(T). By cases on the step taken:

(E Reduce/E Op): op (v1, ... , vn) −→ [[op]] (v1, ... , vn). This case is by as-
sumption.

90

(E Blame): ei = ⇑l , and everything to its left is a value. By context and type
well formedness (Lemma 3.2.26), ∅ ` σ(T). So by T Blame, ∅ ` ⇑l : σ(T).

(E Compat): Some ei −→ e ′i . By the IH and T Op, using T Conv to show
that σ(T) ≡ σ′(T) (Lemma 3.2.8).

(T Abs): ∅ ` λx :T1. e12 : (x :T1 → T2). Contradictory—values don’t step.

(T App): ∅ ` e1 e2 : T ′2[e2/x], with ∅ ` e1 : (x :T ′1 → T ′2) and ∅ ` e2 : T ′1, by
inversion. By cases on the step taken.

(E Reduce/E Beta): (λx :T1. e12) v2 −→ e12[v2/x]. First, we have ∅ `
λx :T1. e12 : (x :T ′1 → T ′2). By inversion for lambdas (Lemma 3.2.19), x :T1 ` e12 :
T2. Moreover, x :T1 → T2 ≡ x :T ′1 → T ′2, which means T2 ≡ T ′2 (Lemma 3.2.5).

By substitution, ∅ ` e12[v2/x] : T2[v2/x]. We then see that T2[v2/x] ≡ T ′2[v2/x]
(Lemma 3.2.8), so T Conv completes this case.

(E Reduce/E Refl): 〈T ⇒ T 〉l v2 −→ v2. By cast inversion (Lemma 3.2.20),
:T → T ≡ x :T ′1 → T ′2 and ∅ ` T . In particular, we have T ≡ T ′2 and T ≡

T ′1 (Lemma 3.2.5). By substitutivity of conversion (Lemma 3.2.8), T [v2/x] ≡
T ′2[v2/x]. Since T is closed, we really know that T ≡ T ′2[v2/x].

By C Sym and C Trans, we have T ′1 ≡ T ≡ T ′2[v2/x]. By T Conv on
∅ ` v2 : T ′1, we have ∅ ` v : T ′2[v2/x].

(E Reduce/E Forget): 〈{x :T1 | e} ⇒ T2〉l v2 −→ 〈T1 ⇒ T2〉l v2. We
restate the typing judgment and its inversion:

∅ ` 〈{x :T1 | e} ⇒ T2〉l v2 : T ′2[v2/y]
∅ ` 〈{x :T1 | e} ⇒ T2〉l : (y :T ′1 → T ′2)
∅ ` v2 : T ′1

By cast inversion (Lemma 3.2.20), we know that ∅ ` T1 and ∅ ` T2—as well as
:{x :T1 | e} → T2 ≡ y :T ′1 → T ′2 and {x :T1 | e} ‖ T2. Inverting this conversion

(Lemma 3.2.5), finding {x :T1 | e} ≡ T ′1 and T2 ≡ T ′2. Then by T Conv and
C Sym, ∅ ` v2 : {x :T1 | e}; by T Forget, ∅ ` v2 : T1.

By T Cast, we have ∅ ` 〈T1 ⇒ T2〉l : y :T1 → T2, with T1 ‖ T2 iff {x :T1 |
e} ‖ T2. (Note, however, that y does not appear in T2—we write it to clarify
the substitutions below.)

By T App, we find ∅ ` 〈T1 ⇒ T2〉l v2 : T2[v2/y]. Since T2 ≡ T ′2, we have
T2[v2/y] ≡ T ′2[v2/y] by Lemma 3.2.8. We are done by T Conv.

(E Reduce/E PreCheck):

〈T1 ⇒ {x :T2 | e}〉l v2 −→
〈T2 ⇒ {x :T2 | e}〉l (〈T1 ⇒ T2〉l v2)

91

We restate the typing judgment and its inversion:

∅ ` 〈T1 ⇒ {x :T2 | e}〉l v2 : T ′2[v2/y]
∅ ` 〈T1 ⇒ {x :T2 | e}〉l : y :T ′1 → T ′2
∅ ` v2 : T ′1

By cast inversion (Lemma 3.2.20), ∅ ` T1 and ∅ ` {x :T2 | e}, and y :T1 →
{x :T2 | e} ≡ y :T ′1 → T ′2. Also, T1 ‖ {x :T2 | e}.
By inversion on ∅ ` {x :T2 | e}, we find ∅ ` T2. Next, T1 ‖ T2 iff T1 ‖ {x :T2 | e}.
Now by T Cast, we find ∅ ` 〈T1 ⇒ T2〉l : y :T1 → T2. Note, however, that y
doesn’t occur in T2.

We can take the convertible function types and see that their parts are con-
vertible: T1 ≡ T ′1 and {x :T2 | e} ≡ T ′2. Using the first conversion, we find
∅ ` v2 : T1 by T Conv. By T App, ∅ ` 〈T1 ⇒ T2〉l v2 : T2[v2/y], where
T2[v2/y] = T2.

By C Refl and C RefineR, T2 ‖ {x :T2 | e}. We have well formedness
derivations for both types, as well, so ∅ ` 〈T2 ⇒ {x :T2 | e}〉l : y :T2 → {x :T2 |
e} by T Cast. Again, y does not appear in e or T2. By T App, we have
∅ ` 〈T2 ⇒ {x :T2 | e}〉l (〈T1 ⇒ T2〉l v2) : {x :T2 | e}[〈T1 ⇒ T2〉l v2/y].

Since y isn’t in {x :T2 | e}, we can see:

{x :T2 | e}[〈T1 ⇒ T2〉l v2/y] = {x :T2 | e} = {x :T2 | e}[v2/y]

By substitutivity of conversion (Lemma 3.2.8), we have {x :T2 | e}[v2/y] ≡
T ′2[v2/y]. We can now apply T Conv to find ∅ ` 〈T2 ⇒ {x :T2 | e}〉l (〈T1 ⇒
T2〉l v2) : T ′2[v2/y].

(E Reduce/E Check): 〈T ⇒ {x :T | e}〉l v2 −→ 〈{x :T | e}, e[v2/x], v2〉l
′
.

We restate the typing judgment with its inversion:

∅ ` 〈T ⇒ {x :T | e}〉l v2 : T ′2[v2/y]
∅ ` 〈T ⇒ {x :T | e}〉l : y :T ′1 → T ′2
∅ ` v2 : T ′1

By cast inversion (Lemma 3.2.20), ∅ ` {x :T | e} and ∅ ` T . Moreover,
y :T → {x :T | e} ≡ y :T ′1 → T ′2, where y doesn’t occur in {x :T | e}. This
means that T ≡ T ′1 and {x :T | e} ≡ T ′2.

Using T Conv and C Sym with the first conversion shows ∅ ` v2 : T . By
inversion on ∅ ` {x :T | e}, we see x :T ` e : Bool. By term substitution
(Lemma 3.2.16), we find ∅ ` e[v2/x] : Bool. Finally, e[v2/x] −→∗ e[v2/x] by
reflexivity (Lemma 3.2.3).

T Check (with WF Empty) shows ∅ ` 〈{x :T | e}, e[v2/x], v2〉l : {x :T | e}.
By substitutivity of conversion (Lemma 3.2.8), {x :T | e}[v2/y] ≡ T2[v2/y].

92

Since y doesn’t occur in {x :T | e}, we know that {x :T | e}[v2/y] = {x :T | e},
so we can show that {x :T | e} ≡ T2[v2/y] by C Sym, and now ∅ ` 〈{x :T |
e}, e[v2/x], v2〉l : T2[v2/y] by T Conv.

(E Reduce/E Fun):

〈x :T11 → T12 ⇒ x :T21 → T22〉l v2 −→
λx :T21. (〈T12[〈T21 ⇒ T11〉l x/x]⇒ T22〉l (v2 (〈T21 ⇒ T11〉l x)))

We restate the typing judgment with its inversion:

∅ ` 〈x :T11 → T12 ⇒ x :T21 → T22〉l v2 : T ′2[v2/y]
∅ ` 〈x :T11 → T12 ⇒ x :T21 → T22〉l : (y :T ′1 → T ′2)
∅ ` v2 : T ′1

By cast inversion on the first derivation:

∅ ` x :T11 → T12 ∅ ` x :T21 → T22

x :T11 → T12 ‖ x :T21 → T22

:(x :T11 → T12)→ (x :T21 → T22) ≡ y :T ′1 → T ′2

By inversion of this last (Lemma 3.2.5):

x :T11 → T12 ≡ T ′1 x :T21 → T22 ≡ T ′2

So by T Conv and C Sym, we have ∅ ` v2 : x :T11 → T12. By weakening
(Lemma 3.2.12), x :T21 ` v2 : x :T11 → T12.

By inversion of the well formedness of the function types:

∅ ` T11 x :T11 ` T12 ∅ ` T21 x :T21 ` T22

By weakening (Lemma 3.2.12), we find x :T21 ` T11 and x :T21 ` T21. By
compatibility:

T11 ‖ T21 T12 ‖ T22

By T Cast, x :T21 ` 〈T21 ⇒ T11〉l : (:T21 → T11) (notice that compati-
bility is symmetric, per Lemma 3.2.14). By T App and T Var, we can see
x :T21 ` 〈T21 ⇒ T11〉l x : T11[x/] = T11. Again by T App, we have x :T21 `
v2 (〈T21 ⇒ T11〉l x) : T12[〈T21 ⇒ T11〉l x/x]. By weakening (Lemma 3.2.12) and
substitution (Lemma 3.2.16), we have the following two derivations:

x :T21 ` T12[〈T21 ⇒ T11〉l x/x] x :T21 ` T22

By T Cast and Lemma 3.2.15:

x :T21 ` 〈T12[〈T21 ⇒ T11〉l x/x]⇒ T22〉l : (y :T12[〈T21 ⇒ T11〉l x/x]→ T22)

93

Noting that y is free here. By T App:

x :T21 ` 〈T12[〈T21 ⇒ T11〉l x/x]⇒ T22〉l (v2 (〈T21 ⇒ T11〉l x))
: T22[v2 (〈T21 ⇒ T11〉l x)/y](= T22)

Finally, by T Abs:

∅ ` λx :T21. 〈T12[〈T21 ⇒ T11〉l x/x]⇒ T22〉l (v2 (〈T21 ⇒ T11〉l x)) : x :T21 → T22

Since y isn’t in x :T21 → T22, we can see that x :T21 → T22 = (x :T21 →
T22)[v2/y]. Using this fact with substitutivity of conversion (Lemma 3.2.8),
we find x :T21 → T22 ≡ T ′2[v2/y]. So—finally—by T Conv we have:

∅ ` λx :T21. 〈T12[〈T21 ⇒ T11〉l x/x]⇒ T22〉l (v2 (〈T21 ⇒ T11〉l x)) : T ′2[v2/y]

(E Reduce/E Forall): 〈∀α.T1 ⇒ ∀α.T2〉l v2 −→ (Λα. 〈T1 ⇒ T2〉l (v α))
We restate the typing and its inversion:

∅ ` 〈∀α.T1 ⇒ ∀α.T2〉l v2 : T ′2[v2/x]
∅ ` 〈∀α.T1 ⇒ ∀α.T2〉l : x :T ′1 → T ′2
∅ ` v2 : T ′1

By cast inversion (Lemma 3.2.20):

∅ ` ∀α.T1 ∅ ` ∀α.T2

∀α.T1 ‖ ∀α.T2

:(∀α.T1)→ (∀α.T2) ≡ x :T ′1 → T ′2

By inversion of this last ∀α.T1 ≡ T ′1 and ∀α.T2 ≡ T ′2 (Lemma 3.2.5). By
T Conv and C Sym, ∅ ` v2 : ∀α.T1. By type variable weakening, WF TVar,
and T TApp, we have:

α ` v2 α : T1[α/α] = T1

By inversion of the universal types’s well formedness and compatibility:

α ` T1 α ` T2 T1 ‖ T2

So by T Cast, α ` 〈T1 ⇒ T2〉l : (x :T1 → T2), noting that x doesn’t occur
in T2. By T App, α ` 〈T1 ⇒ T2〉l (v2 α) : T2[v2 α/x] = T2. By T TAbs,
∅ ` Λα. (〈T1 ⇒ T2〉l (v α)) : ∀α.T2.

We know that ∀α.T2 ≡ T ′2, so by type variable substitutivity of conversion
(Lemma 3.2.9), (∀α.T2)[v2/x] ≡ T ′2[v2/x]. Since x isn’t in ∀α.T2, we know that
∀α.T2 ≡ T ′2[v2/x] (by way of Lemma 3.2.8).. Now we can see by T Conv that
∅ ` Λα. (〈T1 ⇒ T2〉l (v α)) : T ′2[v2/x].

94

(E Compat): E [e] −→ E [e ′] when e −→ e ′ By cases on E:

(E = [] e2, e1 −→ e ′1): By the IH and T App.

(E = v1 [], e2 −→ e ′2): By the IH, T App, and T Conv, since T2[e2/x] ≡
T2[e

′
2/x] by reflexivity (Lemma 3.2.3) and substitutivity (Lemma 3.2.8).

(E Blame): E [⇑l] −→ ⇑l ∅ ` E [⇑l] : T by assumption. By type well formed-
ness (Lemma 3.2.26), we know that ∅ ` T . We then have ∅ ` ⇑l : T by
T Blame.

(T TAbs): ∅ ` Λα. e : ∀α.T . This case is contradictory—values don’t step.

(T TApp): ∅ ` e T : T ′[T/α]. By cases on the step taken.

(E Reduce/E TBeta): (Λα. e ′) T −→ e ′[T/α] We restate the typing deriva-
tion and its inversion:

∅ ` (Λα. e ′) T : T ′[T/α] ∅ ` Λα. e ′ : ∀α.T ′ ∅ ` T

By type abstraction inversion (Lemma 3.2.22): α ` e ′ : T ′′ and ∀α.T ′′ ≡ ∀α.T ′;
by inversion of this last (Lemma 3.2.7), T ′′ ≡ T ′.

By type variable substitution (Lemma 3.2.18), ∅ ` e ′[T/α] : T ′′[T/α]. By type
substitutivity of conversion (Lemma 3.2.9), T ′′[T/α] ≡ T ′[T/α]. T Conv
gives us ∅ ` e ′[T/α] : T ′[T/α] as desired.

(E Compat): E [e] −→ E [e ′], where E = [] T . By the IH and T TApp.

(E Blame): E [⇑l] −→ ⇑l . ∅ ` E [⇑l] : T by assumption. By type well
formedness (Lemma 3.2.26), we know that ∅ ` T . So we see ∅ ` ⇑l : T by
T Blame.

(T Cast): ∅ ` 〈T1 ⇒ T2〉l : T1 → T2. This case is contradictory—values don’t step.

(T Check): ∅ ` 〈{x :T | e1}, e2, v〉l : {x :T | e1}. By cases on the step taken.

(E Reduce/E OK): 〈{x :T | e1}, true, v〉l −→ v . By inversion, ∅ ` v : T
and ∅ ` {x :T | e}; we also have e1[v/x] −→∗ true. By WF Empty and the
assumption that e[v/x] −→∗ true, we can find ∅ ` v : {x :T | e} by T Exact.

(E Reduce/E Fail): 〈{x :T | e1}, false, v〉l −→ ⇑l We have ∅ ` {x :T | e} by
inversion. By WF Empty and T Blame, ∅ ` ⇑l : {x :T | e}.

(E Compat): E [e] −→ E [e ′], where E = 〈{x :T | e1}, [] , v〉l. By the IH on e,
we know that ∅ ` e ′ : Bool. We still have ∅ ` {x :T | e1} and ∅ ` v : T from
our original derivation. Since e1[v/x] −→∗ e and e −→ e ′, then e1[v/x] −→∗ e ′.
Therefore, ∅ ` 〈{x :T | e1}, e ′, v〉l : {x :T | e1} by T Check.

95

(E Blame): E [⇑l] −→ ⇑l . ∅ ` E [⇑l] : T by assumption. By type well
formedness (Lemma 3.2.26), we know that ∅ ` T . So ∅ ` ⇑l : T by T Blame.

(T Blame): ∅ ` ⇑l : T . This case is contradictory—blame doesn’t step.

(T Conv): ∅ ` e : T ′; by inversion we have ∅ ` e : T and T ≡ T ′ and ∅ ` T ′

(and, trivially, ` ∅). By the IH on the first derivation, we know that ∅ ` e ′ : T . By
T Conv, we can see that ∅ ` e ′ : T ′.

(T Exact): ∅ ` v : {x :T | e}. This case is contradictory—values don’t step.

(T Forget): ∅ ` v : T . This case is contradictory—values don’t step.
�

Requiring standard weakening, substitution, and inversion lemmas, the syntactic
proof of type soundness is straightforward. It is easy to restrict FH to a simply
typed calculus with a similar type soundness proof. In fact, after cutting out uni-
versal types and restricting refinements to base types, it’s possible to simplify the
operational semantics and to do away with the T Forget rule. I don’t give the
proof here because it is subsumed by type soundness in FH; the Cast system in
Chapter 4 follows this principle, though it uses explicit tags and also has the dynamic
type Dyn.

3.3 Parametricity

I prove relational parametricity for two reasons: (1) it yields powerful reasoning
techniques such as free theorems [76] and our subtyping proof in Section 3.4, and (2)
it indicates that contracts don’t interfere with type abstraction, i.e., that FH supports
polymorphism in the same way that System F does. The proof is mostly standard: I
define a (syntactic) logical relation on terms and types, where each type is interpreted
as a relation on terms and the relation at type variables is given as a parameter. In the
next section, I define a subtype relation and show that an upcast—a cast whose source
type is a subtype of the target type—is logically related to the identity function. I
conjecture that logically related terms are contextually equivalent and upcasts can be
eliminated without changing the meaning of a program.

We begin by defining two relations: r1 ∼ r2 : T ; θ; δ relates closed results, defined
by induction on types; e1 ' e2 : T ; θ; δ relates closed expressions which evaluate to
results in the first relation. The definitions are shown in Figure 3.5.2 Both relations
have three indices: a type T , a substitution θ for type variables, and a substitution
δ for term variables. A type substitution θ, which gives the interpretation of free
type variables in T , maps a type variable to a triple (R,T1,T2) comprising a binary
relation R on terms and two closed types T1 and T2. A term substitution δ maps

2To save space, I write ⇑l ∼ ⇑l : T ; θ; δ separately instead of manually adding such a clause for
each type.

96

Closed terms r1 ∼ r2 : T ; θ; δ e1 ' e2 : T ; θ; δ

k ∼ k : B ; θ; δ ⇐⇒ k ∈ KB

v1 ∼ v2 : α; θ; δ ⇐⇒ ∃RT1T2, α 7→ R,T1,T2 ∈ θ ∧ v1 R v2
v1 ∼ v2 : (x :T1 → T2); θ; δ ⇐⇒ ∀v ′1 ∼ v ′2 : T1; θ; δ, v1 v

′
1 ' v2 v

′
2 : T2; θ; δ[v ′1, v

′
2/x]

v1 ∼ v2 : ∀α.T ; θ; δ ⇐⇒ ∀RT1T2, v1 T1 ' v2 T2 : T ; θ[α 7→ R,T1,T2]; δ
v1 ∼ v2 : {x :T | e}; θ; δ ⇐⇒ v1 ∼ v2 : T ; θ; δ ∧

θ1(δ1(e))[v1/x] −→∗ true ∧ θ2(δ2(e))[v2/x] −→∗ true
⇑l ∼ ⇑l : T ; θ; δ

e1 ' e2 : T ; θ; δ ⇐⇒ ∃r1r2, e1 −→∗ r1 ∧ e2 −→∗ r2 ∧ r1 ∼ r2 : T ; θ; δ
RT ,θ,δ = {(r1, r2) | r1 ∼ r2 : T ; θ; δ}

Types T1 ' T2 : ∗; θ; δ

B ' B : ∗; θ; δ
α ' α : ∗; θ; δ

x :T11 → T12 ' x :T21 → T22 : ∗; θ; δ ⇐⇒ T11 ' T21 : ∗; θ; δ ∧
∀v1 ∼ v2 : T11; θ; δ,

T12 ' T22 : ∗; θ; δ[v1, v2/x]
∀α.T1 ' ∀α.T2 : ∗; θ; δ ⇐⇒ ∀RT ′1T ′2, T1 ' T2 : ∗; θ[α 7→ R,T ′1,T

′
2]; δ

{x :T1 | e1} ' {x :T2 | e2} : ∗; θ; δ ⇐⇒ T1 ' T2 : ∗; θ; δ ∧
∀v1 ∼ v2 : T1; θ; δ, θ1(δ1(e1))[v1/x] ' θ2(δ2(e2))[v2/x] : Bool; θ; δ

Open terms and types Γ ` θ; δ Γ ` e1 ' e2 : T Γ ` T1 ' T2 : ∗

Γ ` θ; δ ⇐⇒ ∀x :T ∈ Γ, θ1(δ1(x)) ' θ2(δ2(x)) : T ; θ; δ ∧
∀α ∈ Γ,∃RT1T2, α 7→ R,T1,T2 ∈ θ

Γ ` e1 ' e2 : T ⇐⇒ ∀Γ ` θ; δ, θ1(δ1(e1)) ' θ2(δ2(e2)) : T ; θ; δ
Γ ` T1 ' T2 : ∗ ⇐⇒ ∀Γ ` θ; δ, T1 ' T2 : ∗; θ; δ

Figure 3.5: The logical relation for parametricity

from variables to pairs of closed values. I write projections δi (i = 1, 2) to denote
projections from this pair. I similarly write θi (i = 1, 2) for a substitution that maps
a type variable α to Ti where θ(α) = (R,T1,T2).

With these definitions out of the way, the term relation is mostly straightforward.
First, ⇑l is related to itself at every type. A base type B gives the identity relation
on KB , the set of constants of type B . A type variable α simply uses the relation
assumed in the substitution θ. Related functions map related arguments to related
results. Type abstractions are related when their bodies are parametric in the inter-
pretation of the type variable. Finally, two values are related at a refinement type
when they are related at the underlying type and both satisfy the predicate; here, the
predicate e gets closed by applying the substitutions. I require that both values sat-
isfy their refinements rather than having the first satisfy the predicate iff the second
does because I want to know that values related at refinement types actually inhabit
those types, i.e., actually satisfy the predicates of the refinement. The ∼ relation on
results is extended to the relation ' on closed terms in a straightforward manner:

97

terms are related if and only if they both terminate at related results. Divergent
terms are not related to each other—though we will discover that divergent terms do
not exist in FH. I extend the relation to open terms, written Γ ` e1 ' e2 : T , relating
open terms that are related when closed by any “Γ-respecting” pair of substitutions
θ and δ (written Γ ` θ; δ, also defined in Figure 3.5).

To show that (well-typed) casts yield related results when applied to related in-
puts, we also need a relation on types T1 ' T2 : ∗; θ; δ; I define this relation in
Figure 3.5. We can use the logical relation on terms to handle the arguments of
function types and refinement types. Note that the T1 and T2 in this relation are
not necessarily closed; terms in refinement types, which should be related at Bool,
are closed by applying substitutions. In the function and refinement type cases, the
relation on a smaller type is universally quantified over logically related values. There
are two choices of the type at which they should be related (for example, the second
line of the function type case could change T11 to T21). It does not really matter
which side we choose, since they are related types. Here, we are “left-leaning”;3 in
the proof, I justify this choice by proving a “type exchange” lemma (Lemma 3.4.2)
that lets us replace a type index T1 in the term relation by T2 when T1 ' T2 : ∗.
Finally, we lift the type relation to open terms, writing Γ ` T1 ' T2 : ∗ when two
types are equivalent for any Γ-respecting substitutions.

It is worth discussing two points peculiar to this formulation: terms in the logical
relation are untyped, and the type indices are open.

I allow any relation on terms to be used in θ; terms related at T need not be well
typed at T . The standard formulation of a logical relation is well typed throughout,
requiring that the relation R in every triple be well typed, only relating values of
type T1 to values of type T2 (e.g., [54]). I suspect that part of the reason this proof
of parametricity works is its similarity to Girard’s untyped reducibility candidates.
I have two motivations for leaving the relations untyped. First, functions of type
x :T1 → T2 must map related values (v1 ∼ v2 : T1) to related results...but at what
type? While T2[v1/x] and T2[v2/x] are related in the type relation, terms that are well
typed at one type won’t necessarily be well typed at the other, whether definitions are
left- or right-leaning. Second, we prove in Section 3.4 that upcasts have no effect: if
T1 <: T2, then 〈T1 ⇒ T2〉l ∼ λx :T1. x : T1 → T2. That is, I want a cast 〈T1 ⇒ T2〉l ,
of type T1 → T2, to be related to the identity λx :T1. x , of type T1 → T1. There is
one small hitch: λx :T1. x has type T1 → T1, not T1 → T2! I therefore don’t demand
that two expressions related at T be well typed at T , and I allow any relation to be
chosen as R.

The type indices of the term relation are not necessarily closed. Instead, just
as the interpretation of free type variables in the logical relation’s type index are
kept in a substitution θ, we keep δ as a substitution for the free term variables that
can appear in type indices. Keeping this substitution separate avoids a problem in
defining the logical relation at function types. Consider a function type x :T1 → T2:

3I, too, lean quite far to the left.

98

the logical relation says that values v1 and v2 are related at this type when they take
related values to related results, i.e. if v ′1 ∼ v ′2 : T1; θ; δ, then we should be able to
find v1 v ′1 ' v2 v ′2 at some type. The question here is which type index we should
use. If we keep type indices closed (with respect to term variables), we cannot use
T2 on its own—we have to choose a binding for x ! Knowles and Flanagan [44] deal
with this problem by introducing the “wedge product” operator, which merges two
types—one with v ′1 substituted for x and the other with v ′2 for x—into one. Instead
of substituting eagerly, we put both bindings in δ and apply them when needed—
the refinement type case. I think this formulation is more uniform with regard to
free term/type variables, since eager substitution is a non-starter for type variables,
anyway.

As Atsushi and I developed the proof, we found that the E Refl rule 〈T ⇒
T 〉l v v is not just a convenient way to skip decomposing a trivial cast into smaller
trivial casts (when T is a polymorphic or dependent function type); E Refl is, in
fact, crucial to obtaining parametricity in this syntactic setting. On the one hand,
the evaluation of well-typed programs never encounters casts with uninstantiated
type variables—a key property of our evaluation relation. On the other hand, by
parametricity, we expect every value of type ∀α.α → α to behave the same as the
polymorphic identity function. One of the values of this type is Λα. 〈α ⇒ α〉l .
Without E Refl, however, applying this type abstraction to a compound type, say
Bool → Bool, and a function f of type Bool → Bool would return, by E Fun, a
wrapped version of f that is syntactically different from the f we passed in—that
is, the function broke parametricity! We expect the returned value should behave
the same as the input, though—the results are just syntactically different. With
E Refl, 〈T ⇒ T 〉l returns the input immediately, regardless of T —just as the
identity function. So, this rule is a technical necessity, ensuring that casts containing
type variables behave parametrically.

Now we can set about proving parametricity (Lemma 3.3.7). We begin with
compositionality theorems relating the closing substitutions θ and δ to substitution
in terms (Lemma 3.3.1) and types (Lemma 3.3.3); convertibility shows that our logical
relation relates terms at convertible types (Lemma 3.3.4); after some lemmas about
casts and a separate induction relating casts between related types (Lemma 3.3.6),
we prove parametricity.

3.3.1 Lemma [Term compositionality]: If δ1(e) −→∗ e1 and δ2(e) −→∗ e2 then
r1 ∼ r2 : T ; θ; δ[e1, e2/x] iff r1 ∼ r2 : T [e/x]; θ; δ.

Proof: By induction on the (simple) structure of T , proving both directions simul-
taneously. We treat the case where r1 = r2 = ⇑l separately from the induction, since
it’s the same easy proof in all cases: ⇑l ∼ ⇑l : T ; θ; δ irrespective of T and δ. So
for the rest of proof, we know r1 = v1 and r2 = v2. Only the refinement case is
interesting.

99

(T = {y :T ′ | e ′}): We show both directions simultaneously, where x 6= y , i.e., y is
fresh. By the IH for T ′, we know that

v1 ∼ v2 : T ′; θ; δ[e1, e2/x] iff v1 ∼ v2 : T ′[e/x]; θ; δ.

It remains to show that the values satisfy their refinements.
That is, we must show:

θ1(δ1(e ′[e1/x][v1/y])) −→∗ true iff θ1(δ1(e ′[e/x][v1/y])) −→∗ true

θ2(δ2(e ′[e2/x][v2/y])) −→∗ true iff θ2(δ2(e ′[e/x][v2/y])) −→∗ true

So let:

σ1 = θ1δ1[δ1(e)/x , v1/y] −→∗ θ1δ1[e1/x , v1/y] = σ′1
σ2 = θ2δ2[δ2(e)/x , v2/y] −→∗ θ2δ2[e2/x , v2/y] = σ′2

We have σ1 −→∗ σ′1 by reflexivity except for δ1(e) −→∗ e1, which we have by assump-
tion; likewise, we have σ2 −→∗ σ′2. Then σi(e ′) and σ′i(e ′) coterminate (Lemma 3.2.1),
and we are done. �

3.3.2 Lemma [Term Weakening/Strengthening]: If x 6∈ T , then r1 ∼ r2 :
T ; θ; δ[e1, e2/x] iff r1 ∼ r2 : T ; θ; δ.

Proof: Similar to Lemma 3.3.1. �

3.3.3 Lemma [Type compositionality]:
r1 ∼ r2 : T ; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ iff r1 ∼ r2 : T [T ′/α]; θ; δ.

Proof: By induction on the (simple) structure of T , proving both directions simul-
taneously. As for Lemma 3.3.1, we treat the case where r1 = r2 = ⇑l separately from
the induction, since it’s the same easy proof in all cases: ⇑l ∼ ⇑l : T ; θ; δ irrespective
of T and δ. So for the rest of proof, we know r1 = v1 and r2 = v2. Here, the inter-
esting case is for function types, where we must deal with some asymmetries in the
definition of the logical relation. I also include the case for quantified types.

(T = x :T1 → T2): There are two cases:

(⇒): Given v1 ∼ v2 : (x :T1 → T2); θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ, we
wish to show that v1 ∼ v2 : (x :T1 → T2)[T

′/α]; θ; δ. Let v ′1 ∼ v ′2 : T1[T
′/α]; θ; δ.

We must show that v1 v ′1 ' v2 v ′2 : T2[T
′/α]; θ; δ[v ′1, v

′
2/x]. By the IH on T1,

v ′1 ∼ v ′2 : T1; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. By assumption,

v1 v ′1 ' v2 v ′2 : T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[v ′1, v
′
2/x].

These normalize to r ′1 ∼ r ′2 : T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[v ′1, v
′
2/x].

Since x 6∈ T ′, Lemma 3.3.2 gives RT ′,θ,δ = RT ′,θ,δ[v ′
1,v

′
2/x]

and so

r ′1 ∼ r ′2 : T2; θ[α 7→ RT ′,θ,δ[v ′
1,v

′
2/x]

, θ1(δ1(T ′[v ′1/x])), θ2(δ2(T ′[v ′2/x]))]; δ[v ′1, v
′
2/x].

By the IH on T2, r ′1 ∼ r ′2 : T2[T
′/α]; θ; δ[v ′1, v

′
2/x]. By expansion, v1 v ′′1 ' v2 v ′′2 :

T2[T
′/α]; θ; δ[v ′1, v

′
2/x].

100

(⇐): This case is similar: Given v1 ∼ v2 : (x :T1 → T2)[T
′/α]; θ; δ, we wish to

show that v1 ∼ v2 : (x :T1 → T2); θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. Let
v ′1 ∼ v ′2 : T1; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. We must show that

v1 v ′1 ' v2 v ′2 : T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[v ′1, v
′
2/x].

By the IH on T1, v ′1 ∼ v ′2 : T1[T
′/α]; θ; δ. By assumption, v1 v ′1 ' v2 v ′2 :

T2[T
′/α]; θ; δ[v ′1, v

′
2/x]. These normalize to r ′1 ' r ′2 : T2[T

′/α]; θ; δ[v ′1, v
′
2/x]. By

the IH on T2,

r ′1 ' r ′2 : T2[T
′/α];

θ[α 7→ RT ′,θ,δ[v ′
1,v

′
2/x]

, θ1(δ1(T ′[v ′1/x])), θ2(δ2(T ′[v ′2/x]))];
δ[v ′1, v

′
2/x].

Since x 6∈ T ′, Lemma 3.3.2 gives

r ′1 ' r ′2 : T2[T
′/α]; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[v ′1, v

′
2/x].

Finally, by expansion

v1 v ′1 ' v2 v ′2 : T2[T
′/α];

θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))];
δ[v ′1, v

′
2/x].

(T = ∀α′.T0): There are two cases:

(⇒): Given v1 ∼ v2 : ∀α′.T0; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ, we wish
to show that v1 ∼ v2 : ∀α′.(T0[T

′/α]); θ; δ. Let a relation R and closed types
T1 and T2 be given. By assumption, we know that v1 T1 ' v2 T2 : T0; θ[α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))][α′ 7→ R,T1,T2]; δ. They normalize to r ′1 ∼ r ′2 :
T0; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))][α′ 7→ R,T1,T2]; δ. By the IH, r ′1 ∼ r ′2 :
T0[T

′/α]; θ[α′ 7→ R,T1,T2]; δ. By expansion, v1 T1 ' v2 T2 : T0[T
′/α]; θ[α′ 7→

R,T1,T2]; δ. Then, v1 ∼ v2 : ∀α′.(T0[T
′/α]); θ; δ.

(⇐): This case is similar: given v1 ∼ v2 : ∀α′.(T0[T
′/α]); θ; δ, we wish to

show that v1 ∼ v2 : ∀α′.T0; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. Let a re-
lation R and closed types T1 and T2 be given. By assumption, we know that
v1 T1 ' v2 T2 : T0[T

′/α]; θ[α′ 7→ R,T1,T2]; δ. They normalize to r ′1 ∼ r ′2 :
T0[T

′/α]; θ[α′ 7→ R,T1,T2]; δ. By the IH, r ′1 ∼ r ′2 : T0; θ[α
′ 7→ R,T1,T2][α 7→

RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. By expansion, v1 T1 ' v2 T2 : T0; θ[α
′ 7→

R,T1,T2][α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. Then, v1 ∼ v2 : ∀α′.T0; θ[α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ.

�

101

Complexity of casts

cc(〈T ⇒ T 〉l) = 1
cc(〈x :T11 → T12 ⇒ x :T21 → T22〉l) = cc(〈T12[〈T21 ⇒ T11〉l x/x]⇒ T22〉l) +

cc(〈T21 ⇒ T11〉l) + 1
cc(〈∀α.T1 ⇒ ∀α.T2〉l) = cc(〈T1 ⇒ T2〉l) + 1
cc(〈{x :T1 | e} ⇒ T2〉l) = cc(〈T1 ⇒ T2〉l) + 1

(if T2 6= {x :T1 | e} and T2 6= {y :{x :T1 | e} | e ′})
cc(〈T1 ⇒ {x :T1 | e}〉l) = 1
cc(〈T1 ⇒ {x :T2 | e}〉l) = cc(〈T1 ⇒ T2〉l) + 2

(if T1 6= T2 and T1 is not a refinement type)

Figure 3.6: Complexity of casts

3.3.4 Lemma [Convertibility]: If T1 ≡ T2 then r1 ∼ r2 : T1; θ; δ iff r1 ∼ r2 :
T2; θ; δ.

Proof: By induction on the conversion relation, leaving θ and δ general. The case
where r1 = r2 = ⇑l is immediate, so we only need to consider the case where r1 = v1
and r2 = v2.

(C Var): It must be that T1 = T2 = α, so we are done immediately.

(C Base): It must be that T1 = T2 = B , so we are done immediately.

(C Refine): We have that T1 = {x :T ′1 | σ1(e)} and T2 = {x :T ′2 | σ2(e)}, where
T ′1 ≡ T ′2 and σ1 −→∗ σ2.

We have θ1δ1σ1 −→∗ θ1δ1σ2 and θ2δ2σ1 −→∗ θ2δ2σ2 (by reflexivity of −→∗ for θi
and δi and assumption for σ1 −→∗ σ2), so by cotermination (Lemma 3.2.1):

θ1(δ1(σ1(e)))[v1/x] −→∗ true iff θ1(δ1(σ2(e)))[v1/x] −→∗ true
θ2(δ2(σ1(e)))[v2/x] −→∗ true iff θ2(δ2(σ2(e)))[v2/x] −→∗ true

(C Fun): We have that T1 = x :T11 → T12 ≡ x :T21 → T22 = T2.
Let v ′1 ∼ v ′2 : T21; θ; δ be given; we must show that v1 v ′1 ' v2 v ′2 : T22; θ; δ[v

′
1, v
′
2/x].

By the IH, we know that v ′1 ∼ v ′2 : T11; θ; δ, so we know that v1 v ′1 ' v2 v ′2 :
T12; θ; δ[v

′
1, v
′
2/x]. We are done by another application of the IH.

The other direction is similar.

(C Forall): We have that T1 = ∀α.T ′1 ≡ ∀α.T ′2 = T2.
Let R, T , and T ′ be given. We must show that v1 T ' v2 T ′ : T ′2; θ[α 7→

R,T ,T ′]; δ. We know that v1 T ' v2 T ′ : T ′1; θ[α 7→ R,T ,T ′]; δ, so we are done
by the IH.

The other direction is similar.

(C Sym): By the IH.

(C Trans): By the IHs. �

102

Before we can show parametricity (Lemma 3.3.7), we prove in a separate induction
that casts between related types are related (Lemma 3.3.6). Before we can prove that
lemma, we need an auxiliary fact about casts and substitution.

3.3.5 Lemma [Cast substitution]: If ` Γ, x :T1, Γ, x :T1 ` 〈T1 ⇒ T2〉l ' 〈T1 ⇒
T2〉l : T2, and Γ, x :T2 ` e1 ' e2 : T then Γ1, x :T1,Γ2 ` e1[〈T1 ⇒ T2〉l x/x] '
e2[〈T1 ⇒ T2〉l x/x] : T .

Proof: Let Γ ` θ; δ. We must show that

θ1(δ1(e1[〈T1 ⇒ T2〉l x/x])) ' θ2(δ2(e2[〈T1 ⇒ T2〉l x/x])) : T ; θ; δ.

Now θ1(δ1(x)) ' θ2(δ2(x)) : T1; θ; δ by definition. By assumption, θ1(δ1(〈T1 ⇒
T2〉l x)) ' θ2(δ2(〈T1 ⇒ T2〉l x)) : T2; θ; δ. So let δ′ be δ[δ1(〈T1 ⇒ T2〉l x), δ2(〈T1 ⇒
T2〉l x)/x]. We have Γ, x :T2 ` θ; δ′, so by assumption we have that θ1(δ

′
1(e1)) '

θ2(δ
′
2(e2)) : T ; θ; δ, which is the same as θ1(δ1(e1[〈T1 ⇒ T2〉l x/x])) ' θ2(δ2(e2[〈T1 ⇒

T2〉l x/x])) : T ; θ; δ, and we are done. �

We show that (well typed) casts relate to themselves by induction a cast complex-
ity metric, cc, defined in Figure 3.6. The complexity of a cast is the number of steps
it and its subparts can take. This definition is carefully dependent on our definition
of type compatibility and our cast reduction rules. Doing induction on this metric
greatly simplifies the proof: we show that stepping casts at related types yields either
related non-casts, or lower complexity casts between related types.

3.3.6 Lemma [Cast Reflexivity]: If ` Γ, T1 ‖ T2, Γ ` T1 ' T1 : ∗, and Γ ` T2 '
T2 : ∗, then Γ ` 〈T1 ⇒ T2〉l ' 〈T1 ⇒ T2〉l : T1 → T2.

Proof: By induction on cc(〈T1 ⇒ T2〉l).
(T1 = T2): Given Γ ` θ; δ, we wish to show that

〈θ1(δ1(T1))⇒ θ1(δ1(T1))〉l ∼ 〈θ2(δ2(T1))⇒ θ2(δ2(T1))〉l : T1 → T1; θ; δ.

Let v1 ∼ v2 : T1; θ; δ. We must show that

〈θ1(δ1(T1))⇒ θ1(δ1(T1))〉l v1 '
〈θ2(δ2(T1))⇒ θ2(δ2(T1))〉l v2 : T1; θ; δ[v1, v2/z]

for fresh z . By E Refl, these normalize to v1 ∼ v2 : T1; θ; δ[v1, v2/z]. Lemma 3.3.2
finishes the case.

(T1 = x :T11 → T12 and T2 = x :T21 → T22 and T1 6= T2): Then, we have:

T11 ‖ T21 T21 ‖ T22

Γ ` T11

Γ, x :T11 ` T12 Γ, x :T21 ` T22.

103

Given Γ ` θ; δ, we wish to show that

θ1(δ1(〈x :T11 → T12 ⇒ x :T21 → T22〉l)) ∼ θ1(δ1(〈x :T11 → T12 ⇒ x :T21 → T22〉l))
: (x :T11 → T12)→ (x :T21 → T22); θ; δ.

Let v1 ∼ v2 : x :T11 → T12; θ; δ. We must show that

θ1(δ1(〈x :T11 → T12 ⇒ x :T21 → T22〉l)) v1 '
θ1(δ1(〈x :T11 → T12 ⇒ x :T21 → T22〉l)) v2 : x :T21 → T22; θ; δ[v1, v2/z]

for fresh z . Let

v ′1 = θ1(δ1(λx :T21. (〈T12[〈T21 ⇒ T11〉l x/x]⇒ T22〉l (v1 (〈T21 ⇒ T11〉l x)))))

v ′2 = θ2(δ2(λx :T21. (〈T12[〈T21 ⇒ T11〉l x/x]⇒ T22〉l (v2 (〈T21 ⇒ T11〉l x))))).

Since

θ1(δ1(〈x :T11 → T12 ⇒ x :T21 → T22〉l)) v1 −→ v ′1
θ2(δ2(〈x :T11 → T12 ⇒ x :T21 → T22〉l)) v2 −→ v ′2,

it suffices to show that

v ′1 ∼ v ′2 : x :T21 → T22; θ; δ[v1, v2/z].

Let v ′′1 ∼ v ′′2 : T21; θ; δ[v1, v2/z]. We must show that

v ′1 v ′′1 ' v ′2 v ′′2 : T22; θ; δ[v1, v2/z][v ′′1 , v
′′
2 /x].

Since

v ′1 v ′′1 −→ θ1(δ1(〈T12[〈T21 ⇒ T11〉l v ′′1 /x]⇒ T22〉l (v1 (〈T21 ⇒ T11〉l v ′′1))))

v ′2 v ′′2 −→ θ2(δ2(〈T12[〈T21 ⇒ T11〉l v ′′2 /x]⇒ T22〉l (v2 (〈T21 ⇒ T11〉l v ′′2)))),

it suffices to show that

θ1(δ1(〈T12[〈T21 ⇒ T11〉l v ′′1 /x]⇒ T22〉l (v1 (〈T21 ⇒ T11〉l v ′′1))))
' θ2(δ2(〈T12[〈T21 ⇒ T11〉l v ′′2 /x]⇒ T22〉l (v2 (〈T21 ⇒ T11〉l v ′′2))))

: T22; θ; δ[v1, v2/z][v ′′1 , v
′′
2 /x].

Since Γ ` T1 ' T1 : ∗ and Γ ` T2 ' T2 : ∗, we have Γ ` T11 ' T11 : ∗ and
Γ ` T21 ' T21 : ∗. Then, by the IH, we have

θ1(δ1(〈T21 ⇒ T11〉l)) ∼ θ2(δ2(〈T21 ⇒ T11〉l)) : T21 → T11; θ; δ.

By Lemma 3.3.2 and assumption,

θ1(δ1(〈T21 ⇒ T11〉l)) v ′′1 ' θ2(δ2(〈T21 ⇒ T11〉l)) v ′′2 : T11; θ; δ[v1, v2/z][v ′′1 , v
′′
2 /z ′]

104

for fresh z ′. These normalize to r1 ' r2 : T11; θ; δ[v1, v2/z][v ′′1 , v
′′
2 /z ′]. If r1 = r2 = ⇑l

for some l , then we also have v1 v ′′1 −→∗ ⇑l and v2 v ′′2 −→∗ ⇑l and, by expansion,

v1 v ′′1 ' v2 v ′′2 : T22; θ; δ[v1, v2/z][v ′′1 , v
′′
2 /x].

Otherwise, let v ′′′1 = r1 and v ′′′2 = r2. By Lemma 3.3.2 and definition,

v1 v ′′′1 ' v2 v ′′′2 : T12; θ; δ[v
′′′
1 , v

′′′
2 /x].

These normalize to
r ′1 ∼ r ′2 : T12; θ; δ[v

′′′
1 , v

′′′
2 /x].

If r ′1 = r ′2 = ⇑l ′ for some l ′, then, again, we have v1 v ′′1 −→∗ ⇑l and v2 v ′′2 −→∗ ⇑l and,
by expansion,

v1 v ′′1 ' v2 v ′′2 : T22; θ; δ[v1, v2/z][v ′′1 , v
′′
2 /x].

Otherwise, let v ′′′′1 = r ′1 and v ′′′′2 = r ′2. By Lemma 3.3.2 and 3.3.1 and the fact that

〈T21 ⇒ T11〉l v ′′1 −→∗ v ′′′1
〈T21 ⇒ T11〉l v ′′2 −→∗ v ′′′2

we have
v ′′′′1 ∼ v ′′′′2 : T12[〈T21 ⇒ T11〉l x/x]; θ; δ[v ′′1 , v

′′
2 /x].

From Γ ` T1 ' T1 : ∗, we have Γ, x :T11 ` T12 ' T12 : ∗ by definition. Fur-
thermore, we have Γ, x :T21 ` T12[〈T21 ⇒ T11〉l x/x] ' T12[〈T21 ⇒ T11〉l x/x] : ∗ by
Lemma 3.3.5.

Since T12[〈T21 ⇒ T11〉l x/x] ‖ T22, by the IH,

Γ, x :T21 ` 〈T12[〈T21 ⇒ T11〉l x/x]⇒ T22〉l '
〈T12[〈T21 ⇒ T11〉l x/x]⇒ T22〉l : T12[〈T21 ⇒ T11〉l x/x]→ T22.

Since Γ, x :T21 ` θ; δ[v ′′1 , v ′′2 /x] and x 6∈ T21,T11, we have

θ1(δ1(〈T12[〈T21 ⇒ T11〉l v ′′1 /x]⇒ T22〉l)) ∼
θ2(δ2(〈T12[〈T21 ⇒ T11〉l v ′′2 /x]⇒ T22〉l))
: T12[〈T21 ⇒ T11〉l x/x]→ T22; θ; δ[v

′′
1 , v

′′
2 /x].

By definition,

(θ1(δ1(〈T12[〈T21 ⇒ T11〉l v ′′1 /x]⇒ T22〉l))) v ′′′′1

' (θ2(δ2(〈T12[〈T21 ⇒ T11〉l v ′′2 /x]⇒ T22〉l))) v ′′′′2

: T22; θ; δ[v
′′
1 , v

′′
2 /x][v ′′′′1 , v ′′′′2 /z ′′]

for fresh z ′′. These normalize to r ′′1 ∼ r ′′2 : T22; θ; δ[v
′′
1 , v

′′
2 /x][v ′′′′1 , v ′′′′2 /z ′′]. By expan-

sion and Lemma 3.3.2, v ′1 v ′′1 ' v ′2 v ′′2 : T22; θ; δ[v1, v2/z][v ′′1 , v
′′
2 /x].

105

(T1 = ∀α.T ′1 and T2 = ∀α.T ′2 and T1 6= T2): Given Γ ` θ; δ, we wish to show that

〈∀α.θ1(δ1(T ′1))⇒ ∀α.θ1(δ1(T ′2))〉l ∼ 〈∀α.θ2(δ2(T ′1))⇒ ∀α.θ2(δ2(T ′2))〉l
: (∀α.T ′1)→ (∀α.T ′2); θ; δ.

Let v1 ∼ v2 : ∀α.T ′1; θ; δ. We must show that

〈∀α.θ1(δ1(T ′1))⇒ ∀α.θ1(δ1(T ′2))〉l v1 ' 〈∀α.θ2(δ2(T ′1))⇒ ∀α.θ2(δ2(T ′2))〉l v2
: (∀α.T ′2); θ; δ[v1, v2/z]

for fresh z . Since

〈∀α.θ1(δ1(T ′1))⇒ ∀α.θ1(δ1(T ′2))〉l v1 −→ Λα. 〈θ1(δ1(T ′1))⇒ θ1(δ1(T ′2))〉l (v1 α)
〈∀α.θ2(δ2(T ′1))⇒ ∀α.θ2(δ2(T ′2))〉l v2 −→ Λα. 〈θ2(δ2(T ′1))⇒ θ2(δ2(T ′2))〉l (v2 α),

it suffices to show that

Λα. 〈θ1(δ1(T ′1))⇒ θ1(δ1(T ′2))〉l (v1 α) ∼
Λα. 〈θ2(δ2(T ′1))⇒ θ2(δ2(T ′2))〉l (v2 α)

: (∀α.T ′2); θ; δ[v1, v2/z].

Let R,T ′′1 ,T
′′
2 be given. We will show that

Λα. 〈θ1(δ1(T ′1))⇒ θ1(δ1(T ′2))〉l (v1 α) T ′′1 ∼
Λα. 〈θ2(δ2(T ′1))⇒ θ2(δ2(T ′2))〉l (v2 α) T ′′2

: T ′2; θ[α 7→ R,T ′′1 ,T
′′
2]; δ[v1, v2/z].

These terms normalize to

θ1(δ1(〈T ′1 ⇒ T ′2〉l [T ′′1 /α])) (v1 T ′′1) and
θ2(δ2(〈T ′1 ⇒ T ′2〉l [T ′′2 /α])) (v2 T ′′2),

and we will show
θ1(δ1(〈T ′1 ⇒ T ′2〉l [T ′′1 /α])) (v1 T ′′1) '
θ2(δ2(〈T ′1 ⇒ T ′2〉l [T ′′2 /α])) (v2 T ′′2)

: T ′2; θ[α 7→ R,T ′′1 ,T
′′
2]; δ[v1, v2/z].

By assumption,
v1 T ′′1 ' v2 T ′′2 : T ′1; θ[α 7→ R,T ′′1 ,T

′′
2]; δ.

These normalize to
r1 ∼ r2 : T ′1; θ[α 7→ R,T ′′1 ,T

′′
2]; δ.

If r1 = r2 = ⇑l for some l , we have

Λα. 〈θ1(δ1(T ′1))⇒ θ1(δ1(T ′2))〉l (v1 α) T ′′1 −→∗ ⇑l

Λα. 〈θ2(δ2(T ′1))⇒ θ2(δ2(T ′2))〉l (v2 α) T ′′2 −→∗ ⇑l ,

106

finishing the case. Otherwise, we have r1 = v ′1 and r2 = v ′2 and

v ′1 ∼ v ′2 : T ′1; θ[α 7→ R,T ′′1 ,T
′′
2]; δ.

It is easy to show that Γ, α ` T ′1 ' T ′1 : ∗ and Γ, α ` T ′2 ' T ′2 : ∗ from the assumptions
Γ, α ` T1 ' T1 : ∗ and Γ, α ` T2 ' T2 : ∗. Then, by the IH, we have

Γ, α ` 〈T ′1 ⇒ T ′2〉l ' 〈T ′1 ⇒ T ′2〉l : T ′1 → T ′2.

Since Γ, α ` θ[α 7→ R,T ′′1 ,T
′′
2]; δ, we have

θ1(δ1(〈T ′1[T ′′1 /α]⇒ T ′2[T
′′
1 /α]〉l)) ∼ θ2(δ2(〈T ′1[T ′′2 /α]⇒ T ′2[T

′′
2 /α]〉l))

: T ′1 → T ′2; θ[α 7→ R,T ′′1 ,T
′′
2]; δ.

By definition,

θ1(δ1(〈T ′1 ⇒ T ′2〉l [T ′′1 /α])) v ′1 ' θ2(δ2(〈T ′1 ⇒ T ′2〉l [T ′′2 /α])) v ′2
: T ′2; θ[α 7→ R,T ′′1 ,T

′′
2]; δ[v ′1, v

′
2/z ′]

for fresh z ′. By Lemma 3.3.2,

θ1(δ1(〈T ′1 ⇒ T ′2〉l [T ′′1 /α])) v ′1 ' θ2(δ2(〈T ′1 ⇒ T ′2〉l [T ′′2 /α])) v ′2 : T ′2; θ[α 7→ R,T ′′1 ,T
′′
2]; δ.

And now, by expansion,

θ1(δ1(〈T ′1 ⇒ T ′2〉l [T ′′1 /α])) (v1 T ′′1) −→∗ θ1(δ1(〈T ′1 ⇒ T ′2〉l [T ′′1 /α])) v ′1
θ2(δ2(〈T ′1 ⇒ T ′2〉l [T ′′2 /α])) (v2 T ′′2) −→∗ θ2(δ2(〈T ′1 ⇒ T ′2〉l [T ′′2 /α])) v ′2

finish the case.

(T1 = {x :T ′1 | e} and T1 6= T2 and T2 6= {y :T1 | e ′}): Given Γ ` θ; δ, we wish to show
that

θ1(δ1(〈{x :T ′1 | e} ⇒ T2〉l)) ∼ θ2(δ2(〈{x :T ′1 | e} ⇒ T2〉l)) : {x :T ′1 | e} → T2; θ; δ.

Let v1 ∼ v2 : {x :T ′1 | e}; θ; δ, that is, v1 ∼ v2 : T ′1; θ; δ and

θ1(δ1(e))[v1/x] −→∗ true

θ2(δ2(e))[v2/x] −→∗ true

We have to show that

θ1(δ1(〈{x :T ′1 | e} ⇒ T2〉l)) v1 '
θ2(δ2(〈{x :T ′1 | e} ⇒ T2〉l)) v2 : T2; θ; δ[v1, v2/z]

for fresh z . Since

θ1(δ1(〈{x :T ′1 | e} ⇒ T2〉l)) v1 −→ θ1(δ1(〈T ′1 ⇒ T2〉l)) v1

θ2(δ2(〈{x :T ′1 | e} ⇒ T2〉l)) v2 −→ θ2(δ2(〈T ′1 ⇒ T2〉l)) v2

107

by E Forget, it suffices to show that

θ1(δ1(〈T ′1 ⇒ T2〉l)) v1 ' θ2(δ2(〈T ′1 ⇒ T2〉l)) v2 : T2; θ; δ[v1, v2/z].

Since Γ ` T1 ' T1 : ∗, we have Γ ` T ′1 ' T ′1 : ∗ by definition. We also have
T ′1 ‖ T2, by inversion. Then, by the IH

θ1(δ1(〈T ′1 ⇒ T2〉l)) ∼ θ2(δ2(〈T ′1 ⇒ T2〉l)) : T ′1 → T2; θ; δ.

And finally, by assumption,

θ1(δ1(〈T ′1 ⇒ T2〉l)) v1 ' θ2(δ2(〈T ′1 ⇒ T2〉l)) v2 : T2; θ; δ[v1, v2/z].

(T2 = {x :T1 | e}): Given Γ ` θ; δ, we wish to show that

θ1(δ1(〈T1 ⇒ {x :T1 | e}〉l)) ∼ θ2(δ2(〈T1 ⇒ {x :T1 | e}〉l)) : T1 → {x :T1 | e}; θ; δ.

Let v1 ∼ v2 : T1; θ; δ. We have to show that

θ1(δ1(〈T1 ⇒ {x :T1 | e}〉l)) v1 '
θ2(δ2(〈T1 ⇒ {x :T1 | e}〉l)) v2 : {x :T1 | e}; θ; δ[v1, v2/z]

for fresh z . Since

θ1(δ1(〈T1 ⇒ {x :T1 | e}〉l)) v1 −→ 〈{x :T1 | e}, e[v1/x], v1〉l

θ2(δ2(〈T1 ⇒ {x :T1 | e}〉l)) v2 −→ 〈{x :T1 | e}, e[v2/x], v2〉l

by E Check, it suffices to show that

〈{x :T1 | e}, e[v1/x], v1〉l ' 〈{x :T1 | e}, e[v2/x], v2〉l : {x :T1 | e}; θ; δ[v1, v2/z].

By the assumption Γ ` T2 ' T2 : ∗, we have T2 ' T2 : ∗; θ; δ. By definition,
T1 ' T1 : ∗; θ; δ and

θ1(δ1(e))[v ′1/x] ' θ2(δ2(e))[v ′2/x] : Bool; θ; δ

for any v ′1 ∼ v ′2 : T1; θ; δ. So, in particular,

θ1(δ1(e))[v1/x] ' θ2(δ2(e))[v2/x] : Bool; θ; δ.

These reduce to r1 ∼ r2 : Bool; θ; δ.
We have three cases:

(r1 = r2 = ⇑l ′ for some l ′): Then the case is immediate by:

〈{x :T1 | e}, e[v1/x], v1〉l −→∗ ⇑l ′

〈{x :T1 | e}, e[v2/x], v2〉l −→∗ ⇑l ′.

108

(r1 = r2 = true): Then,

〈{x :T1 | e}, e[v1/x], v1〉l −→∗ v1

〈{x :T1 | e}, e[v2/x], v2〉l −→∗ v2.

By assumption and Lemma 3.3.2, v1 ∼ v2 : T1; θ; δ[v1, v2/z], finishing the case.

(r1 = r2 = false): Then we conclude by,

〈{x :T1 | e}, e[v1/x], v1〉l −→∗ ⇑l

〈{x :T1 | e}, e[v2/x], v2〉l −→∗ ⇑l .

(T1 is not a refinement type and T2 = {x :T ′2 | e} and T1 6= T ′2): Given Γ ` θ; δ, we
wish to show that

θ1(δ1(〈T1 ⇒ {x :T ′2 | e}〉l)) ∼ θ2(δ2(〈T1 ⇒ {x :T ′2 | e}〉l)) : T1 → {x :T ′2 | e}; θ; δ.

Let v1 ∼ v2 : T1; θ; δ. We have to show that

θ1(δ1(〈T1 ⇒ {x :T ′2 | e}〉l)) v1 '
θ2(δ2(〈T1 ⇒ {x :T ′2 | e}〉l)) v2 : {x :T ′2 | e}; θ; δ[v1, v2/z]

for fresh z . Since

θ1(δ1(〈T1 ⇒ {x :T ′2 | e}〉l)) v1 −→
θ1(δ1(〈T ′2 ⇒ {x :T ′2 | e}〉l)) (θ1(δ1(〈T1 ⇒ T ′2〉l)) v1)

θ2(δ2(〈T1 ⇒ {x :T ′2 | e}〉l)) v2 −→
θ2(δ2(〈T ′2 ⇒ {x :T ′2 | e}〉l)) (θ2(δ2(〈T1 ⇒ T ′2〉l)) v2)

by E PreCheck, it suffices to show that

θ1(δ1(〈T ′2 ⇒ {x :T ′2 | e}〉l)) (θ1(δ1(〈T1 ⇒ T ′2〉l)) v1)
' θ2(δ2(〈T ′2 ⇒ {x :T ′2 | e}〉l)) (θ2(δ2(〈T1 ⇒ T ′2〉l)) v2)

: {x :T ′2 | e}; θ; δ[v1, v2/z].

Since Γ ` T2 ' T2 : ∗, we have Γ ` T ′2 ' T ′2 : ∗ by definition. Noting that

cc(〈T1 ⇒ {x :T ′2 | e}〉l) = cc(〈T1 ⇒ T ′2〉l) + 2 > cc(〈T1 ⇒ T ′2〉l)
cc(〈T1 ⇒ {x :T ′2 | e}〉l = cc(〈T1 ⇒ T ′2〉l) + 2 > 1 = cc(〈T ′2 ⇒ {x :T ′2 | e}〉l).

we can apply the IH to see

Γ ` 〈T1 ⇒ T ′2〉l ' 〈T1 ⇒ T ′2〉l : T1 → T ′2, and
Γ ` 〈T ′2 ⇒ {x :T ′2 | e}〉l ' 〈T ′2 ⇒ {x :T ′2 | e}〉l : T ′2 → {x :T ′2 | e}.

Then we can easily see

θ1(δ1(〈T ′2 ⇒ {x :T ′2 | e}〉l)) (θ1(δ1(〈T1 ⇒ T ′2〉l)) v1)
' θ2(δ2(〈T ′2 ⇒ {x :T ′2 | e}〉l)) (θ2(δ2(〈T1 ⇒ T ′2〉l)) v2)

: {x :T ′2 | e}; θ; δ[v1, v2/z].

�

109

Finally, we can prove relational parametricity—every well-typed term (under Γ)
is related to itself for any Γ-respecting substitutions.

3.3.7 Theorem [Parametricity]: 1. If Γ ` e : T then Γ ` e ' e : T , and

2. If Γ ` T then Γ ` T ' T : ∗.

Proof: By simultaneous induction on the derivations with case analysis on the last
rule used.

(T Var): Let Γ ` θ; δ. We wish to show that θ1(δ1(x)) ' θ2(δ2(x)) : T ; θ; δ, which
follows from the assumption.

(T Const): By the assumption that constants are assigned correct types.

(T Op): By the assumption that operators are assigned correct types (and the IHs
for the operator’s arguments).

(T Abs): We have e = λx :T1. e12 and T = x :T1 → T2 and Γ, x :T1 ` e12 : T2. Let
Γ ` θ; δ. We wish to show that

θ1(δ1(λx :T1. e12)) ∼ θ2(δ2(λx :T1. e12)) : (x :T1 → T2); θ; δ.

Let v1 ∼ v2 : T1; θ; δ. We must show that

(λx :θ1(δ1(T1)). θ1(δ1(e12))) v1 ' (λx :θ2(δ2(T1)). θ2(δ2(e12))) v2 : T2; θ; δ[v1, v2/x].

Since

(λx :θ1(δ1(T1)). θ1(δ1(e12))) v1 −→ θ1(δ1(e12))[v1/x]

(λx :θ2(δ2(T1)). θ2(δ2(e12))) v2 −→ θ2(δ2(e12))[v2/x],

it suffices to show

θ1(δ1(e12))[v1/x] ' θ2(δ2(e12))[v2/x] : T2; θ; δ[v1, v2/x].

By the IH, Γ, x :T1 ` e12 ' e12 : T2. The fact that Γ, x :T1 ` θ; δ[v1, v2/x] finishes the
case.

(T App): We have e = e1 e2 and Γ ` e1 : x :T1 → T2 and Γ ` e2 : T1 and T =
T2[e2/x]. Let Γ ` θ; δ. We wish to show that

θ1(δ1(e1 e2)) ' θ2(δ2(e1 e2)) : T2[e2/x]; θ; δ.

By the IH,
θ1(δ1(e1)) ' θ2(δ2(e2)) : x :T1 → T2; θ; δ, and
θ1(δ1(e2)) ' θ2(δ2(e2)) : T1; θ; δ.

110

These normalize to r11 ∼ r12 : x :T1 → T2; θ; δ and r21 ' r22 : T1; θ; δ, respectively. If
r11 = r12 = ⇑l or r21 = r22 = ⇑l for some l , then we are done:

θ1(δ1(e1 e2)) −→∗ ⇑l

θ2(δ2(e1 e2)) −→∗ ⇑l .

So let ri j = vi j . By definition,

v11 v21 ' v12 v22 : T2; θ; δ[v21, v22/x].

These normalize to r ′1 ∼ r ′2 : T2; θ; δ[v21, v22/x]. By Lemma 3.3.1,

r ′1 ∼ r ′2 : T2[e2/x]; θ; δ.

By expansion, we can then see

θ1(δ1(e1 e2)) ' θ2(δ2(e1 e2)) : T2[e2/x]; θ; δ.

(T TAbs): We have e = Λα. e0 and T = ∀α.T0 and Γ, α ` e0 : T0. Let Γ ` θ; δ. We
wish to show that

θ1(δ1(Λα. e0)) ∼ θ2(δ2(Λα. e0)) : ∀α.T0; θ; δ.

Let R,T1,T2 be given. We must show that

θ1(δ1(Λα. e0)) T1 ' θ2(δ2(Λα. e0)) T2 : T0; θ[α 7→ R,T1,T2]; δ.

Since

θ1(δ1(Λα. e0)) T1 −→ θ1(δ1(e0))[T1/α]

θ2(δ2(Λα. e0)) T2 −→ θ2(δ2(e0))[T2/α]

it suffices to show that

θ1(δ1(e0))[T1/α] ' θ2(δ2(e0))[T2/α] : T0; θ[α 7→ R,T1,T2]; δ.

Since Γ, α ` θ[α 7→ R,T1,T2]; δ, the IH finishes the case with Γ, α ` e0 ' e0 : T0.

(T TApp): We have e = e1 T2 and Γ ` e1 : ∀α.T0 and Γ ` T2 and T = T0[T2/α].
Let Γ ` θ; δ. We wish to show that

θ1(δ1(e1 T2)) ' θ2(δ2(e1 T2)) : T0[T2/α]; θ; δ.

By the IH,
θ1(δ1(e1)) ' θ2(δ2(e1)) : ∀α.T0; θ; δ.

111

These normalize to r1 ∼ r2 : ∀α.T0; θ; δ. If both results are blame, θ1(δ1(e1 T2)) and
θ2(δ2(e1 T2)) also normalize to blame, and we are done. So let r1 = v1 and r2 = v2.
Then, by definition,

v1 T ′1 ' v2 T ′2 : T0; θ[α 7→ R,T ′1,T
′
2]; δ

for any R,T ′1,T
′
2. In particular,

v1 θ1(δ1(T2)) ' v2 θ2(δ2(T2)) : T0; θ[α 7→ RT2,θ,δ, θ1(δ1(T2)), θ2(δ2(T2))]; δ.

These normalize to

r ′1 ∼ r ′2 : T0; θ[α 7→ RT2,θ,δ, θ1(δ1(T2)), θ2(δ2(T2))]; δ.

By Lemma 3.3.3, r ′1 ∼ r ′2 : T0[T2/α]; θ; δ. By expansion,

θ1(δ1(e1 T2)) ' θ2(δ2(e1 T2)) : T0[T2/α]; θ; δ.

(T Cast): We have e = 〈T1 ⇒ T2〉l and ` Γ and T1 ‖ T2 and Γ ` T1, Γ ` T2 and
T = T1 → T2. By the IH, Γ ` T1 ' T1 : ∗ and Γ ` T2 ' T2 : ∗. By Lemma 3.3.6,

Γ ` 〈T1 ⇒ T2〉l ' 〈T1 ⇒ T2〉l : T1 → T2.

(T Blame): Immediate.

(T Check): We have e = 〈{x :T1 | e1}, e2, v〉l and ∅ ` v : T1 and ∅ ` e2 : Bool, ` Γ
and ∅ ` {x :T1 | e1} and e1[v/x] −→∗ e2 and T = {x :T1 | e1}. Let Γ ` θ; δ. We wish
to show that

θ1(δ1(〈{x :T1 | e1}, e2, v〉l)) ' θ2(δ2(〈{x :T1 | e1}, e2, v〉l)) : {x :T1 | e1}; θ; δ.

By the IH,
θ1(δ1(e2)) ' θ2(δ2(e2)) : Bool; θ; δ

and these normalize to the same result. If the result is false or ⇑l ′ for some l ′, then,
for some l ′′,

θ1(δ1(〈{x :T1 | e1}, e2, v〉l)) −→∗ ⇑l ′′

θ2(δ2(〈{x :T1 | e1}, e2, v〉l)) −→∗ ⇑l ′′.

Otherwise, the result is true. Then, by the IH, v ∼ v : T1; θ; δ and ∅ ` {x :T1 | e1} '
{x :T1 | e1} : ∗. By definition,

θ1(δ1(e1))[v/x] ' θ2(δ2(e1))[v/x] : Bool; θ; δ[v , v/x].

Then, we have

θ1(δ1(e1))[v/x] = e1[v/x] −→∗ true

θ2(δ2(e1))[v/x] = e1[v/x] −→∗ true.

By definition, v ' v : {x :T1 | e1}; θ; δ. By expansion,

θ1(δ1(〈{x :T1 | e1}, e2, v〉l)) ' θ2(δ2(〈{x :T1 | e1}, e2, v〉l)) : {x :T1 | e1}; θ; δ.

112

(T Conv): By Lemma 3.3.4.

(T Exact): We have e = v and ∅ ` v : T and ∅ ` {x :T0 | e0} and e0[v/x] −→∗ true
and T = {x :T0 | e0}. Let Γ ` θ; δ. We wish to show that

v ∼ v : {x :T0 | e0}; θ; δ.

By the IH, v ∼ v : T0; θ; δ. Since ∅ ` {x :T0 | e0}, the only free variable in e0 is x and

θ1(δ1(e0))[v/x] = e0[v/x] −→∗ true

θ2(δ2(e0))[v/x] = e0[v/x] −→∗ true.

By definition, v ∼ v : {x :T0 | e0}; θ; δ.
(T Forget): By the IH, ∅ ` v ' v : {x :T | e}, which implies Γ ` v ' v : T .

(WF Base): Trivial.

(WF TVar): Trivial.

(WF Fun): By the IH.

(WF Forall): By the IH.

(WF Refine): By the IH. �

I refer readers to [61] for a significantly expanded account of parametricity for
FH with recursion. There, they have proved that their logical relation based on >>-
closure [53] is sound4 with respect to contextual equivalence. Since the details of their
technical developments are different from what I present here, I can only conjecture
that my logical relation is also sound with respect to contextual equivalence.

We do have that logically related programs are by definition behaviorally equiv-
alent : if ∅ ` e1 ' e2 : T , then e1 and e2 coterminate at related results. When the
results are constants or blame, the results are not only logically related, but equal.

3.4 Subtyping and Upcast Elimination

Knowles and Flanagan [44] define a subtyping relation for their manifest calculus, λH,
as a primitive notion of the system. Furthermore, they prove that upcast elimination
is sound: if T1 <: T2, then 〈T1 ⇒ T2〉l is equivalent to the identity function. Upcast
elimination is, at heart, an optimization: since the cast can never fail, there is no
point in running it. I define a subtyping relation for FH and prove that upcast
elimination is sound. To be clear, the type system of FH doesn’t have subtyping or
a subsumption rule at all; we simply show that upcasts are logically related—and
therefore behaviorally equivalent—to the identity.

4And also complete, under certain conditions.

113

Subtyping Γ ` T1 <: T2

Γ ` B <: B
S Base

Γ ` α <: α
S TVar

Γ, α ` T1 <: T2

Γ ` ∀α.T1 <: ∀α.T2
S Forall

Γ ` T21 <: T11 Γ, x :T21 ` T12[〈T21 ⇒ T11〉l x/x] <: T22

Γ ` x :T11 → T12 <: x :T21 → T22
S Fun

casts(T) =

{
〈T ′ ⇒ {x :T ′ | e}〉l ◦ casts(T ′) if T = {x :T ′ | e}
λx :T . x otherwise

Γ ` unref(T1) <: unref(T2)
Γ, x : unref(T1) ` casts(T1) x ⊃ casts(T2) (〈unref(T1)⇒ unref(T2)〉l x)

Γ ` T1 <: T2
S Refine

Implication Γ ` e1 ⊃ e2

∀Γ ` θ; δ. (∃v . θ1(δ1(e1)) −→∗ v) implies (∃v . θ1(δ1(e2)) −→∗ v)

Γ ` e1 ⊃ e2
Imp

Figure 3.7: Subtyping, implication, and closing substitutions

114

I define subtyping in Figure 3.7. My subtyping rules are similar to those in λH.
The first three rules are standard. The rule for dependent function types is mostly
usual: contravariant on argument types and covariant on return types. Here, we need
to be careful about the type of x . Return types T12 and T22 should be compared
under the assumption that x has T21, which is a subtype of the other argument type
T11 [6]. However, x in T12 has a different type, i.e., T11, so we need to insert a cast
to keep the subtyping relation well typed—FH doesn’t have subsumption! This extra
cast is necessary in the S Fun case when proving the upcast lemma, but the well
typedness of the relation is necessary so we can apply parametricity (Lemma 3.3.7)
in the S Refine case.

The rule for subtyping of refinements differs substantially from λH’s, mostly be-
cause FH allows refinements of arbitrary types, while λH only refines base types.
The S Refine rule essentially says T1 is a subtype of T2 if (1) T1 without the
(outermost) refinements is a subtype of T2 without the (outermost) refinements,
and (2) for any v of type unref(T1), if casts(T1) v reduces to a value, so does
casts(T2) 〈unref(T1) ⇒ unref(T2)〉l v , for any l . The intuition behind the second
condition is that, for T1 to be a subtype of T2, the predicates in T1 (combined by
conjunction) should be stronger than those in T2. Recall that casts(T) is defined in
Figure 3.7 as the composition of casts necessary to cast from unref(T) to T . So, if
application of casts(T) to a value of type unref(T) does not raise blame, then the
value can be typed at T by repeated use of T Exact.

If the implication in S Refine holds for a value v of type unref(T1), then either:
(1) v did not pass the checks in casts(T1), so this value is not in T1; or (2) v passed
the checks in casts(T1) and 〈unref(T1) ⇒ unref(T2)〉l v passed all of the checks in
casts(T2). So, if (1) or (2) hold for all values of type unref(T1), then it means that
all values of type T1 can be safely treated as if they had type T2, i.e., T1 a subtype
of T2.

Finally, we need a source of closing substitutions to compare the evaluation of
the two casts. I use the closing substitutions from the logical relation at T as the
source of “values of type T ”. (Arbitrarily, we take the values and types from the left.)
There is a similar situation in the manifest calculi of Knowles and Flanagan [44] and
Greenberg, Pierce, and Weirich [34]. They both define a separate denotational se-
mantics for use in their refinement subtyping rule—a unary logical relation unrelated
to the logical relations used in their respective proofs. But they need to do so, in
order to avoid a circularity. FH has no such issues, and I make the decision because
it is expedient.

I formulate the implication judgment in terms of cotermination at values rather
than cotermination at true (as in [34, 44]) because we have to contend with multiple
layers of refinement in types—using cotermination at values reduces the amount of
predicate bookkeeping we have to do.

Having defined subtyping, we are able to show that upcast elimination is sound.

3.4.1 Lemma [LR substitutivity]: If Γ, x :T1,Γ
′ ` T2 and Γ ` e1 ' e2 : T1, then

115

Γ,Γ′[e1/x] ` T2[e1/x] ' T2[e2/x] : ∗.
Proof: By induction on Γ, x :T1,Γ

′ ` T2. �

3.4.2 Lemma [LR type exchange]: If T1 ' T2 : ∗; θ; δ and T2 ' T1 : ∗; θ; δ, then
v1 ∼ v2 : T1; θ; δ if and only if v1 ∼ v2 : T2; θ; δ.

Proof: By induction on the size of T1 and T2.

(T1 = T2 = B): Trivial.

(T1 = T2 = α): Trivial.

(T1 = x :T11 → T12 and T2 = x :T21 → T22): By definition, T11 ' T21 : ∗; θ; δ and
T21 ' T11 : ∗; θ; δ and

∀v ′1 ∼ v ′2 : T11; θ; δ. T12 ' T22 : ∗; θ; δ[v ′1, v ′2/x], and
∀v ′1 ∼ v ′2 : T21; θ; δ. T22 ' T12 : ∗; θ; δ[v ′1, v ′2/x].

Then:

v1 ∼ v2 : T1; θ; δ
⇐⇒ ∀(v ′1 ∼ v ′2 : T11; θ; δ), v1 v ′1 ' v2 v ′2 : T12; θ; δ[v

′
1, v
′
2/x]

(by the IH) ⇐⇒ ∀(v ′1 ∼ v ′2 : T21; θ; δ), v1 v ′1 ' v2 v ′2 : T22; θ; δ[v
′
1, v
′
2/x]

⇐⇒ v1 ∼ v2 : T2; θ; δ.

(T1 = ∀α.T ′1 and T2 = ∀α.T ′2): By definition,

∀RT ′′1 T ′′2 , T ′1 ' T ′2 : ∗; θ[α 7→ R,T ′′1 ,T
′′
2]; δ

∀RT ′′1 T ′′2 , T ′2 ' T ′1 : ∗; θ[α 7→ R,T ′′1 ,T
′′
2]; δ.

Then:

v1 ∼ v2 : T1; θ; δ
⇐⇒ ∀RT ′′1 T ′′2 , v1 T ′′1 ' v2 T ′′2 : T ′1; θ[α 7→ R,T ′′1 ,T

′′
2]; δ

(by the IH) ⇐⇒ ∀RT ′′1 T ′′2 , v1 T ′′1 ' v2 T ′′2 : T ′2; θ[α 7→ R,T ′′1 ,T
′′
2]; δ

⇐⇒ v1 ∼ v2 : T2; θ; δ.

(T1 = {x :T ′1 | e1} and T2 = {x :T ′2 | e2}): By definition, T ′1 ' T ′2 : ∗; θ; δ and T ′2 '
T ′1 : ∗; θ; δ. And also:

∀(v1 ∼ v2 : T ′1; θ; δ), θ1(δ1(e1))[v1/x] ' θ2(δ2(e2))[v2/x] : Bool; θ; δ (3.1)

∀(v1 ∼ v2 : T ′2; θ; δ), θ1(δ1(e2))[v1/x] ' θ2(δ2(e1))[v2/x] : Bool; θ; δ. (3.2)

Then:
v1 ∼ v2 : {x :T ′1 | e1}; θ; δ

⇐⇒

v1 ∼ v2 : T ′1; θ; δ
θ1(δ1(e1))[v1/x] −→∗ true
θ2(δ2(e1))[v2/x] −→∗ true by the IH

by (3.1)
by (3.2)

 ⇐⇒

v1 ∼ v2 : T ′2; θ; δ
θ2(δ2(e2))[v2/x] −→∗ true
θ1(δ1(e2))[v1/x] −→∗ true

⇐⇒ v1 ∼ v2 : {x :T ′2 | e2}; θ; δ.

116

�

3.4.3 Lemma [Upcast lemma]: If Γ ` T1 <: T2 and Γ ` T1 and Γ ` T2, then
Γ ` 〈T1 ⇒ T2〉l ' λx :T1. x : T1 → T2.

Proof: By induction on the subtyping derivation.

(S Base): Easy. We have T1 = B and T2 = B . Let Γ ` θ; δ. We wish to show that

θ1(δ1(〈B ⇒ B〉l)) ' θ2(δ2(λx :T1. x)) : B → B ; θ; δ.

Let v1 ∼ v2 : B ; θ; δ. We must show that

θ1(δ1(〈B ⇒ B〉l)) v1 ' θ2(δ2(λx :T1. x)) v2 : B ; θ; δ[v1, v2/z]

for fresh z , but these normalize to v1 ∼ v2 : B ; θ; δ[v1, v2/z]. Lemma 3.3.2 finishes the
case.

(S TVar): Similar to the case for S Base.

(S Fun): We have T1 = y :T11 → T12 and T2 = y :T21 → T22 and Γ ` T21 <: T11 and

Γ, y :T21 ` T12[〈T21 ⇒ T11〉l y/y] <: T22.
Let Γ ` θ; δ. We wish to show that

θ1(δ1(〈y :T11 → T12 ⇒ y :T21 → T22〉l)) '
θ2(δ2(λx :T1. x)) : (y :T11 → T12)→ (y :T21 → T22); θ; δ.

Let v1 ∼ v2 : y :T11 → T12; θ; δ. We must show that

θ1(δ1(〈y :T11 → T12 ⇒ y :T21 → T22〉l)) v1 '
θ2(δ2(λx :T1. x)) v2 : y :T21 → T22; θ; δ[v1, v2/z]

for fresh z .
If T1 = T2, then we are done, since

θ1(δ1(〈y :T11 → T12 ⇒ y :T21 → T22〉l)) v1 −→ v1

θ2(δ2(λx :T1. x)) v2 −→ v2.

Otherwise,

θ1(δ1(〈y :T11 → T12 ⇒ y :T21 → T22〉l)) v1 −→
θ1(δ1(λy :T21. 〈T12[〈T21 ⇒ T11〉l y/y]⇒ T21〉l (v1 (〈T21 ⇒ T11〉l y))))

θ2(δ2(λx :T1. x)) v2 −→ v2.

So, it suffices to show that

θ1(δ1(λy :T21. 〈T12[〈T21 ⇒ T11〉l y/y]⇒ T21〉l (v1 (〈T21 ⇒ T11〉l y)))) ∼ v2
: y :T21 → T22; θ; δ[v1, v2/z].

117

Let v ′1 ∼ v ′2 : T21; θ; δ[v1, v2/z]. We will show that

θ1(δ1(λy :T21. 〈T12[〈T21 ⇒ T11〉l y/y]⇒ T21〉l (v1 (〈T21 ⇒ T11〉l y)))) v ′1 ' v2 v ′2
: T22; θ; δ[v1, v2/z][v ′1, v

′
2/y].

By the IH, Γ ` 〈T21 ⇒ T11〉l ' λx :T21. x : T21 → T11. So,

θ1(δ1(〈T21 ⇒ T11〉l)) v ′1 ' (λx :θ1(δ1(T21)). x) v ′2 : T11; θ; δ[v
′
1, v
′
2/z ′]

for fresh z ′′. Then, for some v ′′1 , θ1(δ1(〈T21 ⇒ T11〉l)) v ′1 −→ v ′′1 and v ′′1 ' v ′2 :
T11; θ; δ[v

′
1, v
′
2/z ′]. By assumption,

v1 v ′′1 ' v2 v ′2 : T12; θ; δ[v
′′
1 , v

′
2/y],

which normalize to v ′′′1 ' v ′′′2 : T12; θ; δ[v
′′
1 , v

′
2/y]. Now, we can show that

Γ, y :T21 ` 〈T21 ⇒ T11〉l y ' y : T11, and
Γ ` 〈T21 ⇒ T11〉l ' λx :T21. x : T21 → T11.

Noting that T12 = T12[y/y], Lemma 3.4.1 obtains

Γ, y :T21 ` T12[〈T21 ⇒ T11〉l y/y] ' T12 : ∗.

Then, by Lemma 3.4.2 (note that it is easy to show that Γ ` T1 ' T2 : ∗ if and only
if Γ ` T2 ' T1 : ∗), we have

v ′′′1 ' v ′′′2 : T12[〈T21 ⇒ T11〉l y/y]; θ; δ[v ′′1 , v
′
2/y].

On the other hand, by the other IH,

Γ, y :T21 ` 〈T12[〈T21 ⇒ T11〉l y/y]⇒ T22〉l ' λx :(T12[〈T21 ⇒ T11〉l y/y]). x
: T12[〈T21 ⇒ T11〉l y/y]→ T22.

Since Γ, y :T21 ` θ; δ[v ′1, v ′2/y],

θ1(δ1(〈T12[〈T21 ⇒ T11〉l v ′1/y]⇒ T22[v
′
1/y]〉l)) ∼

θ2(δ2(λx :T12[〈T21 ⇒ T11〉l v ′2/y]. x))
: T12[〈T21 ⇒ T11〉l y/y]→ T22; θ; δ[v

′
1, v
′
2/y].

So,
θ1(δ1(〈T12[〈T21 ⇒ T11〉l v ′1/y]⇒ T22[v

′
1/y]〉l)) v ′′′1 '

θ2(δ2((λx :T12[〈T21 ⇒ T11〉l v ′2/y]. x))) v ′′′2
: T22; θ; δ[v

′
1, v
′
2/y][v ′′′1 , v

′′′
2 /z ′′′].

for fresh z ′′′. They normalize to

v ′′′′1 ∼ v ′′′2 : T22; θ; δ[v
′
1, v
′
2/y][v ′′′1 , v

′′′
2 /z ′′′].

118

Now, letting T ′12 = T12[〈T21 ⇒ T11〉l y/y], we have:

θ1(δ1(λy :T21. (〈T ′12 ⇒ T22〉l (v1 (〈T21 ⇒ T11〉l y))))) v ′1
−→ θ1(δ1(〈T ′12[v ′1/y]⇒ T22[v

′
1/y]〉l (v1 (〈T21 ⇒ T11〉l v ′1))))

−→∗ θ1(δ1(〈T ′12[v ′1/y]⇒ T22[v
′
1/y]〉l)) (v1 v ′′1)

−→∗ θ1(δ1(〈T ′12[v ′1/y]⇒ T22[v
′
1/y]〉l)) v ′′′1

−→∗ v ′′′′1

and v2 v ′2 −→∗ v ′′′2 and

v ′′′′1 ∼ v ′′′2 : T22; θ; δ[v
′
1, v
′
2/y][v ′′′1 , v

′′′
2 /z ′′′],

which concludes this case by expansion.

(S Forall): We have T1 = ∀α.T ′1 and T2 = ∀α.T ′2 and Γ, α ` T ′1 <: T ′2.
Let Γ ` θ; δ. We wish to show that

θ1(δ1(〈T1 ⇒ T2〉l)) ' θ2(δ2(λx :T1. x)) : T1 → T2; θ; δ.

Let v1 ∼ v2 : T1; θ; δ. We must show that

θ1(δ1(〈T1 ⇒ T2〉l)) v1 ' θ2(δ2(λx :T1. x)) v2 : T2; θ; δ[v1, v2/z]

for fresh z . If T1 = T2, then we are done:

θ1(δ1(〈T1 ⇒ T2〉l)) v1 −→ v1

θ2(δ2(λx :T1. x)) v2 −→ v2.

Otherwise,

θ1(δ1(〈T1 ⇒ T2〉l)) v1 −→ Λα. (θ1(δ1(〈T1 ⇒ T2〉l)) (v1 α)).

So, it suffices to show that

Λα. (θ1(δ1(〈T1 ⇒ T2〉l)) (v1 α)) ' v2 : T2; θ; δ[v1, v2/z].

Let R,T ′′1 ,T
′′
2 be given. We must show that

Λα. (θ1(δ1(〈T1 ⇒ T2〉l)) (v1 α)) T ′′1 ' v2 T ′′2 : T ′2; θ[α 7→ R,T ′′1 ,T
′′
2]; δ[v1, v2/z].

Since

Λα. (θ1(δ1(〈T1 ⇒ T2〉l)) (v1 α)) T ′′1 −→ θ1(δ1(〈T1[T
′′
1 /α]⇒ T2[T

′′
1 /α]〉l)) (v1 T ′′1),

it suffices to show that

θ1(δ1(〈T1[T
′′
1 /α]⇒ T2[T

′′
1 /α]〉l)) (v1 T ′′1) ' v2 T ′′2 : T ′2; θ[α 7→ R,T ′′1 ,T

′′
2]; δ[v1, v2/z].

119

By assumption

v1 T ′′1 ' v2 T ′′2 : T1; θ[α 7→ R,T ′′1 ,T
′′
2]; δ,

which normalize to
v ′1 ∼ v ′2 : T1; θ[α 7→ R,T ′′1 ,T

′′
2]; δ.

By the IH,
Γ, α ` 〈T ′1 ⇒ T ′2〉l ' λx :T ′1. x : T ′1 → T ′2

and so,

θ1(δ1(〈T1[T
′′
1 /α]⇒ T2[T

′′
1 /α]〉l)) ∼ λx :T ′1[T

′′
2 /α]. x : T ′1 → T ′2; θ[α 7→ R,T ′′1 ,T

′′
2]; δ.

Then, by definition,

θ1(δ1(〈T1[T
′′
1 /α]⇒ T2[T

′′
1 /α]〉l)) v ′1 ' (λx :T ′1[T

′′
2 /α]. x) v ′2

: T ′2; θ[α 7→ R,T ′′1 ,T
′′
2]; δ[v ′1, v

′
2/z ′]

for fresh z ′. They normalize to

v ′′1 ∼ v ′2 : T ′2; θ[α 7→ R,T ′′1 ,T
′′
2]; δ[v ′1, v

′
2/z ′],

and by expansion we are done:

θ1(δ1(〈T1[T
′′
1 /α]⇒ T2[T

′′
1 /α]〉l)) (v1 T ′′1) ' v2 T ′′2 : T ′2; θ[α 7→ R,T ′′1 ,T

′′
2]; δ[v1, v2/z].

(S Refine): We have Γ ` unref(T1) <: unref(T2) and

Γ, x : unref(T1) ` casts(T1) x ⊃ casts(T2) (〈unref(T1)⇒ unref(T2)〉l x).

Let Γ ` θ; δ. We wish to show that

θ1(δ1(〈T1 ⇒ T2〉l)) ' θ2(δ2(λx :T1. x)) : T1 → T2; θ; δ.

Let v1 ∼ v2 : T1; θ; δ. We must show that

θ1(δ1(〈T1 ⇒ T2〉l)) v1 ' θ2(δ2(λx :T1. x)) v2 : T2; θ; δ[v1, v2/z]

for fresh z .
We have three cases according to how the LHS reduces.

(T2 = unrefj1(T1) for some j): Then, we have

θ1(δ1(〈T1 ⇒ T2〉l)) v1
(by E Forget) −→∗ θ1(δ1(〈T2 ⇒ T2〉l)) v1
(by E Refl) −→ v1.

Since θ2(δ2(λx :T1. x)) v2 −→ v2, we have v1 ∼ v2 : T1; θ; δ[v1, v2/z]. Since
unrefj1(T1) = T2, we also have v1 ∼ v2 : T2; θ; δ[v1, v2/z]. So, by expansion,

θ1(δ1(〈T1 ⇒ T2〉l)) v1 ' θ2(δ2(λx :T1. x)) v2 : T2; θ; δ[v1, v2/z].

120

(T ′1 = unrefj1(T1) for some j and T2 = {x :T ′1 | e2}): Then, we have

θ1(δ1(〈T1 ⇒ T2〉l)) v1
(by E Forget) −→∗ θ1(δ1(〈T ′1 ⇒ {x :T ′1 | e2}〉l)) v1
(by E Check) −→ 〈θ1(δ1({x :T ′1 | e2})), θ1(δ1(e2))[v1/x], v1〉l .

By assumption, v1 ' v2 : unref(T1); θ; δ and θ1(δ1(casts(T1))) v1 −→∗ v1. By
Imp, for some v ′1 we have,

θ1(δ1(casts(T2))) (θ1(δ1(〈unref(T1)⇒ unref(T2)〉l)) v1) −→∗ v ′1.

By inspecting the reduction sequence, we have

casts(T2) (〈unref(T1)⇒ unref(T2)〉l v1)
(by E Refl) −→ casts(T2) v1

−→∗ 〈T ′1 ⇒ {x :T ′1 | e2}〉l v1
(by E Check) −→ 〈θ1(δ1({x :T ′1 | e2})), θ1(δ1(e2))[v1/x], v1〉l

−→∗ 〈θ1(δ1({x :T ′1 | e2})), true, v1〉l
−→ v1.

Since θ2(δ2(λx :T1. x)) v2 −→ v2, we have

v1 ∼ v2 : T1; θ; δ[v1, v2/z].

Since unrefj1(T1) = T ′1, we also have

v1 ∼ v2 : T ′1; θ; δ[v1, v2/z].

Finally, θ1(δ1(e2))[v1/x] −→∗ true gives v1 ∼ v2 : {x :T ′1 | e2}; θ; δ[v1, v2/z].
Finally, by expansion

θ1(δ1(〈T1 ⇒ T2〉l)) v1 ' θ2(δ2(λx :T1. x)) v2 : T2; θ; δ[v1, v2/z].

(Otherwise): We have

θ1(δ1(〈T1 ⇒ T2〉l)) v1
(by E Forget) −→∗ θ1(δ1(〈unref(T1)⇒ T2〉l)) v1
(by E Precheck) −→∗ e

where
e = θ1(δ1(〈unref1(T2)⇒ T2〉l

(〈unref2(T2)⇒ unref1(T2)〉l
(· · · (〈unref(T1)⇒ unref(T2)〉l v1))))).

By the IH,

Γ ` 〈unref(T1)⇒ unref(T2)〉l ' λx : unref(T1). x : (unref(T1)→ unref(T2)).

121

That is,

θ1(δ1(〈unref(T1)⇒ unref(T2)〉l)) v1 ' θ1(δ1(λx : unref(T1). x)) v2
: unref(T2); θ; δ[v1, v2/z].

They normalize to v ′1 ∼ v2 : unref(T2); θ; δ[v1, v2/z].

By assumption, v1 ' v2 : unref(T1); θ; δ and θ1(δ1(casts(T1))) v1 −→∗ v1. By
Imp, for some v ′′1 we have:

θ1(δ1(casts(T2) ((〈unref(T1)⇒ unref(T2)〉l) v1))) −→
θ1(δ1(casts(T2))) v ′1 −→∗ v ′′1 .

Inspecting this reduction sequence gives v ′′1 = v ′1.

By Lemma 3.3.7, Γ ` T2 ' T2 : ∗, which shows θ2(δ2(casts(T2))) v2 −→∗ v ′2
for some v ′2—that is, running all of the refinements doesn’t produce blame,
which means the checks must go to true. We can then conclude that v ′1 ∼ v2 :
T2; θ; δ[v1, v2/z], and so, by expansion,

θ1(δ1(〈T1 ⇒ T2〉l)) v1 ' θ2(δ2(λx :T1. x)) v2 : T2; θ; δ[v1, v2/z].

�

Other optimizations

We can use subtyping to prove other optimizations correct. For example, we can
show that {y :{x :T | e1} | e2} and {x :T | e1 ∧ e2[x/y]} are equivalent. To do
so, we must first show that subtyping is reflexive. In order to show reflexivity, we
must show that subtyping respects contextual equivalence of types—two types are
contextually equivalent if their type parts are identical and the matching term parts
are contextually equivalent. (This implies that contextually equivalent types have
contextually equivalent sub-parts.) We lift this to contexts in the natural way.

3.4.4 Lemma [Subtyping respects contextual equivalence]: If T1 is contextu-
ally equivalent to T ′1, then (1) Γ ` T1 <: T2 iff Γ ` T ′1 <: T2 and (2) Γ ` T2 <: T1 iff
Γ ` T2 <: T ′1.

Proof: By induction on the subtyping derivations. �

3.4.5 Lemma [Reflexivity of subtyping]: If Γ ` T , then Γ ` T <: T .

Proof: By induction on the height of Γ ` T , using Lemma 3.4.4 to account for the
cast in the domain of S Fun. �

122

3.4.6 Lemma: If Γ ` {y :{x :T | e1} | e2}, then Γ ` {y :{x :T | e1} | e2} <: {x :T |
e1 ∧ e2[x/y]} and Γ ` {x :T | e1 ∧ e2[x/y]} <: {y :{x :T | e1} | e2}.

Proof: By inversion, we know that the inner types are well formed (Γ ` {x :T |
e1} and Γ ` T) and that the predicates are well formed (Γ, x :T ` e1 : Bool and
Γ, y :{x :T | e1} ` e2 : Bool).

We want to apply S Refine to prove both subtypings. By reflexivity of subtyping
(Lemma 3.4.5), we know that Γ ` unref({y :{x :T | e1} | e2}) <: unref({x :T | e1 ∧
e2[x/y]}) and vice versa. We must then show, forall Γ, x :T ` θ; δ, that if

θ1(δ1(〈T ⇒ {x :T | e1}〉l (〈{x :T | e1} ⇒ {y :{x :T | e1} | e2}〉l x)))

reduces to a value iff

θ1(δ1(〈T ⇒ {x :T | e1 ∧ e2[x/y]}〉l x))

does, too.
Let θ1(δ1(x)) = v . The former steps to a value when e1[v/x] −→∗ true and

e2[v/y] −→∗ true. The latter steps to a value (e1 ∧ e2[x/y])[v/x] −→∗ true, i.e., when
e1[v/x] −→∗ true and e2[v/y] −→∗ true. �

3.5 Type conversion: parallel reduction vs. com-

mon subexpression reduction

Belo et al. [8] used parallel reduction (defined in Figure 3.8) as the conversion relation
between types, while here I’ve used a structural conversion relation with common
subexpression reduction (CSR). In this section, I explain the need for a conversion
relation, why I’ve made the change, and how the two approaches differ.

First, why do we need a type conversion relation at all? Suppose we are trying
to prove preservation, in order to find syntactic type soundness. Consider the term
v1 e2, where v1 has the type x :T1 → T2 and e2 has the type T1. According to T App,
the type of v1 e2 is T2[e2/x]. What happens when e2 −→ e ′2? The syntactic type
system gives us v1 e2 : T2[e

′
2/x]. To finish such a preservation proof, we must know

how T2[e2/x] and T2[e
′
2/x] relate. Intuitively, they ought to be inhabited by the same

values: since our evaluation semantics is deterministic, any value that satisfies the
checks in T2[e2/x] should also satisfy the checks in T2[e

′
2/x], since the latter type is

just a few extra steps along. We must modify the definition of our syntactic type
system to make it respect this equivalence in a formal way.

In λH in Chapter 2, we observe that while T2[e2/x] may not reduce to T2[e
′
2/x]—

types don’t reduce at all, in fact—we can relate them as subtypes of each other.
For this reason (among others), the λH system introduces a subtyping relation. But
it turns out that subtyping in that language introduces a vicious cycle (see Sec-
tion 5.2.2), forcing us to adopt a semantic approach to types soundness. I end up

123

Parallel term reduction e1 V e2

vi V v ′i
op (v1, ... , vn)V [[op]] (v ′1, ... , v

′
n)

EP ROp
e12 V e ′12 v2 V v ′2

(λx :T . e12) v2 V e ′12[v ′2/x]
EP RBeta

e V e ′ T2 V T ′2
(Λα. e)T2 V e ′[T ′2/α]

EP RTBeta
v V v ′

〈T ⇒ T 〉l v V v ′
EP RRefl

T2 6= {x :T1 | e} T2 6= {y :{x :T1 | e} | e2} T1 V T ′1 T2 V T ′2 v V v ′

〈{x :T1 | e} ⇒ T2〉l v V 〈T ′1 ⇒ T ′2〉l v ′
EP RForget

T1 6= T2 T1 6= {x :T | e} T1 V T ′1 T2 V T ′2 e V e ′ v V v ′

〈T1 ⇒ {x :T2 | e}〉l v V 〈T ′2 ⇒ {x :T ′2 | e ′}〉l (〈T ′1 ⇒ T ′2〉l v ′)
EP RPreCheck

T V T ′ e V e ′ v V v ′

〈T ⇒ {x :T | e}〉l v V 〈{x :T ′ | e ′}, e ′[v ′/x], v ′〉l
EP RCheck

v V v ′

〈{x :T | e1}, true, v〉l V v ′
EP ROK

〈{x :T | e1}, false, v〉l V ⇑l
EP RFail

x :T11 → T12 6= x :T21 → T22

T11 V T ′11 T12 V T ′12 T21 V T ′21 T22 V T ′22 v V v ′

〈x :T11 → T12 ⇒ x :T21 → T22〉l v V
λx :T ′21. (〈T ′12[〈T ′21 ⇒ T ′11〉l x/x]⇒ T ′22〉l (v ′ (〈T ′21 ⇒ T ′11〉l x)))

EP RFun

∀α.T1 6= ∀α.T2 T1 V T ′1 T2 V T ′2 v V v ′

〈∀α.T1 ⇒ ∀α.T2〉l v V Λα. (〈T ′1 ⇒ T ′2〉l (v ′ α))
EP RForall

e V e
EP Refl

T1 V T ′1 e12 V e ′12
λx :T1. e12 V λx :T ′1. e

′
12

EP Abs
e1 V e ′1 e2 V e ′2

e1 e2 V e ′1 e
′
2

EP App

e V e ′

Λα. e V Λα. e ′
EP TAbs

e1 V e ′1 T2 V T ′2
e1 T2 V e ′1 T

′
2

EP TApp

ei V e ′i
op (e1, ... , en)V op (e ′1, ... , e

′
n)

EP Op
T1 V T ′1 T2 V T ′2

〈T1 ⇒ T2〉l V 〈T ′1 ⇒ T ′2〉l
EP Cast

T V T ′ e V e ′

〈T , e, k〉l V 〈T ′, e ′, k〉l
EP Check

E [⇑l]V ⇑l
EP Blame

Parallel type reduction T1 V T2

T V T
EP TRefl

σ1 −→∗ σ2 T1 V T2

{x :T1 | σ1(e)}V {x :T2 | σ2(e)}
EP TRefine

T1 V T ′1 T2 V T ′2
x :T1 → T2 V x :T ′1 → T ′2

EP TFun
T V T ′

∀α.T V ∀α.T ′
EP TForall

Figure 3.8: Parallel reduction

124

Conversion σ1 −→∗ σ2 T1 ≡ T2

σ1 −→∗ σ2 ⇐⇒
dom(σ1) = dom(σ2) ∧
∀x ∈ dom(σ1). σ1(x) −→∗ σ2(x) ∧
∀α ∈ dom(σ1). σ1(α) = σ2(α)

α ≡ α
C Var

B ≡ B
C Base

σ1 −→∗ σ2 T1 ≡ T2

{x :T1 | σ1(e)} ≡ {x :T2 | σ2(e)}
C Refine

T1 ≡ T ′1 T2 ≡ T ′2
x :T1 → T2 ≡ x :T ′1 → T ′2

C Fun
T ≡ T ′

∀α.T ≡ ∀α.T ′
C Forall

T2 ≡ T1

T1 ≡ T2
C Sym

T1 ≡ T2 T2 ≡ T3

T1 ≡ T3
C Trans

Figure 3.9: Type conversion via common subexpression reduction

showing that that T2[e2/x] parallel reduces to T2[e
′
2/x]. That is, we can take some

number of reduction steps in parallel (one for each free occurrence of x) from T2[e2/x]
to T2[e

′
2/x]. I then show that the denotations of such types are equal (Lemma 2.3.17),

and then prove semantic type soundness for λH with respect to those denotations.
Note that Lemma 2.3.17 depends on a long Coq development showing cotermina-
tion: if e1 V e2, then e1 −→∗ v1 iff e2 −→∗ v2 such that v1 V v2 (Lemma A20 in
thy.v)—more on this later.

The situation for λH is somewhat unsatisfying. We set out to prove syntactic
type soundness and ended up proving semantic type soundness along the way. While
not a serious burden for a language as small as λH, having to use semantic tech-
niques throughout makes adding some features—polymorphism, state and other ef-
fects, concurrency—difficult. For example, a semantic proof of type soundness for FH

is very close to a proof of parametricity—must we prove parametricity while proving
type soundness?

In originally doing the work in this chapter (Belo et al. [8]), we observed that we
could get rid of subtyping and explicitly use the symmetric, transitive closure of paral-
lel reduction as the conversion relation. (Parallel reduction is reflexive by definition.)
Between that (and a few other changes), we found subtyping no longer necessary.
We still, however, needed cotermination for parallel reduction. We also explicitly
depended on substitutivity : if e1 V e2 and e ′1 V e ′2 then e1[e

′
1/x]V e2[e

′
2/x]. It turns

out that the proof of cotermination for λH also needs substitutivity, Lemma A3 in
thy.v, but we needed it for the substitution in types discussed above. Unfortunately,
parallel reduction in FH is not substitutive [60]. There are two counterexamples, both
in Figure 3.10.

Why doesn’t substitutivity hold in FH, when it did (so easily) in λH? There are
two reasons. First, the cast semantics of FH is much more complicated than that of
λH (six rules, as opposed to two). The FH rules depend on upon certain (syntactic)
equalities between types—both counterexamples in Figure 3.10 take advantage these

125

Counterexample 1

Let T be a type with a free variable x .

e1 = 〈T ⇒ {y :T [5/x] | true}〉l 0
e2 = 〈T [5/x]⇒ {y :T [5/x] | true}〉l (〈T ⇒ T [5/x]〉l 0)

e ′1 = e ′2 = 5

Observe that e ′1 V e ′2 (by EP Refl) and e1 V e2 (by EP RPreCheck) but
e1[5/x] = 〈T [5/x]⇒ {y :T [5/x] | true}〉l 0V 〈{y :T [5/x] | true}, true, 0〉l by EP RCheck, not
e2[5/x].

Counterexample 2

Let T2 be a type with a free variable x .

e1 = 〈T1 → T2 ⇒ T1 → T2[5/x]〉l v
e2 = λy :T1. 〈T2 ⇒ T2[5/x]〉l (v (〈T1 ⇒ T1〉l y))

e ′1 = e ′2 = 5

Observe that e ′1 V e ′2 (by EP Refl) and e1 V e2 (by EP RFun). We have
e1[5/x] = 〈T1 → T2[5/x]⇒ T1 → T2[5/x]〉l v V v [5/x] by EP RRefl, not e2[5/x].

Figure 3.10: Counterexamples to substitutivity of parallel reduction in FH

equalities to break substitutivity. Second, λH treats 〈x :T11 → T12 ⇒ x :T21 →
T22〉l v as a value, while it is a redex in FH. This syntactic coincidence makes an
exact cotermination lemma possible. But as the second counterexample shows, in
FH it’s possible to have a substitution introduce a function proxy in e2 but not e1.
While I conjecture that e1 and e2 are contextually equivalent, they won’t yield values
that parallel reduce to each other. The rules that are the source of the problem for
substitutivity of parallel reduction are the EP R... rules, where a reduction in the
outer term happens at the same time as parallel reductions deep inside the term.
Note that both counterexamples make use of such rules.

The semantics of FH as published in ESOP 2011 are wrong. To fix them, I in-
troduced a simpler conversion relation, defined in Figure 3.9. Instead of allowing full
parallel reduction, I restrict convertible types to the CSR σ1 −→∗ σ2, i.e., substitu-
tions over the same set of term and type variables where (a) every term binding in
σ1 reduces to its corresponding binding in σ2, and (b) the type bindings are identi-
cal. My conversion relation is essentially the symmetric, transitive closure5 of parallel
reduction—without these reducing rules.

Phrasing the conversion relation in terms of CSR gives us substitutivity nearly
automatically, but cotermination remains an issue. In Conjecture 3.2.1, I suggest that
terms related by CSR coterminate at true; this is enough to prove type soundness and
parametricity of FH.

It is unclear if cotermination of parallel reduction holds in FH despite the absence

5I prove that my relation is reflexive in Lemma 3.2.3.

126

of substitutivity, i.e., whether if e1 V e2 then e1 −→∗ v1 iff e2 −→ v2 such that
v1 V v2. But it turns out that we can get by with a simpler property: cotermination
at true, rather than at arbitrary values. This property is a corollary of cotermination,
since trueV true, but it is less likely to be interfered with by function proxies which
may be introduced as in the second counterexample. The intuition that leads me to
believe that cotermination at true holds for CSR is that in a well typed program,
any extra checks or function proxies introduced due to differing substitutions must
eventually disappear if the type of the final expression is Bool.

I believe that weak bisimulation is a promising proof technique: it’s syntactic
enough to avoid issues of circularity with typing, but semantic enough to relate terms
that are related by −→∗ reductions. I think weak bisimulations in particular are
appropriate, because of the need for −→∗ reductions on both sides of the relation.
The system as defined may make such a proof slightly difficult. Recalling the first
counterexample to substitutivity, we will need to have e1[e

′
1/x] and e2[e

′
2/x] in the

relation, but how can the relation “remember” that any checks that occur on one
side but not the other inevitably succeed? Introducing explicit tagging, as I do in
Chapter 4, is an attractive approach to solving this technical problem. In an explicitly
tagged manifest contract system, the only values inhabiting refinement types are
tagged as such, e.g., (v, {x :T | e}); the operational semantics then manages tags on
values, tagging in E CheckOK and untagging in E Forget. Explicit tagging has
several advantages: it clarifies the staging of the operational semantics; it eliminates
the need for a T Forget rule; it gives value inversion directly (Lemma 3.2.11).
Finally, any proof of cotermination at true (Conjecture 3.2.1) must be careful to not
rely on type soundness, preservation, or substitution properties. Those theorems in
FH rely on Conjecture 3.2.1, so we can’t use them in its proof.

Finally: what kind of calculus wouldn’t have cotermination at true? In a non-
deterministic language, CSR may make one choice with σ1 and another with σ2.
Fortunately, FH is deterministic. In a deterministic language, cotermination at true
may not hold for CSR if the evaluation relation abuses equalities that are violated by
reduction. FH’s semantics does use equalities that are violated by term reduction; I
believe that “abuse” means using an equality on part of a term to determine which
step to take, but then ignoring that part of the term later in evaluation. Since FH

doesn’t do that, I am confident enough to conjecture that cotermination at true holds.

3.6 Conclusion

This chapter presented a simpler approach to manifest contract calculi, which I ap-
plied to defining FH, a parametrically polymorphic manifest contract calculus. When
I say “parametrically” polymorphic, I mean in particular that the relation R used to
related terms at type variables in the logical relation is a parameter of the logical re-

127

lation, which admits any instantiation of R.6 I offered the first operational semantics
for general refinements, where refinements can apply to any type, not just base types.
Finally, I defined a post facto subtyping relation, proving that “upcasts” from sub-
types to supertypes always succeed in FH, i.e., that subtyping is sound. This recovers
the reasoning principles lost when we left subtyping out of the language definition.

6Earlier versions [8] only admit relations that respect parallel reduction, but that restriction has
been relaxed.

128

Chapter 4

Space-efficient manifest contracts

Space and Time! now I see it is true, what I guessd at,
What I guessd when I loafd on the grass,
What I guessd while I lay alone in my bed,
And again as I walkd the beach under the paling stars of the morning.

Song of Myself
Walt Whitman

There has been a great deal of investigation into so-called full-spectrum program-
ming languages, combining dynamic types, simple types, and contract-style refine-
ments. The promise of a single language admitting the full development cycle—from
a small script to a more manageable, statically typed program to a robust, verified
system—has held great allure for some time. Prior attempts to fulfill this promise
have attacked the problem piecemeal: script to program, and program to verified
program. This dissertation so far is no exception: we have studied contracts as an
extension on top of simple types (Chapter 2) and System F (Chapter 3).

I find it useful to think of one axis of the design space as a spectrum of expressivity,
ranging from dynamic types on the left to dependent refinement types on the right
(illustrated in Figure 4.1). I call it the “dyn/refine spectrum”. On the one hand,
work in the script-to-program category goes back at least to Abadi et al.’s work
with type Dynamic, with more recent work falling under Siek and Taha’s rubric of
“gradual typing” [1, 73, 67, 46, 74, 4, 65, 23, 18, 39, 68]. On the other hand, program
verification is an enormous field in its own right; in this dissertation, I focus on
dynamic enforcement methods in general and contracts in particular. We have seen
that some more recent work takes a type-oriented, or manifest, approach to contracts,
allowing so-called refinement types of the form {x :T | e}, inhabited by values v that
satisfy the predicate e, i.e. e[v/x] −→∗ true.

Over the last decade, the state of the art combining these two paradigms—in
gradual types and manifest contracts in particular—has steadily progressed [10, 45,
78, 51]. Starting with Sage [45] and continuing with Wadler and Findler [78], many

129

dynamic types simple types refinement types dependency

Figure 4.1: The dyn/refine spectrum of cast expressiveness

languages have expressed the interactions between dynamic and simple static types
and between simple static types and refinement types using a single syntactic form:
the cast. The previous two chapters are no exception.

Casts are promising. They offer a unified view of changes in type information,
have straightforward operational semantics, and enjoy a fruitful relationship with
subtyping (see [78, 65, 44, 34, 68, 8]). The space-efficient full-spectrum language I
develop in this chapter derives its semantics from a full-spectrum language with casts.
Before we can continue, I must explain how casts work with Dyn, the dynamic type.

The first consequence of introducing Dyn to our language is the introduction of
nontermination: in earlier chapters, the typing regime prevented divergence. But it is
easy to write a nonterminating program using Dyn—we must simply deal with it. In
any case, this is a theoretical difficulty; pragmatically, I want languages which have
general recursion (and, so, the potential for nontermination).

As for casts into and out of Dyn, a cast of the form 〈Int ⇒ Dyn〉 5 asks for the
number 5, which has type Int, to be treated as a value of type Dyn, the dynamic
type. The operational semantics of such a cast will mark the value with a tag, as in
5Int!. Similarly, a cast of the form 〈Dyn ⇒ Int〉 5Int! will project the tagged integer
out of type dynamic, yielding the original value 5. In the case where the cast’s
argument isn’t tagged correctly, the cast must raise an error. Consider the term
〈Dyn⇒ Int〉 trueBool!. It tries to project an Int out of type dynamic, but the dynamic
value is really a Bool—a type error. All we can reasonably do is abort the program,
evaluating to the uncatchable exception fail.1

We have already seen that casts on functions are the most interesting casts: values
with functional casts on them, like 〈T11→T12 ⇒ T21→T22〉 v1, are themselves values;
they are wrapped with a function proxy. When such wrapped values are applied to a
value v2, the cast unfolds:

(〈T11→T12 ⇒ T21→T22〉 v1) v2 −→ 〈T12 ⇒ T22〉 (v1 (〈T21 ⇒ T11〉 v2))

Note that this rule is contravariant in the domain. I use a different semantics in
Chapter 3, where I introduce new lambdas. Since our subject in this chapter is space
efficiency, introducing extra closures for explicit function proxies is a non-starter.

One problem common to calculi with casts is the problem of space efficiency. In
particular, casts can accumulate in an unbounded way: redundant casts can grow
the stack arbitrarily; casting functions can introduce an arbitrary number of function

1I forgo blame in this chapter, leaving it as future work. Since my final result is an inexact
relationship between the näıve and space-efficient calculi, tracking blame doesn’t seem particularly
useful—it won’t match up.

130

proxies. This unbounded growth of casts can, in the extreme, change the asymptotic
complexity of programs. To see why the näıve treatment isn’t space efficient, recall
the mutually recursive definition of even and odd from Section 1.3, adapted from
Herman et al. [39]:

even : Dyn→Dyn = 〈Int→Bool⇒ Dyn→Dyn〉 λx :Int.
if x = 0 then true else odd (x − 1)

odd : Int→Bool = λx :Int.
if x = 0 then false else (〈Dyn→Dyn⇒ Int→Bool〉 even) (x − 1)

In this example, even is written in a more dynamically typed style than odd. (While
this example is contrived, it is easy to imagine mutually recursive modules with
dynamic typing and refinement types. For example, in PLT Racket [55], Typed
Racket [74] modules interoperate with a number of untyped Racket modules. In
those cases, it’s possible to accumulate an unbounded number of redundant checks
on the stack or as function proxies, e.g., on continuations or callbacks.) The cast
〈Int→Bool ⇒ Dyn→Dyn〉 (λx :Int. . . .) in the definition of even will (a) check that
even’s dynamically typed arguments are in fact Ints and (b) tag the resulting booleans
into the dynamic type. The symmetric cast on even in the definition of odd serves to
make the function even behave as if it were typed. This cast will ultimately cast the
integer value n− 1 into the dynamic type, Dyn, as well as projecting even’s result out
of type Dyn and into type Bool. Now consider the reduction sequence in Figure 4.2,
observing how the number of coercions grows (redexes are highlighted).

While the operational semantics doesn’t have an explicit stack, we can still see
the accumulation of pending casts. What were tail-recursive calls are accumulating
extra work in the continuation.2 What’s more, the work is redundant: we must
tag and untag true twice. In short, casts have taken an algorithm that should use a
constant amount of stack space and turned it into an algorithm that uses O(n) stack
space. Such a large space overhead is impractical: casts aren’t space efficient.

The same holds true for casts into and out of refinement types. Consider a library
of drawing primitives based around painters, functions of type Canvas→Canvas. An
underlying graphics library offers basic functions for manipulating canvases and func-
tions over canvases, e.g., primFlipH : (Canvas→Canvas)→(Canvas→Canvas) flips an
image on its horizontal axis. A wrapper library may add derived functions while re-
exporting the underlying functions with refinement types specifying a square canvas
dimensions, where SquareCanvas = {x :Canvas | width(x) = height(x)}:

flipH p = 〈Canvas→Canvas⇒ SquareCanvas→SquareCanvas〉
(primFlipH (〈SquareCanvas→SquareCanvas⇒ Canvas→Canvas〉 p))

The wrapper library only accepts painters with appropriately refined types, but must
strip away these refinements before calling the underlying implementation—which de-

2The call to even in the else branch of odd doesn’t look like a tail call, but if the coercions are
inserted automatically—as in Herman et al.—then it can be very difficult to tell what is and isn’t a
tail call. See related work (Chapter 5) for a discussion of cast insertion.

131

odd 3
−→ (〈Dyn→Dyn⇒ Int→Bool〉 even) 2
−→ 〈Dyn⇒ Bool〉 (even (〈Int⇒ Dyn〉 2))
−→ 〈Dyn⇒ Bool〉 (even 2Int!)
−→ 〈Dyn⇒ Bool〉 ((〈Int→Bool⇒ Dyn→Dyn〉 (λx :Int. . . .)) 2Int!)
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 ((λx :Int. . . .) (〈Dyn⇒ Int〉 2Int!)))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 ((λx :Int. . . .) 2))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (odd 1))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 ((〈Dyn→Dyn⇒ Int→Bool〉 even) 0))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉 (even (〈Int⇒ Dyn〉 0))))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉 (even 0Int!)))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉

((〈Int→Bool⇒ Dyn→Dyn〉 (λx :Int. . . .)) 0Int!)))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉

((λx :Int. . . .) (〈Dyn⇒ Int〉 0Int!)))))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉

((λx :Int. . . .) 0))))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 true)))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 (〈Dyn⇒ Bool〉 trueBool!))
−→ 〈Dyn⇒ Bool〉 (〈Bool⇒ Dyn〉 true)
−→ 〈Dyn⇒ Bool〉 trueBool!
−→ true

Figure 4.2: Space-inefficient reduction

mands Canvas→Canvas painters. The wrapper library then has to cast these modified
functions back to the refined types. Calling flipH (flipH p) will yield:

〈Canvas→Canvas⇒ SquareCanvas→SquareCanvas〉
(primFlipH

(〈SquareCanvas→SquareCanvas⇒ Canvas→Canvas〉
(〈Canvas→Canvas⇒ SquareCanvas→SquareCanvas〉 (primFlipH p ′))))

where 〈SquareCanvas→SquareCanvas⇒ Canvas→Canvas〉 p −→∗ p ′

That is, we first cast p to a plain painter and return a new painter p ′. We then cast
p ′ into and then immediately out of the refined type, before continuing on to flip p ′.
All the while, we are accumulating many function proxies beyond the wrapping that
the primitive library is doing. A space-efficient scheme for manifest contracts avoids
accumulating these extra function proxies on p ′.

Two of the existing approaches to space efficiency in the world of gradual typ-
ing [39, 65, 68] factor casts into their constituent coercions, adapting Henglein’s sys-
tem [38]. I take a similar approach. For example, the cast 〈Dyn⇒ Bool〉, which checks
that a dynamic value is a boolean and then untags it, is written as the coercion Bool?;
the cast 〈Bool⇒ Dyn〉, which tags a boolean into type dynamic, is written Bool!. Most
importantly, coercions can be composed, so 〈Bool?〉 (〈Bool!〉 e) −→ 〈Bool!; Bool?〉 e.

132

Herman et al. normalize the coercion Bool!; Bool? into the no-op coercion Id. This
normalization process is how they achieve space efficiency. For example:

〈Bool?〉 (〈Bool!〉 ((λx :Int. . . .) (〈Int?〉 2Int!))) −→ 〈Id〉 ((λx :Int. . . .) (〈Int?〉 2Int!))

This composition and normalization of pending coercions allows them to prove a
bound on the size of any coercion that occurs during the run of a given program.
This bound effectively restores the possibility of tail-call optimization.

However, it isn’t obvious how to extend Herman et al.’s [39] coercion system to
refinement types. When do we test that values satisfy predicates? How do refine-
ment type coercions normalize? I show that refinement types should have a checking
coercion {x :T | e}? and an (un)tagging coercion {x :T | e}!; the key insight for space
efficiency is that the composition {x :T | e}?; {x :T | e}! should normalize to Id, i.e.,
checks that are immediately forgotten should be thrown away. Throwing away checks
sounds dangerous, but the calculus is still sound—values typed at refinement types
must satisfy their refinements. On the one hand, this is great news—space-efficiency
is not only more practical, but there are fewer errors! On the other hand, the space-
efficient semantics aren’t exactly equivalent to the näıve semantics. Whether or not
this is good news, these dropped checks are part and parcel of space efficiency. I
develop this idea in detail in Section 4.5; I show that this means that space-efficient
programs fail less often than their näıve counterparts in Section 4.6.

In this chapter, I make several contributions, extending the existing solutions in
a number of dimensions. In particular, I:

• Present a new approach to coercions that extends the earlier work to refinement
types in a novel formulation (Section 4.5);

• Introduce what is, at present, the most expressive full-spectrum contract lan-
guage, offering type dynamic as well as refinements of both base types and the dy-
namic type (Section 4.3 and Section 4.5); this new language narrowly edges out
Wadler and Findler [78] by including refinements of type dynamic;

• Show that this language is space efficient, i.e., there are a bounded number of
coercions in any program, and those coercions are bounded in size (Section 4.7); and

• Offer proof my new language is sound with respect to the näıve, inefficient
semantics: if the näıve semantics reaches a value, so does the space-efficient one,
but occasionally, the näıve semantics will fail when the space-efficient one succeeds
(Section 4.6).

Outline

In this long chapter, I begin by briefly overviewing my design philosophy in Sec-
tion 4.1. I then define a cast calculus, Cast, with dynamic and refinement types
(Section 4.2), followed by a näıve, space-inefficient coercion calculus, Naive, with

133

dynamic and refinement types (Section 4.3). I translate Cast terms into behav-
iorally equivalent Naive terms in Section 4.4. This proof justifies my eventual claim
that I’ve made manifest contracts space-efficient: since Cast terms have exactly cor-
responding Naive terms, which are simulated by Efficient terms, we know that
Efficient terms simulate Cast terms. If I didn’t relate Cast and Naive, I would
have invented invented a system that enjoys space efficiency—and looks like manifest
contracts, if you squint. In Section 4.5 I make the näıve calculus into a space-efficient
one, which I call Efficient. In Section 4.6, I relate the two coercion calculi, showing
that the two are mostly observationally equivalent: if the näıve semantics reduces
a term to a value, so will the space efficient one; sometimes the näıve semantics
will diverge or produce a failure when the space-efficient one succeeds. I give formal
justification for my claim of space efficiency in Section 4.7.

4.1 Design philosophy

My design philosophy has three principles:

1. Base values have simple types; e.g., all integers are typed at Int.

2. We give operations types precise enough to guarantee totality; e.g., division has
a type at least as precise as Int→{x :Int | x 6= 0}→Int.

3. Values satisfy their refinement types; e.g., if ∅ ` v : {x :T | e}, then e[v/x] −→∗
true.

Giving base values simple types by avoids some of the technical problems seen
in previous refinement type systems that gave constants most specific types [51,
28, 45, 44, 34]. These other systems set ty(k) such that if e[k/x] −→∗ true, then
ty(k) <: {x :T | e}. We wish to avoid subtyping—and its concomitant circulari-
ties [34, 44, 8]. Beyond technical issues, simple types are a de facto default in func-
tional programming; Hindley-Milner is a sweet spot in the design space. I believe
that taking this sweet spot as the default programming paradigm will increase the
usability and practicality of manifest contracts.

There is one exception to assigning values simple types: it makes sense to give null
or undefined a dynamic type; attempting to coerce such a value to a simple type would
result in an error. I omit such values—it’s not clear that they’re a good idea [42].
One alternative, due to Stephanie Weirich, is to have these dummy values inhabit
all types, in which case they would never need to be tagged or checked at all, and
elimination forms would raise errors.

To me, keeping operations total is the main goal of refinement types. In fact, the
original use of refinement types by Freeman and Pfenning [30] was to make partial
pattern matching total. The calculi here don’t have algebraic datatypes, but partial
operations are just as undesirable as partial pattern matches. This point of view is
nice for implementations: primitive partial operations can be exposed at types strong

134

enough to guarantee safety; the coercion algorithm will insert appropriate checks
which may or may not be optimized away. (This is hybrid type checking [28].)

The flipside of using refinements to protect partial operations is that refinement
checks that don’t end up protecting partial operations aren’t as important as those
that do. In Efficient in Section 4.5, we occasionally skip checking whether or not a
value satisfies a refinement. We only do this when the program’s next step would be
to untag the value as having satisfied the refinement—why bother checking if we don’t
care about the result? This lenient approach to refinement type checking means that
the näıve and space-efficient calculi don’t behave exactly the same: some programs
raise errors in the former but not the latter, precisely because we skip checks.

One might ask: if it’s okay to have a ψ rule skip refinement type checks, why not
do the same for checks when moving into and out of Dyn? The simplest explanation
is that we must have a ψ rule for refinement types—without it, we won’t have space
efficiency. But the (safe) φ rule suffices when we consider Dyn. Since we can have
the gradual typing parts of Naive and Efficient behave the same, we do. As a
philosophical difference, I hold the line at the structure of values, i.e., simple types.
If simple types are the default paradigm of the language, we want to avoid errors in
this fragment as much as possible. As Siek and Wadler [68] say:

[the] boundary between static and dynamic typing regions require[s] cer-
tain run-time checks to maintain the integrity of the static region.

The refined world has the structure of the simply typed world plus a predicate—it
has more type information. On the other hand, dynamic types have less information,
so we must be stricter with them. Put another way, simple types are about the
broad structure of values, while refinements are about the safety of operations. If we
never end up running the operation whose safety is ensured by a refinement type,
no problem; the programmer’s specification may be too tight. Polymorphism aside,
there is no such thing as a simple type that is “too tight”.

My third principle is a compromise between stringency and lenience. If a value is
typed at a refinement type, then it satisfies its predicate. All well-typed refinement
calculi have value inversion—it is a consequence of subject reduction. Having only
value inversion instead of stronger reasoning principles (as in the semantics of Xu
et al. [80]) is a compromise because some checks can be skipped (lenience), but once
the program reduces to a value it must actually inhabit its type (stringency). This
value inversion principle is valuable, and one that we have used in practice when
programming with refinement types. In call-by-value (CBV) languages (including all
of the calculi in this thesis), value inversion lets programmers reason easily about
functions which take refined inputs.

Value inversion is the least that a refinement type can mean in a sound system: any
less and type soundness won’t hold. While every sound refinement type system has
value inversion, I find it desirable to be able to directly invert the typing derivation to
find that a value satisfies the predicate of its refinement type, rather than applying a

135

Types and base types
T ::= B | T1→T2 | {x :B | e} | Dyn | {x :Dyn | e}
B ::= Bool | Int | . . .

Terms, results, values, and pre-values
e ::= x | r | op(e1, . . . , en) | e1 e2 | 〈T1 ⇒ T2〉 e | 〈{x :T | e1}, e2, v〉
r ::= v | fail
v ::= uId | vB ! | vFun! | v{x :T |e}? | v〈T11→T12⇒T21→T22〉
u ::= k | λx :T . e

Typing contexts
Γ ::= ∅ | Γ, x :T

Figure 4.3: Cast syntax

more complicated or general reasoning principle. I believe that having value inversion
directly is easier for programmers to understand and use.

4.2 A cast calculus

In this section, we define Cast, a cast calculus with dynamic and refinement types.
It is a small extension of Wadler and Findler’s system [78].

I define the syntax and static semantics in Section 4.2.1; the operational semantics
are in Section 4.2.2. I prove type soundness in Section 4.2.3.

Rule naming conventions

Before I begin my technical work in earnest, a word about conventions. We are
defining three calculi: one with casts (Cast) and two with coercions (Naive and
Efficient). The latter two largely share syntax and typing rules; all typing rules
will be of the form T Name. In general, we will rely on context to differentiate
terms. The evaluation rules for Cast, in this section, are named G Name, using
a subscripted arrow −→c. The evaluation rules for the näıve calculus, Naive, in
Section 4.3 are named F Name, using a subscripted arrow −→n for the reduction
relation; the space-efficient evaluation rules for Efficient are in Section 4.5 are
named E Name using a plain arrow −→.

4.2.1 Syntax and typing

I give the syntax of Cast in Figure 4.3. The syntax is much like those of Chapters 2
and 3: I extend the simply typed lambda calculus with Dyn, refinements of base
types and dynamic, casts, active checks, and failures. I sometimes write {x :T |
e} when it doesn’t matter whether the underlying type is Dyn or B . Notice that

136

Well formed contexts and types ` Γ ` T

` ∅
WF Empty

` Γ ` T

` Γ, x :T
WF Extend

` B
WF Base

` Dyn
WF Dyn

` T1 ` T2

` T1→T2
WF Fun

x :T ` e : Bool T = B orT = Dyn

` {x :T | e}
WF Refine

Similar types ` T1 ‖ T2

T 6= T1→T2

` T ‖ T
P Id

` Dyn ‖ T
P DynL

` T ‖ Dyn
P DynR

` T11 ‖ T21 ` T12 ‖ T22

` T11→T12 ‖ T21→T22
P Fun

` T1 ‖ T2

` {x :T1 | e} ‖ T2
P RefineL

` T1 ‖ T2

` T1 ‖ {x :T2 | e}
P RefineR

Figure 4.4: Typing for Cast, part 1

refinements of dynamic indirectly include refinements of functions. At the cost of
having even more canonical coercions in Section 4.5.1, we could add refinements of
functions. I omit them because they would have brought complexity without new
insights. Going beyond refinements of functions to the general refinements of FH in
Chapter 3, however, is challenging future work (see Chapter 6). The values in Cast
are structured slightly differently from what I have presented so far—I separate values
v from pre-values u. In particular, values have tags while pre-values are constants
and lambdas.

The typing rules for Cast are in Figures 4.4 and 4.5. Most of the rule are standard.
I follow Wadler and Findler [78] in tracking completed casts with explicit tags—this
approach plays particularly well with the coercion-based approach in the sequel.

First, the well formedness rules for contexts and types are straightforward. In
WF Refine, we ensure that we only ever refine base types and Dyn; as for other
refinement type rules, we must make sure that the refinement predicate is well typed.
As we did for FH (in Figure 3.4), we must define type similarity. Note that Dyn is
similar to every type. We restrict the P Id rule so that the notion of compatibility

137

Well typed terms and values Γ ` u : T Γ ` e : T

` Γ

Γ ` k : ty(k)
T Const

` T1 Γ, x :T1 ` e12 : T2

Γ ` λx :T1. e12 : T1→T2
T Abs

Γ ` u : T

Γ ` uId : T
T PreVal

Γ ` v : B

Γ ` vB ! : Dyn
T TagB

Γ ` v : Dyn→Dyn

Γ ` vFun! : Dyn
T TagFun

` Γ ∅ ` v : T ` {x :T | e} e[v/x] −→∗c trueId

Γ ` v{x :T |e}? : {x :T | e}
T TagRefine

Γ ` v : T11→T12 ` T21→T22 ` T11→T12 ‖ T21→T22

Γ ` v〈T11→T12⇒T21→T22〉 : T21→T22
T Wrap

` Γ x :T ∈ Γ

Γ ` x : T
T Var

` T ` Γ

Γ ` fail : T
T Fail

Γ ` e : T1 ` T2 ` T1 ‖ T2

Γ ` 〈T1 ⇒ T2〉 e : T2
T Cast

Γ ` e1 : (T1→T2) Γ ` e2 : T1

Γ ` e1 e2 : T2
T App

ty(op) = T1 → ... → Tn→T Γ ` ei : Ti

Γ ` op(e1, . . . , en) : T
T Op

` Γ ` {x :T | e1} ∅ ` v : T ∅ ` e2 : Bool e1[v/x] −→∗c e2
Γ ` 〈{x :T | e1}, e2, v〉 : {x :T | e1}

T CheckCast

Figure 4.5: Typing for Cast, part 2

138

lines up more neatly with the operational semantics for casts.
The typing rules for terms are mostly standard. We have a specialized treatment

of values to account for tags. T PreVal types pre-values tagged with Id. T TagB
and T TagFun type values that have been injected into the dynamic type, Dyn.
T TagRefine types values that have been checked as satisfying refinement types.
Note that we structure this rule to apply only to closed values, but with a context to
allow for weakening—as in Chapter 3. T Wrap types values with function proxies.
Otherwise, the rules should be familiar: T Cast and T CheckCast are standard,
based on what we have seen so far.

It is worth taking a moment to comment on the type assignment functions ty(k)
and ty(op) used in the T Const and T Op rules. In line with my philosophy (Sec-
tion 4.1), the rule for constants gives them base types: ty(k) = B . I require that no
constants have, by default, type dynamic or a refinement type. By the same philoso-
phy, the operator type assignment function ty(op) takes operations to first-order types
that ensure totality. If ty(op) = T1 → ... → Tn→T , then the operation’s denotation
[[op]] is a total function from (T1, . . . ,Tn) to T . If, for example, division is expressed
as the operator div, then ty(div) = Int→{x :Int | x 6= 0Id}→Int or some similarly exact
type. This property of operator types is critical: I believe that refinement types are
meant to help programmers avoid failures in general, and failures of (fundamentally
partial) primitive operations in particular.

To be clear, constants must have simple types, but operations on dynamic values
are permitted—so long as they only look at the tag, not the underlying value. In
particular, the proofs work for tag testing operations like isFun and isB , but not for
operations that extract and then apply functions tagged with Fun!.

4.2.2 Operational semantics

The operational semantics are defined in Figure 4.6 (for core rules) and Figure 4.7 (for
cast rules). The rules implement straightforward tagging and checking operations.

The core rules should be unsurprising. G Fun captures the behavior of function
proxies in application positions. Much more interesting are the cast rules of Figure 4.7.
Even though we don’t have general refinements, I still adopt the cast staging tech-
niques we used for FH in Chapter 3. That is, G CastCheck, G CastPreCheck,
and G CastPredPred (which could just as easily be named G CastForget)
should be familiar. G CastId is the reflexivity rule for casts, but limited to not
apply for functions. This is done to mirror how coercions behave on function types;
addressing this issue is future work (and discussed in Chapter 6).

G CastFun and G CastB handle injections into Dyn: the simply attach a type
tag to the value. Note that G CastFun only applies to functions of type Dyn→Dyn.
We use G CastFunDyn to inject functions of other types into Dyn by stages.

G CastFunFun and G CastBB handle successful projections back out of Dyn;
failed projections—mismatches between the target type of the cast and the tag on

139

e1 −→c e2

(λx :T . e12)Id v2 −→c e12[v2/x]
G Beta

op(v1, ... , vn) −→c [[op]] (v1, ... , vn)
G Op

v1〈T11→T12⇒T21→T22〉 v2 −→c 〈T12 ⇒ T22〉 (v1 (〈T21 ⇒ T11〉 v2))
G Fun

e1 −→c e
′
1

e1 e2 −→c e ′1 e2
G AppL

e2 −→c e
′
2

v1 e2 −→c v1 e ′2
G AppR

ei −→c e
′
i

op(v1, . . . , vi−1 , ei , . . . , en) −→c op(v1, . . . , vi−1 , e ′i , . . . , en)
G OpInner

e −→c e
′

〈T1 ⇒ T2〉 e −→c 〈T1 ⇒ T2〉 e ′
G CastInner

e2 −→c e
′
2

〈{x :T | e1}, e2, v〉 −→c 〈{x :T | e1}, e ′2, v〉
G CheckInner

fail e2 −→c fail
G AppRaiseL

v1 fail −→c fail
G AppRaiseR

op(v1, . . . , vi−1 , fail, . . . , en) −→c fail
G OpRaise

〈T1 ⇒ T2〉 fail −→c fail
G CastRaise

〈{x :T | e}, fail, v〉 −→c fail
G CheckRaise

Figure 4.6: Cast operational semantics (core rules)

140

e1 −→c e2

〈T ⇒ {x :T | e}〉 v −→c 〈{x :T | e}, e[v/x], v〉
G CastCheck

〈{x :T | e}, trueId, v〉 −→c v{x :T |e}?
G CheckOK

〈{x :T | e}, falseId, v〉 −→c fail
G CheckFail

T 6= T1→T2

〈T ⇒ T 〉 v −→c v
G CastId

〈Dyn⇒ T1→T2〉 vB ! −→c fail
G CastFunFailB

〈Dyn⇒ T1→T2〉 vFun! −→c 〈Dyn→Dyn⇒ T1→T2〉 v
G CastFunFun

〈B ⇒ Dyn〉 v −→c vB !
G CastB

〈Dyn→Dyn⇒ Dyn〉 v −→c vFun!
G CastFun

〈Dyn⇒ B〉 vB ! −→c v
G CastBB

B 6= B ′

〈Dyn⇒ B〉 vB ′! −→c fail
G CastBFailB

〈Dyn⇒ B〉 vFun! −→c fail
G CastBFailFun

〈T11→T12 ⇒ Dyn〉 v −→c 〈Dyn→Dyn⇒ Dyn〉 (〈T11→T12 ⇒ Dyn→Dyn〉 v)
G CastFunDyn

〈T11→T12 ⇒ T21→T22〉 v −→c v〈T11→T12⇒T21→T22〉
G CastFunWrap

T2 6= {x :T1 | e}
〈{x :T1 | e} ⇒ T2〉 v{x :T1|e}? −→c 〈T1 ⇒ T2〉 v

G CastPredPred

T1 6= T2 T1 6= {x :T ′1 | e ′}
〈T1 ⇒ {x :T2 | e}〉 v −→c 〈T2 ⇒ {x :T2 | e}〉 (〈T1 ⇒ T2〉 v)

G CastPreCheck

Figure 4.7: Cast operational semantics (cast rules)

141

Target type

S
o
u
rc
e
ty

p
e

{x :Dyn | e} Dyn Dyn→Dyn T1→T2

{x :Dyn | e} I | (PP,PC,C) PP PP,FFB | FF, I PP,FFB | (FF,FW)
Dyn C I FFB | (FF, I) FFB | (FF,FW)

Dyn→Dyn PC,F,C F FD,FW,F FW
T1→T2 PC,FD,FW,F,C FD,FW,F FW FW

B PC,B,C B not well typed
{x :B | e} PP,PC,B,C PP,B not well typed

Target type

S
o
u
rc
e
ty

p
e

B {x :B | e}
{x :Dyn | e} PP,FFB | BB PP,PC,BFF | BFB | (BB,C)

Dyn BB | BFB | BFF PC,BFF | BFB | (BB,C)
Dyn→Dyn not well typed
T1→T2 not well typed

B I C
{x :B | e} PP I | (PP,PC,C)

The vertical axis is source types, the horizontal axis is target types. Rule names are abbreviated,
where I means G CastId, C means G CastCheck, PC means G CastPreCheck, etc. I use
commas for sequencing and | for disjunction.

Table 4.1: Cast cast reductions, by type

the value—are handled by G CastBFailB, G CastBFailFun (for casts into base
types B), and G CastFunFailB (for casts into Dyn→Dyn).

The G CastFunWrap rule wraps functions with function proxies. This is the
same as treating 〈T11→T12 ⇒ T21→T22〉 v as a value, as we did in Chapter 2. We
use a separate tag for symmetry’s sake, since function proxies on values must be
represented similarly in the sequel.

There are enough cast rules that it may not be immediately clear which rules apply
when. In Table 4.1, we show how casts between each relevant type reduce. (I split out
Dyn→Dyn because it is treated specially.) In order to fit the table easily on a single
page, I use abbreviated rule names: a rule G CastRuleName is written RN: I drop
the G Cast prefix and then take the initials of the rule. I use a regular expressions-
like syntax: commas are sequential concatenation and | is disjunction. For example,
a cast from {x :Dyn | e} to {x :B | e} will run PP,PC,BFF | BFB | (BB,C): that
is, it first runs G CastPredPred, then G CastPreCheck. We then check the
tag, running G CastBFailFun or G CastBFailB if the tag is wrong. If the type
in the case matches the tag on the value being cast, we run G CastBB and then
G CastCheck.

142

4.2.3 Proofs

The proofs are entirely standard, culminating in a syntactic type soundness proof
(Theorem 4.2.7) by progress and preservation (Lemmas 4.2.3 and 4.2.6).

4.2.1 Lemma [Determinism]: If e −→c e1 and e −→c e2 then e1 = e2.

Proof: By induction on e −→c e1, observing that in each case the same rule must
have applied to find e −→c e2. �

4.2.2 Lemma [Canonical forms]: If Γ ` v : T , then:

• T = Dyn implies that v = v ′B ! or v = v ′Fun! for some v ′.

• T = B implies that v = kId.

• T = T1→T2 implies that v = λx :T1. e Id or v = v ′〈T ′
1→T ′

2⇒T1→T2〉 for some v ′.

• T = {x :T ′ | e} implies that v = v ′{x :T |e}? for some v ′.

Proof: By case analysis on the typing derivation. �

4.2.3 Lemma [Progress]: If ∅ ` e : T then there exists an e ′ such that e −→c e ′

or e is a result.

Proof: By induction on the typing derivation.

(T PreVal) uId is a result.

(T TagB) vB ! is a result.

(T TagFun) vFun! is a result.

(T TagRefine) v{x :T |e}? is a result.

(T Wrap) v〈T11→T12⇒T21→T22〉 is a result.

(T Var) Contradictory—variables aren’t well typed in the empty context.

(T Fail) fail is a result.

(T Cast) By the IH on ∅ ` e : T1, either e −→c e ′ or e is a result. In the former
case, we step by G CastInner. If e is a result, then it is either fail or a value v . In
the former case, we step by G CastRaise. Otherwise, we go by cases on T1 and T2.

(T1 = Dyn) By cases on T2.

(T2 = Dyn) We step by G CastId.

143

(T2 = B) By canonical forms (Lemma 4.2.2), v is either v ′B ′! or v ′Fun!. If B = B ′,
we step by G CastBB. If not, we step by G CastBFailB or G CastBFailFun.

(T2 = T21→T22) By canonical forms (Lemma 4.2.2), v = v ′B ′! or v = v ′Fun!. We
step by G CastFunFailB or G CastFunFun.

(T2 = {x :T | e}) If T = Dyn, we step by G CastCheck. If T = B (the only
other option), we step by G CastPreCheck.

(T1 = B) By cases on T2.

(T2 = Dyn) We step by G CastB.

(T2 = B ′) By inversion of ` B ‖ B ′, we have B = B ′. We step by G CastId.

(T2 = T21→T22) Contradictory, since it is not the case that ` B ‖ T21→T22.

(T2 = {x :T | e}) If T = B ′ (and so B ′ = B), we step by G CastCheck. Oth-
erwise we step by G CastPreCheck.

(T1 = T11→T12) By cases on T2.

(T2 = Dyn) We step by G CastFun or G CastFunDyn.

(T2 = B) Contradictory, since it is not the case that ` T21→T22 ‖ B .

(T2 = T21→T22) We step by G CastFunWrap.

(T2 = {x :T | e}) It must be that T = Dyn, since it is not the case that `
T21→T22 ‖ B . We step by G CastPreCheck.

(T1 = {x :T | e}) By cases on T2.

(T2 = Dyn) We step by G CastPredPred.

(T2 = B) We step by G CastPredPred.

(T2 = T21→T22) We step by G CastPredPred.

(T2 = {x :T ′ | e ′}) We step by G CastPredPred or G CastId.

(T App) We have ∅ ` e1 e2 : T2. By the IH on ∅ ` e1 : T1→T2, either e1 steps,
or it is a result. In the former case, we go by G AppL. In the latter, e1 is either fail
(and we step by G AppRaiseL) or e1 is a value.

Similarly, by the IH on ∅ ` e2 : T1, either e2 steps or is a result. We can
apply G AppR or G AppRaiseR (using that e1 is a value), unless e2 is some
value v2. In that case, we use canonical forms to see that e1 is either λx :T1. e ′1Id
or v1〈T ′

1→T ′
2⇒T1→T2〉. We step by G Beta and G Fun, respectively.

(T Op) By induction on n, applying the IH to step by either G OpInner or
G OpFail. If all of the arguments are values, we step by G Op.

(T CheckCast) By the IH, we can step the active check by G CastInner or
G CastRaise. If it’s a value, we have ∅ ` v2 : Bool, so v2 is either trueId or falseId.
We step by G CheckOK and G CheckFail, respectively.

�

144

4.2.4 Lemma [Regularity]: • If Γ ` e : T then ` Γ and ` T .

• If Γ ` u : T then ` Γ and ` T .

Proof: By mutual induction on the derivations.

(T Var) ` Γ by assumption, which gives us ` T .

(T Const) ` Γ By assumption, and we assume that ` ty(k).

(T Abs) We have ` T1 and Γ, x :T1 ` e12 : T2 by assumption. By the IH,
` Γ, x :T1 and ` T2. By inversion, ` Γ. We have ` T1→T2 by WF Fun.

(T PreVal) By the IH.

(T TagB) By the IH and WF Dyn.

(T TagFun) By the IH and WF Dyn.

(T TagRefine) By the IH and assumption.

(T Wrap) By the IH and assumption.

(T Cast) By the IH and assumption.

(T Fail) By assumption.

(T App) By the IH.

(T Op) By the IH and the assumption that operators have well formed types.

(T CheckCast) By assumption.

�

4.2.5 Lemma [Substitution]: If ∅ ` v : T then:

• If Γ1, x :T ,Γ2 ` e : T ′ then Γ1,Γ2 ` e[v/x] : T ′.

• If Γ1, x :T ,Γ2 ` u : T ′ then Γ1,Γ2 ` u[v/x] : T ′.

Proof: By mutual induction on the typing derivations for terms and pre-values,
leaving Γ2 general.

(T Const) Immediate by T Const.

(T Abs) By T Abs, using the IH on Γ1, x :T ,Γ2, y :T1 ` e : T2.

(T Var) If x is the variable in question, then by weakening. If not, then by
T Var.

145

(T PreVal) By the IH and T PreVal.

(T TagB) By the IH and T TagB.

(T TagFun) By the IH and T TagFun.

(T TagRefine) Immediate by T TagRefine, since the terms themselves are
actually closed.

(T Wrap) By the IH and T Wrap.

(T Cast) By the IH and T Cast.

(T Fail) Immediate by T Fail.

(T App) By the IH and T App.

(T Op) By the IH and T Op.

(T CheckCast) Immedate by T CheckCast, since the terms themselves are
actually closed.

�

4.2.6 Lemma [Preservation]: If ∅ ` e : T and e −→c e ′, then ∅ ` e ′ : T .

Proof: By induction on the evaluation derivation.

(G Beta) By inversion, x :T1 ` e1 : T2 and ∅ ` v2 : T1. By substitution
(Lemma 4.2.5).

(G Fun) By inversion of T Wrap, we know that ` T11→T12 ‖ T21→T22. By
T Cast, T App, and T Cast; we find the similarities necessary for the T Cast
rules by inversion, since only P Fun could have applied.

(G Op) By assumption.

(G CastId) Immediate.

(G CastFunFailB) We have ` T1→T2 by inversion; we are done by T Fail.

(G CastFunFun) We have ` Dyn ‖ Ti by P DynL; by P Fun, T Cast, and
assumption.

(G CastB) By assumption and T TagB.

(G CastFun) By assumption and T TagFun.

(G CastBB) By assumption.

146

(G CastBFailB) We have ` B immediately; by T Fail.

(G CastBFailFun) We have ` B immediately; by T Fail.

(G CastFunDyn) We use P DynR, P Fun in two applications of T Cast.

(G CastFunWrap) By T Wrap.

(G CastPredPred) By assumption and T Cast, using ` T1 ‖ T2 from the
inversion of ` {x :T1 | e} ‖ T2.

(G CastPreCheck) By assumption and T Cast. We use ` T1 ‖ T2 from the
inversion of ` T1 ‖ {x :T2 | e} in the first case and P Id (it can’t be a function type!)
with P RefineR in the second.

(G CastCheck) By T CheckCast, using e[v/x] −→∗c e[v/x].

(G CheckOK) By T TagRefine, using e[v/x] −→∗c trueId.

(G CheckFail) By T Fail, using the assumption that ` {x :T | e}.

(G AppL) By T App and the IH.

(G AppR) By T App and the IH.

(G OpInner) By T Op and the IH.

(G CastInner) By T Cast and the IH.

(G CheckInner) By T CheckCast and the IH, extending e[v/x] −→∗c e2 −→c

e ′2.

(G AppRaiseL) By regularity (Lemma 4.2.4) and T Fail.

(G AppRaiseR) By regularity (Lemma 4.2.4) and T Fail.

(G OpRaise) By regularity (Lemma 4.2.4) and T Fail.

(G CastRaise) By inversion, ` T2; then, by T Fail.

(G CheckRaise) By inversion, ` {x :T | e}; then, by T Fail.

�

4.2.7 Theorem [Type soundness]: If ∅ ` e : T , then either e −→∗ r such that
∅ ` r : T or e diverges.

Proof: Using progress (Lemma 4.2.3) and preservation (Lemma 4.2.6). Unsurpris-
ingly, this is not a constructive proof. �

147

Types and base types
T ::= B | T1→T2 | {x :B | e} | Dyn | {x :Dyn | e}
B ::= Bool | Int | . . .

Coercions, primitive coercions, and type tags
c ::= d1; . . . ; dn
d ::= D ! | D? | c1 7→ c2 | Fail
D ::= B | Fun | {x :B | e} | {x :Dyn | e}

Terms, results, values, and pre-values
e ::= x | r | op(e1, . . . , en) | e1 e2 | 〈c〉 e |

〈{x :T | e1}, e2, v〉
r ::= v | fail
v ::= uId | vB ! | vFun! | v{x :T |e}? | vc1 7→c2

u ::= k | λx :T . e

Typing contexts
Γ ::= ∅ | Γ, x :T

Figure 4.8: Naive syntax

4.3 A näıve coercion calculus

In this section, we define a näıve coercion calculus, Naive. Its syntax is in Figure 4.8,
its typing rules are in Figure 4.9 (both in Section 4.3.1), and its operational semantics
are in Figure 4.12. The type soundness proof appears in Section 4.3.3; we show how
to translate Cast terms into behaviorally equivalent Naive terms in Section 4.4.

This language adheres to a design philosophy of “simple types by default, dynamic
and refinement types by coercion”. I am the first to articulate a typing philosophy for
full-spectrum languages. My design philosophy, elaborated more fully in Section 4.1,
has three principles. First, base values have simple types; e.g., all integers are typed
at Int. Second, we give operations types precise enough to guarantee totality; e.g.,
division has a type at least as precise as Int→{x :Int | x 6= 0}→Int. I understand
refinement types as being designed for protecting partial operations (the original name
is due to a method for protecting partial pattern matches [30]); giving operations types
that make them total means that any reasoning about runtime errors can entirely
revolve around cast (here, coercion) failures. And third, values satisfy their refinement
types; e.g., if ∅ ` v : {x :T | e}, then e[v/x] −→∗ true. Every sound refinement type
calculus has this, but ours will have it as an inversion of the typing rule. Since we are
defining call-by-value (CBV) languages, this means that functions can assume their
inputs actually satisfy their refinement types.

148

4.3.1 Syntax and typing

Most of the terms here are standard parts of the lambda calculus. The most perti-
nent extension here is the coercion term, 〈c〉 e; I describe my language of coercions
in greater detail below. Evaluation returns results : either a value or a failure fail.
The term fail represents coercion failure. Coercion failures can occur when the predi-
cate fails—i.e., e1[v/x] −→∗n falseId (see F CheckFail)—or when dynamically typed
values don’t match their type—e.g., 〈Bool?〉 5Int! (see F TagFail). I treat fail as an
uncatchable exception. Just like for Cast, values in Naive are split in two parts:
pre-values u are the typical values of other languages: constants and lambdas; values
v are pre-values with a stack of primitive coercions. (See below for an explanation of
the different kinds of coercions.) Technically, a value is either a pre-value tagged with
the identity coercion, uId, or an inner value tagged with an extra coercion, vd . That
is, in this language every value has a list of coercions. Values are introduced in source
programs with the identity coercion, uId. Keeping a coercion on every value is a slight
departure from prior formulations. Doing so is technically expedient—simplifying the
structure of the language and clearly differentiating terms with pending coercions and
values with tags.

The terms of the calculus are otherwise fairly unremarkable: we have variables,
application, and a fixed set of built-in operations. We have two additional runtime
terms. The active check 〈{x :T | e1}, e2, v〉 represents an ongoing check that the
value v satisfies the predicate e1; it is invariant that e1[v/x] −→∗n e2. The second
term, fail, represents the uncatchable exception thrown when a check fails. Adding
exception handling facilities would completely destroy any obvious formal equivalence
between Naive and Efficient, though I conjecture that an adequately instrumented
semantics would be able to determine the precise point at which a Naive program
diverged from its Efficient translation.

The calculus has: simple types, where B is a base type and T1→T2 is the standard
function type; the dynamic type Dyn; and refinements of both base types and type
dynamic. The base refinement {x :B | e} includes all constants k of type B such
that e[kId/x] −→∗n trueId. Similarly, the dynamic refinement {x :Dyn | e} includes all
values v such that v has type Dyn and e[v/x] −→∗n trueId. When defining inference
rules in this fashion (e.g., T TagValRefine), I treat such a rule as a rule schema
that expands into two separate rules. I find it useful to think of three different
“domains” of types: the base domain with the types B and {x :B | e}; the functional
domain with the types of the form T1→T2, with special attention paid to functions
on dynamic values, of type Dyn→Dyn; and the dynamic domain with the types Dyn
and {x :Dyn | e}.

Well formedness judgments of types, and contexts are defined in Figure 4.9. It is
worth noting, however, that well formedness of refinements refers back to the term
typing judgment. Coercion typing is in defined in Figure 4.10.

Term typing (also defined in Figure 4.9) is mostly standard. Readers should find
the rules for constants (T Const), variables (T Var), functions (T Abs), failure

149

Well formed contexts and types ` Γ ` T

` ∅
WF Empty

` Γ ` T

` Γ, x :T
WF Extend

` B
WF Base

` Dyn
WF Dyn

` T1 ` T2

` T1→T2
WF Fun

x :T ` e : Bool T = B orT = Dyn

` {x :T | e}
WF Refine

Well typed terms and values Γ ` u : T Γ ` e : T

` Γ

Γ ` k : ty(k)
T Const

` T1 Γ, x :T1 ` e12 : T2

Γ ` λx :T1. e12 : T1→T2
T Abs

Γ ` u : T

Γ ` uId : T
T PreVal

d 6= {x :T | e}? d 6= Fail
Γ ` v : T1 ` d : T1 T2

Γ ` vd : T2
T TagVal

` Γ ∅ ` v : T ` {x :T | e} e[v/x] −→∗n trueId

Γ ` v{x :T |e}? : T
T TagValRefine

` Γ x :T ∈ Γ

Γ ` x : T
T Var

` T ` Γ

Γ ` fail : T
T Fail

` c : T1 T2 Γ ` e : T1

Γ ` 〈c〉 e : T2
T Coerce

ty(op) = T1 → ... → Tn→T Γ ` ei : Ti

Γ ` op(e1, . . . , en) : T
T Op

Γ ` e1 : (T1→T2) Γ ` e2 : T1

Γ ` e1 e2 : T2
T App

` Γ ` {x :T | e1} ∅ ` v : T ∅ ` e2 : Bool e1[v/x] −→∗n e2

Γ ` 〈{x :T | e1}, e2, v〉 : {x :T | e1}
T CheckNaive

Figure 4.9: Typing for Naive

150

Well typed coercions ` c : T1 T2 ` d : T1 T2

` T

` Id : T T
C Id

` d1 : T1 T ′ ` . . . ; dn : T ′ T2

` d1; . . . ; dn : T1 T2
C Compose

` T1 ` T2

` Fail : T1 T2
C Fail

` c1 : T21 T11 ` c2 : T12 T22

` c1 7→ c2 : (T11→T12) (T21→T22)
C Fun

` src(D)

` D ! : src(D) tgt(D)
C Tag

` src(D)

` D? : tgt(D) src(D)
C Untag

Source and target types src(D) : T tgt(D) : T

src(B) = B tgt(B) = Dyn
src(Fun) = Dyn→Dyn tgt(Fun) = Dyn

src({x :T | e}) = {x :T | e} tgt({x :T | e}) = T

Figure 4.10: Coercion typing

(T Fail), application (T App), and built-in operations (T Op) familiar.
Pre-values are typed by T Const and T Abs; pre-values tagged with the Id co-

ercion are typed as values by T PreVal. T TagVal types values that are tagged
with anything but a refinement type, for which we use a separate rule. We want
all values at a refined type to satisfy their refinement—a key property and part of
my philosophy of refinement types. The T TagValRefine rule ensures that values
typed at a refinement type actually satisfy their refinement. In the metatheory, the
typing rule for active check forms, T CheckNaive, holds onto a trace of the evalu-
ation of the predicate. If the check succeeds, the trace can then be put directly into
a T TagValRefine derivation. Naturally, none of these rules with premises con-
cerning evaluation (T TagValRefine, T CheckNaive) are necessary for source
programs—they are technicalities for the proofs of preservation (Lemma 4.3.8 below)
and equivalence (Section 4.6).

The coercions are the essence of this calculus: they represent the step-by-step
checks that are done to move values between dynamic, simple, and refinement types.
The syntax of coercions in Figure 4.8 splits coercions into three parts: composite coer-
cions c, primitive coercions d , and tags D . The typing rules for coercions are written
in Figure 4.9; the types of primitive coercions are shown graphically in Figure 4.11.
When it is clear from context whether I mean a composite or a primitive coercion, I
will simply call either a “coercion”. A composite coercion c is a list of primitive coer-
cions. I write the empty coercion—the composite coercion comprising zero primitive
coercions—as Id. When I write c; d or d ; c in a rule and it matches against a coercion

151

{x :Dyn | e} Dyn B {x :B | e}

Dyn→Dyn T1→T2

{x :Dyn | e}!

{x :Dyn | e}?
Fun?

B?

B !

{x :B | e}?

{x :B | e}!

Fun!

c1 7→ c2

c1 7→ c2
c1 7→ c2 c1 7→ c2

Figure 4.11: Primitive coercions

with a single primitive coercion—that is, when we match c; B ! against B !—we let
c = Id. This is a slight departure from earlier coercion systems; this construction
avoids messing around too much with re-association of coercion composition. I com-
pare my coercions to other formulations in related work (Chapter 5). There are four
kinds of primitive coercions: failures Fail, tag coercions D !, checking coercions D?,
and functional coercions c1 7→ c2. (Note that c1 and c2 are composite.) Finally, the
tags D are a flattening of the type space: each base type B has a corresponding tag
(which I also write B); functions have a single tag Fun. Intuitively, these are the type
tags that are commonly used in dynamically typed languages. We also have refine-
ment tags for both types of refinement, which I write the same as the corresponding
types: {x :B | e} for refinements of base types and {x :Dyn | e} for refinements of type
dynamic.

Failure coercions are present only for showing the equivalence with the space-
efficient calculus; rule F Fail gives a semantics for Fail. (I discuss the operational
semantics more fully below, in Section 4.3.2.) It is worthwhile to contrast my treat-
ment of failure with that of Herman et al. [39]. Whereas Henglein treats mismatched
tag/untag operations, such as B !; Fun?, as stuck, I follow Herman et al. [39] in hav-
ing an explicit failure coercion, Fail, which leads to an uncatchable program failure,
fail. The F Fail rule causes the program to fail when a failure coercion appears. (I
carefully keep Fail out of the tags placed on pre-values and values.) In fact, F Fail
will never apply when evaluating sensible source programs—no sane program will
start with Fail in it, and no Naive evaluation rule generates Fail. Instead, fail-
ures arise in the Naive when the other rules with Fail in their name fire. We
include F Fail as a technicality for the soundness proof (Theorem 4.6.10) in Sec-
tion 4.6. In Herman et al.’s calculus, 〈Fail〉 v is a value—the program won’t actu-
ally fail until this value reaches an elimination form. While systems with lazy error
detection have been proposed [43], here 〈Fail〉 e raises a program-terminating excep-
tion immediately, before stepping e further. Eager error detection is more in line
with standard error behavior, particularly other calculi where failed casts result in

152

blame [26, 28, 41, 67, 16, 36, 74, 78, 65, 34, 68, 8, 4, 22].
The tagging coercions D ! and checking coercions D? fall into two groups: those

which move values into type dynamic and those which deal with refinements (of either
base types or type dynamic). They are typed by C Tag and C Untag; note that
` tgt(D) for all D , but we need the ` src(D) premise for D = {x :T | e} in particular,
to ensure that the predicate is well typed.

The tags B and Fun are used to move values to and from the dynamic type Dyn.
The tagging coercions B ! and Fun! mark a base value (typed B) or functional value
(typed Dyn→Dyn) as having the dynamic type Dyn. The checking coercions B? and
Fun? are the corresponding untagging coercions, taking a dynamic value and checking
its tag. If the tags match, the original typed value is returned: 〈Bool?〉 trueB ! −→n

trueId. If the tags don’t match, the program fails: 〈Bool?〉 5Int! −→∗n fail.
The tags {x :B | e} and {x :Dyn | e} are used for refinements. The checking coer-

cion {x :T | e}? checks that a value v satisfies the predicate e, i.e., that e[v/x] −→n

trueId; see F CheckOK and F CheckFail below. The coercion {x :T | e}! is corre-
spondingly used to ‘forget’ refinement checks.

Note that in both the dynamic and the refinement cases, the checking coercions are
the ones that might fail. Given my philosophy of values starting out simply typed,
the two types of coercions differ in that tagging coercions are applied first when
moving from simple types to dynamic typing, but checking coercions are applied first
when moving to refinements. Any simply typed value is just fine as an appropriately
tagged dynamic value, but a simply typed value must be checked to see if it satisfies
a refinement.

Finally, while the Fun! and Fun? coercions injecting and project functions on
Dyn→Dyn into type Dyn, there is a separate structural coercion that works on typed
functions: c1 7→ c2, typed by the rule C Fun. Note that the C Fun rule is con-
travariant; see the F Fun rule below.

Only certain so-called value coercions can appear on values: Id appears on all
values; B ! and Fun! tag values into the dynamic type; {x :T | e}? marks successful
refinement checks; and c1 7→ c2 wraps a value with pending checks, creating a function
proxy. I revisit the notion of value coercions below, in the space efficient calculus of
Section 4.5.

4.3.2 Operational semantics

The rules are adapted from the evaluation contexts used in Herman et al. [39].
The core rules in Figure 4.12 are standard CBV rules (F Beta and F Op), as are
most of the congruence and exception raising rules (F AppL, F AppR, F OpInner,
F AppRaiseL, F AppRaiseR, F OpRaise). F Fun and F Merge manage func-
tion proxies and pending coercions on the stack; the tag management rules appear
in Figure 4.13. Before discussing the coercion evaluation rules, it is worth taking
a moment to talk about the denotation of operators. In particular, [[op]] (v1, ... , vn)
must (a) be total when applied to correctly typed values and (b) ignore the tags on its

153

e1 −→n e2

(λx :T . e12)Id v2 −→n e12[v2/x]
F Beta

v1(c1 7→c2) v2 −→n 〈c2〉 (v1 (〈c1〉 v2))
F Fun

op(v1, ... , vn) −→n [[op]] (v1, ... , vn)
F Op

e 6= 〈c′〉 e ′

〈Fail; c〉 e −→n fail
F Fail

e1 −→n e ′1
e1 e2 −→n e ′1 e2

F AppL
e2 −→n e ′2

v1 e2 −→n v1 e ′2
F AppR

ei −→n e ′i
op(v1, . . . , vi−1 , ei , . . . , en) −→n op(v1, . . . , vi−1 , e ′i , . . . , en)

F OpInner

e 6= 〈c′〉 e ′′ e −→n e ′

〈c〉 e −→n 〈c〉 e ′
F CoerceInner

〈c1〉 (〈c2〉 e) −→n 〈c2; c1〉 e
F Merge

e2 −→n e ′2
〈{x :T | e1}, e2, v〉 −→n 〈{x :T | e1}, e ′2, v〉

F CheckInner

〈c〉 fail −→n fail
F CoerceRaise

op(v1, . . . , vi−1 , fail, . . . , en) −→n fail
F OpRaise

fail e2 −→n fail
F AppRaiseL

v1 fail −→n fail
F AppRaiseR

〈{x :T | e}, fail, v〉 −→n fail
F CheckRaise

Figure 4.12: Naive operational semantics (core rules)

154

〈Id〉 v −→n v
F TagId

〈{x :T | e}?; c〉 v −→n 〈c〉 〈{x :T | e}, e[v/x], v〉
F Check

〈{x :T | e}, trueId, v〉 −→n v{x :T |e}?
F CheckOK

〈{x :T | e}, falseId, v〉 −→n fail
F CheckFail

〈B !; c〉 v −→n 〈c〉 vB !
F TagB

〈Fun!; c〉 v −→n 〈c〉 vFun!
F TagFun

〈B?; c〉 vB ! −→n 〈c〉 v
F TagBB

〈Fun?; c〉 vFun! −→n 〈c〉 v
F TagFunFun

〈Fun?; c〉 vB ! −→n fail
F TagFunFailB

B 6= B ′

〈B?; c〉 vB ′! −→n fail
F TagBFailB

〈B?; c〉 vFun! −→n fail
F TagBFailFun

〈(c1 7→ c2); c〉 v −→n 〈c〉 vc1 7→c2

F TagFunWrap

〈{x :T | e}!; c〉 v{x :T |e}? −→n 〈c〉 v
F TagPredPred

Figure 4.13: Naive operational semantics (coercion rules)

155

inputs. This disallows some potentially useful operators—e.g., testing or projecting
the tag from a dynamic value—but greatly simplifies the technicalities relating the
two calculi in Section 4.6. I don’t believe that adding such tag-dependent operators
would break anything in a deep way, but I omit them for simplicity’s sake. While on
the subject of tags, I want to stress that the dynamic type tags are not erasable, since
the evaluation rules depend on them. I conjecture that the refinement tags {x :T | e}?
are in fact erasable, but have not proven so.

Most of the rules for coercions take a term of the form 〈d ; c〉 v and somehow apply
the primitive coercion d to v . The rest cover more structural uses of coercions. I
cover these structural rules first and then explain the “tagging” rules. F TagId (in
Figure 4.13) applies when we have used up all of the primitive coercions, in which
case we simply drop the coercion form.

The F Merge and F CoerceInner rules coordinate coercion merging and con-
gruence. The F Merge rule simply concatenates two adjacent coercions. This
concatenation isn’t space efficient—in the space-efficient calculus, we normalize the
concatenation to a canonical coercion of bounded size. F CoerceInner steps con-
gruently inside a coerced term—we are careful to ensure that it can only apply af-
ter F Merge has fired. Carefully staging F CoerceInner after F Merge helps
maintain determinism(Lemma 4.3.4)—if we didn’t force F Merge to apply first, the
number of coercions might grow out of control.3 Note that in F Merge and F Fail,
the innermost term need not be a value. If I formulated the semantics as an abstract
machine, we could have an explicit stack of coercions; instead, we combine them as
they collide in the term.

The remaining coercion rules have Tag in their name and work on a term 〈d ; c〉 v
by combining d and v . F TagB and F TagFun tag base values and functions
(of type Dyn→Dyn) into type dynamic, using the tagging coercions B ! and Fun!,
respectively. F TagBB and F TagFunFun apply B? and Fun? to values that have
matching B ! and Fun! tags; the effect is to simply strip the tag off the value. The
F TagFunFailB, F TagBFailFun, and F TagBFailB rules cause the program
to fail when it tries to strip a tag off with a checking coercion that doesn’t match.

F Check starts the active check for a refinement check. An active check 〈{x :T |
e1}, e2, v〉 is a special kind of condition: if e2 −→∗n trueId, then it returns v{x :T |e1}?
(rule F CheckOK); if, on the other hand, e2 −→∗n falseId, then the active check
returns fail (rule F CheckFail). Note that the typing rules for active checks make
sure that e1[v/x] −→∗n e2, i.e., that the active check is actually checking whether
or not the value satisfies the predicate. The F TagPredPred rule is similar the
untagging rules F TagBB and F TagFunFun, though there is no chance of failure
here. Having {x :T | e}! eliminate the tag {x :T | e}? is reminiscent of the coercion
normalization rule given in the introduction—which we said occasionally skips checks.
But here in the Naive, F TagPredPred only applies when removing a tag from a

3Siek and Wadler [68] pointed out that Herman et al.’s evaluation contexts introduce nondeter-
minism; explicit congruence rules avoid this problem.

156

value, i.e., when the check has already been done. In the space-efficient semantics in
Section 4.5, coercion normalization will actually skip checks.

It is worth emphasizing here: F TagPredPred is not an optimization. It is
simply the natural translation of G CastPredPred into coercions:

〈{x :T1 | e} ⇒ T2〉 v{x :T1|e}? −→c 〈T1 ⇒ T2〉 v

When a value is tagged as having been checked but must be cast out of the refinement
type, we simply drop the tag on the floor. Rephrasing this in coercions, we find:

〈{x :T | e}!; c〉 v{x :T |e}? −→n 〈c〉 v

Without a rule like this, there would never be a way to untag a value;4 suppose
x :{x :Int | x 6= 0Id}. We need coercions c1 and c2 such that

(λx :{x :Int | x 6= 0Id}. if . . . then div(5Id, x) else plus(1Id, 〈c1〉 x))Id (〈c2〉 . . .)

is well typed. Whether we write them with question marks or exclamation points
is irrelevant: we need some coercions such that c2 and c1 cancel each other out. I
choose to have ? represent checking operations that may fail (testing a dynamic type
tag, adding a refinement tag) and ! to represent operations that won’t fail (adding a
dynamic type tag, dropping a refinement tag).

The F TagFunWrap rule wraps a value in a functional coercion. The F Fun
rule unwinds applications of wrapped values, coercing the wrapped function’s argu-
ment and result.

Readers particularly familiar with contracts will recognize that these coercions are
a lower level account of the steps taken in running casts (see Belo et al. [8] for an
account); alternatively, these coercions are a lower level formulation of the projections
underlying contracts [25]. See Greenberg et al. [34] for a comparison.

In Figure 4.14, I translate the cast example from the introduction (Figure 4.2). It
is easy to see that this calculus isn’t space efficient, either:, coercions can consume an
unbounded amount of space. As the function evaluates, a stack of coercions builds
up—here, proportional to the size of the input. Again, I highlight redexes; note that
the whole term is highlighted when the outermost coercions merge. The casts of the
earlier example match the coercions here, e.g. the cast 〈Dyn ⇒ Bool〉 e is just like
the coercion 〈Bool?〉 e.

4.3.3 Proofs

Naive is type sound, i.e, it enjoys progress and preservation.
4.3.1 Lemma: For all D , ` tgt(D).

4Short of accumulating refinements of values, which is obviously not space efficient. We could
leave tags on, adding a rule like T Forget in Chapter 3, at the expense of implicitly dropping a tag
in other rules. That wins nothing: we still have to drop the tag, and the rules are more confusing.

157

odd 3Id
−→n evenInt!7→Bool? 2Id
−→n 〈Bool?〉 (even (〈Int!〉 2Id))
−→n 〈Bool?〉 (((λx :Int. . . .)Id)Int?7→Bool! (2Id)Int!)
−→n 〈Bool?〉 (〈Bool!〉 ((λx :Int. . . .)Id (〈Int?〉 (2Id)Int!)))
−→n 〈Bool!; Bool?〉 ((λx :Int. . . .)Id (〈Int?〉 (2Id)Int!))
−→n 〈Bool!; Bool?〉 ((λx :Int. . . .)Id 2Id)
−→n 〈Bool!; Bool?〉 (odd 1Id)
−→n 〈Bool!; Bool?〉 (evenInt!7→Bool? 0Id)
−→n 〈Bool!; Bool?〉 (〈Bool?〉 (even (〈Int!〉 0Id)))
−→n 〈Bool?; Bool!; Bool?〉 (even (〈Int!〉 0Id))
−→n 〈Bool?; Bool!; Bool?〉 (((λx :Int. . . .)Id)Int?7→Bool! (0Id)Int!)
−→n 〈Bool?; Bool!; Bool?〉 (〈Bool!〉

((λx :Int. . . .)Id (〈Int?〉 (0Id)Int!)))
−→n 〈Bool!; Bool?; Bool!; Bool?〉

((λx :Int. . . .)Id (〈Int?〉 (0Id)Int!))
−→n 〈Bool!; Bool?; Bool!; Bool?〉 ((λx :Int. . . .)Id 0Id)
−→n 〈Bool!; Bool?; Bool!; Bool?〉 trueId
−→n 〈Bool?; Bool!; Bool?〉 (trueId)Bool!
−→n 〈Bool!; Bool?〉 trueId
−→n 〈Bool?〉 (trueId)Bool!
−→n 〈Id〉 trueId
−→n trueId

Figure 4.14: Naive reduction

158

Proof: By cases on D , we use either WF Dyn or WF Base. �

4.3.2 Lemma [Regularity of coercion typing]: • If ` c : T1 T2 then ` T1

and ` T2.

• If ` d : T1 T2 then ` T1 and ` T2.

Proof: By mutual induction on the typing derivations.

(C Id) By inversion.

(C Fail) By inversion.

(C Compose) By the IH.

(C Untag) By assumption on the left; by Lemma 4.3.1 on the right.

(C Tag) By Lemma 4.3.1 on the left; by assumption on the right.

(C Fun) By the IH and WF Fun.

�

4.3.3 Lemma [Regularity]: If Γ ` e : T then ` T , and if Γ ` u : T then ` T .

Proof: By induction on the typing derivation.

(T Const) By assumption.

(T Abs) By the assumption, the IH, and WF Fun.

(T PreVal) By the IH.

(T TagVal) By regularity of coercion typing (Lemma 4.3.2).

(T TagValRefine) By assumption.

(T Var) By induction on ` Γ.

(T Fail) By assumption.

(T Coerce) By regularity of coercion typing (Lemma 4.3.2).

(T Op) By assumption on operation typing.

(T App) By the IH

(T CheckNaive) By assumption.

�

159

4.3.4 Lemma [Determinism]: If e −→n e1 and e −→n e2 then e1 = e2.

Proof: By induction on e −→n e1, observing that in each case the same rule must
have applied to find e −→n e2. �

4.3.5 Lemma [Canonical forms]: If ∅ ` v : T , then:

• If T = Bool, then v is either trueId or falseId.

• If T = T1→T2, then v is either λx :T1. e12Id or v ′c1 7→c2 .

• If T = Dyn, then v is either v ′B ! or v ′Fun!.

• If T = {x :T ′ | e}, then v is v ′{x :T ′|e}?.

Proof: By induction on the typing derivation ∅ ` v : T .

Proof:

(T PreVal) Constants have base types, so we must only consider the case where
T = Bool; if ty(k) = Bool then k is either true or false, and we are done.

(T TagVal) ∅ ` v ′d : T2 and ` d : T1 T2. It must be that d is one of B ! or Fun!
or c1 7→ c2. In the first two cases, we fulfill the T2 = Dyn case. In the latter case, we
fulfill the arrow case.

(T TagValRefine) ∅ ` v ′{x :T |e}? : {x :T | e}, which fulfills the refinement type case.
�

4.3.6 Lemma [Progress]: If ∅ ` e : T then either e is a result or e −→n e ′.

Proof: By induction on the typing derivation.

(T PreVal) uId is a result.

(T TagVal) vd is a result.

(T TagValRefine) v{x :T |e}? is a result.

(T Var) Contradictory—no such typing derivation.

(T Fail) fail is a result.

(T Coerce) ∅ ` 〈c〉 e : T2, where ` c : T1 T2 and ∅ ` e : T1. We go by cases
on the IH for e:

(e = v) We go by cases on c.

(c = Id) We step by F TagId.

(c = Fail; c ′) We step by F Fail.

160

(c = B !; c ′) We step by F TagB.

(c = B?; c ′) By canonical forms (Lemma 4.3.5), v is either v ′B ′! or v ′Fun!. In the
former case, we step by either F TagBB or F TagBFailB, depending on whether
B = B ′. In the latter case, we step by F TagBFailFun.

(c = Fun!; c ′) We step by F TagFun.

(c = Fun?; c ′) By canonical forms (Lemma 4.3.5), v is either v ′B ′! or v ′Fun!.
In the former case, we step by F TagFunFailB. In the latter case, we step by
F TagFunFun.

(c = {x :T | e}?; c ′) We step by F Check.

(c = {x :T | e}!; c′) By canonical forms (Lemma 4.3.5), v must be of the form
v ′{x :T |e}?, so we step by F TagPredPred.

(c = (c1 7→ c2); c ′) We step by F TagFunWrap.

(e = fail) We step by F CoerceFail.

(e −→n e ′) If e = 〈c ′〉 e ′, we ignore the step from the IH and instead step by
F Merge. Otherwise, we step by F CoerceInner.

(T Op) ∅ ` op(e1, . . . , en) : T . We go by cases on the IH of each ei , from left to
right. If any of the ei steps, we step by F OpInner. If any of ei is fail, we step by
F OpRaise. Finally, if all of the ei are values, we step by F Op.

(T App) We have ∅ ` e1 e2 : T2, where ∅ ` e1 : T1→T2 and ∅ ` e2 : T1. We go
by cases on IH for e1.

(e1 = v1) We go by cases on the IH for ∅ ` e2 : T1.

(e2 = v2) By canonical forms (Lemma 4.3.5), v1 is either λx :T1. e12Id or v ′1c1 7→c2
.

We step by F Beta or F Fun, respectively.

(e2 = fail) We step by F AppRaiseR.

(e2 −→n e ′2) We step by F AppR.

(e1 = fail) We step by F AppRaiseL.

(otherwise) By the IH on ∅ ` e1 : T1→T2, we have e1 −→n e ′1, and we step by
F AppL.

(T CheckNaive) ∅ ` 〈{x :T | e1}, e2, v〉 : {x :T | e1}. We go by cases on the IH
for ∅ ` e2 : Bool.

(e2 = v2) By canonical forms (Lemma 4.3.5), v2 is either trueId or falseId. We step
by F CheckOK or F CheckFail, respectively.

(e2 = fail) We step by F CheckRaise.

(e2 −→n e ′2) We step by F CheckInner.

�

161

4.3.7 Lemma [Substitution]: If Γ1, x :T ,Γ2 ` e : T ′ and ∅ ` v : T then Γ1,Γ2 `
e[v/x] : T ′. Similarly, if Γ1, x :T ,Γ2 ` u : T ′ and ∅ ` v : T then Γ1,Γ2 ` u[v/x] : T ′.

Proof: By induction on the typing derivation, leaving Γ2 general.

(T Const) By WF Const.

(T Abs) By WF Abs and the IH.

(T PreVal) By T PreVal and the IH.

(T TagVal) By T TagVal and the IH.

(T TagValRefine) By T TagValRefine and the IH, noting that all terms
involved are actually closed.

(T Var) Either by assumption (if the two variables are the same) or by T Var
and weakening.

(T Fail) By T Fail.

(T Coerce) By T Coerce and the IH.

(T Op) By T Op and the IH.

(T App) By T App and the IH.

(T CheckNaive) By T CheckNaive, noting that all terms involved are actu-
ally closed.

�

4.3.8 Lemma [Preservation]: If ∅ ` e : T and e −→n e ′ then ∅ ` e ′ : T .

Proof: By induction on the typing derivation ∅ ` e : T .

(T PreVal) Contradictory—doesn’t step.

(T TagVal) Contradictory—doesn’t step.

(T TagValRefine) Contradictory—doesn’t step.

(T Var) Contradictory—there is no such derivation.

(T Fail) Contradictory—doesn’t step.

(T Coerce) By cases on the step taken.

162

(F Check) ∅ ` 〈{x :T1 | e}?; c〉 v : T2 and 〈{x :T1 | e}?; c〉 v −→n 〈c〉 〈{x :T1 |
e}, e[v/x], v〉. By inversion, ` c : {x :T1 | e} T2. We are done by T CheckNaive
and T Coerce.

(F TagId) ∅ ` 〈Id〉 v : T and 〈Id〉 v −→n v . By assumption.

(F TagFunFailB) ∅ ` 〈Fun?; c〉 vB ! : T and 〈Fun?; c〉 vB ! −→n fail. By regu-
larity of coercion typing (Lemma 4.3.2) we can apply T Fail.

(F TagFunFun) ∅ ` 〈Fun?; c〉 vFun! : T and 〈Fun?; c〉 vFun! −→n 〈c〉 v . By
inversion ` c : (Dyn→Dyn) T , and we are done by assumption and T Coerce.

(F TagB) ∅ ` 〈B !; c〉 v : T and 〈B !; c〉 v −→n 〈c〉 vB !. By inversion, ` c :
Dyn T and ∅ ` v : B . We finish by T TagVal and T Coerce.

(F TagFun) ∅ ` 〈Fun!; c〉 v : T and 〈Fun!; c〉 v −→n 〈c〉 vFun!. By inversion,
` c : Dyn T and ∅ ` v : Dyn→Dyn. We finish by T TagVal and T Coerce.

(F TagBB) ∅ ` 〈B?; c〉 vB ! : T and 〈B?; c〉 vB ! −→n 〈c〉 v . By inversion,
` c : B T and ∅ ` v : B . We finish by T Coerce.

(F TagBFailB) ∅ ` 〈B?; c〉 vB ′! : T and 〈B?; c〉 vB ′! −→n fail. By regularity of
coercion typing (Lemma 4.3.2) and T Fail.

(F TagBFailFun) ∅ ` 〈B?; c〉 vFun! : T and 〈B?; c〉 vFun! −→n fail. By regular-
ity of coercion typing (Lemma 4.3.2) and T Fail.

(F TagFunWrap) ∅ ` 〈(c1 7→ c2); c〉 v : T and 〈(c1 7→ c2); c〉 v −→n 〈c〉 vc1 7→c2 .
By inversion, ` c : (T21→T22) T and ∅ ` v : T11→T12. By T TagVal and
T Coerce.

(F TagPredPred) We have:

∅ ` 〈{x :T1 | e}!; c〉 v{x :T1|e}? : T2

〈{x :T1 | e}!; c〉 v{x :T1|e}? −→n 〈c〉 v

By inversion, ` c : T1 T2 and ∅ ` v : T1. By T Coerce.

(F Fail) ∅ ` 〈Fail; c〉 e : T and 〈Fail; c〉 e −→n fail. By regularity of coercion
typing (Lemma 4.3.2), ` T , so we are done by T Fail.

(F CoerceInner) ∅ ` 〈c〉 e : T2 and 〈c〉 e −→n 〈c〉 e ′, where e −→n e ′. By
inversion, ` c : T1 T2 and ∅ ` e : T1. By the IH on ∅ ` e : T1, ∅ ` e ′ : T1. We are
done by T Coerce.

(F Merge) ∅ ` 〈c1〉 (〈c2〉 e) : T3 and 〈c1〉 (〈c2〉 e) −→n 〈c2; c1〉 e. By inversion,
` c1 : T2 T3 and ` c2 : T1 T2 and ∅ ` e : T1. By C Compose, ` c2; c1 : T1
T3, so we are done by T Coerce.

(F CoerceRaise) ∅ ` 〈c〉 fail : T and 〈c〉 fail −→n fail. By regularity of coercion
typing (Lemma 4.3.2), we have ` T . We are done by T Fail.

(T Op) We go by cases on the step taken.

163

(F Op) By assumption on the denotations of operations.

(F OpInner) By the IH and T OpInner.

(F OpRaise) By regularity (Lemma 4.3.3) and T Fail.

(T App) We go by cases on the step taken.

(F Beta) ∅ ` λx :T1. e12Id v2 : T2 and λx :T1. e12Id v2 −→n e12[v2/x]. By inver-
sion, ∅ ` λx :T1. e12 : T1→T2; by further inversion, x :T1 ` e1 : T2. By substitution
(Lemma 4.3.7), ∅ ` e1[v2/x] : T22.

(F Fun) ∅ ` v1c1 7→c2
v2 : T22 and v1c1 7→c2

v2 −→n 〈c2〉 (v1 (〈c1〉 v2)). By inversion,
∅ ` v1c1 7→c2

: T21→T22 and ∅ ` v2 : T21; by further inversion, ∅ ` v1 : T11→T12 and
` c1 : T21 T11 and ` c2 : T12 T22.

By T Coerce, ∅ ` 〈c1〉 v2 : T11. By T App, ∅ ` v1 (〈c1〉 v2) : T12. By
T Coerce, ∅ ` 〈c2〉 (v1 (〈c1〉 v2)) : T22, and we are done.

(F AppL) ∅ ` e1 e2 : T2 and e1 e2 −→n e ′1 e2 where e1 −→n e ′1. By inversion,
∅ ` e1 : T1→T2 and ∅ ` e2 : T2. By the IH on the former derivation, ∅ ` e ′1 : T1→T2,
and we are done by T App.

(F AppR) ∅ ` v1 e2 : T2 and v1 e2 −→n v1 e ′2 where e2 −→n e ′2. By inversion,
∅ ` v1 : T1→T2 and ∅ ` e2 : T2. By the IH on the latter derivation, ∅ ` e ′2 : T2, and
we are done by T App.

(F AppRaiseL) ∅ ` fail e2 : T . By regularity (Lemma 4.3.3), ` T , so we can
apply T Fail and be done.

(F AppRaiseR) ∅ ` v1 fail : T . By regularity (Lemma 4.3.3), ` T , so we can
apply T Fail and be done.

(T CheckNaive) We go by cases on the step taken.

(F CheckOK) We have:

∅ ` 〈{x :T | e}, trueId, v〉 : {x :T | e}
〈{x :T | e}, trueId, v〉 −→n v{x :T |e}?

By inversion, ∅ ` v : T and e[v/x] −→∗n trueId, so we are done by T TagValRefine.

(F CheckFail) We have:

∅ ` 〈{x :T | e}, falseId, v〉 : {x :T | e}
〈{x :T | e}, falseId, v〉 −→n fail

By inversion, ` {x :T | e}, and we are done by T Fail.

(F CheckInner) We have:

∅ ` 〈{x :T | e1}, e2, v〉 : {x :T | e1}
〈{x :T | e1}, e2, v〉 −→n 〈{x :T | e1}, e ′2, v〉

164

where e2 −→n e ′2. By inversion, we have ` {x :T | e1} and ∅ ` v : T and ∅ ` e2 : Bool
and e1[v/x] −→∗n e2. We now have e1[v/x] −→∗n e ′2, and ∅ ` e ′2 : Bool by the IH, so
we are done by T CheckNaive.

(F CheckRaise) ∅ ` 〈{x :T | e}, fail, v〉 : {x :T | e} and 〈{x :T | e}, fail, v〉 −→n

fail. By inversion, ` {x :T | e}, so we can apply T Fail and be done.

�

4.3.9 Theorem [Type soundness]: If ∅ ` e : T then either e −→∗n r such that
∅ ` r : T or e diverges.

Proof: Using progress (Lemma 4.3.6) and preservation (Lemma 4.3.8). Naturally
the proof is not constructive! �

Before concluding the section, I establish coercion congruence, a property of eval-
uation that will be critical in relating Naive and Efficient in Section 4.6. We
say e1 and e2 coterminate when (a) e1 diverges iff e2 diverges, and (b) e1 −→∗n v iff
e2 −→∗n v . Cotermination is obviously reflexive, symmetric, and transitive.

When I say that e diverges, we mean that for all e ′ such that e −→∗n e ′, there
exists an e ′′ such that e ′ −→n e ′′. Combined with the fact that values don’t step, we
can see that this definition coincides with another standard definition of divergence:
e never reduces to a value, i.e., for all e ′ such that e −→∗n e ′, it is never the case that
e ′ is a value.

4.3.10 Lemma: If e −→n e ′ then e and e ′ coterminate.

Proof: By soundness (Theorem 4.3.9), either e diverges or reduces a result.
By assumption, e takes at least one step, so it isn’t a value. So if e −→∗n e ′′ to

diverge or reduce to a value, then e −→n e ′ −→∗n e ′′ by determinism (Lemma 4.3.4).
So e ′ behaves the same way. �

4.3.11 Corollary: 〈c1〉 (〈c2〉 e) and 〈c2; c1〉 e coterminate.

Proof: By Lemma 4.3.10 and F Merge. �

4.3.12 Lemma [Coercion divergence congruence]: If e diverges then 〈c〉 e di-
verges.

Proof: It is never the case that e −→∗n v , and 〈c〉 e is never a value for any c or e.
�

4.3.13 Lemma [Coercion congruence]: If e −→∗n r then 〈c〉 r and 〈c〉 e cotermi-
nate.

Proof: We instead prove that there exists an e ′ such that 〈c〉 r −→∗ e ′ and
〈c〉 e −→∗ e ′, which implies coterminationby way of Lemma 4.3.10. We go by induc-
tion on e −→∗n r .

165

(r −→0
n r) Immediate.

(e −→n e ′ −→∗n r) By cases on e −→n e ′. Rules without coercions (the core
rules F Beta, F Fun, F Op, F CheckOK, F CheckFail; the congruence rules
F AppL, F AppR, F OpInner, F CheckInner; and the exception raising rules
F AppRaiseL, F AppRaiseR, F OpRaise, and F CheckRaise) are relatively
easy: there is no merging. These cases work by first applying F CoerceInner and
the original rule to find 〈c〉 e −→n 〈c〉 e ′, and then we are done by the IH, since
e −→n e ′ and e −→∗n r implies e ′ −→∗n r by determinism (Lemma 4.3.4).

The remaining cases must confront some degree of merging between coercions in
e and the coercion c. The general thrust is to observe that if e = 〈c ′〉 e −→n 〈c ′′〉 e ′,
then 〈c〉 (〈c ′〉 e) −→n 〈c ′; c〉 e −→n 〈c ′′; c〉 e ′′. We can then apply the IH on
〈c ′′〉 e ′ −→∗n r to find an e ′′ such that 〈c〉 (〈c ′′〉 e ′) −→∗n e ′′ and 〈c〉 r −→∗n e ′′.
Finally, the former term steps by F Merge to 〈c ′′; c〉 e ′, which must in turn reduce
to e ′′—so we are done.

(F TagId) 〈Id〉 e −→n e, so 〈c〉 (〈Id〉 e) −→n 〈Id; c〉 e = 〈c〉 e. By the IH on
e −→∗n r , we know that there exists an e ′ such that 〈c〉 e −→∗n e ′ and 〈c〉 r −→∗n e ′.

(F TagFunFailB) 〈Fun?; c ′〉 v0B ! −→n fail, so

〈c〉 (〈Fun?; c ′〉 v0B !) −→n 〈Fun?; c ′; c〉 v0B ! −→n fail

by F Merge and F TagFunFailB.

So e ′ = fail, since 〈c〉 fail −→n fail by F CoerceRaise.

(F TagFunFun) 〈Fun?; c ′〉 v0Fun! −→n 〈c ′〉 v0, so

〈c〉 (〈Fun?; c ′〉 v0Fun!) −→n 〈Fun?; c ′; c〉 v0Fun! −→n 〈c ′; c〉 v0

by F Merge and F TagFunFun. We know that 〈c ′〉 v0 −→∗n v , and by the IH
there exists an e ′ such that 〈c〉 (〈c ′〉 v0) −→∗n e ′ and 〈c〉 r −→∗n e ′. We conclude by
applying F Merge on the former term along with Corollary 4.3.11.

(F TagB) 〈B !; c ′〉 v0 −→n 〈c〉 v0B !, so 〈c〉 (〈B !; c ′〉 v0) −→n 〈B !; c ′; c〉 v0 −→n

〈c ′; c〉 v0B !. Since 〈c ′〉 v0B ! −→∗n v , we know that there exists an e ′ such that
〈c〉 (〈c ′〉 v0B !) −→∗n e ′ and 〈c〉 r −→∗n e ′ by the IH. We conclude by applying
F Merge on the former term along with Corollary 4.3.11.

(F TagFun) As for F TagB.

(F TagBB) As for F TagFunFun.

(F TagBFailB) As for F TagFunFailB.

(F TagBFailFun) As for F TagBFailFun.

(F TagFunWrap) 〈(c1 7→ c2); c ′〉 v0 −→n 〈c′〉 v0c1 7→c2
, so

〈c〉 (〈(c1 7→ c2); c ′〉 v0) −→n 〈(c1 7→ c2); c ′; c〉 v0 −→n 〈c ′; c〉 v0c1 7→c2

166

Since 〈c ′〉 v0c1 7→c2
−→∗n v , we know by the IH that there exists an e ′ such that

〈c〉 (〈c ′〉 v0c1 7→c2
) −→∗n e ′ and 〈c〉 r −→∗n e ′. We conclude by applying F Merge on

the former term along with Corollary 4.3.11.

(F TagPredPred) As for F TagFunFun and F TagBB.

(F Check) 〈{x :T | e}?; c ′〉 v0 −→n 〈c ′〉 〈{x :T | e}, e[v0/x], v0〉, so

〈c〉 (〈{x :T | e}?; c ′〉 v0) −→n 〈{x :T | e}?; c ′; c〉 v0 −→n 〈c ′; c〉 〈{x :T | e}, e[v0/x], v0〉

by F Merge and F Check. Since 〈c ′〉 〈{x :T | e}, e[v0/x], v0〉 −→∗n r , the IH gives
us an e ′ such that 〈c〉 (〈c′〉 〈{x :T | e}, e[v0/x], v0〉) −→∗n e ′ and 〈c〉 r −→∗n e ′; we are
done by applying F Merge and Corollary 4.3.11 on the left.

(F CoerceInner) 〈c ′〉 e −→n 〈c ′〉 e ′, so 〈c〉 (〈c ′〉 e) −→n 〈c′; c〉 e −→n 〈c ′; c〉 e ′.
Since 〈c ′〉 e ′ −→∗n r , the IH gives us an e ′′ such that 〈c〉 (〈c ′〉 e ′) −→∗n e ′′. This last
steps immediately by F Merge to 〈c ′; c〉 e ′, so we know that term goes to e ′′′, too.

(F Merge) 〈c1〉 (〈c2〉 e) −→n 〈c2; c1〉 e, so

〈c〉 (〈c1〉 (〈c2〉 e)) −→n 〈c1; c〉 (〈c2〉 e) −→n 〈c2; c1; c〉 e

We know that 〈c2; c1〉 e −→∗n r , so the IH gives us an e ′ such that 〈c〉 (〈c2; c1〉 e) −→∗n
e ′ and 〈c〉 r −→∗n e ′. But the former term steps by F Merge to 〈c2; c1; c〉 e, so we
are done by Corollary 4.3.11.

(F Fail) 〈Fail; c ′〉 e −→n fail, so 〈c〉 (〈Fail; c ′〉 e) −→n 〈Fail; c ′; c〉 e −→n fail. We
have e ′ = r = fail, since 〈c〉 fail −→∗n fail by F CoerceRaise.

(F CoerceRaise) 〈c ′〉 fail −→n fail, so 〈c〉 (〈c ′〉 fail) −→n 〈c ′; c〉 fail −→n fail,
and again e ′ = r = fail as in F Fail, so we are done.

�

4.4 Soundness of Naive with regard to Cast

I use a step-indexed logical relation (defined in Figure 4.16) to show that the terms
translated from Cast to Naive by way of the function coerce (defined in Figure 4.15)
are behaviorally equivalent. We are forced to use step indices to account for the type
structure of dynamic types, i.e., that the “universal” type Dyn includes (tagged values
from) the types Dyn→Dyn and B .

The proof strategy is the same as that of Greenberg et al. [34] and Belo et al. [8]:
we separately relate the contract portions of the two languages (Figure 4.17). After
showing that related contract checks (here, casts and coercions) behave in related
ways on related values, we can show that Cast terms are related to their Naive
translations.

This proof is a simpler version of the proof relating Naive and Efficient in
Section 4.6.

167

Translating casts coerce(T1,T2) : T

coerce(T ,T) = Id
when T 6= T1→T2

coerce(Dyn,T1→T2) = Fun?; coerce(Dyn→Dyn,T1→T2)
coerce(Dyn,B) = B?
coerce(B ,Dyn) = B !

coerce(T1→T2,Dyn) = coerce(T1→T2,Dyn→Dyn);Fun!
coerce(T11→T12,T21→T22) = coerce(T21,T11) 7→ coerce(T12,T22)

coerce({x :T1 | e},T2) = {x :T1 | coerce(e)}!; coerce(T1,T2)
when T2 6= {x :T1 | e}

coerce(T1, {x :T2 | e}) = coerce(T1,T2); {x :T2 | coerce(e)}?
when T1 6= T2 and T1 6= {x :T ′1 | e ′}

Translating pre-values and terms coerce(u) : u coerce(e) : e

coerce(k) = k
coerce(λx :T . e) = λx :coerce(T). coerce(e)

coerce(x) = x
coerce(uId) = coerce(u)Id
coerce(vB !) = coerce(v)B !

coerce(vFun!) = coerce(v)Fun!
coerce(v〈T11→T12⇒T21→T22〉) = coerce(v)(coerce(T21,T11) 7→coerce(T12,T22))

coerce(v{x :T |e}?) = coerce(v){x :T |coerce(e)}?
coerce(〈T1 ⇒ T2〉 e) = 〈coerce(T1,T2)〉 coerce(e)

coerce(e1 e2) = coerce(e1) coerce(e2)
coerce(op(e1, . . . , en)) = op(coerce(e1), . . . , coerce(en))

coerce(〈{x :T | e1}, e2, v〉) = 〈coerce({x :T | e1}), coerce(e2), coerce(v)〉

Translating types and contexts coerce(T) : T coerce(Γ) : Γ

coerce(Dyn) = Dyn
coerce(B) = B

coerce(T1→T2) = coerce(T1)→coerce(T2)
coerce({x :T | e}) = {x :T | coerce(e)}

coerce(∅) = ∅
coerce(Γ, x :T) = coerce(Γ), x :coerce(T)

Figure 4.15: Translating from Cast to Naive

168

Value rules v1 ∼j v2 : T

∀j . kId ∼j kId : B ⇐⇒ ty(k) = B
v11 ∼j v21 : T1→T2 ⇐⇒
∀m < j . ∀v12 ∼m v22 : T1. v11 v12 'm v21 v22 : T2

v1B ! ∼j v2B ! : Dyn ⇐⇒ v1 ∼j v2 : B
v1Fun! ∼j v2Fun! : Dyn ⇐⇒ v1 ∼j v2 : Dyn→Dyn

v1{x :T |e1}? ∼
j v2{x :T |e2}? : {x :T | e1}

⇐⇒
∀m < j . v1 ∼m v2 : T ∧ {x :T | e1} ∼m {x :T | e2}

Term rules e1 'j e2 : T

e1 'j e2 : T ⇐⇒
e1 diverges ∨
∀m < j . e1 −→m

c fail =⇒ e2 −→∗c fail
∧ e1 −→m

c v1 =⇒ e2 −→∗c v2 ∧ v1 ∼(j−m) v2 : T

Type rules T1 ∼j T2

B ∼j B Dyn ∼j Dyn
T11→T12 ∼j T21→T22 ⇐⇒ T11 ∼j T21 ∧ T12 ∼j T22

{x :T | e1} ∼j {x :T | e2} ⇐⇒
∀m < j . ∀v1 ∼m v2 : T . e1[v1/x] 'm e2[v2/x] : Bool

Closing substitutions and open terms Γ |=j δ Γ ` e1 ' e2 : T

Γ |=j δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼j δ2(x) : T
Γ ` e1 ' e2 : T ⇐⇒ ∀j ≥ 0. ∀Γ |=j δ. δ1(e1) 'j δ2(e2) : T

Figure 4.16: Relating Cast and Naive

169

4.4.1 Lemma [Preservation for coerce]: Assuming that no refinement tags or ac-
tive checking forms are present:

1. If Γ ` e : T then coerce(Γ) ` coerce(e) : coerce(T).

2. If Γ ` u : T then coerce(Γ) ` coerce(u) : coerce(T).

3. If ` T1 and ` T2 and ` T1 ‖ T2 then ` coerce(T1,T2) : coerce(T1)
coerce(T2).

4. If ` T then ` coerce(T).

5. If ` Γ then ` coerce(Γ).

Proof: By simultaneous induction on the typing/well formedness/similarity deriva-
tions.

(WF Empty) By WF Empty.

(WF Extend) By WF Extend, using IHs (4) and (5).

(WF Dyn) By WF Dyn.

(WF Base) By WF Base.

(WF Fun) By WF Fun and IH (4).

(WF Refine) By WF Refine and IH (1).

(T Const) By WF Const and IH (5).

(T Abs) By WF Abs and IHs (4) and (1).

(T Var) By WF Var and IH (5).

(T PreVal) By WF PreVal and IH (2).

(T TagB) By IH (1), coerce(Γ) ` coerce(v) : B . By C Tag, ` B ! : B Dyn.
We are done by T TagVal.

(T TagFun) By IH (1), coerce(Γ) ` coerce(v) : Dyn→Dyn. By C Tag, we have
` Fun! : (Dyn→Dyn) Dyn. We are done by T TagVal.

(T TagRefine) Contradiction—we assumed that refinement tags do not appear.

170

(T Wrap) By IH (1), coerce(Γ) ` coerce(v) : coerce(T11→T12). By Naive regu-
larity (Lemma 4.3.3) and IH (4), we have ` coerce(T11→T12) and ` coerce(T21→T22).
Since we also have ` T11→T12 ‖ T21→T22, we can apply IH (3) to find that

` coerce(T11→T12,T21→T22) : coerce(T11→T12) coerce(T21→T22)

Recall that coerce(T11→T12,T21→T22) = coerce(T21,T11) 7→ coerce(T12,T22). So by
WF TagVal, we are done.

(T Fail) By WF Fail and IHs (4) and (5).

(T Cast) By WF Coerce, Naive regularity (Lemma 4.3.3), and IHs (1), (4),
and (3).

(T App) By WF App and IH (1).

(T Op) By WF Op and IH (1).

(T CheckCast) Contradictory—we assumed that there were no active checks.

(P Id) Since T can’t be a function type, coerce(T ,T) = Id, and we are done by
C Id.

(P DynL) If T2 is a function, then by C Compose with C Untag and IH (3).
If it is B , then by C Untag. Finally, if it is a refinement, then by C Untag and IH
(4) along with C Compose and IH (3).

(P DynR) By C Tag and IH (4), C Compose and IH (3).

(P Fun) By C Fun and IH (3).

(P RefineL) By C Compose and IH (3), with C Tag and IH (4).

(P RefineR) By C Compose and IH (3), with C Untag and IH (4).

�

4.4.2 Lemma: If ` T1 ⇒ T2 ≡ c, then for all v1 ∼j v2 : T1, we have 〈T1 ⇒
T2〉 v1 'j 〈coerce(T1,T2)〉 v2 : T2.

Proof: By induction on the derivation of ` T1 ⇒ T2 ≡ c. In all cases, we begin
by letting m < j be given such that 〈T1 ⇒ T2〉 v1 −→m

c r1. (If the left-hand side
diverges, we are done.)

(RC Id) We must show that 〈T ⇒ T 〉 v1 'm 〈Id〉 v2 : T , where T is not a
function type. The left-hand side must step by G CastId to v1. The right-hand side
steps by F TagId to v2. Since v1 ∼j v2 : T and m < j , we are done.

171

` T1 ⇒ T2 ≡ c

T 6= T1→T2

` T ⇒ T ≡ Id
RC Id

` Dyn⇒ B ≡ B?
RC DynB

` B ⇒ Dyn ≡ B !
RC BDyn

` Dyn→Dyn⇒ T1→T2 ≡ c

` Dyn⇒ T1→T2 ≡ Fun?; c
RC DynFun

` T1→T2 ⇒ Dyn→Dyn ≡ c

` T1→T2 ⇒ Dyn ≡ c;Fun!
RC FunDyn

` T21 ⇒ T11 ≡ c1 ` T12 ⇒ T22 ≡ c2

` T11→T12 ⇒ T21→T22 ≡ c1 7→ c2
RC Fun

T2 6= {x :T1 | e1} x :T1 ` e1 ' e2 : Bool ` T1 ⇒ T2 ≡ c

` {x :T1 | e1} ⇒ T2 ≡ {x :T1 | e2}!; c
RC PredPred

T1 6= {x :T ′1 | e ′} ` T1 ⇒ T2 ≡ c x :T2 ` e1 ' e2 : Bool

` T1 ⇒ {x :T2 | e1} ≡ c; {x :T2 | e2}?
RC PreCheck

Figure 4.17: Relating casts and Naive coercions

(RC DynB) We must show that 〈Dyn ⇒ B〉 v1 'm 〈B?〉 v2 : B . There are two
ways to have v1 ∼j v2 : Dyn: either they are both tagged with base type B ′! or with
as functions with Fun!.

If they are tagged as functions, then both sides step to fail. (The left-hand side
steps by G CastBFailFun, the right by F TagBFailFun.) If they are tagged
with B ′ 6= B , then both sides step to fail, on the left by G CastBFailB and by
F TagBFailB on the right.

If they are tagged with B ′ = B , then they will reduce to v1 and v2 respectively,
by G CastBB on the left and F TagBB and F TagId on the right. Since we have
v1 ∼j v2 : B , we can find v1 ∼(j−m) v2 : B and be done.

(RC BDyn) We must show that 〈B ⇒ Dyn〉 v1 'm 〈B !〉 v2 : Dyn. The left-hand
side steps by G CastB and the right-hand side by F TagB and F TagId, leaving
us to prove v1B ! ∼(j−m) v2B ! : Dyn, which we have immediately by assumption (since
m < j).

(RC DynFun) We must show that 〈Dyn ⇒ T1→T2〉 v1 'm 〈Fun?; c〉 v2 :
T1→T2. First, we go by cases as for the RC DynB case above. Easily solving the
cases when v1 and v2 are tagged with B !. So v1 = v ′1Fun! and v2 = v ′2Fun!. The left-hand
side steps by G CastFunFun and the right hand side steps by F TagFunFun, giv-
ing us 〈Dyn→Dyn⇒ T1→T2〉 v ′1 on the left and 〈c〉 v ′2 on the right. We are done by
the IH.

(RC FunDyn) We must show that 〈T1→T2 ⇒ Dyn〉 v1 'm 〈c; Fun!〉 v2 : Dyn,

172

where ` Dyn→Dyn⇒ T1→T2 ≡ c.

The left-hand side must step by G CastFunDyn, giving us 〈Dyn→Dyn ⇒
Dyn〉 (〈T1→T2 ⇒ Dyn→Dyn〉 v1). We know that 〈T1→T2 ⇒ Dyn→Dyn〉 v1 'j

〈c〉 v2 : Dyn→Dyn by the IH.

Now we consider for a moment 〈T1→T2 ⇒ Dyn→Dyn〉 v1 'j 〈c〉 v2 : Dyn→Dyn.
If the left-hand side diverges, we are done. Similarly, if both sides reduce to fail, then
so do our original terms, and we are done. So suppose they reduce to v ′1 ∼(j−m ′) v ′2 :
Dyn→Dyn for some m ′ < j . By coercion congruence (Lemma 4.3.13), we know that
〈c; Fun!〉 v2 −→∗n 〈Fun!〉 v ′2

We can expand the right-hand side to 〈Fun!〉 (〈c〉 v2) −→n 〈c; Fun!〉 v2, so we
can now reduce on the left and right to find 〈Dyn→Dyn ⇒ Dyn〉 v ′1 on the left and
〈Fun!〉 v ′2 on the right. The left steps by G CastFun and the right by F TagFun
and F TagId. We then have v ′1Fun! ∼(j−m ′−1) v ′2Fun! : Dyn. If j −m ′ − 1 is below m,
we are done with a smaller evaluation derivation. If it’s larger, we are done trivially,
as determinism (Lemma 4.2.1) guarantees that this is the only evaluation derivation.

(RC Fun) We must show that 〈T11→T12 ⇒ T21→T22〉 v1 'm 〈c1 7→ c2〉 v2 :
T21→T22, given that ` T21 ⇒ T11 ≡ c1 and ` T12 ⇒ T22 ≡ c2.

The left-hand side steps by G CastFunWrap to v1〈T11→T12⇒T21→T22〉; the right-
hand side steps by F TagFunWrap and F TagId to v1c1 7→c2

.

Let m ′ < m such that v ′1 ∼m ′
v ′2 : T21. We must show that

v1〈T11→T12⇒T21→T22〉 v ′1 'm ′
v2c1 7→c2

v ′2 : T21→T22

The left-hand side steps by G Fun to 〈T12 ⇒ T22〉 (v1 (〈T21 ⇒ T11〉 v ′1)); the
right-hand side steps by F Fun to 〈c2〉 (v2 (〈c1〉 v ′2)). By the IH on ` T21 ⇒ T11 ≡ c1,
we can find either (a) divergence on the left, (b) failure on the left and right, or (c)
a value v ′′1 ∼j v ′′2 : T11.

In this last case, we know that v1 v ′′1 'm ′′
v2 v ′′2 : T12 for all m ′′ < j , so we again

find either (a) divergence on the left, (b) failure on the left and right, or (c) a value
v ′′′1 ∼j v ′′′2 : T12.

In this last case, we know by the IH on ` T12 ⇒ T22 ≡ c2 that 〈T12 ⇒ T22〉 v ′′′1 'j

〈c2〉 v ′′′2 : T22, and we are done.

(RC PredPred) We must show 〈{x :T1 | e1} ⇒ T2〉 v1 'm 〈{x :T1 | e2}!; c〉 v2 :
T2, given x :T1 ` e1 ' e2 : Bool and ` T1 ⇒ T2 ≡ c.

The only way to have v1 ∼j v2 : {x :T1 | e1} is to have both values tagged as
v ′1{x :T1|e1}? and v ′2{x :T1|e2}?. (Anything else would be ill typed.)

So the left-hand side steps by G CastPredPred and the right-hand steps by
F TagPredPred, giving us 〈T1 ⇒ T2〉 v ′1 and 〈c〉 v ′2, respectively. By assumption
we have v ′1 ∼j v ′2 : T1, so we are done by the IH.

173

(RC PreCheck) We must show 〈T1 ⇒ {x :T2 | e1}〉 v1 'm 〈c; {x :T2 | e2}?〉 v2 :
{x :T2 | e1} given ` T1 ⇒ T2 ≡ c and x :T2 ` e1 ' e2 : Bool.

In Cast we step by G CastPreCheck, yielding 〈T2 ⇒ {x :T2 | e1}〉 (〈T1 ⇒
T2〉 v1).

As in RC FunDyn, we consider the inner term for a moment. We know by
the IH that 〈T1 ⇒ T2〉 v1 'j 〈c〉 v2 : T2. If the left-hand side diverges or both
go to fail, we are done—our whole term will behave the same way, in the same
number of steps. So we only need to consider the case where both sides reduce to
v ′1 ∼(j−m ′) v ′2 : T2 for some m ′ < j . By coercion congruence (Lemma 4.3.13), we know
that 〈c; {x :T | e2}?〉 v2 −→∗n 〈{x :T | e2}?〉 v ′2.

Now we can see that both sides reduce again: on the left, by G CastCheck; on
the right, by F TagCheck.

Since we have x :T2 ` e1 ' e2 : Bool, we know that e1[v
′
1/x] 'j e2[v

′
2/x] : Bool,

so the checks behave the same: either the left-hand side diverges, both return fail, or
they return related values at type Bool—that is, they both return trueId or falseId.

In this last case, both sides step: to v ′1{x :T |e1}? and v ′2{x :T |e2}? (by G CheckOK

or F CheckOK and then F TagId), or to fail (by G CheckFail on the left and by
F CheckFail and F CoerceRaise on the right). In either case, we may or may
not have enough steps left in our index. Either way we are done: if we do have enough
steps, we have found a derivation to related values. If not, we are done trivially, as
determinism (Lemma 4.2.1) guarantees that this is the only evaluation derivation.

�

4.4.3 Theorem [Soundness]: 1. If Γ ` u : T then Γ ` uId ' coerce(uId) : T .

2. If Γ ` v : T then Γ ` v ' coerce(v) : T .

3. If Γ ` e : T then Γ ` e ' coerce(e) : T .

4. If ` T1 and ` T2 and ` T1 ‖ T2 then ` T1 ⇒ T2 ≡ coerce(T1,T2).

5. If ` T then ∀j . T ∼j coerce(T).

Proof: By simultaneous induction on the typing/well formedness/similarity deriva-
tions.

(T Const) Immediate, by definition: k ∼j k : B for all j .

(T Abs) We must show that Γ ` (λx :T1. e)Id ' (λx :coerce(T1). coerce(e))Id :
T1→T2, given that Γ, x :T1 ` e ' coerce(e) : T2 by IH (3).

174

Let j be given such that Γ |=j δ. Unfolding some definitions, we must show that
δ1(λx :T1. e)Id ∼j δ2(λx :coerce(T1). coerce(e))Id : T1→T2. Let m < j be given such
that v1 ∼m v2 : T . We must show that

(λx :T1. δ1(e))Id v1 'm (λx :coerce(T1). δ2(coerce(e)))Id v2 : T2

Stepping each side, we see we must show that δ1(e[v1/x]) '(m−1) δ2(coerce(e)[v2/x]) :
T2. We have Γ |=(m−1) δ[v1, v2/x], so we are done by instantiating IH (3) at m − 1.

(T PreVal) By IH (1).

(T TagB) We must show that Γ ` vB ! ' coerce(v)B ! : Dyn. Let j be given such
that Γ |=j δ; we must show that δ1(vB !) ∼j δ2(coerce(v)B !) : Dyn.

By IH (2), we know that Γ ` v ' coerce(v) : B ; instantiating this proposition
with j and δ, we are done.

(T TagFun) We must show that Γ ` vFun! ' coerce(v)Fun! : Dyn. Let j be given
such that Γ |=j δ; we must show that δ1(vFun!) ∼j δ2(coerce(v)Fun!) : Dyn.

By IH (2), we know that Γ ` v ' coerce(v) : Dyn→Dyn; instantiating this propo-
sition with j and δ, we are done.

(T TagRefine) We must show that Γ ` v{x :T |e}? ' coerce(v){x :T |coerce(e)}? :

{x :T | e}. Let j be given such that Γ |=j δ; we must show that

δ1(v{x :T |e}?) ∼j δ2(coerce(v){x :T |coerce(e)}?) : {x :T | e}

Let m < j be given; we must show that v ∼m coerce(v) : T and {x :T | e} ∼m {x :T |
coerce(e)}. We find this by instantiating IH (2) and IH (5) at m and δ.

(T Wrap) We must show that

Γ ` coerce(v)〈T11→T12⇒T21→T22〉 ' coerce(v)coerce(T21,T11)7→coerce(T12,T22)
: T21→T22

Let j be given such that Γ |=j δ; we must show that

δ1(v)〈T11→T12⇒T21→T22〉 '
j δ2(coerce(v))coerce(T21,T11)7→coerce(T12,T22)

: T21→T22

Let m < j be given such that v1 ∼m v2 : T21. We must show (after stepping each
side) that

〈T12 ⇒ T22〉 (δ1(v) (〈T21 ⇒ T11〉 v1)) '(m − 1)
〈coerce(T12,T22)〉 (δ2(coerce(v)) (〈coerce(T21,T11)〉 v2)) : T22

By IH (4) and Lemma 4.4.2, we know that

〈T21 ⇒ T11〉 v1 'j ′ 〈coerce(T21,T11)〉 v2 : T11

175

for all j ′. Instantiating this at m − 1, we see that either: (a) the left-hand side
diverges, and so therefore does the whole term; (b) both sides reduce to fail, and so
therefore does the whole term; or (c) both sides reduce to v ′1 ∼(m−1−m ′) v ′2 : T11.

In all but the last case, we are done. In the last case, we know by the IH that
Γ ` v ' coerce(v) : T11→T12, so we can instantiate this at m−1−m ′ to find a similar
set of cases. Again, we only need to consider the case where v v ′1 and coerce(v) v ′2
reduce to values v ′′1 ∼(m−1−m ′−m ′′) v ′′2 : T12 in m ′′ steps.

We now reason as in the domain cast, using IH (4) and Lemma 4.4.2 to finally
conclude that 〈T12 ⇒ T22〉 v ′′1 '(m−1−m ′−m ′′) 〈coerce(T12,T22)〉 v ′′2 : T22.

(T Var) If Γ ` x ' x : T , then δ1(x) 'j δ2(x) : T for all j by definition.

(T Fail) We immediately have fail 'j fail : T for all j and T .

(T Cast) We must show that Γ ` 〈T1 ⇒ T2〉 e ' 〈coerce(T1,T2)〉 coerce(e) : T2.
Let j be given such that Γ |=j δ.

By IH (3), we know that Γ ` e ' coerce(e) : T1. We can instantiate this at j and
δ to find that either: (a) the left side diverges, and so does the cast term; (b) both
sides reduce to fail, and so do the cast/coercion terms in one more step; or (c) both
sides reduce in m steps to v1 ∼(j−m) v2 : T1. By coercion congruence (Lemma 4.3.13),
we know that 〈coerce(T1,T2)〉 δ2(coerce(e)) −→∗n 〈coerce(T1,T2)〉 v2.

By IH (4), we know that ` T1 ⇒ T2 ≡ coerce(T1,T2). By Lemma 4.4.2, we know
that 〈T1 ⇒ T2〉 v1 'j 〈coerce(T1,T2)〉 v2 : T2 for all j —and for m < j in particular,
so we are done.

(T App) We must show that Γ ` e1 e2 ' coerce(e1) coerce(e2) : T2. Let j be given
such that Γ |=j δ. We must show δ1(e1) δ1(e2) 'j δ2(coerce(e1)) δ2(coerce(e2)) : T2.

By IH (3), we know that Γ ` e1 ' coerce(e1) : T1→T2; by instantiating at j and
δ, we have either: a left-side divergence (and are done); fail in m < j steps on both
sides (and are done in m + 1 steps); or v1 ∼(j−m) v2 : T1→T2.

Again by IH (3), Γ ` e2 ' coerce(e2) : T1. Instantiating at j −m, we again have
three possibilities: left-side divergence, fail on both sides, or reduction to v ′1 ∼(j−m−m′)

v ′2 : T1. In the former two cases we are done. In the latter, we know by definition
that v1 v ′1 '(j−m−m ′) v2 v ′2 : T2, and we are done.

(T Op) Using IH (3), we can reduce all of the arguments of the operation to
values. Since operations are first-order and don’t use dynamic types, we know that
the arguments must all be base values or refinements of base values, so the related
values are equal constants. The G Op/F Op will then produce identical outputs,
which must also be related.

176

(T CheckCast) We must show that

Γ ` 〈{x :T | e1}, e2, v〉 ' 〈{x :T | coerce(e1)}, coerce(e2), coerce(v)〉 : {x :T | e1}

Let j and Γ |=j δ be given. By IH (3) instantiated at j , we know that e2 'j coerce(e2) :
Bool. If this diverges, so does the whole term, and we are done. If both sides go to
fail in m steps, we are done in m + 1 steps. If both sides go to v1 ∼j−m v2 : Bool in
m steps, then there are two possibilities.

If v1 = v2 = trueId, then both sides step by G CheckOK/F CheckOK to
δ1(v){x :T |e1}? and δ2(coerce(v)){x :T |coerce(e1)}?. Let m ′ < j − m − 1 be given; We

already have δ1(v) ∼m ′
δ2(coerce(v)) : T by IH (2), and we are done by IH (5),

finding:
{x :T | e1} ∼m ′ {x :T | coerce(e1)}

(P Id) We have ` T ⇒ T ≡ Id by RC Id immediately.

(P DynL) We have ` Dyn ‖ T . We go by cases on T :

(T = Dyn) Immediate, by RC Id.

(T = B) By RC DynB.

(T = T1→T2) We can find ` Dyn→Dyn ‖ T1→T2 by an application of P Fun
and two applications of P DynL. Then by IH (4), we have ` Dyn→Dyn⇒ T1→T2 ≡
coerce(Dyn→Dyn,T1→T2), and then by RC DynFun we have ` Dyn ⇒ T1→T2 ≡
Fun?; coerce(Dyn→Dyn,T1→T2).

(T = {x :T ′ | e}) We have ` Dyn ‖ T ′ by P DynL immediately, so by IH (4) we
have ` Dyn⇒ T ′ ≡ coerce(Dyn,T ′). By IH (5), {x :T ′ | e} ∼j {x :T ′ | coerce(e)} for
all j ; unfolding this definition, we can find x :T ′ ` e ' coerce(e) : Bool. So now we
have ` Dyn⇒ {x :T ′ | e} ≡ coerce(Dyn,T ′); {x :B | coerce(e)}? by RC PreCheck.

(P DynR) We have ` T ‖ Dyn. We go by cases on T :

(T = Dyn) Immediate, by RC Id.

(T = B) By RC BDyn.

(T = T1→T2) We can find ` T1→T2 ‖ Dyn→Dyn by an application of P Fun
and two applications of P DynR. Then by IH (4), we have ` T1→T2 ⇒ Dyn→Dyn ≡
coerce(T1→T2,Dyn→Dyn), and then by RC DynFun we have ` T1→T2 ⇒ Dyn ≡
coerce(T1→T2,Dyn→Dyn); Fun!.

(T = {x :T ′ | e}) We have ` T ′ ‖ Dyn by P DynL immediately, so by IH (4) we
have ` T ′ ⇒ Dyn ≡ coerce(T ′,Dyn). By IH (5), we can unfold {x :T ′ | e} ∼j {x :T ′ |
coerce(e)} into x :T ′ ` e ' coerce(e) : Bool. We are now done by RC PredPred.

177

(P Fun) We have ` T11→T12 ‖ T21→T22. By IH (4), we find:

` T21 ⇒ T11 ≡ coerce(T21,T11) ` T12 ⇒ T22 ≡ coerce(T12,T22)

We find ` T11→T12 ⇒ T21→T22 ≡ coerce(T21,T11) 7→ coerce(T12,T22) by RC Fun.

(P RefineL) We have ` {x :T1 | e} ‖ T2; by inversion, ` T1 ‖ T2. If T2 =
{x :T1 | e}, then we are done by RC Id. Otherwise, we use RC PredPred and IHs
(4) and (5).

(P RefineR) We have ` T1 ‖ {x :T2 | e}; by inversion, ` T1 ‖ T2. If T1 =
{x :T2 | e}, then we are done by RC Id. Otherwise, we use RC PreCheck and IHs
(4) and (5).

(WF Dyn) By definition.

(WF Base) By definition.

(WF Fun) By IH (5).

(WF Refine) By IH (3) and rearranging quantifiers, recalling that e1 (and so
coerce(e1)) are both closed.

�

4.5 A space-efficient coercion calculus

Having developed the näıve semantics in Naive, I now turn to space efficiency. In
this section, I define Efficient, a space-efficient coercion calculus.

There are two loci of inefficiency: coercion merges and function proxies (func-
tional coercions). When F Merge applies, it merely concatenates two coercions:
〈c1〉 (〈c2〉 e) −→n 〈c2; c1〉 e. Efficient’s semantics combines c2 and c1 to eliminate
redundant checks. To bound the number of function proxies, I ensure that coercion
merging combines adjacent functional coercions, and I change the tagging scheme on
values—while Naive allows an arbitrary stack of tags values, Efficient will keep
the size of value tags bounded. The solution to both of these problems lies in canoni-
cal coercions and the merge algorithm. Before I describe them below in Section 4.5.1,
I discuss changes to the syntax of values and to the typing rules.

I make changes to both the syntax (Figure 4.18) and typing rules (Figure 4.19) of
Naive from Section 4.3; I define an entirely new operational semantics for Efficient
in Section 4.5.2 (see Figure 4.22). Changes are marked with highlighting and/or a
bullet marker, •. The proof of type soundness of this development is in Section 4.5.3;
it relies on my development of canonical coercions in Section 4.5.1. Throughout the
new typing rules, I assume that coercions are canonical (see below).

178

Types
T ::= B | T1→T2 | {x :B | e} | Dyn | {x :Dyn | e}
B ::= Bool | Int | . . .

Coercions, primitive coercions, and type tags
•c ::= d1; . . . ; dn | Fail
•d ::= D ! | D? | c1 7→ c2
D ::= B | Fun | {x :B | e} | {x :Dyn | e}

Terms, values, pre-values, and results
e ::= x | r | op(e1, . . . , en) | e1 e2 | 〈c〉 e |

〈{x :T | e1}, e2, v〉
r ::= v | fail
•v ::= uc
u ::= k | λx :T . e

Typing contexts
Γ ::= ∅ | Γ, x :T

Figure 4.18: Updated syntax for Efficient

Γ ` e : T

c 6= Fail c 6= c′; {x :T | e}? c is canonical
Γ ` u : T1 ` c : T1 T2

Γ ` uc : T2
T Val

∅ ` uc : T ` {x :T | e}? : T {x :T | e} c; {x :T | e}? is canonical
` Γ e[uc/x] −→∗ trueId

Γ ` u
c;{x :T |e}? : {x :T | e}

T ValRefine

` Γ ` {x :T | e1} ∅ ` v : T ∅ ` e2 : Bool e1[v/x] −→∗ e2
Γ ` 〈{x :T | e1}, e2, v〉 : {x :T | e1}

T Check

` c : T1 T2 Γ ` e : T1 c is canonical

Γ ` 〈c〉 e : T2
T Coerce

Figure 4.19: Updated typing rules for Efficient

179

In Naive, tagging is stacked: a value is either a pre-value tagged with Id or a value
tagged with a single primitive coercion. In Efficient, I collapse this stack: values
are pre-values tagged with a composite coercion, uc. While Naive typed values with
stacks of coercions using T PreVal, T TagVal, and T TagValRefine, we now
use rules T Val and T ValRefine to type values with a single, composite coercion
on them.

I also change the structure of coercions slightly, treating Fail as a composite co-
ercion. I do this because coercion normalization doesn’t allow composite coercions
with Fail at the top level—such coercions are normalized to just Fail itself.

The changes to the typing rules aren’t major: T Val and T ValRefine account
for flattened values: T Val will apply to uc unless the coercion c ends in {x :T | e}?,
in which case the typing derivation for the value will be T ValRefine around T Val.
I separate the two rules to make sure we have value inversion, as outlined in my
philosophy (Section 4.1). That is, I want to ensure that if a value has a refinement
check tag on it, it satisfies that refinement. The T Check rule changes to use the
space-efficient semantics, but it remains a technical rule for supporting the evaluation
of programs. Finally, I change T Coerce to require that coercions appearing in the
program source are canonical. Before discussing the new evaluation rules, I discuss
my space-efficient coercions and what I mean by a canonical coercion.

4.5.1 Space-efficient coercions

I define a set of canonical coercions, further subdivided into value coercions for con-
stants and for functions. I list these coercions in Table 4.2 below; I prove that they
are in fact the normal coercions for a standard set of rewrite rules given in Figure 4.20
in Lemma 4.5.5 and Lemma 4.5.7. Next, I define a set of rules for merging coercions,
proving that merging two well typed canonical coercions yields a well typed canoni-
cal coercion—no bigger than the previous two combined. This is how I show space
efficiency: where a näıve implementation would accumulate and discharge all checks,
Efficient will keep its coercions in canonical form for which we have a bounded size
(see Table 4.2).

Henglein and Herman et al. define coercions with slightly different structure: for
me, Id is notation for the empty composite coercion, but for them it is a coercion in
its own right. Henglein and Herman et al.’s systems work by taking a single rewrite
rule, the so-called φ rule:

D !; D? −→ Id (φ)

The φ rule stands in distinction to the ψ rule:

D?; D ! −→ Id (ψ)

Henglein observed that for φ and ψ rules, the right-hand side is “more efficient”. The
φ rules are efficient and harmless : nothing can fail (if a value is already a D-typed
value, then tagging as D into Dyn and then immediately untagging can’t fail, so you

180

c −→ c

Fail; c −→ Fail (F Fail)
c; Fail −→ Fail

(c11 7→ c12); (c21 7→ c22) −→ (c21; c11) 7→ (c12; c22)
B !;B? −→ Id (F TagBB) (φ)
B !;B ′? −→ Fail when B 6= B ′

(F TagBFailB)
Fun!;Fun? −→ Id (F TagFunFun) (φ)

B !;Fun? −→ Fail (F TagBFailFun)
Fun!;B? −→ Fail (F TagFunFailB)

{x :T | e}?; {x :T | e}! −→ Id (F TagPredPred) (ψ)
{x :T | e}!; {x :T | e}? −→ Id (φ)

di−1 ; di −→ c

d1; . . . ; di−1 ; di ; . . . ; dn −→ d1; . . . ; c; . . . ; dn
Compat

c1 −→ c′1
d1; . . . ; (c1 7→ c2); . . . ; dn −→ d1; . . . ; (c′1 7→ c2); . . . ; dn

FunDom

c2 −→ c′2
d1; . . . ; (c1 7→ c2); . . . ; dn −→ d1; . . . ; (c1 7→ c′2); . . . ; dn

FunCod

Figure 4.20: Coercion rewriting rules

181

might as well just run Id). But the right-hand side of a ψ rule is “safer”—the left-hand
side of a ψ rule may fail at runtime, but the right-hand side won’t. Checking that a
value of type Dyn holds a D-typed value and then immediately retagging it might fail,
since the value may actually have a different type. Put another way, φ rules don’t
affect the extensional behavior of the program, just the (intensional) cost of running
it; ψ rules affect extensional behavior, possibly hiding errors.

Henglein and Herman et al. define term rewriting systems with φ rules mod-
ulo an equational theory obtained by completing the following rules with reflexivity,
symmetry, transitivity, and compatibility:

Id; c = c
c; Id = c

c11 7→ c12; c21 7→ c22 = (c21; c11) 7→ (c12; c22)
(c1; c2); c3 = c1; (c2; c3)

My system has φ rules for dynamic types and for manifest contracts, but it also
has a ψ rule for manifest contracts. To make the technicalities are simpler, I directly
define a rewrite system in Figure 4.20, where I lift the two-coercion rewrite rules to
composite coercions with the rules Compat, FunDom, and FunCod. Rules that
are instances of φ or ψ rules are marked as such. When reading the rules, recall
that c = Id; c = c; Id. I expand out the φ rule for clarity here (and to ease some
technicalities below).

Note that many of these rules correspond to reduction rules in Naive’s operational
semantics; I’ve written the reduction rule names next to such rewrite rules. The rules
for predicates over base types and type dynamic are new. Just as B? takes a less
specific type, Dyn, to a more specific type B while performing a check, we have
{x :B | e}? take a less specific type, B to a more specific type {x :B | e} while
performing a check. That is, src(D) is more specific than tgt(D). By the same
analogy, {x :B | e}! takes a more specific type to a less specific one. The rules for
refinements don’t have just a φ rule—they must have a ψ rule, too:

{x :T | e}?; {x :T | e}! −→ Id

Note that this is a syntactic equivalence on refinement types and their predicate
terms. This may lead to some implementation issues; see Chapter 6.

To see why we need a ψ rule, consider the rule F TagPredPred from the näıve
operational semantics (Figure 4.12): we must have a ψ rule if {x :T | e}! is going to
untag v{x :T |e}?. But if {x :T | e}?; {x :T | e}! −→ Id on tags, it must also hold for

coercions on the stack, if we want space efficiency. That is, the coercion

{x :T | e1}?; {x :T | e1}!; {x :T | e2}?; {x :T | e2}!; . . . ; {x :T | en}?; {x :T | en}!

will accumulate checks unless each pair of ei can be annihilated.
Space-efficient refinement checking must drop some checks on the floor. The

φ rule for refinements is an optimization, unnecessary for soundness and space ef-
ficiency. Removing this rule would add one extra canonical coercion. Suppose

182

{x :T | e}!; {x :T | e}?; c was canonical. What can c be that is (a) well typed,
and (b) doesn’t reduce? There is no such coercion; the only new canonical coercion
would be {x :T | e}!; {x :T | e}?. Dropping the φ rule doesn’t affect soundness, either.
In fact, having it complicates matters a tiny bit:

〈{x :T | e}?〉 (〈{x :T | e}!〉 v{x :T |e}?)

−→n 〈{x :T | e}!; {x :T | e}?〉 v{x :T |e}?
−→n 〈{x :T | e}?〉 v
−→n 〈Id〉 〈{x :T | e}, e[v/x], v〉
−→∗n 〈Id〉 〈{x :T | e}, trueId, v〉 (by typing of v{x :T |e}?
−→n 〈Id〉 v{x :T |e}?
−→n v{x :T |e}?

And in the space-efficient calculus with N Phi for D = {x :T | e}, the merge equiva-
lent of the φ rule:

〈{x :T | e}?〉 (〈{x :T | e}!〉 u
c;{x :T |e}?)

−→ 〈{x :T | e}!; {x :T | e}?〉 u
c;{x :T |e}?

−→ 〈Id〉 u
c;{x :T |e}?

−→ u
c;{x :T |e}?

And without the φ rule:

〈{x :T | e}?〉 (〈{x :T | e}!〉 u
c;{x :T |e}?)

−→ 〈{x :T | e}!; {x :T | e}?〉 u
c;{x :T |e}?

−→ 〈{x :T | e}?〉 uc

−→ 〈Id〉 〈{x :T | e}, e[uc/x], uc〉
−→∗ 〈Id〉 〈{x :T | e}, e[uc/x], uc〉 (by typing of u

c;{x :T |e}?
−→ 〈Id〉 u

c;{x :T |e}?
−→ u

c;{x :T |e}?

The evaluation derivation is closer to that of the naive system without the φ rule for
refinements—including the φ rule merely skips rechecking the predicate. I do not do
so here, but I conjecture that Efficient terms are behaviorally equivalent with or
without the φ rule, though the runtime costs will be different.

Finally, one may wonder: we have ψ rule for refinements, but no such rule for
tagging into and checking from Dyn. Why not? Henglein pointed out that ψ rules
don’t preserve the behavior of the original program exactly, possibly hiding errors. It
turns out that I must have a ψ rule to make manifest contracts space efficient. But
gradual types don’t need the ψ rule to be space efficient. Since I’d like the behavior
of Naive and Efficient to be as close as possible, I minimize the mismatch by only
using ψ rules for manifest contracts, not dynamic contracts—even if it doesn’t give
us a stronger theorem.

183

The situation is neatly dual: manifest contracts must have ψ rules, but need not
have φ rules; dynamic types must have φ rules, but need not have ψ rules.

4.5.1 Lemma [Preservation for rewriting]: If ` c : T1 T2 and c −→ c ′ then
` c ′ : T1 T2.

Proof: By case analysis on the reduction step taken. �

4.5.2 Lemma [Confluence]: Given a well typed coercion c1, if c1 −→ c2 and c1 −→
c ′2 then c2 −→∗ c3 and c ′2 −→∗ c3.

Proof: By case analysis on the critical pairs. If the reductions take place in non-
overlapping parts of the term, then we simply make the appropriate, other, reduction
step in both terms.

If the reduction takes place in an overlapping critical pair, we must reason more
carefully. If one of the steps is any of the Id or Fail cases, we are done: simply take
the appropriate step in the other term.

The remaining critical pairs are multiple functional coercions in a row and over-
lapping refinement coercions.

Suppose we have c1 = c; (c11 7→ c12); (c21 7→ c22); (c31 7→ c32); c ′ and

c1 −→ c2 = c; ((c21; c11) 7→ (c12; c22)); (c31 7→ c32); c ′

c1 −→ c ′2 = c; (c11 7→ c12); ((c31; c21) 7→ (c22; c32)); c ′.

We can simply reduce each side once more to find c; (c31; c21; c11) 7→ (c12; c22; c32); c ′

on both sides.
Suppose we have c1 = c; {x :T | e}?; {x :T | e}!; {x :T | e}?; c ′ and

c1 −→ c2 = c; Id; {x :T | e}?; c ′

c1 −→ c ′2 = c; {x :T | e}?; Id; c ′.

Note that the refinements must be the same to have a well typed critical pair where
the either reduction rule could fire. In this case, we can simply reduce the Id on either
side to find confluence. The case for c1 = c; {x :T | e}!; {x :T | e}?; {x :T | e}!; c ′ is
symmetric.

�

4.5.3 Lemma: The rewrite system of Figure 4.20 is normalizing.

Proof: We define coercion size straightforwardly, as follows:

size(Id) = size(Fail) = 1
size(D !) = size(D?) = 1

size(d1; . . . ; dn) =
∑

size(di)
size(c1 7→ c2) = 1 + size(c1) + size(c2)

We show that if c1 −→ c2, then size(c1) > size(c2) (by inspection). The only subtle
case is (c11 7→ c12); (c21 7→ c22) −→ (c21; c11) 7→ (c12; c22), wherein the size reduces by
exactly 1, by eliminating one of the functional coercion constructors. �

184

4.5.4 Lemma: The rewrite system of Figure 4.20 is strongly normalizing on well
typed coercions.

Proof: This follows directly from the fact that the rewrite system is normalizing
(Lemma 4.5.3) and confluent (Lemma 4.5.2). �

4.5.5 Lemma: The canonical coercions are normal.

Proof: By inspection. �

4.5.6 Lemma: If d1; . . . ; dn is canonical, then any prefix d1; . . . or suffix . . . ; dn is
also canonical.

Proof: By inspection of Figure 4.11. �

4.5.7 Lemma: If ` c : T1 T2 and c is normal, then c is canonical.

Proof: By induction on the derivation of ` c : T1 T2. Consulting Table 4.2
will speed up the case analysis, since the possible typings quickly circumscribe the
possibilities.

(C Id) Id is canonical.

(C Fail) Fail is canonical.

(C Compose) We have ` d ; c : T1 T2; by inversion we have ` d : T1 T ′

and ` c : T ′ T2. Moreover, if d ; c is normal, then so is c—so by the IH, we know
that c is canonical.

We will consider various possibilities for c, but in all cases we may rule out Id—
because each of the primitive coercions is canonical—and Fail—because d ; Fail is not
normal. So in the following cases, we are looking at a coercion d ; c where c is non-
empty. We go by cases on the former derivation:

(C Untag) By cases on d :

(d = B?) It must be the case that T ′ = B , so c is one of B ! or B !; {x :Dyn | e}?
or {x :B | e}?. In all cases, we have immediately that d ; c is canonical.

(d = Fun?) It must be the case that T ′ = (Dyn→Dyn), so c is one of Fun! or
Fun!; {x :Dyn | e}? or one of the (c1 7→ c2); c ′ coercions. In all cases, d ; c is canonical.

(d = {x :T | e}?) The only possibility is that c = {x :T | e}!; c ′, but this would
not be normal—a contradiction. (That is, the only canonical coercion beginning
{x :T | e}? is exactly {x :T | e}?.)

(C Tag) By cases on d :

(d = B !) It must be the case that T ′ = Dyn. It cannot be the case that c =
Fun?; c′, for then d ; c wouldn’t be normal. By the same token, we can’t have that
c = B?; c ′. The only remaining possibility is that c = {x :Dyn | e}?, and B !; {x :Dyn |
e}? is canonical.

185

c1 ∗ c2 ⇒ c3

c1; c2 is canonical

c1 ∗ c2 ⇒ (c1; c2)
N Canonical

c21 ∗ c11 ⇒ c31 c12 ∗ c22 ⇒ c32 c1 ∗ (c31 7→ c32); c2 ⇒ c

c1; (c11 7→ c12) ∗ (c21 7→ c22); c2 ⇒ c
N Fun

Fail ∗ c ⇒ Fail
N FailL

c 6= Fail

c ∗ Fail⇒ Fail
N FailR

c1 ∗ c2 ⇒ c

c1;D ! ∗D?; c2 ⇒ c
N Phi

B 6= B ′

c1;B ! ∗ B ′?; c2 ⇒ Fail
N BFailB

c1;B ! ∗ Fun?; c2 ⇒ c
N BFailFun

c1;Fun! ∗ B?; c2 ⇒ Fail
N FunFailB

c1 ∗ c2 ⇒ c

c1; {x :T | e}? ∗ {x :T | e}!; c2 ⇒ c
N PredPred

Figure 4.21: Merging coercions

(d = Fun!) It must be the case that T ′ = Dyn. It cannot be the case that
c = Fun?; c ′ or c = B !; c ′, because then d ; c wouldn’t be normal. We can therefore
conclude that c = {x :Dyn | e}?, and Fun!; {x :Dyn | e}? is canonical.

(d = {x :B | e}!) c is either B ! or B !; {x :Dyn | e ′}? or {x :B | e ′}?. For the first
two, we have that d ; c is canonical. In the last case, d ; c is normal iff e 6= e ′, in which
case d ; c is canonical.

(d = {x :Dyn | e}!) c must come from Dyn. If it is {x :Dyn | e ′}?, we must have
e 6= e ′ for d ; c to be normal, but then d ; c is canonical. If c = B?; c ′, then {x :Dyn |
e}!; B?; c ′ is canonical. The same is true when c = Fun?; c ′.

(C Fun) d = c1 7→ c2. It must be the case that c1 and c2 are normal, so by the
IH they are also canonical. It can’t be the case that c = (c ′1 7→ c ′2); c ′—then d ; c
wouldn’t be normal.

So the only possibility is that (epending on the types of c1 and c2) the coercion c
could be Fun! or Fun!; {x :Dyn | e}?. In both of these cases, d ; c is canonical.

�

4.5.8 Corollary: All well typed coercions rewrite to a canonical coercion.

Proof: By strong normalization (Lemma 4.5.4), preservation (Lemma 4.5.1), and
the fact well typed normal coercions are canonical (Lemma 4.5.7). �

Having developed the rewrite rules for my (somewhat relaxed) coercions, I define
a merge algorithm in Figure 4.21 that takes two coercions and merges them from the

186

“inside out”: when merging d11; . . . ; d1n and d21; . . . ; d2 i , we first merge d1n and d21,
and then d1n−1 and d22, and so on. We will only ever merge canonical coercions,
greatly simplifying the algorithm. We are justified in doing this by Corollary 4.5.8—
every coercion reduces (i.e., is equivalent to) some normalized, canonical form. My
merging relation implements the φ rule for all tags in N Phi; since we have ψ rule
only for refinements, we implement it separately in N PredPred. We implement
failure rules in N BFailB, N BFailFun, and N FunFailB. I relate my coercion
system to others in Chapter 5.

Looking at Table 4.2, we can see why T ValRefine only needs to check the
last coercion on a tagged pre-value: if {x :T | e}? appears in a canonical coercion,
it appears at the end. Similarly, the observation that certain coercions are value
coercions, i.e., are the only coercions that can be applied to values, can be made
based on typing: if constants are typed at simple types and lambdas are assigned
functional types, then all value coercions must come from B or T1→T2.

I write c1 ⇓ c2 (read “merge c1 and c2”) for canonical coercions c1 and c2 to mean
the coercion c such that c1 ∗ c2 ⇒ c. This notation is justified by Lemma 4.5.11,
which shows that merging is an operator on canonical coercions.

4.5.9 Lemma [Preservation for merge]: If ` c1 : T1 T2 and ` c2 : T2 T3

and c1 ∗ c2 ⇒ c3 then ` c3 : T1 T3.

Proof: By induction on the derivation of c1 ∗ c2 ⇒ c3.

(N Canonical) By induction on the length of c1, using C Compose.

(N FailL) We have Fail ∗ c2 ⇒ Fail. By regularity (Lemma 4.3.2), ` T3. By
inversion we have ` T1, so by C Fail we have ` Fail : T1 T3.

(N FailR) We have c1 ∗ Fail ⇒ Fail. By regularity (Lemma 4.3.2), ` T1. By
inversion we have ` T3, so by C Fail we have ` Fail : T1 T3.

(N Phi) We have ` c1; D ! : T1 tgt(D) and ` D?; c2 : tgt(D) T3. By
inversion, ` c1 : T1 src(D) and ` c2 : src(D) T3. We can now apply the IH to
find that ` c : T1 T3.

(N BFailB) We have ` c1; B ! : T1 Dyn and ` B ′?; c2 : Dyn T3. By
regularity (Lemma 4.3.2), we know that ` T1 and ` T3. So we can conclude by
C Fail that ` Fail : T1 T3.

(N BFailFun) We have ` c1; B ! : T1 Dyn and ` Fun?; c2 : Dyn T3. By
regularity (Lemma 4.3.2), we know that ` T1 and ` T3. So we can conclude by
C Fail that ` Fail : T1 T3.

(N FunFailB) We have ` c1; Fun! : T1 Dyn and ` B?; c2 : Dyn T3. By
regularity (Lemma 4.3.2), we know that ` T1 and ` T3. So we can conclude by
C Fail that ` Fail : T1 T3.

187

Coercion Type

Id : T T
Fail : T T ′

{x :Dyn | e}? : Dyn {x :Dyn | e}
B? : Dyn B

B?;B ! : Dyn Dyn
B?;B !; {x :Dyn | e}? : Dyn {x :Dyn | e}

B?; {x :B | e}? : Dyn {x :B | e}
Fun? : Dyn Dyn→Dyn

Fun?;Fun! : Dyn Dyn
Fun?;Fun!; {x :Dyn | e}? : Dyn {x :Dyn | e}

Fun?; c1 7→ c2 : Dyn T21→T22

Fun?; c1 7→ c2;Fun! : Dyn Dyn
Fun?; c1 7→ c2;Fun!; {x :Dyn | e}? : Dyn {x :Dyn | e}

B ! : B Dyn
B !; {x :Dyn | e}? : B {x :Dyn | e}

{x :B | e}? : B {x :B | e}
Fun! : (Dyn→Dyn) Dyn

Fun!; {x :Dyn | e}? : (Dyn→Dyn) {x :Dyn | e}
c1 7→ c2 : (T11→T12) (T21→T22)

c1 7→ c2;Fun! : (T11→T12) Dyn
c1 7→ c2;Fun!; {x :Dyn | e}? : (T11→T12) {x :Dyn | e}

{x :Dyn | e}! : {x :Dyn | e} Dyn
{x :Dyn | e}!; {x :Dyn | e ′}? : {x :Dyn | e} Dyn where e 6= e ′

{x :Dyn | e}!;B? : {x :Dyn | e} B
{x :Dyn | e}!;B?;B ! : {x :Dyn | e} Dyn

{x :Dyn | e}!;B?;B !; {x :Dyn | e ′}? : {x :Dyn | e} {x :Dyn | e ′}
{x :Dyn | e}!;B?; {x :B | e ′}? : {x :Dyn | e} {x :B | e ′}

{x :Dyn | e}!;Fun? : {x :Dyn | e} (Dyn→Dyn)
{x :Dyn | e}!;Fun?;Fun! : {x :Dyn | e} Dyn

{x :Dyn | e}!;Fun?;Fun!; {x :Dyn | e ′}? : {x :Dyn | e} {x :Dyn | e ′}
{x :Dyn | e}!;Fun?; c1 7→ c2 : {x :Dyn | e} T21→T22

{x :Dyn | e}!;Fun?; c1 7→ c2;Fun! : {x :Dyn | e} Dyn
{x :Dyn | e}!;Fun?; c1 7→ c2;Fun!; {x :Dyn | e ′}? : {x :Dyn | e} {x :Dyn | e ′}

{x :B | e}! : {x :B | e} B
{x :B | e}!;B ! : {x :B | e} Dyn

{x :B | e}!;B !; {x :Dyn | e ′}? : {x :B | e} {x :Dyn | e ′}
{x :B | e}!; {x :B | e ′}? : {x :B | e} {x :B | e ′} where e 6= e ′

Rows with a blue background are value coercions, and are the only coercions that can appear as
tags on pre-values. Horizontal rules mark a change of initial primitive coercion.

Table 4.2: Canonical coercions

188

(N PredPred) We have ` c1; {x :T | e}? : T1 {x :T | e} and ` {x :T |
e}!; c2 : {x :T | e} T3, where T is either B or Dyn. By inversion, ` c1 : T1 T
and ` c2 : T T3. We can now apply the IH to find that ` c : T1 T3.

(N Fun) We have:

` c1; (c11 7→ c12) : T1 (T21→T22)
` (c21 7→ c22); c2 : (T21→T22) T3

By inversion, we know that:

` c1 : T1 (T11→T12)
` c11 : T21 T11

` c12 : T12 T22

` c21 : T31 T21

` c22 : T22 T32

` c2 : (T31→T32) T3

We know c21∗c11 ⇒ c31 and c12∗c22 ⇒ c32, so by the IH we have that ` c31 : T31 T11

and ` c32 : T12 T32. By C Fun, ` c31 7→ c32 : (T11→T12) (T31→T32). We
now have enough typing to apply the IH on c1 ∗ (c31 7→ c32); c2 ⇒ c and find that
` c : T1 T3.

�

4.5.10 Lemma [Merge is a function]: Given canonical coercions c1 and c2, if c1 ∗
c2 ⇒ c3 and c1 ∗ c2 ⇒ c ′3, then c3 = c ′3.

Proof: By induction on the derivation of c1 ∗ c2 ⇒ c3, observing in each case that
whatever rule applied to form the derivation must be the one used to form c1∗c2 ⇒ c ′3.
The only tricky case is N Canonical. But if c1; c2 is canonical, then none of the
N . . . rules can apply. �

4.5.11 Lemma [Merge is an operator]: Given canonical coercions ` c1 : T1
T2 and ` c2 : T2 T3, then there exists a unique canonical coercion c such that
c1 ∗ c2 ⇒ c.

Proof: By induction on size(c1) + size(c2), with a long case analysis. Uniqueness is
by Lemma 4.5.10; we use Lemma 4.7.1 to apply the IH when merging two functional
coercions. We can use Table 4.2 and types to narrow the search.

First, we can rule out cases where either coercion is Id (we just get the other
coercion, which is already canonical) or Fail (we just get Fail, which is canonical).
Now we go by analysis on the left coercion c1. In many cases we will reduce out a
few primitive coercions and then use the fact that prefixes and suffixes of canonical
coercions are canonical (Lemma 4.5.6) to apply the IH.

189

({x :Dyn | e}?) The only coercions that can apply are of the form {x :Dyn | e}!; c ′2.
In all cases, we will first apply N PredPred, leaving us with Id on the left and c ′2
on the right. We will have just c ′2, which is canonical since it is a suffix of a canonical
coercion (Lemma 4.5.6).

(B?) The only canonical coercions that can apply are:

1. B !, where B?; B ! is canonical;

2. B !; {x :Dyn | e}?, where B?; B !; {x :Dyn | e}? is canonical; and

3. {x :B | e}?, where B?; {x :B | e}? is canonical.

(B?; B !) Here c2 can be any canonical coercion from Dyn. The possibilities are:

1. {x :Dyn | e}?, where B?; B !; {x :Dyn | e}? is canonical;

2. B?; c ′2, with B? ∗ c ′2 ⇒ c3 by the IH and Lemma 4.5.6, and we can then apply
N PredPred;

3. B ′?; c ′2, where B 6= B ′ and we have Fail;

4. Fun?; c ′2, where we have Fail.

(B?; B !; {x :Dyn | e}?) Here c2 can be any canonical coercion from {x :Dyn | e}?.
All of these are of the form {x :Dyn | e}!; c ′2. By the IH, B?; B ! ∗ c ′2 ⇒ c for some
canonical c; then we can apply N PredPred.

(B?; {x :B | e}?) Here c2 can be any canonical coercion from {x :B | e}. All of
these are of the form {x :B | e}!; c ′2. By the IH, B? ∗ c ′2 ⇒ c for some canonical c;
then we can apply N PredPred.

(Fun?) Here c2 can be any canonical coercion from Dyn→Dyn, to which is either
of the form Fun!; c ′2 or c1 7→ c2; c ′2. In either case, Fun?; c2 is already canonical, so
by N Canonical we are done.

(Fun?; Fun!) Here c2 can be any canonical coercion from Dyn. The possibilities
are:

1. {x :Dyn | e}?, where Fun?; Fun!; {x :Dyn | e}? is canonical;

2. B?; c ′2, where we have Fail;

3. Fun?; c ′2, where we can step once by N PredPred after observing that Fun? ∗
c ′2 ⇒ c for some canonical c by the IH and Lemma 4.5.6.

(Fun?; Fun!; {x :Dyn | e}?) Here c2 comes from {x :Dyn | e}. These are all of
the form {x :Dyn | e}!; c ′2. If we are to step by N PredPred, we must consider
Fun?; Fun! and c ′2 (canonical by Lemma 4.5.6). Since their combined size is smaller
than our original coercions, we know by the IH that Fun?; Fun! ∗ c ′2 ⇒ c for some
canonical c, and can step.

190

(Fun?; c11 7→ c12) The coercion c2 must come from a functional type that agrees
with the type of ` c11 7→ c12 : (T11→T12) (T21→T22), i.e., ` c2 : (T21→T22) T3.
These coercions either begin Fun!; c ′2 or c21 7→ c22; c ′2. In the first case, Fun?; c11 7→
c12; Fun!; c ′2 is canonical if Fun!; c ′2 is canonical. In the second case, we will step by
N Phi: we first apply the IH on the smaller coercions Fun? and c31 7→ c32; c ′2 (using
Lemma 4.7.1) to find a canonical c.

(Fun?; c11 7→ c12; Fun!) Here c2 comes from type Dyn. If it is of the form B?; c ′2,
we have Fail, which is canonical. If c2 = {x :Dyn | e}?, then their concatenation,
Fun?; c11 7→ c12; Fun!; {x :Dyn | e}?, is canonical. If it is of the form Fun?; c ′2, then
we can step by N Phi: we must show how Fun?; c11 7→ c12 and c ′2 merge. The latter
is canonical by Lemma 4.5.6. Since both are canonical and their combined size is
smaller than the original pair of coercions (by Lemma 4.7.1), we can apply the IH to
find a canonical c that they merge to.

(Fun?; c11 7→ c12; Fun!; {x :Dyn | e}?) Here c2 comes from {x :Dyn | e}?, so it must
be a canonical coercion of the form {x :Dyn | e}!; c′2. We can combine them by
N PredPred, using Lemma 4.5.6 and the IH.

(B !) In this case, c2 comes from Dyn. If it is {x :Dyn | e}?, we are done—
B !; {x :Dyn | e}? is canonical. If it begins Fun!; c ′2, we get Fail, which is canonical. If
it begins B?; c ′2, we get c ′2, which is canonical by Lemma 4.5.6.

(B !; {x :Dyn | e}?) Here c2 = {x :Dyn | e}!; c ′2, for canonical c ′2 (Lemma 4.5.6). We
can apply the IH to find B !∗c ′2 ⇒ c for some canonical c, stepping by N PredPred.

({x :B | e}?) Here c2 = {x :B | e}!; c ′2, for canonical c ′2 (Lemma 4.5.6). By
N PredPred and N Canonical, we find that {x :B | e}? ∗ {x :B | e}!; c ′2 ⇒ c ′2.

(Fun!) In this case, c2 comes from Dyn. If it is {x :Dyn | e}?, we are done;
Fun!; {x :Dyn | e}? is canonical. If it begins B !; c ′2, we get Fail, which is canonical. If
it begins Fun?; c ′2, we get c ′2, which is canonical by Lemma 4.5.6.

(Fun!; {x :Dyn | e}?) Here c2 = {x :Dyn | e}!; c ′2, with c ′2 canonical (Lemma 4.5.6).
We can apply the IH to find Fun! ∗ c ′2 ⇒ c for some canonical c.

(c11 7→ c12) The coercion c2 must come from a functional type that agrees with the
type of ` c11 7→ c12 : (T11→T12) (T21→T22), i.e., ` c2 : (T21→T22) T3. These
coercions either begin Fun!; c ′2 or c21 7→ c22; c ′2. In the first case, c11 7→ c12; Fun!; c ′2
is canonical if Fun!; c ′2 is canonical.

In the second case, we use the IH to find that c21 ∗ c11 ⇒ c31 and c12 ∗ c22 ⇒ c32.
If c21 7→ c22; c ′2 was canonical, so must be c31 7→ c32; c ′2, which is what we are left with
after stepping by N Fun and by N Canonical.

191

(c11 7→ c12; Fun!) In this case, c2 comes from Dyn. If it is {x :Dyn | e}?, we
are done; Fun!; {x :Dyn | e}? is canonical. If it begins B !; c ′2, we get Fail, which
is canonical. If it begins Fun?; c ′2, we can apply the IH (since c ′2 is canonical by
Lemma 4.5.6) to show that c11 7→ c12 ∗ c ′2 ⇒ c for some canonical c, stepping by
N Phi.

(c11 7→ c12; Fun!; {x :Dyn | e}?) Here c2 = {x :Dyn | e}!; c ′2, where c ′2 is canonical
by Lemma 4.5.6. We can apply the IH to find c11 7→ c12; Fun! ∗ c ′2 ⇒ c for some
canonical c, stepping by N PredPred.

({x :Dyn | e}!) Here c2 must come from Dyn.

If it is {x :Dyn | e}?, then we step by N Phi and are left with Id. If it is {x :Dyn |
e ′}? for e 6= e ′, then {x :Dyn | e}!; {x :Dyn | e}? is canonical.

If it is B !; c ′2 or Fun!; c ′2, then again {x :Dyn | e}!; c2 is canonical.

({x :Dyn | e}!; {x :Dyn | e ′}?) The coercion c2 must be of the form {x :Dyn | e ′′}!; c ′2,
where c ′2 is canonical by Lemma 4.5.6. So by the IH, {x :Dyn | e}! ∗ c ′2 ⇒ c for some
canonical c, and we can step by N PredPred.

({x :Dyn | e}!; B?) Here c2 must be either B !; c ′2 or {x :B | e ′}?. In either case, the
concatenation of the two is canonical.

({x :Dyn | e}!; B?; B !) In this case, c2 comes from Dyn. If it is {x :Dyn | e ′}?,
we are done—{x :Dyn | e}!; B?; B !; {x :Dyn | e ′}? is canonical. If it begins Fun!; c ′2,
we get Fail, which is canonical. If it begins B?; c ′2, we can apply the IH to find
{x :Dyn | e}!; B? ∗ c ′2 ⇒ c, since c ′2 is canonical by Lemma 4.5.6. We can then apply
N Phi.

({x :Dyn | e}!; B?; B !; {x :Dyn | e ′}?) Here c2 = {x :Dyn | e ′}!; c ′2, where c ′2 is canon-
ical by Lemma 4.5.6. We can apply the IH to find {x :Dyn | e}!; B?; B ! ∗ c ′2 ⇒ c for
some canonical c, stepping by N PredPred.

({x :Dyn | e}!; B?; {x :B | e ′}?) Here c2 = {x :B | e ′}!; c ′2, where c ′2 is canonical by
Lemma 4.5.6. We can apply the IH to find {x :Dyn | e}!; B? ∗ c ′2 ⇒ c for some
canonical c, stepping by N PredPred.

({x :Dyn | e}!; Fun?) Here c2 can be any canonical coercion from Dyn→Dyn, i.e.,
of the form Fun!; c ′2 or c1 7→ c2; c ′2 where c ′2 is canonical. In either case, {x :Dyn |
e}!; Fun?; c2 is already canonical, so by N Canonical we are done.

({x :Dyn | e}!; Fun?; Fun!) In this case, c2 comes from Dyn. If it is {x :Dyn | e}?,
we are done—{x :Dyn | e}!; Fun?; Fun!; {x :Dyn | e}? is canonical. If it begins B !; c ′2,
we get Fail, which is canonical. If it begins Fun?; c ′2, we can apply the IH (since c ′2
is canonical by Lemma 4.5.6) to show that {x :Dyn | e}!; Fun? ∗ c ′2 ⇒ c for some
canonical c, stepping by N Phi.

192

({x :Dyn | e}!; Fun?; Fun!; {x :Dyn | e ′}?) Here c2 = {x :Dyn | e ′}!; c ′2, where c ′2 is
canonical by Lemma 4.5.6. We can apply the IH to find {x :Dyn | e}!; Fun?; Fun! ∗
c ′2 ⇒ c for some canonical c, stepping by N PredPred.

({x :Dyn | e}!; Fun?; c11 7→ c12) The coercion c2 must come from a functional type
that agrees with the type of ` c11 7→ c12 : (T11→T12) (T21→T22), i.e., ` c2 :
(T21→T22) T3. These coercions either begin Fun!; c ′2 or c21 7→ c22; c ′2. In the first
case, c11 7→ c12; Fun!; c ′2 is canonical if Fun!; c ′2 is canonical.

In the second case, the IH gives us that c21 ∗ c11 ⇒ c31 and c12 ∗ c22 ⇒ c32 (using
Lemma 4.7.1 for the size argument). If c21 7→ c22; c ′2 was canonical, so must be
(c31 7→ c32); c ′2. By the IH again, {x :Dyn | e}!; Fun? ∗ (c31 7→ c32); c′2 ⇒ c for some
canonical c, so we can step by N Fun.

({x :Dyn | e}!; Fun?; c11 7→ c12; Fun!) In this case, c2 comes from Dyn. If it is
{x :Dyn | e ′}?, we are done—{x :Dyn | e}!; Fun?; c11 7→ c12; Fun!; {x :Dyn | e ′}? is
canonical. If it begins B !; c ′2, we get Fail, which is canonical. If it begins Fun?; c ′2,
we can apply the IH (since c ′2 is canonical by Lemma 4.5.6) to show that {x :Dyn |
e}!; Fun?; c11 7→ c12 ∗ c ′2 ⇒ c for some canonical c, stepping by N Phi.

({x :Dyn | e}!; Fun?; c11 7→ c12; Fun!; {x :Dyn | e ′}?) Here c2 = {x :Dyn | e ′}!; c ′2,
where c ′2 is canonical by Lemma 4.5.6. We can apply the IH to find {x :Dyn |
e}!; Fun?; c11 7→ c12; Fun! ∗ c ′2 ⇒ c for some canonical c, stepping by N PredPred.

({x :B | e}!) Here c2 = {x :B | e}?; c′2, with c ′2 canonical by Lemma 4.5.6. We
merge to c ′2 by N Phi and N Canonical.

({x :B | e}!; B !) Here c2 comes from Dyn. If c2 is {x :Dyn | e ′}?, then we are done,
since {x :B | e}!; B !; {x :Dyn | e ′}? is canonical. If it begins Fun!; c ′2, we get Fail, which
is canonical. If it begins B?; c ′2, we can use the IH to show that {x :B | e}!∗c ′2 ⇒ c for
a canonical c (since c ′2 is canonical by Lemma 4.5.6). Then we can step by N Phi.

({x :B | e}!; B !; {x :Dyn | e ′}?) Here c2 = {x :Dyn | e ′}!; c ′2. We know that c ′2 is
canonical (Lemma 4.5.6), so by the IH we have {x :B | e}!; B ! ∗ c ′2 ⇒ c for some
canonical c. We step by N PredPred.

({x :B | e}!; {x :B | e ′}?) Here c2 = {x :B | e ′}!; c ′2. We know that c ′2 is canonical
(Lemma 4.5.6), so by the IH we have {x :B | e}! ∗ c ′2 ⇒ c for some canonical c. We
step by N PredPred.

�

4.5.12 Lemma: For all canonical coercions c1 and c2, if c1 ∗ c2 ⇒ c3 then c1; c2 −→∗
c3.

Proof: By induction on the derivation of c1 ∗ c2 ⇒ c3.

193

(N Canonical) Since c3 = c1; c2, we are done immediately by reflexivity.

(N FailL) We have Fail ∗ c2 ⇒ Fail. By induction on the length of c2, we have
Fail; c2 −→∗ Fail.

(N FailR) We have c1 ∗ Fail ⇒ Fail. By induction on the length of c1, we have
c1; Fail −→∗ Fail.

(N Phi) We have c1 ∗ c2 ⇒ c3. We have c1; D !; D?; c2 −→ c1; c2 for all D , so we
are done by the IH.

(N BFailB) We have c1; B !; B ′?; c2 −→ c1; Fail; c2. By induction on the length
of c1 and c2, we can conclude that c1; Fail; c2 −→∗ Fail.

(N BFailFun) We have c1; B !; Fun?; c2 −→ c1; Fail; c2. By induction on the
length of c1 and c2, we know that c1; Fail; c2 −→∗ Fail.

(N FunFailB) We have c1; Fun!; B?; c2 −→ c1; Fail; c2. By induction on the
length of c1 and c2, we know that c1; Fail; c2 −→∗ Fail.

(N PredPred) We have c1 ∗c2 ⇒ c3 and c1; {x :T | e}?; {x :T | e}!; c2 −→ c1; c2,
so we have c1; c2 −→∗ c3 by the IH.

(N Fun) We know that c21 ∗ c11 ⇒ c31 and c12 ∗ c22 ⇒ c32 and c1 ∗ (c31 7→
c32); c2 ⇒ c3.

We can rewrite c1; (c11 7→ c12); (c21 7→ c22); c2 −→ c1; ((c21; c11) 7→ (c12; c22)); c2.
By the IH, we know that c21; c11 −→∗ c31 and c12; c22 −→∗ c32, so we can rewrite to
c1; (c31 7→ c32); c2. But we know by the IH that this rewrites to c3, so we are done.

�

4.5.13 Lemma [Merge is associative]: c1 ⇓ (c2 ⇓ c3) = (c1 ⇓ c2) ⇓ c3 for all
canonical coercions c1, c2, and c3.

Proof: Consider the term c1; c2; c3. On the one hand, we can say that c1; c2; c3 −→∗
c1; c2 ⇓ c3 −→∗ c1 ⇓ c2 ⇓ c3 by Lemma 4.5.12. On the other hand, we also have
c1; c2; c3 −→∗ c1 ⇓ c2; c3 −→∗ c1 ⇓ c2 ⇓ c3.

Recall that results of merges are canonical forms (Lemma 4.5.11), which are nor-
mal (Lemma 4.5.5). Since rewriting is confluent (Lemma 4.5.2), it must be that case
that c1 ⇓ (c2 ⇓ c3) = (c1 ⇓ c2) ⇓ c3. �

194

e1 −→ e2

(λx :T . e12)Id v2 −→ e12[v2/x]
E Beta

u1(c1 7→c2) v2 −→ 〈c2〉 (u1Id (〈c1〉 v2))
E Fun

op(v1, ... , vn) −→ [[op]] (v1, ... , vn)
E Op

〈{x :T | e}?; c〉 v −→ 〈c〉 〈{x :T | e}, e[v/x], v〉
E Check

〈{x :T | e}, trueId, uc〉 −→ u
c⇓{x :T |e}?

E CheckOK•

〈{x :T | e}, falseId, v〉 −→ fail
E CheckFail

d1 6= {x :T | e}? c ∗ d1 ⇒ Fail

〈d1; c2〉 uc −→ fail
E TagFail•

d1 6= {x :T | e}? c ∗ d1 ⇒ c′ c′ 6= Fail

〈d1; c2〉 uc −→ 〈c2〉 uc′
E Tag•

〈Id〉 v −→ v
E TagId

e1 −→ e ′1
e1 e2 −→ e ′1 e2

E AppL
e2 −→ e ′2

v1 e2 −→ v1 e ′2
E AppR

ei −→ e ′i
op(v1, . . . , vi−1 , ei , . . . , en) −→ op(v1, . . . , vi−1 , e ′i , . . . , en)

E OpInner

〈c1〉 (〈c2〉 e) −→ 〈c2 ⇓ c1〉 e
E Merge•

e 6= 〈c′〉 e ′′ c 6= Fail e −→ e ′

〈c〉 e −→ 〈c〉 e ′
E CoerceInner

e2 −→ e ′2
〈{x :T | e1}, e2, v〉 −→ 〈{x :T | e1}, e ′2, v〉

E CheckInner

e 6= 〈c〉 e ′

〈Fail〉 e −→ fail
E Fail

〈c〉 fail −→ fail
E CoerceRaise

fail e2 −→ fail
E AppRaiseL

v1 fail −→ fail
E AppRaiseR

op(v1, . . . , vi−1 , fail, . . . , en) −→ fail
E OpRaise

〈{x :T | e}, fail, v〉 −→ fail
E CheckRaise

Figure 4.22: Efficient operational semantics

195

odd 3Id
−→ evenInt!7→Bool? 2Id
−→ 〈Bool?〉 (even (〈Int!〉 2Id))
−→ 〈Bool?〉 (((λx :Int. . . .)Int? 7→Bool!) 2Int!)
−→ 〈Bool?〉 (〈Bool!〉 ((λx :Int. . . .)Id (〈Int?〉 2Int!)))
−→ 〈Id〉 ((λx :Int. . . .)Id (〈Int?〉 2Int!))
−→ 〈Id〉 ((λx :Int. . . .)Id 2Id)
−→ 〈Id〉 (odd 1Id)
−→ 〈Id〉 (evenInt!7→Bool? 0Id)
−→ 〈Id〉 (〈Bool?〉 (even (〈Int!〉 0Id)))
−→ 〈Bool?〉 (even (〈Int!〉 0Id))
−→ 〈Bool?〉 ((λx :Int. . . .)Int?7→Bool! 0Int!)
−→ 〈Bool?〉 (〈Bool!〉 (λx :Int. . . .)Id (〈Int?〉 0Int!))
−→ 〈Id〉 ((λx :Int. . . .)Id (〈Int?〉 0Int!))
−→ 〈Id〉 ((λx :Int. . . .)Id 0Id)
−→ 〈Id〉 trueId
−→ trueId

Figure 4.23: Space-efficient reduction

4.5.2 Operational semantics

I give the changed operational semantics in Figure 4.22. The biggest change to the
operational semantics is that E Merge explicitly merges the two coercions. Herman
et al. simply say that they keep their coercions in normal form—that is, we should in-
terpret normalization happening automatically when E Merge applies, even though
they write E Merge as directly concatenating the two coercions into c2; c1. My se-
mantics explicitly normalizes the coercions (rule E Merge), possibly stopping the
program on the next step (the no-longer-useless rule E Fail).

Otherwise, the rules are largely the same as the näıve semantics, though we’re now
able to use merges to distill the tag rules into a few possibilities: E Tag replaces all
of the successful F Tag* rules; E TagFail replaces all of the failing F Tag* rules.
E CheckOK is essentially F CheckOK, though it uses a merge instead of concate-
nation (though the typing rules mean that the merge will apply N Canonical every
time).

We can finally observe that our reduction is space efficient: the coercions in Fig-
ure 4.23 don’t grow with the size of the input like the coercions in Figure 4.14 or the
casts in Figure 4.2. I discuss this claim in more detail in Section 4.7.

4.5.3 Proofs

Efficient enjoys type soundness; we can show as much using standard syntactic
methods. We must assume that ty(k) and ty(op) are always well formed.

4.5.14 Lemma [Regularity]: 1. If Γ ` e : T , then ` T .

196

2. If Γ ` u : T , then ` T .

3. If ` Γ, then ` T for all x :T ∈ Γ.

Proof: By mutual induction on the typing derivations. �

4.5.15 Lemma [Determinism]: If e −→ e1 and e −→ e2, then e1 = e2.

Proof: By induction on e −→ e1, observing that in each case the same rule must
have applied to find e −→ e2. In the E Merge case, we rely on the fact that merge
is an operator on canonical coercions (Lemma 4.5.11). �

4.5.16 Lemma [Canonical forms]: If ∅ ` v : T then:

• If T = Bool, then v = trueId or v = falseId.

• If T = T1→T2, then v = λx :T ′1. ec where c = Id or c = c1 7→ c2.

Proof: By cases on the typing derivation. We observe that the only coercions from
B to B are Id and Fail, and trueFail isn’t well formed.

In the function case, the only coercions from T11→T12 to T21→T22 are Id and Fail
and c1 7→ c2. Since uFail isn’t well formed, c must be either the identity or a functional
coercion. �

4.5.17 Lemma [Progress]: If ∅ ` e : T then either e is a result, or there exists an
e ′ such that e −→ e ′.

Proof: By induction on the typing derivation ∅ ` e : T . I give only the interesting
cases.

(T Coerce) We have ∅ ` 〈c〉 e : T2, where ` c : T1 T2 and ∅ ` e : T1. If
the inner term is of the form 〈c ′〉 e ′, we step by E Merge (in which case we are well
typed by Lemma 4.5.9). If c = Fail, we step E Fail (in which case we are well typed
by Lemma 4.5.14 and T Fail). If not, it either steps by E CoerceInner or e is
a result. If e = fail, we step by E CoerceRaise. If e = uc′ , we step by E Tag,
E TagFail, or E Check, depending on what the leftmost coercion in c is. If there
is no leftmost coercion, i.e., we have 〈Id〉 v , then we step by E TagId.

By inversion, ∅ ` e2 : Bool. By canonical forms (Lemma 4.5.16), if e2 is a value,
then it is either trueId or falseId. In the former case, we step by E CheckOK; in the
latter case, we step by E CheckFail.

�

4.5.18 Lemma [Weakening]: If Γ1,Γ2 ` e : T and x 6∈ dom(Γ) and ` T ′, then
Γ1, x :T ′,Γ2 ` e : T .

197

Proof: By induction on e. �

4.5.19 Lemma [Substitution]: If ∅ ` v : T ′:

• if Γ1, x :T ′,Γ2 ` e : T then Γ1,Γ2 ` e[v/x] : T .

• if Γ1, x :T ′,Γ2 ` u : T then Γ1,Γ2 ` u[v/x] : T .

Proof: By induction on the typing derivation of e. �

4.5.20 Lemma [Preservation]: If ∅ ` e : T and e −→ e ′, then ∅ ` e ′ : T .

Proof: By induction on the typing derivation. I give only the interesting cases.

(T Coerce) We go by cases on the step taken:

(E CoerceInner) By the IH.

(E Merge) By T Coerce and Lemma 4.5.9.

(E Fail) By T Fail and regularity (Lemma 4.5.14).

(E CoerceRaise) By T Fail and regularity (Lemma 4.5.14).

(E Tag) By T Coerce, T Val, and C Compose, knowing that the result of
the merge isn’t a fail or {x :T | e}? for T Val.

(E TagFail) By T Fail and regularity (Lemma 4.5.14).

(E TagId) By the typing assumption on the value.

(E Check) By T Coerce and T Check.

(T Check) We go by cases on the step taken:

(E CheckInner) By the IH.

(E CheckOK) By T ValRefine and C Compose, knowing that the merge
can’t be a fail—predicates never introduce failures. We can take the evaluation we
need directly from the T Check derivation.

(E CheckFail) By T Fail and regularity (Lemma 4.5.14).

(E CheckRaise) By T Fail and regularity (Lemma 4.5.14).

�

4.5.21 Theorem [Type soundness]: If ∅ ` e : T then either e −→∗ r such that
∅ ` r : T or e diverges.

Proof: Using progress (Lemma 4.5.17) and preservation (Lemma 4.5.20). Naturally
the proof is not constructive! �

198

In Section 4.3, I define cotermination and show that if e −→∗n r then 〈c〉 e and
〈c〉 r coterminate, and if e diverges so does 〈c〉 e (Lemma 4.3.13). Unfortunately,
neither of these exactly hold in Efficient. For the former, consider e = 〈{x :Bool |
falseId}?〉 trueId −→∗ fail. The term 〈{x :Bool | falseId}!〉 e −→∗ trueId. For the latter,
suppose that diverge is a closed, divergent term, such as

(λx :(Dyn→Dyn). x (〈Fun!〉 x))Id (〈Fun? 7→ Id〉 (λx :(Dyn→Dyn). x (〈Fun!〉 x))Id)

On the one hand

〈{x :Bool | diverge}!〉 (〈{x :Bool | diverge}?〉 trueId)
−→ 〈Id〉 trueId
−→ trueId

but 〈{x :Bool | diverge}!〉 trueId diverges. The theorem doesn’t hold for when e diverges
or evaluates to fail—but it does hold for values.

4.5.22 Lemma: If e −→∗ v and 〈c〉 v −→∗ v ′ then 〈c〉 e −→∗ v ′.

Proof: By induction on e −→∗ v , and then by cases on the step taken. (The base
case (e = v) is immediate.)

If the step doesn’t have an exposed coercion, we can just reapply the step taken.
The core rules (E Beta, E Fun, E Op, E CheckOK, E CheckFail), the congru-
ence rules (E AppL, E AppR, E OpInner, E CheckInner), and the exception
raising rules (E AppRaiseL, E AppRaiseR, E OpRaise, E CheckRaise) all fit
this rubric. The remaining cases must merge coercions in e with c. The general
thrust is as for Lemma 4.3.13: we will merge and normalize, take some small tag ma-
nipulation step (determined by analyzing how the canonical merge went), and then
reproduce that for a stepped e.

(E TagId) We step by E Merge (using N Canonical) and apply the IH.

(E Tag) We have e2 = 〈d1; c2〉 uc′2
−→ 〈c2〉 uc′2⇓d1

with d1 6= {x :T | e}?.

Instead we step to 〈d1; c2 ⇓ c〉 uc′2
by E Merge.

If d1 remains unaffected by the merge, we are done easily: we step by E Tag and
can apply the IH on 〈c〉 (〈c2〉 uc′).

If d1 is affected, then all of d1; c2 must have disappeared. If d1; c2 ⇓ c = c, then
we are done by assumption. So instead it must be the case that d1; c2 ⇓ c is some
suffix of c.

By the IH, 〈c〉 (〈c2〉 uc′2⇓d1
) −→∗ v ′, which steps to 〈c2 ⇓ c〉 uc′2⇓d1

. Whatever
coercion was left in c2 ⇓ c that eliminated d1 must now be exposed, so we can step
by E Tag to find 〈d1; c2 ⇓ c〉 uc′2

−→∗ v ′.

(E TagFail) Contradictory—fail isn’t a value.

199

(E Check) We have e2 = 〈{x :T | e}?; c ′〉 v ′2 −→ 〈c′〉 〈{x :T | e}, e[v ′2/x], v ′2〉;
since this steps to some value v ′, it must be the case that e[v ′2/x] −→∗ trueId.

The combined term steps by E Merge to 〈{x :T | e}?; c ′ ⇓ c〉 v ′2.

Now, the result of {x :T | e}?; c ′ ⇓ c either has the same refinement checking
coercion on the front or it doesn’t. If it does, we can use the evaluation we found
above to step to 〈c ′ ⇓ c〉 v ′2 (using Lemma 4.5.13).

If it doesn’t, we’re already at 〈c ′ ⇓ c〉 v ′2. In either case, that term is equivalent
to 〈c〉 (〈c ′〉 v ′2), and we can apply the IH on 〈c ′〉 v ′2 −→∗ v2.

(E CoerceInner) We have e2 = 〈c1〉 (〈c2〉 e ′2) −→ 〈c2 ⇓ c1〉 e ′2. We’ll step by
E Merge twice to find 〈c2 ⇓ c1 ⇓ c〉 e ′2. By associativity of merges, that term is
equal to 〈c1 ⇓ c2 ⇓ c〉 e2.

By the IH we know that 〈c〉 (〈c2 ⇓ c1〉 e ′2) −→∗ v ′, so we are done.

(E Fail) Contradictory—fail isn’t a value.

(E Merge) We step by E Merge and then by E Merge again to find the same
result, and we are done.

�

4.6 Soundness of Efficient with regard to Naive

We will never get an exact semantic match between the näıve and space-efficient
semantics: the ψ rule for refinements in the space-efficient semantics means that
some checks will happen in the näıve semantics that won’t happen in the space-
efficient semantics. If those checks fail or diverge, then the Naive term won’t behave
the same as its translation into Efficient. All we can hope for is that if Naive
produces a value, then Efficient will produce a similar one.

I adapt the asymmetric logical relations from Chapter 2 to show that the two
calculi behave mostly the same, with Naive diverging and failing more often. My
proof method largely follows the early one, as well: I augment the logical relation with
a separate relation ` c1 ≡ c2 (read “c1 is equivalent to c2”) on coercions (Figure 4.26).
Just as the ` T1 ⇒ T2 ≡ c relation from Section 4.4 was an invariant relating casts to
coercions, ` c1 ≡ c2 relates casts to their normal forms. With this relation in hand,
we first prove that applying related coercions to related values yields related values
(Lemma 4.6.8). Then we show that well typed terms are related to their translations
and that coercions are related to their translations (Theorem 4.6.10).

We are forced into a step-indexed logical relation because of the type Dyn. In par-
ticular, the more common, fixpoint-on-types definition wouldn’t work for the function
tag case, since we need to take values at Dyn and relate them at the type Dyn→Dyn.
I define the step-indexed logical relation in Figure 4.24; when I say e −→m

n e ′, I mean

200

Value rules v1 %j v2 : T

∀j . kId %j kId : B ⇐⇒ ty(k) = B
v11 %j v21 : T1→T2 ⇐⇒
∀m < j . ∀v12 %m v22 : T1. v11 v12 vm v21 v22 : T2

v1B ! %
j u2c⇓B ! : Dyn ⇐⇒ v1 %j u2c : B

v1Fun! %
j u2c⇓Fun! : Dyn ⇐⇒ v1 %j u2c : Dyn→Dyn

v1{x :T |e1}? %
j u

c⇓{x :T |e2}? : {x :T | e1}
⇐⇒

∀m < j . v1 %m u2c : T ∧ {x :T | e1} %m {x :T | e2}

Term rules e1 vj e2 : T

e1 vj e2 : T ⇐⇒
e1 diverges ∨
∀m < j . e1 −→m

n fail
∨ e1 −→m

n v1 =⇒ e2 −→∗ v2 ∧ v1 %(j−m) v2 : T

Type rules T1 %j T2

B %j B Dyn %j Dyn
T11→T12 %j T21→T22 ⇐⇒ T11 %j T21 ∧ T12 %j T22

{x :T | e1} %j {x :T | e2} ⇐⇒
∀m < j . ∀v1 %m v2 : T . e1[v1/x] vm e2[v2/x] : Bool

Closing substitutions and open terms Γ |=j
� δ Γ ` e1 v e2 : T

Γ |=j
� δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) %j δ2(x) : T

Γ ` e1 v e2 : T ⇐⇒ ∀j ≥ 0. ∀Γ |=j
� δ. δ1(e1) vj δ2(e2) : T

Figure 4.24: Relating Naive and Efficient

201

that e steps to e ′ in exactly m steps. The definitions begin by defining a relation
v1 %j v2 : T for closed values and a relation e1 vj e2 : T for closed terms as a fixpoint
on the index j .5 I lift the definitions to open terms by defining dual closing value
substitutions δ; if Γ |=j

� δ and x :T ∈ Γ, then δ1(x) %j δ2(x) : T .
Naive terms are on the left of the relation, while Efficient terms are on the

right. We require that both sides be well typed. We obtain the asymmetry we seek
by saying that when the näıve semantics yields a value, then the space-efficient yields
a similar one—but otherwise, the näıve semantics will fail or diverge. This definition
still allows Efficient to diverge or to fail, but then the näıve semantics must also
diverge or fail—but note that it’s possible for the left-hand side of the relation to
diverge and the right-hand side to fail, and vice versa. This is possible because the
näıve semantics could run a check that diverges, while the space-efficient semantics
skips that check and instead runs a failing one.

Step-indexed logical relations are commonly asymmetric, for a separate reason:
only one side needs the index; for us, it is particularly convenient to put the step-
index on the näıve side, allowing us to skip reasoning about how step indices and
merges interact.

We could try to be more specific in the relation: either you get the same thing,
or you get divergence or a failure—that can be traced back exactly to a check that
happened in Naive but not in Efficient. I omit this more precise tracking for
simplicity’s sake.

The value relation v1 %j v2 : T is subtler than usual for this logical relation: the
definitions at Dyn and {x :T | e} must shuffle some tags around. In particular, the
rule for type Dyn is split into cases by the underlying tag of values. The case for
refinements {x :T | e} requires that the values be related at the underlying type T
(recalling that T = B or T = Dyn) and also that the values be tagged as satisfying
the predicate (or a related predicate in Efficient). For well typed terms, this is
enough to ensure that the underlying values satisfy their refinement predicates.

My proof works by showing that a well-typed näıve term e is related to its trans-
lation into the space-efficient term canonical(e). I define canonical in Figure 4.25,
omitting most of the cases since they are homomorphic. In particular, canonical(v)
must unfold the stacked tags on a Naive value and merge them into a single coercion.

Before we continue, I must justify that canonical is a function—in particular, is
the case for composite coercions valid?

4.6.1 Lemma: canonical is a well defined function that produces canonical coercions.

Proof: By induction on c, using Lemma 4.5.11 to show that c1 ⇓ c2 is a unique
canonical coercion when c1 and c2 are canonical. �

5The definition for terms is just fancy notation for a proposition involving the relation on values;
this stratified definition conveniently separates the definition of related values and evaluation, while
avoiding the need for >>-closure [54].

202

Composite coercions canonical(c) : c

canonical(Id) = Id
canonical(d1; . . . ; dn) = canonical(d1) ⇓ canonical(d2; . . . ; dn)

Primitive coercions canonical(d) : d

canonical(Fail) = Fail
canonical(D !) = canonical(D)!
canonical(D?) = canonical(D)?

canonical(c1 7→ c2) = canonical(c1) 7→ canonical(c2)

Tags canonical(D) : D

canonical(B) = B
canonical(Fun) = Fun

canonical({x :T | e}) = {x :T | canonical(e)}

Pre-values canonical(u) : u

canonical(k) = k
canonical(λx :T . e) = λx :canonical(T). canonical(e)

Expressions canonical(e) : e

canonical(x) = x
canonical(uId) = canonical(u)Id
canonical(vd) = uc⇓d where canonical(v) = uc

canonical(fail) = fail
canonical(op(e1, . . . , en)) = op(canonical(e1), . . . , canonical(en))

canonical(e1 e2) = canonical(e1) canonical(e2)
canonical(〈c〉 e) = 〈canonical(c)〉 canonical(e)

canonical(〈{x :T | e1}, e2, v〉) = 〈canonical({x :T | e1}), canonical(e2), canonical(v)〉

Types canonical(T) : T

canonical(B) = B
canonical(T1→T2) = canonical(T1)→canonical(T2)

canonical(Dyn) = Dyn
canonical({x :T | e}) = {x :T | canonical(e)}

Contexts canonical(Γ) : Γ

canonical(∅) = ∅
canonical(Γ, x :T) = canonical(Γ), x :canonical(T)

Figure 4.25: Canonicalizing Naive terms

203

In order to put canonical(e) in the relation, we must know that it is well typed. Since
some of the runtime typing terms require facts about derivations that will be hard
to translate—in particular, T TagValRefine and T CheckNaive—we’ll exclude
them from the proof. Normal “source” terms shouldn’t have any of these, anyway.
Later on, when we’ve proved that näıve terms are logically related to their canonical
translations, we’ll have the evaluation derivations after all.

4.6.2 Lemma [Preservation for canonical]: Assuming that no refinement tags or
active checking forms are present:

1. If ` c : T1 T2 then ` canonical(c) : canonical(T1) canonical(T2).

2. If ` d : T1 T2 then ` canonical(d) : canonical(T1) canonical(T2).

3. If Γ ` u : T then canonical(Γ) ` canonical(u) : canonical(T).

4. If Γ ` e : T then canonical(Γ) ` canonical(e) : canonical(T).

5. If ` T then ` canonical(T).

6. If ` Γ then ` canonical(Γ).

Proof: By simultaneous induction on the derivations, using Lemma 4.5.9 when
merging coercions.

(C Id) By C Id.

(C Compose) By IH (2) and IH (1) and Lemma 4.5.9.

(C Fail) By C Fail.

(C Untag) By C Untag and the IH.

(C Tag) By C Tag and the IH.

(C Fun) By IH (1) and C Fun.

(T Const) By T Const and IH (6).

(T Abs) By IH (5) and IH (4), we can reapply T Abs.

(T Var) By IH (6) and T Var.

(T PreVal) By IH (3) and T Val.

(T TagVal) By IH (4), Lemma 4.5.9, and T Val.

(T TagValRefine) Contradictory—we assumed these weren’t present.

204

(T Op) By IH (4) and T Op.

(T App) By IH (4) and T App.

(T Coerce) By IH (1) and IH (4) and T Coerce.

(T Fail) By IH (6) and IH (5), we can reapply T Fail.

(T CheckNaive) Contradictory—we assumed these weren’t present.

(WF Base) By WF Base.

(WF Dyn) By WF Dyn.

(WF Fun) By IH (5) and WF Fun.

(WF Refine) By IH (4) and WF Refine, noting that T is either B or Dyn, so
canonical(T) = T .

(WF Empty) Immediate.

(WF Extend) By IH (6) and IH (5), we can reapply WF Extend.

�

The ultimate goal is soundness: if Γ ` e : T then Γ ` e v canonical(e) : T .
The proof works in a few stages: first I define relations ` c ignorable (coercions
which are equivalent to Id or Fail) and ` c failable (coercions which are equivalent
to Fail). I define these relations in Figure 4.26. We then prove lemmas that allow us
to easily work with ignorable and failable coercions (Lemma 4.6.6 and Lemma 4.6.7,
respectively). Then we relate non-canonical coercions to canonical ones (using a
separate inductive relation ` c1 ≡ c2, defined in Figure 4.26). We show that such
related coercions take related values to related values (Lemma 4.6.8). We then prove
a separate lemma showing that related coercions are logically related on related terms
(Lemma 4.6.9). This is not a trivial extension of the similar lemma for values, due to
coercion merges. With those lemmas to hand, we can finally prove soundness: that
terms are related to their translations (Theorem 4.6.10). Don’t worry–I’ll explain the
proof less tersely as we go.

We begin by establishing standard properties of the logical relation. We will use
closure under evaluation (Lemmas 4.6.3 and 4.6.4), fast-path failure (Lemma 4.6.5),
and determinism (Lemmas 4.3.4 and 4.5.15) extensively. If you’ve already read Chap-
ter 2, the proof techniques here should be old hat.

4.6.3 Lemma [Expansion]: If e1 −→∗n e ′1 and e2 −→∗ e ′2 then e ′1 vj e2 : T implies
e1 vj e2 : T .

205

Proof: Let m < j . If e ′1 diverges, so does e1 by determinism (Lemma 4.3.4) and we
are done.

Otherwise, we have e ′1 −→m
n r . So there exists an m ′ such that e1 −→m ′

n r . If
m ′ > j , then we are done vacuously; if m ′ < j then we are done by assumption. �

4.6.4 Lemma [Contraction]: If e1 −→∗n e ′1 and e2 −→∗ e ′2 then e1 vj e2 : T implie
e ′1 vj e2 : T .

Proof: Let m < j . If e1 diverges, so does e ′1 by determinism (Lemma 4.3.4), and
we are done.

Otherwise, we have e1 −→m
n r . But since e1 −→∗n e ′1, we know that e ′1 −→m ′

n r for
m ′ < m by determinism (Lemma 4.3.4), so we are done by assumption. �

4.6.5 Lemma: Forall indices j , if e1 −→m
n fail then e1 vj e2 : T .

Proof: If e1 goes to fail in m ≥ j steps, then we are done vacuously. If m < j , then
are done by definition. �

Ignorable coercions can be freely added or removed to näıve terms while preserving
logical relation to space-efficient terms. The I Id rule obviously fits this bill; I Fail
is also acceptable, when we realize that Naive can fail more often than Efficient.
I BB captures the case of an injection of a base-value into type dynamic, with some
possible extra coercions in the middle. I FunFun and I PredSame are similar.
Note that I PredPred can’t have extra coercions in the middle—the coercion typing
rules ensure that the only non-Fail coercion that can come after {x :T | e}? is {x :T |
e}!. The I * rules try to capture the logic of similarly named N * rules.

4.6.6 Lemma: If 〈c1; c2〉 v1 vj e2 : T and ` c1 ignorable then 〈c2〉 v1 vj e2 : T .

Proof: By induction on ` c1 ignorable.
Let m < j .

(I Id) By definition, Id; c2 = c2, so we are done immediately.

(I Fail) 〈Fail; c2〉 v1 −→n fail, and fail vj e2 : T by Lemma 4.6.5.

(I BB) 〈B !; c ′1; B?; c2〉 v1 −→n 〈c ′1; B?; c2〉 v1B ! by F TagB; the reduced term is
then related to e2 at T (Lemma 4.6.4). Since ` c ′1 ignorable, we can apply the IH
and find that 〈B?; c2〉 v1B ! vj e2 : T . By F TagBB and Lemma 4.6.4, we have
〈c2〉 v1 vj e2 : T ¿

(I FunFun) 〈Fun!; c ′1; Fun?; c2〉 v1 −→n 〈c ′1; Fun?; c2〉 v1Fun! by F TagFun; the
reduced term is then related to e2 at T (Lemma 4.6.4). Since ` c ′1 ignorable, we
can apply the IH and find that 〈Fun?; c2〉 v1B ! vj e2 : T . By F TagFunFun and
Lemma 4.6.4, we have 〈c2〉 v1 vj e2 : T ¿

206

Ignorable coercions ` c ignorable

` Id ignorable
I Id

` Fail ignorable
I Fail

` c ignorable

` B !; c;B? ignorable
I BB

` c ignorable

` Fun!; c;Fun? ignorable
I FunFun

` {x :T | e}?; {x :T | e}! ignorable
I PredPred

` c ignorable

` {x :T | e}!; c; {x :T | e}? ignorable
I PredSame

` c1 ignorable ` c2 ignorable

` c1; c2 ignorable
I Concat

Failable coercions ` c failable

` Fail failable
L Fail

B 6= B ′ ` c ignorable

` B !; c;B ′? failable
L BB

` c ignorable

` B !; c;Fun? failable
L BFun

` c ignorable

` Fun!; c;B? failable
L FunB

Relating coercions ` c1 ≡ c2 ` d1 ≡ d2 ` D1 ≡ D2

` c′i ignorable ` ci ≡ di

` c′0; c1; c′1; c2; . . . ; c′n−1 ; cn ; c′n ≡ d1; . . . ; dn
R Composite

` c ignorable

` c ≡ Id
R Id

` c′i ignorable
` (c1n 1; . . . ; c111) 7→ (c112; . . . ; c1n 2) ≡ c21 7→ c22

` (c111 7→ c112); c′1; . . . ; c′n ; (c1n 1 7→ c1n 2) ≡ c21 7→ c22
R Fun

` c1 failable

` c′1; c1; c′2 ≡ c2
R Fail

` D ≡ D

` D ! ≡ D !
R Tag

` D ≡ D

` D? ≡ D?
R Untag

` B ≡ B
R DB

` Fun ≡ Fun
R DFun

x :Bool ` e1 v e2 : Bool

` {x :T | e1} ≡ {x :T | e2}
R DPred

Figure 4.26: Relating Naive coercions to canonical Efficient coercions

207

(I PredPred) 〈{x :T | e}?; {x :T | e}!; c2〉 v1 −→n 〈{x :T | e}!; c2〉 〈{x :T |
e}, e[v1/x], v1〉 by F Check. By type soundness (Theorem 4.3.9), we know that
e[v1/x] either reduces a to value, reduces to fail, or diverges. In either of the last two
cases, we are done by the definition of the logical relation or Lemma 4.6.5, respectively.

Suppose that e[v1/x] −→∗n v ; the value v must be either trueId or falseId, since
∅ ` e[v1/x] : Bool. In the latter case we are done by Lemma 4.6.5, just like for when
the whole term reduced to fail.

So then 〈{x :T | e}!; c2〉 〈{x :T | e}, trueId, v1〉 −→n 〈{x :T | e}!; c2〉 v1{x :T |e}? by

F CheckOK. We can then step by F TagPredPred and apply Lemma 4.6.4 to
find that 〈c2〉 v1 vj e2 : T .

(I PredSame) 〈{x :T | e}!; c ′1; {x :T | e}?; c2〉 v1 vj e2 : T . By inversion of
the typing of v1, we know that it must be of the form v ′1{x :T |e}?, and furthermore

e[v1/x] −→∗n trueId.

Lemma 4.6.4 and F PredPred give us 〈c ′1; {x :T | e}?; c2〉 v ′1 vj e2 : T , so we can
apply the IH on ` c ′1 ignorable to find 〈{x :T | e}?; c2〉 v ′1 vj e2 : T . We then step by
F TagPredPred, then by F Check. Since we know that e[v ′1/x] −→∗n trueId, we
can step the whole term using that relation and F CheckOK to find 〈c2〉 v ′1{x :T |e}? =

〈c2〉 v1 vj e2 : T by Lemma 4.6.4.

(I Concat) 〈c11; c12; c2〉 v1 vj e2 : T . By the IH on ` c11 ignorable, we find
that

〈c12; c2〉 v1 vj e2 : T

By the IH on ` c12 ignorable, we find that 〈c2〉 v1 vj e2 : T .

�

We prove a similar lemma that failable coercions always fail. The L * rules try to
capture the logic of similarly named N Fail* rules.

4.6.7 Lemma: If ` c1 failable, then 〈c ′1; c1; c ′2〉 v1 vj e2 : T .

Proof: We begin by using type soundness (Theorem 4.3.9) to find that either
〈c ′1; c1; c ′2〉 v1 −→∗n 〈c1; c ′2〉 v ′1, the whole left-hand side reduces to fail (and we are
done by Lemma 4.6.5), or the whole left-hand side diverges (and we are done by
definition). In the last two cases we are done, so we consider the first case.

We proceed by induction on ` c1 failable.

(L Fail) We step by F Fail, and have fail vj e2 : T by Lemma 4.6.5.

(L BB) We step by F TagB followed by F TagBFailB, and then we have
fail vj e2 : T by definition; we finish by expansion (Lemma 4.6.3).

208

(L BFun) We step by F TagB followed by F TagBFailFun, and we have
fail vj e2 : T by Lemma 4.6.5; we finish by expansion (Lemma 4.6.3).

(L FunB) We step by F TagFun followed by F TagFunFailB, and we have
fail vj e2 : T by Lemma 4.6.5; we finish by expansion (Lemma 4.6.3)

�

With ignorable and failable coercions, we can characterize all non-canonical co-
ercions, relating them to canonical coercions. The relation ` c1 ≡ c2 relates a non-
canonical coercion c1 to a canonical coercion c2. Note that this inductively defined
relation isn’t the same thing as the logical relation—it’s a separate invariant relation,
used to relate coercions to their canonical forms. Only when relating refinements does
this invariant relation dip into the logical relation, to relate the predicates. First we
show that well typed coercions c in Naive are related to canonical(c) in Efficient.
Then we’ll use this general relation to relate in the logical relation how coercion forms
work on logically related values.

We now show that any coercions ` c1 ≡ c2 yield related results when applied to
related values. I defined the relation ` c1 ≡ c2 because this lemma is easier to prove
on the relation than on the canonical function itself.

4.6.8 Lemma [Relating canonical coercions]:
If v1 %j v2 : T1 and ` c1 : T1 T2 and ` c1 ≡ c2, then 〈c1〉 v1 vj 〈c2〉 v2 : T2.

Proof: By induction on ` c1 ≡ c2 using ignorability (Lemma 4.6.6) and failability
(Lemma 4.6.7) extensively.

(R Id) Observe that T1 = T2. By ignorability (Lemma 4.6.6), 〈c1〉 v1 −→∗n
〈Id〉 v1; by F TagId, 〈Id〉 v1 −→n v1. On the right-hand side, E TagId steps
〈Id〉 v2 −→ v2, and we have v1 %j v2 : T1 by assumption. We are done by expansion
(Lemma 4.6.3).

(R Fail) By failability (Lemma 4.6.7).

(R Composite) We want to show

〈c ′0; c1; c ′1; c2; . . . ; c ′n−1 ; cn ; c ′n〉 v1 vj 〈d1; . . . ; dn〉 v2 : T2

given that ` c ′i ignorable and ` ci ≡ di .

We go by induction on n. The n = 0 case is already covered by R Id above.

We first use ignorability (Lemma 4.6.6), and we need to show:

〈c1; c ′1; c2; . . . ; c′n−1 ; cn ; c ′n〉 v1 vj 〈d1; . . . ; dn〉 v2 : T2

We now go by cases on ` c1 ≡ d1 for the first hypothesis.

209

(R Fail) By failability (Lemma 4.6.7).

(R Tag) By well typing of the LR, the expressions must have the same type
T1 = B (if the tag is B !), T1 = Dyn→Dyn (if the tag is Fun!), or T1 = {x :T1 | e} (if
the tag is {x :T1 | e}!).

Whatever the case, we know by v1 vj v2 : T1 that v1 and v2 are similarly tagged,
so we can step each side by F TagB, F TagFun, or F PredPred on the left (and
E Tag on the right). We then finish by the first IH and expansion (Lemma 4.6.3).

(R Untag) By well typing of the LR, the expressions must have the same type
T1 = Dyn (if the tag is B? or Fun?), T1 = B (if the tag is {x :B | e}?), or T1 = Dyn
(if the tag is {x :Dyn | e}?).

In the first case, we step by one of the following pairs on each side:

F TagBB/E Tag
F TagFunFun/E Tag
F TagBFailB/E TagFail

F TagBFailFun/E TagFail
F TagFunFailB/E TagFail

For the first two, we are done by value relation we have and the first IH and ex-
pansion (Lemma 4.6.3); for the latter three, we are done by having fail on the left
(Lemma 4.6.5).

In the last two cases, both sides step to checking forms, which we know coterminate
at all indices, and we finish by the first IH.

(R Fun) We must show that if:

∗ v1 %j v2 : T1→T2,

∗ ` ((c1n 1; . . . ; c111) 7→ (c112; . . . ; c1n 2)) : (T1→T2) (T ′1→T ′2), and

∗ ` ((c1n 1; . . . ; c111) 7→ (c112; . . . ; c1n 2)) ≡ c21 7→ c22

then 〈(c111 7→ c112); . . . ; (c1n 1 7→ c1n 2)〉 v1 vj 〈c21 7→ c22〉 v2 : T ′1→T ′2. In order to
reduce the already heavy bookkeeping, I’ll skip over the ignorable coercions, implicitly
applying Lemma 4.6.6.

Let m < j be given such that v ′1 %
m v ′2 : T ′1. We repeatedly unwrap the tags on

the left-hand side, applying F Merge. On the right-hand side, we have v2 = u2c,
where c is either Id or c ′21 7→ c ′22. In either case, we run E Merge, yielding either
uc21 7→c22 or u(c′21⇓c21 7→c′22⇓c22).

In the first case, where c = Id, we must show (after unwrapping the left n times):

〈c112; . . . ; c1n 2〉 (v1 (〈c1n 1; . . . ; c111〉 v ′1)) vm 〈c22〉 (v2 (〈c21〉 v ′2)) : T ′2

This is accomplished straightforwardly by deconstructing our relation on the (co-
)domain coercions and using the IH on the inner and outer cases.

210

In the second case, where c = c ′21 7→ c22, we must show (after unwrapping the left
n times):

〈c112; . . . ; c1n 2〉 (v1 (〈c1n 1; . . . ; c111〉 v ′1)) vm 〈c ′22 ⇓ c22〉 (u2Id (〈c21 ⇓ c ′21〉 v ′2)) : T ′2

The right-hand side expands to 〈c22〉 (〈c ′22〉 (u2Id (〈c ′21〉 (〈c21〉 v ′2)))). We know that
〈c1n 1; . . . ; c111〉 v ′1 vm 〈c21〉 v ′2 : T1 by the IH, so they reduce to v ′′1 %

m v ′′2 : T1 (or
the left-hand side raises blame or diverges, in which case we are done.)

By assumption, v1 v ′′1 vm v2 v ′′2 : T2; in particular, this means that v1 v ′′1 vm

〈c ′22〉 (u2Id (〈c ′21〉 v ′′2)) : T2. By Lemma 4.3.13 and Lemma 4.5.22, we can see that
v1 (〈c1n 1; . . . ; c111〉 v ′1) either:

∗ diverges, and we are done;

∗ raises blame, and we are done; or

∗ reduces to v ′′′1 %
m v ′′′2 : T2 such that (〈c ′22〉 (u2Id (〈c ′21〉 (〈c21〉 v ′2)))) −→∗ v ′′′2 .

By the deconstructing our relationship on the codomains of the function contracts, we
know that 〈c112; . . . ; c1n 2〉 v ′′′1 vm 〈c22〉 v ′′′2 : T ′2. Since we got here through reduction,
we can finish by expansion (Lemma 4.6.3).

�

In Chapter 2, a similar characterization of casts is sufficient: once we’d related λC
contracts and λH casts, we had what we needed to handle the corresponding cases
of the final proof. But that strategy won’t work here: congruent reductions under
coercions may introduce coercions on the outside; these extra coercions will merge
into c1 and c2 (by F Merge or E Merge), possibly disrupting ` c1 ≡ c2. Consider
the T Merge case of the proof of soundness. Even if we have 〈c1〉 v1 vj 〈c2〉 v2 : T
and e1 −→∗n v1 and e2 −→∗ v2, we can’t just put the derivations in and be done: what
if e1 or e2 produce terms like 〈c ′1〉 e ′1 or 〈c ′2〉 e ′2 as they evaluate? Then F Merge or
E Merge will fire, and we won’t know anything about the related coercions, nor do
we know how many extra steps may have been taken. Accounting for the steps, it
turns out, is not particularly hard: if too many new steps are added, the terms are
vacuously in the relation; if not, then we merely need to account for the extra merged
coercions.

In short: having Lemma 4.6.8 on values doesn’t immediately tell us anything
about how coercions work on arbitrary terms; we must prove that separately.

4.6.9 Lemma [Relating coercions with merges]: If e1 vj e2 : T1 and ` c1 :
T1 T2 and ` c1 ≡ c2, then 〈c1〉 e1 vj 〈c2〉 e2 : T2.

Proof: First, we can ignore the cases where e1 −→m
n fail or e1 diverges—those are

immediately related, since 〈c1〉 e1 also diverges or goes to fail(by Lemma 4.3.13).
So e1 −→m

n v1 and e2 −→∗ v2, and by definition, v1 vj v2 : T1. By coercion
congruence(Lemma 4.3.13 and Lemma 4.5.22), there exist e ′1 and e ′2 such that (a)

211

〈c1〉 e1 −→∗n e ′1 and 〈c1〉 v1 −→∗n e ′1, and (b) 〈c2〉 e2 −→∗ e ′2 and 〈c2〉 v2 −→∗ e ′2. But
we know that 〈c1〉 v1 vj 〈c2〉 v2 : T2 by Lemma 4.6.8, so we are done by contraction
and expansion(Lemma 4.6.4 and Lemma 4.6.3). �

4.6.10 Theorem [Soundness]: • If Γ ` u : T then Γ ` uId v canonical(uId) : T .

• If Γ ` e : T then Γ ` e v canonical(e) : T .

• If ` c : T1 T2 then ` c ≡ canonical(c).

• If ` T then ∀j . T %j canonical(T).

Proof: By lexicographic induction on the typing derivation and the size of the term
(v or e, respectively), using Lemma 4.6.9 in the T Coerce case. We use Lemma 4.6.8
in the T TagVal, T TagValRefine, and coercion cases.

Let a j be given. In all cases, we begin by letting Γ |=j
� δ, so we must show that

δ1(e) vj δ2(canonical(e)) : T .

(T Const) Immediate—kId %j kId : B for any j .

(T Abs) We must show that

δ1(λx :T1. e1Id) %
j δ2(λx :canonical(T1). canonical(e1)Id) : T1→T2

given that Γ, x :T1 ` e1 : T2. Let m < j , and let v1 %m v2 : T1. We have

δ1(λx :T1. e1Id) v1 −→n δ1(e1)[v1/x]
δ2(λx :canonical(T1). canonical(e1)Id) v2 −→ δ2(canonical(e1))[v2/x]

We must now show that these two terms are related at m. We can apply IH (4.6.10) on
Γ, x :T1 ` e1 : T2 at the index m using the closing substitution Γ, x :T1 |=m

� δ[v1, v2/x].

(T PreVal) By IH (4.6.10).

(T TagVal) We must show that

δ1(v1d) %j δ2(u1c⇓canonical(d)) : T2

where canonical(v1) = u1c given that δ1(v1) vj δ2(canonical(u1)c) : T1, knowing that
d 6= {x :T1 | e}? and ` d : T1 T2

By IH (4.6.10), we find that ` d ≡ canonical(d). We can then apply Lemma 4.6.8
to find that 〈d〉 δ1(v1) vj 〈canonical(d)〉 δ2(canonical(u1)c) : T2. Since we originally
had v1d , we know that d must be a value tag, we can step both sides (by F TagB,
F TagFun, F TagFunWrap or F TagPredPred on the left; E Tag or E Fun
on the right) to find

〈d〉 δ1(v1) −→∗n δ1(v1d)
〈canonical(d)〉 δ2(canonical(u1)c) −→∗ δ2(canonical(u1)c⇓canonical(d))

We are then done by expansion (Lemma 4.6.3).

212

(T TagValRefine) As for the previous case, stepping through related checking
forms to find related results. (Or, possibly, by finding fail on the left and ignoring the
right entirely, by Lemma 4.6.5.)

(T Var) By definition, δ1(x) vj δ2(x) : T .

(T Op) By IH (4.6.10) we can either find divergence or failure on the left, or each
argument reduces to a value. In this case, we know that operations are first-order and
don’t take dynamic values, so we get the exact same output on both sides—which
must then be related.

(T App) By IH (4.6.10) and the definition of the logical relation at function types.

(T Coerce) By Lemma 4.6.9 and IH (4.6.10).

(T Fail) Immediate by definition.

(T Check) By IH (4.6.10).

(C Id) By R Id.

(C Fail) By R Fail, L Fail, and I Id.

(C Compose) We have

` d1 ≡ canonical(d1)
` d2; . . . ; dn ≡ canonical(d2; . . . ; dn)

It remains to show that concatenation on the left is related to merging on the right.

We go by cases on d1. Throughout the analysis, we will examine the rule used to
find ` d2; . . . ; dn ≡ canonical(d2; . . . ; dn)—when the rule was R Fail, we are imme-
diately done, since the merge will produce Fail on the right and the left will always
satisfy R Fail.

(d1 = B !) Either canonical(d1) ⇓ canonical(d2; . . . ; dn) begins with B ! or it doesn’t.
If it does, then we invert ` d2; . . . ; dn ≡ canonical(d2; . . . ; dn):

(R Id) We are done by R Composite.

(R Fail) We are done by R Fail.

(R Composite) We are done by R Composite, with c ′0 = Id and c1 = B ! and
c ′1; . . . ; c ′n = d2; . . . ; dn .

If it doesn’t, then we go by inversion of the derivation of

canonical(d1) ∗ canonical(d2; . . . ; dn)⇒ . . .

We exclude obviously contradictory cases (N Canonical, N FailL, N Phi with
D = Fun or D = {x :T | e}, N FunFailB, N PredPred, N Fun).

213

(N FailR) The only relation rule that could have applied is R Fail, so we are
done again by R Fail.

(N Phi with D = B) By R Composite, since ` B !; c; B? ignorable.

(N BFailB) By R Fail and L BB.

(N BFailFun) By R Fail and L BFun.

(d1 = Fun!) As for B !.

(d1 = {x :T | e}!) If d1 isn’t at the beginning of the coercion, then it must be that
{x :T | e}? begins canonical(d2; . . . ; dn).

If d1 remains at the beginning, then we go by R Composite or R Fail, depending
on how we found the derivation of ` d2; . . . ; dn ≡ canonical(d2; . . . ; dn): we use the
former if R Id or R Composite was used, the latter if R Fail was used.

We go by cases on the derivation of ` d2; . . . ; dn ≡ canonical(d2; . . . ; dn).

(R Id) Contradictory—we assumed that the final merge result began with {x :T |
e}?.

(R Fail) By R Fail.

(R Composite) By R Composite, noting that

` {x :T | e}!; c ′0; {x :T | e}? ignorable

by I PredSame.

(d1 = B?) It must be the case that the merged coercion starts with B?, since no
merge eliminates B? on the left.

If R Id or R Composite derived ` d2; . . . ; dn ≡ canonical(d2; . . . ; dn), we are
done by R Composite. If R Fail was used, we’re done immediately.

(d1 = Fun?) As for B?.

(d1 = {x :T | e}?) The outermost rule applying to find {x :T | canonical(e)}? ⇓
canonical(d2; . . . ; dn) must be either N FailR, N Canonical, or N PredPrd. In
the first two cases, we are done (by R Composite, R Tag, and R DPred—or by
R Fail). In the third case, we are done by the IH with R Composite and R Tag,
with c ′0 = Id. In the fourth case, we are done by the IH (since ` {x :T | e}?; {x :T |
e}! ignorable, and we can use either R Id or R Composite with I Concat).

(d1 = c11 7→ c12) The outermost rule applying in canonical(c11) 7→ canonical(c12) ⇓
canonical(d2; . . . ; dn) must be one of N FailR, N Canonical, or N Fun.

In the first two cases we are done, either by R Composite with R Fun or by
R Fail. In the third case, we are done by the IH with R Composite and R Fun.
In the fourth case, we are done by the IH, noticing that the relation on the right
comes from R Composite with an initial R Fun, so we can fold c11 7→ c12 into that
R Fun derivation and reconstruct a new R Composite derivation.

(WF Dyn) Immediate

214

(WF Base) Immediate

(WF Fun) By IH (4.6.10).

(WF Refine) We have T %j T immediately. As IH (4.6.10) on x :T ` e : Bool,
we have x :T ` e v canonical(e) : Bool. Let m < j and v1 %m v2 : T be given; we can
then find e[v1/x] vm canonical(e)[v2/x] : Bool by instantiating at m and δ.

�

The definition of ∅ ` e1 v e2 : T gives us approximate observational equivalence:
either e diverges, e reduces to fail, or e −→∗n v1 and canonical(e) −→∗ v2 such that
v1 %j v2 : T for arbitrary j . (I write this result without indices because the definition
of Γ ` e1 v e2 : T quantifies over all indices.) Note that for base values, we have
exactly the same result on both sides.

4.7 Space efficiency

The structure of my space-efficiency proof is largely the same as in prior work. Co-
ercion size is broken down by the order of the types involved; the maximum size of
any coercion is |largest coercion| · 2tallest type. Inspecting the canonical coercions, the
largest is {x :Dyn | e}!; Fun?; c1 7→ c2; Fun!; {x :Dyn | e ′}?, with a size of 5. The
largest possible canonical coercion therefore has size M = 5 · 2h.

Formally, observe that merging canonical coercions c1 and c2 either produces a
smaller coercion or c1; c2 is canonical(and has size size(c1) + size(c2)).

4.7.1 Lemma [Merge reduces size]: If c1 ∗ c2 ⇒ c3, then either:

• size(c1) + size(c2) > size(c3), or

• c3 = c1; c2 is canonical.

Proof: By induction on the derivation of c1 ∗ c2 ⇒ c3. Note that in either case,
size(c1) + size(c2) ≥ size(c3).

(N Canonical) c1; c2 is canonical.

(N FailL) We have Fail ∗ c2 ⇒ Fail, with 1 + size(c2) > 1.

(N FailR) We have c1 ∗ Fail⇒ Fail, with size(c1) + 1 > 1.

(N Phi) We have ` c1; D ! : T1 tgt(D) and ` D?; c2 : tgt(D) T3. By the
IH, size(c1) + size(c2) ≥ size(c3), so we immediately have size(c1) + 1 + size(c2) + 1 >
size(c3).

215

(N BFailB) We have ` c1; B ! : T1 Dyn and ` B ′?; c2 : Dyn T3. It is
immediate that size(Fail) is smaller.

(N BFailFun) We have ` c1; B ! : T1 Dyn and ` Fun?; c2 : Dyn T3. It is
immediate that size(Fail) is smaller.

(N FunFailB) We have ` c1; Fun! : T1 Dyn and ` B?; c2 : Dyn T3. It is
immediate that size(Fail) is smaller.

(N PredPred) We have ` c1; {x :T | e}? : T1 {x :T | e} and ` {x :T | e}!; c2 :
{x :T | e} T3, where T is either B or Dyn. By the IH, size(c1)+size(c2) ≥ size(c3),
so we immediately have size(c1) + 1 + 1 + size(c2) ≥ size(c3).

(N Fun) We have:

` c1; (c11 7→ c12) : T1 (T21→T22)
` (c21 7→ c22); c2 : (T21→T22) T3

By the IH:
size(c21) + size(c11) ≥ size(c31)
size(c12) + size(c22) ≥ size(c33)

size(c1) + size((c31 7→ c32); c2) ≥ size(c3)

Now we can see that:

size(c11 7→ c12) + size(c21 7→ c22) = 1 + size(c11) + size(c12) +
1 + size(c21) + size(c22)

> 1 + size(c31) + size(c32)

Now we can finally conclude that:

size(c1; (c11 7→ c12)) + size((c21 7→ c22); c2) > size(c1) + size((c31 7→ c32); c2)
> size(c3)

�

Rules with merges (and E Merge in particular) don’t increase the size of the
largest coercion in the program. Applying this lemma across an evaluation e −→∗ e ′,
we can see that no coercion ever exceeds the size of the largest coercion in e. If M
is the size of the largest coercion, then there is at most an M -fold space overhead of
coercions. But this size bound is galactic; I find it hard to believe that this overhead
is observable in practice. A much more interesting notion of space efficiency—not
studied here—is to determine implementation schemes for space-efficient layout of
coercions in memory and time-efficient merges of coercions. I believe that explic-
itly enumerating the canonical coercions is a step towards this goal: the canonical
coercions in Table 4.2 are exactly those which must be represented.

216

4.8 Conclusion

Space-efficiency is attainable for contract languages that cover the whole spectrum,
from dynamic types to refinement types. While canonical coercions may skip checks—
and behave slightly differently from näıve, inefficient implementations—we still have
the guarantee that when the näıve implementation produces a value, the space-
efficient one will produce a behaviorally equivalent one. Resolving the space in-
efficiency of näıve contract systems is an important first step in making contracts
amenable to pervasive use.

217

Chapter 5

Related work

Literature does not exist in a vacuum.

ABC of Reading
Ezra Pound

We begin by surveying the field in Section 5.1, with a focus on λH in Section 5.1.2.
We then focus more closely on work related to FH and space-efficiency in Sections 5.2
and 5.3, respectively.

5.1 Contracts: a survey

Conferences in recent years have seen a profusion of papers on higher-order contracts
and related features. This is all to the good, but for newcomers to the area it can
be a bit overwhelming, especially given the great variety of technical approaches. To
help reduce the level of confusion, in Table 5.1 I summarize the important points of
comparison between a number of systems that are closely related to ours. This table
is an updated version of those in Greenberg et al. [34, 35]. A similar comparison for
gradual typed systems—which necessarily has some overlap with the material in this
table—is in Table 5.2.

The largest difference is between latent and manifest treatments of contracts—i.e.,
whether contract checking (under whatever name) is a completely dynamic matter or
whether it leaves a “trace” that the type system can track.

Another major distinction (labeled “dep” in the figure) is the presence of depen-
dent contracts or, in manifest systems, dependent function types. Latent systems
with dependent contracts also vary in whether their semantics is lax or picky.

Next, most contract calculi use a standard call-by-value order of evaluation (“eval
order” in the figure). Notable exceptions include those of Hinze et al. [41], which
is embedded in Haskell, Flanagan [28], which uses a variant of call-by-name, and
Knowles and Flanagan [44], which uses full β-reduction (more on this below).

218

Latent systems

FF02 HJL06 GF07 λC BM06 DFFF11 λC
(1) (2) (3) (4) (5) (Ch. 2)

dep (6) X lax X picky × (7) X indy X either
eval order CBV lazy CBV CBV CBV CBV
blame (8) ⇑l ⇑l ⇑l ⇑l or ⊥ ⇑l ⇑l
checking (9) if if © active active active
typing (10) X X X n/a X X
any con (11) X X X X X X

Manifest systems

GF07 λH F06 KF10 WF09 OTMW04 BGIP11 λH FH Eff.
(3) (12) (13) (14) (15) (16) (Ch. 2) (Ch. 3) (Ch. 4)

dep (6) × X X × X X X X ×
eval order CBV CBN(17) full β CBV CBV CBV CBV CBV CBV
blame (8) ⇑l stuck stuck ⇑l ⇑ ⇑l ⇑l ⇑l ⇑
checking (9) © © active active if active active active active
typing (10) × × X X X X X X X
any con (11) X X X X × X X X X
poly (18) × × × × × X × X ×
space (19) × × × × × × × × X

(1) Findler and Felleisen [26]. (2) Hinze et al. [41]. (3) Gronski and Flanagan [36]. (4) Blume and
McAllester [11]. (5) Dimoulas et al. [22]. (12) Flanagan [28]. (13) Knowles and Flanagan [44].
(14) Wadler and Findler [78]. (15) Ou et al. [51]. (16) Belo et al. [8]. This is not the same as the FH

offered in Chapter 3. I omit Cast and Naive from this analysis. (6) Does the system include depen-
dent contracts or function types (X) or not (×) and, for latent systems, is the semantics lax or picky?
(See below for more on “indy” checking.) (7) An “unusual” form of dependency, where negative
blame in the codomain results in nontermination. (17) A nondeterministic variant of CBN. (8) Do
failed contracts raise labeled blame (⇑l), raise blame without a label (⇑), get stuck, or sometimes
raise blame and sometimes diverge (⊥)? (9) Is contract or cast checking performed using an “active
check” syntactic form (active), an “if” construct with a refined typing rule (if), or “inlined” by mak-
ing the operational semantics refer to its own reflexive and transitive closure (©)? (10) Is the typing
relation monotonic, i.e., is the typing relation known to be uniquely defined? (11) Are arbitrary
user-defined boolean functions allowed as contracts or refinements (X), or only built-in ones (×)?
(18) Does the type system support polymorphism? (19) Is the operational semantics space efficient?

Table 5.1: Comparison between contract systems

219

Another point of variation (“blame” in the figure) is how contract violations or
cast failures are reported—by raising an exception or by getting stuck. I return to
this below.

The next two rows in the table (“checking” and “typing”) concern more technical
points in the papers most closely related to the work in Chapter 2. In both Gronski
and Flanagan [36] and Flanagan [28], the operational semantics checks casts “all in
one go”:

s2{x := k} →∗h true

〈{x:B | s1} ⇒ {x:B | s2}〉l k →h k

Such rules are formally awkward, and in any case they violate the spirit of a small-
step semantics. Also, the formal definitions of λH in both Gronski and Flanagan [36]
and Flanagan [28] involve a circularity between the typing, subtyping, and implication
relations. Knowles and Flanagan [44] improve the technical presentation of λH in both
respects. In particular, they avoid circularity (as I do) by introducing a denotational
interpretation of types and maintain small-step evaluation by using a new syntactic
form of “partially evaluated casts” (like most of the other systems).

5.1.1 Refinement types and contracts

Refinement types, in fact, first referred to refinements of datatypes in particular [30],
though the term has been appropriated to mean types of the form {x:T | e} in
general. We discuss the connection between our manifest contracts and datatypes
more in Section 5.3.

Findler and Felleisen’s contracts—and those in this dissertation—have runtime
effects and are not erasable in general. That is, the default semantics is to check all
of these specifications as the program runs. Runtime checking contrasts markedly
with refinement type theories that use SMT (satisfiability modulo theories) solvers,
where there is little or no checking at runtime. The work on liquid types is one
example [58, 59]. Others go further, including type Dyn: F* [71, 29] and DJS [19,
17]. All of these languages use SMT solvers to resolve refinement types written as
propositions in a logic—while I use code. The logics of many of these languages
allow first-order quantification, which rules out run-time checking as a possibility. In
general, languages with propositional refinement types begin to push into the territory
of program verification and program logics. This is a broad field in its own right, and
I do not attempt to survey it here.

I should contrast the SMT-solver approach with the Curry–Howard approach
taken in, e.g., Coq [21]. There are many differences, but the chief one is in the
nature of evidence: refinement types and contracts use SMT solvers or other exten-
sional “proof on the side” methods, while Coq and its brethren have intensional proof
languages where the programmer constructs proofs like programs (and vice versa).
Introducing impurities to the Curry–Howard style is an active area of research, but
the current state of the art favors the extensional approach (e.g., F*).

220

Some work has been done on optimizing away unnecessary contract checks. In
Chapter 3, I prove the soundness of upcast elimination (Lemma 3.4.3); other such
optimizations have been the subject of some study already [44, 8]. In Chapter 4,
I optimize the space usage of contracts in a way that requires us to (soundly) skip
some checks. Findler et al. [27] (discussed more in Section 6.1.2) reduce re-checking
of contracts on data structures.

5.1.2 Situating λH

The formulation of λH in Chapter 2 is most comparable to that of Knowles and
Flanagan [44], but there are some significant differences. First, my cast-checking
constructs are equipped with labels, and failed casts go to explicit blame—i.e., they
raise labeled exceptions. In the λH of Knowles and Flanagan (though not the earlier
one of Gronski and Flanagan), failed casts are simply stuck terms—their progress
theorem says “If a well-typed term cannot step, then either it is a value or it contains
a stuck cast.” Second, their operational semantics uses full, non-deterministic β-
reduction, rather than specifying a particular order of reduction, as I have done. This
significantly simplifies parts of the metatheory by allowing them to avoid introducing
parallel reduction. I prefer standard call-by-value reduction because I consider blame
to be an exception—a computational effect—and I want to be able to reason about
which blame will be raised by expressions involving many casts. At first glance,
it might seem that my theorems follow directly from the results for Knowles and
Flanagan’s language, since CBV is a restriction of full β-reduction. However, the
reduction relation is used in the type system (in rule S Imp), so the type systems for
the two languages are not the same. For example, suppose the term bad contains a
cast that fails. In my system {y :B | true} is not a subtype of {y :B | (λx :S . true) bad}
because the contract evaluates to blame. However, the subtyping does hold in the
Knowles and Flanagan system because the predicate reduces to true.

The system studied by Ou et al. [51] is also close in spirit to my λH. The main
difference is that, because their system includes general recursion, they restrict the
terms that can appear in contracts to just applications involving predefined constants:
only “pure” terms can be substituted into types, and these do not include lambda-
abstractions. My system (like all of the others in Table 5.1—see the row labeled “any
con”) allows arbitrary user-defined boolean functions to be used as contracts.

My description of λC is ultimately based on λCon [26], though my presentation is
slightly different in its use of checks. Hinze et al. [41] adapted Findler and Felleisen-
style contracts to a location-passing implementation in Haskell, using picky dependent
function contracts.

My λH type semantics in Section 2.3.2 is effectively a semantics of contracts.
Blume and McAllester [11] offers a semantics of contracts that is slightly different—
my semantics includes blame at every type, while theirs explicitly excludes it. Xu
et al. [80] is also similar, though their “contracts” have no dynamic semantics at all:
they are simply specifications.

221

Dimoulas et al. [22] introduce a new dialect of picky λC, where contract checks in
the codomain are given a distinct negative label. If labels represent “contexts” for
values, then this treats the contract as an independent context. “Indy” λC and picky
λC will raise exactly the same amount of blame, but they will blame different labels.

Chapter 3, a corrected extension of Belo et al. [8], at once simplifies and extends
the CBV λH given in Chapter 2. The type system is redesigned to avoid subtyping and
closing substitutions, so type soundness is proved with easy syntactic methods [79].
The language also allows general refinements—refinements of any type, not just base
types—and extends the type system to polymorphism. This can be seen as completing
some of the future work of Greenberg et al. [34].

I have discussed only a small sample of the many papers on contracts and related
ideas. I refer the reader to Knowles and Flanagan [44] for a more comprehensive
survey. Another useful resource is Wadler and Findler [77] (technically superceded
by Wadler and Findler [78], but with a longer related work section), which surveys
work combining contracts with type Dyn and related features.

There are also many other systems that employ various kinds of precise types,
but in a completely static manner. One notable example is the work of Xu et al. [80],
which uses user-defined boolean predicates to classify values (justifying their use of
the term “contracts”) but checks statically that these predicates hold.

Sage [45] and Knowles and Flanagan [44] both support mixed static and dynamic
checking of contracts, using, e.g., a theorem prover. I have not addressed this aspect
of their work, since I have chosen to work directly with the core calculus λH, which
for them was the target of an elaboration function.

5.2 FH: polymorphism and manifest metatheory

I discuss work related to FH (Chapter 3) in two parts. First, I distinguish my work
from the untyped contract systems that enforce parametric polymorphism dynami-
cally, rather than statically as FH does. Then I discuss how FH differs from existing
manifest contract calculi in greater detail.

5.2.1 Dynamically checked polymorphism

The FH type system enforces parametricity with type abstractions and type variables,
while refinements are dynamically checked. Another line of work omits refinements,
seeking instead to dynamically enforce parametricity—typically with some form of
sealing (à la Pierce and Sumii [52]).

Guha et al. [37] define contracts with polymorphic signatures, maintaining abstrac-
tion with sealed “coffers”; they do not prove parametricity. Matthews and Ahmed [46]
prove parametricity for a polymorphic multi-language system with a similar policy.
Neis et al. [50] use dynamic type generation to restore parametricity in the presence
of intensional type analysis. FH’s contracts are subordinate to the type system, so

222

the parametricity result does not require dynamic type generation. Ahmed et al. [3]
prove parametricity for a gradual typing [67] calculus which enforces polymorphism
with a set of global runtime seals. Ahmed et al. [4] define a polymorphic calculus
for gradual typing, using local syntactic “barriers” instead of global seals. I believe
that it is possible to combine FH with the barrier calculus of Ahmed et al., yielding
a polymorphic blame calculus [78]. I leave this to future work.

5.2.2 FH and other manifest calculi

For a coarse comparison, please refer back to Table 5.1. In this section, I give a more
technical comparison with the closest related work. Four existing manifest calculi with
dependent function types ([28, 34, 44, 51]) use subtyping and theorem provers as part
of the definition of their type systems. All four of these calculi have complicated
metatheory. Ou et al. [51] restrict refinements and arguments of dependent functions
to a conservative approximation of pure terms; they also place strong requirements on
their prover. Knowles and Flanagan [44] as well as Greenberg, Pierce, and Weirich [34]
use denotational semantics to give a firm foundation to earlier work [28]. I consider
three systems in more detail: Knowles and Flanagan’s λH (KF); Chapter 2’s λH
(which is the same as Greenberg, Pierce, and Weirich’s λH, which I write here as
GPW); and FH. The rest of this subsection addresses the differences between KF,
GPW, and FH.

What made KF and GPW so complicated? Both systems share the same two
impediments in the preservation proof: preservation after active checks and after
congruence steps in the argument position of applications. KF and GPW use sub-
typing to resolve these issues. First, subtyping helps preserve types when evaluating
casts with predicate contracts: if 〈Int ⇒ {x :Int | x > 0}〉l n −→∗ n, then we need to
type n at {x :Int | x > 0}. KF and GPW use a rule like the following for refinement
subtyping:1

∀Γ, x :{x :B | true} ` σ. σ(e1) −→∗ true impliesσ(e2) −→∗ true

Γ ` {x :B | e1} <: {x :B | e2}
Combined with a “constants get most specific types” requirement—for example, as-
signing n the type {x :Int | x = n}—subtyping allows n to be typed at any predicate
contract it satisfies. Second, KF and GPW use subtyping to show the equivalence of
types with different but related term substitutions. Consider the standard dependent-
function application rule:

Γ ` e1 : (x :T1 → T2) Γ ` e2 : T1

Γ ` e1 e2 : T2[e2/x]

If e2 −→ e ′2, how do T2[e2/x] and T2[e
′
2/x] relate? (An important question when

proving preservation!) Both KF and GPW relate reduction and subtyping, showing

1Readers familiar with the systems will recognize that I’ve folded the implication judgment into
the relevant subtyping rule.

223

that types that reduce to each other are mutual subtypes. KF use full beta reduc-
tion throughout their system. GPW use call-by-value reduction in their operational
semantics, showing that parallel reducing types are mutual subtypes, separately re-
lating CBV and parallel reduction. Once these two difficulties are resolved, both
preservation proofs are standard, given appropriate subtyping inversion lemmas.

So much for subtyping. Why do KF and GPW need denotational semantics?
Spelled out pedantically, the subtyping rule above has the following premise:

∀σ. Γ, x :{x :B | true} ` σ implies (σ(e1) −→∗ true impliesσ(e2) −→∗ true)

That is, the well formedness of the closing substitution σ is in a negative position.
Where do closing substitutions come from? We cannot use the typing judgment
itself, as this would be ill-defined: term typing requires subtyping via subsumption;
subtyping requires closing substitutions in a negative position via the refinement case;
but closing substitutions require typing. We need another source of values: hence,
denotational semantics. Both KF and GPW define syntactic term models of types to
use as a source of values for closing substitutions, though the specifics differ.

After adding subtyping and denotational semantics, both KF and GPW are well
defined and have syntactic proofs of type soundness. But in the process of proving
syntactic type soundness, both languages proved semantic soundness theorems:

Γ ` e : T implies ∀Γ ` σ, σ(e) ∈ [[σ(T)]]

This theorem suffices for soundness of the language... so why bother with a syntactic
proof? In light of this, GPW only proves semantic soundness. The situation in KF
and GPW is unsatisfying: the syntactic proof of type soundness motivated subtyp-
ing, which motivated denotational semantics, which obviated the need for syntactic
proof. Beyond this, the proofs are hard to scale: adding in polymorphism or state
is a non-trivial task, since we must—before defining the type system!—construct an
appropriate denotational semantics, which itself depends on the evaluation relation.

FH solves the problem by avoiding subtyping—which is what forced the presence
of closing substitutions and denotational semantics in the first place. The first issue
in preservation—that of preserving refinement types after checks have finished—was
resolved in KF and GPW with subtyping. Instead, I resolve it with a runtime rule
that allows us to type values with any refinement they satisfy:

` Γ ∅ ` v : T ∅ ` {x :T | e} e[v/x] −→∗ true

Γ ` v : {x :T | e}
T Exact

Adding this rule eliminates one use of subtyping as well as the “most-specific type”
restriction. If we “bit the bullet” and allowed non-empty contexts in T Exact,
then we would need to apply a closing substitution to e[v/x] before checking if it
reduces to true. But the circularity in subtyping alluded to at the beginning of this
chapter was caused by closing substitutions; we must avoid them! The second issue

224

in preservation—that of conversion between T2[e2/x] and T2[e
′
2/x]—can be resolved

in a similar fashion. We define another runtime rule that allows us to convert types:

` Γ ∅ ` e : T ∅ ` T ′ T ≡ T ′

Γ ` e : T ′
T Conv

The conversion we use, ≡, is defined as the symmetric, transitive closure of CBV-
respecting parallel reduction. This is only as much equivalence as we need: if e2 −→
e ′2, then T2[e2/x] ≡ T2[e

′
2/x]. These two rules suffice to keep subtyping out of FH,

which in turn avoids denotational semantics.

Other consequences of subtyping

The FH operational semantics is essentially a superset of λH from Chapter 2, barring
some slight differences in the function cast decomposition rule. The type system,
however, is not a superset: λH types some programs FH does not. In particular, λH
builds in subsumption, while FH only has a subsumption principle post facto. We can,
however, take a λH typing derivation and eliminate every occurrence of subsumption:
by the upcast lemma, the two programs are equivalent, even if one of them is not
well typed. That is, I have taken subsumption out of the type system and proved
subsumption safe as an optimization—and, in doing so, greatly simplified the type
system.

5.3 Space efficiency and gradual types

There are two threads of work related to the development of Chapter 4: a more re-
cent line of work on gradual types, refinement types, and full-spectrum programming
languages; and an older, more general line of work on coercions, which may or may
not have runtime semantics. Space efficiency and representation have been studied
in both settings.

5.3.1 Space efficiency, gradual typing, and refinement types

We give an overview of the field of gradual typing in 5.2. The commonality between
all systems is the presence of a type like Dyn.

In Siek and Taha’s seminal work on gradual typing [67], space efficiency is already
a concern—they point out that the canonical forms lemma has implications for which
values can be unboxed (the typed ones). Herman, Tomb, and Flanagan [39] compiled
a language like Siek and Taha’s into a calculus with Henglein’s coercions [38], proving
a space-efficiency result with a galactic bound similar to mine. Herman et al. stop
at proving that their compilation is type preserving without proving soundness of
their compilation. (I compare my system to Herman et al.’s in greater detail below.)
Siek, Garcia, and Taha [65] explore the design space around Herman et al.’s result,

225

ACPP89 T90 CF91 H94 KTGFF06 ST06 HTF07/10 SGT09 WF09
(1) (2) (3) (4) (5) (6) (7) (8) (9)

blame (10) total ⇑ ⇑ stuck ⇑ ⇑ ⇑ ⇑l ⇑l
con (11) × × × × X? × × × X
poly (12) × × X × X × × × ×
space (13) × × × X × × × X+ ×

BGHL10 SW10 AFSW11 SG12 G13 Eff.
(14) (15) (16) (17) (18) (Ch. 4)

blame (10) ⇑ ⇑l ⇑l ⇑l ⇑l ⇑
con (11) X(FO) × × × × X
poly (12) × × X × × ×
space (13) × X × X X+ X+

(1) Abadi et al. [1]. (2) Thatte [73] (3) Cartwright and Fagan [15] (4) Henglein [38] (5) Knowles
et al. [45] (6) Siek and Taha [67] (7) Herman et al. [39, 40] (8) Siek et al. [65] (9) Wadler and Findler
[78] (14) Bierman et al. [10] (15) Siek and Wadler [68] (16) Ahmed et al. [4] (17) Siek and Garcia [66]
(18) Garcia [31] (10) Do failed contracts raise labeled blame (⇑l), raise blame without a label (⇑), or
get stuck? NB that (1) requires that typecases be total, so there are no errors. (11) Are there con-
tracts or refinements types? NB that (5) lacks a soundness proof, and (14) is a first-order language.
(12) Does the type system support polymorphism? (13) Is the operational semantics space efficient?
If so (X), is there a proof of soundness relating the space-efficient calculus to a näıve semantics (X+)?

Table 5.2: Comparison between gradual typing systems

226

this time with an observational equivalence theorem exactly relating two coercion
semantics.

Siek and Wadler [68] study an alternative, cast-based formulation of space effi-
ciency, proving tighter bounds than Herman et al. [39] and an exact observational
equivalence. Their insight is that casts can be factored not merely as a “twosome”

〈S ⇒ T 〉, but rather as a threesome: 〈S R⇒ T 〉. They maintain the invariant that S
downcasts to R, and R upcasts to T ; merging casts amounts to calculating a greatest
lower bound. They come up with an elegant theory of merging casts, with a detailed
accounting for blame. While the mathematics is beautiful, I believe that their algo-
rithm is overkill: Herman et al.’s journal article [40] cleanly enumerates the recursive
structure of the canonical coercions for dynamic and simple types, with only 17 pos-
sible structures at the top level. Siek and Wadler’s theory is the theory of these 17
structures. Many of the solutions can be simply pre-computed and looked up in a
table at runtime. I have 37 canonical coercions. I don’t study the question here, but
I believe that a careful analysis would allow for very compact representations with
very fast merges—by pointer comparison and table lookup when functional coercions
aren’t involved. I discuss this issue further in future work (Chapter 6).

Before considering other full-spectrum languages, I compare this work to the most
closely related work: Herman, Tomb, Flanagan [39, 40], Garcia [31], Siek and Gar-
cia [66], and Henglein [38]. Henglein is trying to reason carefully about programs
written in a dynamic style, rather than thinking about multi-paradigm programming
(though it is clear that he knows that his work applies to “dynamic typing in a static
language”). His theory of coercions has no Fail coercion and treats Id slightly dif-
ferently at function types. Herman et al. adapt his calculus to match the setting
of gradual types, though they never rebuild his theory. Henglein develops a general
theory characterizing canonical coercions, but I enumerate them, as in Herman et al.
[40].

Perhaps the biggest difference is that Henglein and Herman et al. formulate co-
ercions as having arbitrary composition: c1; c2 is a coercion that can be used freely.
As a consequence, it is somewhat difficult to reason directly about coercions in the
calculus: what should 〈(c1 7→ c2; Fun!); {x :Dyn | e}?〉 v do? Their solution is to work
with coercions up to an equivalence relation that includes associativity of coercion
composition; coercions normalize in a term rewriting system modulo this equivalence
relation. Henglein studies some algorithmic rewriting systems. But Herman et al.
don’t develop the rewriting system at all, never showing that their rewriting sys-
tem is strongly normalizing, and even when they enumerate canonical coercions in
their journal version [40], they do so without proof. I feel that term rewriting modulo
equational theories is insufficient for guiding an implementation of a coercion calculus:
the compiler needs a concrete representation for coercions and a concrete algorithm
for merging them. I accordingly adopt a constrained form of coercion composition
out of a desire to aid implementation, but also out of expedience: I don’t need to
worry about associativity at all. I don’t believe that free composition buys anything,

227

anyway: I don’t expect programmers to be writing coercions by hand, so ease of
expression in the coercion language isn’t particularly important.

Herman et al.’s calculus is a little odd: the value 〈Id〉 v takes a step to v . My
approach makes a clearer distinction between terms and the results that they produce.
Siek and Wadler noticed a separate problem with nondeterminism at cast merges,
most likely due to a mistake in defining evaluation contexts.

Siek and Garcia [66] study various interpretations and implementations of gradual
typing. Their seq-lazy function is very similar to my merge algorithm, though our
treatments of associativity are different.

Garcia’s work [31] is remarkably similar to mine, though restricted to gradual
types: starting with a gradually typed calculus with casts, he develops coercions and
then threesomes as a series of derivations. His supercoercions are remarkably similar
to my canonical coercions, though mine are complicated by the presence of refinement
types. Our approaches differ, though; he says:

One might try to devise an ad hoc reassociation scheme or represent a
sequence of coercions as lists, but it would necessarily involve pairwise
comparisons, bidirectional search, and splicing into the middle of complex
coercion expressions.

My representation is very nearly a ”sequence of coercions as lists”, though I abandon
the standard linked-list structure. My merge algorithm roughly fits his description:
I do pairwise comparisons from the inside out and concatenation, though I do not
splice things in the middle nor do I do bidirectional search. Coercions and threesomes
are two representations of the same idea. Which of the two implementations is best
in practice is an open question. Coercion merges are amenable to table lookup, but
the threesome merge operator can be memoized. Which is faster, which—if any—has
a more compact representation? Which is easier to implement?

The work discussed so far consisted of calculi devised expressly for space-efficient
gradual typing. Findler et al. [27] discuss space efficiency from the perspective of
an implementation in PLT Racket (then PLT Scheme). Their setting—latent con-
tracts, no type system—is rather different from the foregoing systems; they address
datatypes, while the foundational calculi omit datatypes.

Considering the wider world of full-spectrum programming languages, we sum-
marize existing solutions. None of the following are space efficient; I am the first to
combine space efficiency, gradual types, and refinement types. Ou et al. [51] cover the
spectrum and include dependent types, but allow only a constrained set of refinement
predicates; Sage [45] covers the entire spectrum and also includes dependent types,
but lacks a soundness proof; Wadler and Findler’s [78] development covers dynamic
types through refinements of base types; Bierman et al. [10] cover the whole spectrum
but (also with dependency) only for first-order types.

228

5.3.2 Coercions

There are many other systems that use coercions to other ends. Henglein gives an
excellent summary of work up to 1994 in the related work section of his article [38].
One of the classic uses of coercions is subtyping [13, 48]; more recent work relates
subtyping and polymorphism [20]. Work on unboxing [63, 49] confronts similar issues
of space efficiency. Many of these works carefully ensure that coercions are erasable,
while my coercions are definitely not.

Swamy, Hicks, and Bierman [70] study coercion insertion in general, showing that
their framework can encode gradual types. I haven’t studied coercion insertion at
all, though Swamy et al.’s framework would be a natural one to use. I am not
aware of work on how coercion insertion algorithms affect space consumption, though
experience with the implementation of Boomerang [12] shows that small changes in
coercion insertion can affect the efficiency of checking.

229

Chapter 6

Conclusion and future work

Why mince words, anyway, since you are not completely real Drey-
fuses, Edisons, and Napoleons? You have assumed these names vicar-
iously, for lack of anything better. Now you will swell the numbers
of many of your predecessors, those anonymous Garibaldis, Bismarcks,
and MacMahons who wander in their thousands, unacknowledged, all
over the world.

Sanatorium under the Sign of the Hourglass
Bruno Schulz

Now at last without fantasies or self-deception, cut off from the mis-
takes and confusion of the past, grave and simple, carrying a small
suitcase, getting on a bus, like girls in movies leaving home, convents,
lovers, I supposed I would get started on my real life.

Lives of Girls and Women
Alice Munro

Manifest contracts, as opposed to latent contracts, are the way forward for investi-
gating strong specifications in general purpose programming languages. The existing
uses of latent contracts have been lackluster: PLT Racket uses contracts to recover
simple types. I suspect that the lack of a type discipline has prevented pervasive use
of strong specifications. Taking programming in a type discipline as a baseline may
avoid the “contracts for types are good enough” under-specification problem found
in PLT Racket.

In this dissertation, I have developed the field of manifest contracts with three
contributions:

• Characterized manifest contracts in relation to latent contracts (Chapter 2);

• Developed FH, a manifest contract calculus with a powerful reasoning principle:
relational parametricity (Chapter 3); and

230

• Shown how to resolve the unbounded space consumption in function proxies
and on the stack that can accrue with contract checking (Chapter 4).

Each of these contributions serves language designers in different ways, but all of this
goes to support a firm theoretical basis for manifest contracts. Obtaining reasoning
principles and eliminating the gross inefficiencies in näıve formulations are neces-
sary first steps in designing and implementing higher-order languages with pervasive
manifest contracts.

The characterization of latent and manifest contracts outlines the field: what
options does the language designer have, and how do they relate? This allows for
informed choices—and, as in the example of Dimoulas et al. [22], further study. The
proof technique for translation correctness—logical relations extended with an induc-
tively defined invariant for contracts—offers theoreticians a powerful tool for metathe-
oretical work with contracts; I use it again in Chapter 4.

The FH metatheory of Chapter 3 offers several things. First, its metatheory is
much simpler than that of Chapter 2’s λH, as it eschews denotational techniques.1

The FH metatheory offers a cleaner and easier way to design core calculi for manifest
contracts, a natural first step in language design. The FH parametricity relation offers
powerful reasoning principles to implementors and programmers alike: the upcast
lemma of Section 3.4, for example, could drive an upcast elimination optimization
in a compiler; the parametricity relation could be used to reason about different
representations of abstract types.

Finally, the space efficiency work is necessary for a real implementation of de-
signs that use contracts pervasively, rather than just at module boundaries like in
PLT Racket. Moreover, my work in Chapter 4 reveals fundamental trade-offs in the
design space: space-efficiency can be had for manifest contracts, but at the price of
skipping some checks. Finally, I offer a different perspective on and new algorithms
for coercions and threesomes.

I hope that language designers can, after reading this dissertation, begin to think
about what it would mean to include manifest contracts in their systems: how the
operational semantics might ensure space efficiency; how the type system might be
kept small enough to admit easy analysis, while offering good reasoning principles;
what equalities the reasoning principles permit. I view my work as digging—not even
pouring—foundation for languages with manifest contracts. I have surveyed the field,
and I offer workably efficient semantics and powerful principles for reasoning and type
abstraction.

1The original, flawed conception of Belo et al. [8] was still simpler—it didn’t “need” a cotermi-
nation theorem; however, it did need correction.

231

6.1 Future work

The work in this dissertation aims to put manifest contracts on a firm type-theoretical
footing. There are several avenues of future work on the road to putting manifest
contracts on a firm pragmatic footing. I conclude by discussing future work.

6.1.1 State and effects

The biggest subject missing from this dissertation is state and other forms of effects,
beyond uncatchable exceptions (blame) and nontermination. Adding state to a man-
ifest calculus is problematic. Consider the type {x:Ref Int | !x >!y}. When a value v
has this type, what does the programmer know? When must the contract be checked?
If either x or y update, we may need to recheck the contract. But what if x and y
need to both be updated? What if there are circular dependencies between refined
references? The folklore consensus is that some sort of limits are necessary on state-
ful contracts. Some work has been done on this question, in particular Shinnar [64].
Shinnar uses a notion of delimited (transactional memory) transactions to (a) check
contracts at the end of transactions, and (b) roll back changes contracts make to state.
Unfortunately for our purposes, he emphasizes the delimited transactions in favor of
a detailed study of stateful contracts. Dimoulas et al. [22] offer a latent semantics
without a study of what the semantics actually means. The temporal contracts due
to Disney et al. [24] may seem unrelated, but there is no real difference between a
temporal contract and a stateful contract. Phrased as stateful contracts, their tempo-
ral contracts are essentially limited to advancing the state of a state machine—they
forbid contracts from reading or writing to state, or even calling functions.

6.1.2 Datatypes

In Chapter 3, I investigated how contracts interact with abstract types and polymor-
phism; Sekiyama and Igarashi [61] have extended that work to include a language
with fixpoints. It remains to address datatypes; very little study has been done on
how contracts and concrete implementations of algebraic datatypes interact. I am
aware only of Findler et al. [27]; Rehof [57] studies gradual typing calculi with sums,
but within the framework of dynamic types, and without an eye to implementation.
While the programming language community normally contents itself with Church
encodings (as in Belo et al. [8]), they are insufficient here—as Findler et al. demon-
strate, we must finely control abstract datatype representations in order to check
contracts without changing asymptotic time complexity. Supporting space-efficient
datatypes in addition to space-efficient functions and stacks would complement the
work in Chapter 4.

I believe it would be very interesting future work to try to combine my refinement
types, protecting partial operations (space efficiently), with classic refinements of
datatypes [30] protecting partial matches (also space efficiently). As a first step,

232

adding pairs and sums presents a design choice: is tag merging deep, as it is for
functions, or is it shallow and deferred upon projection? The deep choice is more
obviously space efficient, but both options should be explored.

6.1.3 Coercion insertion

While some of the early gradual typing papers give coercion insertion algorithm, very
little has been done in terms of comparative study; I am aware only of Swamy et al.
[70] and Allende et al. [5]. Can different coercion insertion strategies affect the space
and time efficiency of a program?

I am able to answer an emphatic “yes” to those questions based on experience in
Boomerang [12]. Consider a partial binary operation op : (x:T) → {y:T | P x y} →
T (Recall seq and concat from Chapter 3.) Suppose we have a nested application
op (op e1 e2) e3 where each of the ei is typed at T . It is natural to insert a cast
〈T ⇒ {y:T | P x y}〉 on e2. Well, almost—we actually need to cast to {y:T | P e1 y},
to account for the application of the dependent function type. So the new inner term
is einner = (op e1 (〈T ⇒ {y:T | P e1 y}〉 e2)). If we apply the coercion insertion
similarly on the outer term, we need to cast e3 to {y:T | P einner y}—which will force
us to completely rerun the check on e2 and the application of op. Even with parser
tricks to keep expression trees balanced, this is so inefficient as to be a non-starter.

Our solution in Boomerang was to evaluate terms with inserted checks in an
aliased call-by-value fashion: terms are evaluated in a call-by-value order, but there
is some sharing in the expression tree. This seriously convoluted the definition of
our interpreter—we implemented it with reference cells in OCaml—but led to an
enormous speedup. While this problem arises in every language with a dependent
application rule, it is particular dire for us because the terms in types are sometimes
evaluated!

6.1.4 Theoretical curiosities

I am curious to see what free theorems and reasoning principles come derive from
relational parametricity for manifest calculi. I also wonder whether or not we can
soundly perform type erasure in FH—the careful treatment of compatibility at type
variables seems to indicate yes, but it remains to be shown.

With the introduction of abstract types, there is room to draw connections be-
tween the client/server blame from the ADTs of Section 3.1 and the classic Findler
and Felleisen-style client/server blame. On a similar note, I believe that an interesting
connection can be drawn between blame labels and stack traces.

On the one hand, Typed Racket née Scheme [74] has a “static analysis” feel in its
flow-sensitive type system; later work by Tobin-Hochstadt and Van Horn [75] develops
a static analysis. On the other hand, most of the work on manifest contracts uses
subtyping, relying on SMT solvers to resolve implications between predicates [44, 45,

233

28, 10, 59, 58, 51]. How do static analysis and subtyping compare at eliminating
unnecessary checks and/or detecting failures?

Knowles and Flanagan [44] give a cast insertion algorithm with a three-valued
theorem prover to compile source-level programs into λH terms with casts: if the
prover says “yes”, then subtyping holds and no cast is necessary; if the prover says
“maybe”, then subtyping may or may not hold, so a cast is inserted; if the prover
says “no”, then the program is rejected. Rejecting such programs is tempting, but
too conservative: a cast that isn’t an upcast doesn’t always fail, it just may fail. A
program should be rejected not when a non-upcast is needed, but when attempting
to cast between types that don’t share any values.

6.1.5 Extensions for Efficient

The obvious next step for the space-efficiency work is to add blame [26]. Phil
Wadler berated me about the omission, and insists that I prove a blame theorem [78],
which would allow me to claim that blame comes from less specific types. Siek and
Wadler [68] were the first space-efficient calculus to have blame, which they obtain
with some effort—their threesome merging takes place outside in, making it hard to
compute which label to blame. Later work [66, 31] simplifies the treatment of blame
somewhat. I conjecture that my inside-out coercion merge algorithm offers an easy
way to compute blame: blame comes from left to right. The seq-lazy definition
from Siek and Garcia [66] bolsters my confidence in this conjecture.

In Cast, the rule G CastId doesn’t apply to casts between function types, which
instead use G CastFunWrap. Given the cast 〈T1→T2 ⇒ T1→T2〉 v , we will wrap
v with redundant checks: when the Ti aren’t arrow types, the casts immediately
disappear. That is, we η-expand all function contracts, even trivial ones. To make
matters worse, G CastFunDyn and G CastFunFun introduce function casts. In
Efficient, each function will only ever have a single function proxy on it, so the cost
is not so great. Even so, an implementation would want to avoid this unnecessary
η-expansion. The corresponding rewrite rule would be (Id 7→ Id) −→ Id. I would need
a merge rule similar to FunDom to handle this case. Henglein includes the equality
(Id 7→ Id) = Id along with associativity. Relatedly, I could consider eager semantics,
where (Fail 7→ c2) = (c1 7→ Fail) = Fail, as discussed in the literature [65, 66, 31].

If checks are expensive, predicting when checks happen could be important. When
will the N PredPred merge rule apply, and how can programmers predict perfor-
mance? There are further implementation concerns: the coercion merging algorithm
needs to compare refinement types, which, as Greg Morrisett pointed out, amounts to
comparing closures. Comparing closures is dangerous business: optimizers may dis-
rupt programmer expectations. If I were to introduce dependencies, the comparison
of closures would include the comparison of environments containing functions; ex-
tensionally equivalent functions may not be intensionally equal, leading to still more
unexpected behavior. A more nominal approach may serve here. Finally, there is an
open question about calling conventions, since tagging introduces a second kind of

234

closure: when calling a function, do we need to run coercions or not? Jeremy Siek
suggested a “smart closure” which holds the logic for branching inside its own code;
this may support better branch prediction than an indirect jump or branching at call
sites.

Extending the calculus to general refinements, where any type T can be refined to
{x :T | e}, would be a challenging but important step towards adding polymorphism.
(You can’t allow refinement of type variables unless any type can be refined, since
there’s no way to know what type will be substituted in for the variable.) It wouldn’t
be too difficult to add function refinements {x :(T1→T2) | e} to this calculus, but
refinements of refinements seem to break space efficiency: if {x :B | e}? is canonical,
so is {x :B | e}?; {x :{x :B | e} | e ′}?—there are an infinite number of canonical
coercions. In a monomorphic calculus, the number of canonical coercions can be
bounded by the types in the original program, but not so in a polymorphic calculus.
Prior work relating dynamic types and polymorphism will apply here [57, 46, 4]—
though attaining a relational parametricity proof remains a hard open problem.

Other systems have treated failure more eagerly, e.g., Fail 7→ Id ∗ c ⇒ Fail. This
would further disrupt the connection between the näıve and space-efficient semantics.

Adding dependent functions to the coercion calculus above would complicate mat-
ters significantly, but would also add a great deal of expressiveness. Adding the type
(x : T1) → T2 is straightforward enough: we should be able to prove type soundness
using entirely syntactic techniques, adapting work on FH, a polymorphic calculus
with manifest contracts and general refinements [8]. Designing the coercions is a
challenge, though. Dependency means that in the coercion (x:c1) 7→ c2, the variable
x is bound in c2. Coercion well formedness now needs a context to keep track of such
bound variables:

Γ ` c1 : T11 T21 Γ, x:T11 ` c2 : T12 T22

Γ ` (x:c1) 7→ c2 : ((x:T21)→ T12) ((x:T11)→ T22)

How do dependent functions and their corresponding coercions affect coercion nor-
malization? The following structural equivalence rule, derived from the for dependent
functions looks improbable, though its asymmetry echoes the asymmetry of the de-
pendent function cast rule in other manifest calculi, e.g., FH and λH.

((x:c1) 7→ c2); ((y:c′1) 7→ c′2) =
(y:(c′1; c1)) 7→ (c2{〈c ′1〉 y/x}; c′2)

The metatheory surrounding dependent functions in coercion calculi will be difficult.
In fact, the rule above isn’t obvious: trying to use x:T21 as the binding for x will raise
difficulties in typing the equational rule.

Programs with dependent types have a potentially infinite set of types (and, so,
coercions) which may appear as the program evaluates. In the type (x : Real) →
{y:Real | |x− y2| < ε}, there are potentially infinitely many different codomain types:
one for each Real value of x. But even with an infinite number of possible coercions,

235

the set of canonical coercions shouldn’t change (beyond the addition of dependency
to functions).

Set semantics for refinement types extend refinement types to have a set of pred-
icates, rather than a single one. The N Phi merge rule with D = {x :T | e} skips a
check when we would have projected out of and then back into a refinement type. If
refinements were sets, we could broaden this optimization to allow the space-efficient
calculus to avoid even more redundant checks.(This was, in fact, the original motiva-
tion for this work.)

In an extension of the system of Section 4.5 with so-called “general” refine-
ments [8], the coercion {x :Int | x > 0}?; {x :{x :Int | x > 0} | x > 5}? is well typed but
{x :Int | x > 0}?; {x :Int | x > 5}? isn’t. Furthermore, {x :{x :Int | x > 0} | x > 5}? and
{x :{x :Int | x > 5} | x > 0}? are totally different coercions, even though the underlying
predicates in the refinements are the same. Could we convert {x :T | e1}?; {x :{x :T |
e1} | e2}? to a single coercion? Simply changing the coercion to {x :T | e1 ∧ e2}?
disrupts typing, but the upcast lemma (Lemma 3.4.3 in Chapter 3) shows that this
is still behaviorally equivalent. Treating a refinement as being flat with a single set
of predicates, rather than a tower of separate refinements, would resolve these or-
dering issues. That is, we could have a single type that represents both orderings of
refinement: {x:Int | {x > 5, x > 0}}. Casts into and out of refinement types could be
simplified to adding and removing refinements from the set. When a value is coerced
into a refinement type with a set of predicates, the type system remembers all of the
predicates equally, acting as a cache of multiple satisfied contracts. The utility of the
set semantics is that helps address the library problem: when writing a list library,
what refinements are important—emptiness, sortedness, length? When refinements
are treated as sets of predicates, libraries can deal only with their own predicates,
treating extra client predicates parametrically.

For example, remembering that a list is both non-empty and sorted might be
useful for a sorted-list representation of sets. When the set code needs to take the
head of a list (which happens to be a minimal member of the set), it can do so
directly. Similarly, when calling the insertSorted function to add an element to the
set, it knows that both its original representation and the extended one are still valid,
sorted representations.

Another example where the set semantics allows multiple predicates to interact is
a value v : {x:Int | {x 6= 0, prime x}}. Since v 6= 0, we can use it as the divisor with
div : Int→ {x:Int | x 6= 0} → Int; since prime v, we can use it as half of a private key.

Set semantics was my initial motivation for revisiting space-efficient coercions: I
was interested in ways of remembering contract checks on values to reduce redundant
checking.

236

Bibliography

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-
typed language. In Principles of Programming Languages (POPL), 1989.

[2] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified
types. In European Symposium on Programming (ESOP), 2006.

[3] Amal Ahmed, Robert Bruce Findler, Jacob Matthews, and Philip Wadler. Blame
for all. In Workshop on Script-to-Program Evolution (STOP), 2009.

[4] Amal Ahmed, Robert Bruce Findler, Jeremy Siek, and Philip Wadler. Blame for
all. In Principles of Programming Languages (POPL), 2011.

[5] Esteban Allende, Johan Fabry, and Eric Tanter. Cast insertion strategies for
gradually-typed objects. In Dynamic Languages Symposium (DLS), 2013.

[6] David Aspinall and Adriana Compagnoni. Subtyping dependent types. IFIP
Conference on Theoretical Computer Science (TCS), September 2001.

[7] Brian Aydemir and Stephanie Weirich. LNgen: Tool support for locally nameless
representations. Technical Report MS-CIS-10-24, University of Pennsylvania,
June 2010.

[8] João Filipe Belo, Michael Greenberg, Atsushi Igarashi, and Benjamin C. Pierce.
Polymorphic contracts. In European Symposium on Programming (ESOP), 2011.

[9] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: an XML-
centric general-purpose language. In International Conference on Functional
Programming (ICFP), pages 51–63, New York, NY, USA, 2003. ACM. ISBN
1-58113-756-7. doi:10.1145/944705.944711.

[10] Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu, and David Langwor-
thy. Semantic subtyping with an SMT solver. In International Conference on
Functional Programming (ICFP), 2010.

[11] Matthias Blume and David A. McAllester. Sound and complete models of con-
tracts. Journal of Functional Programming (JFP), 2006.

237

http://dx.doi.org/10.1145/944705.944711

[12] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz,
and Alan Schmitt. Boomerang: resourceful lenses for string data. In Principles
of Programming Languages (POPL), 2008. doi:10.1145/1328438.1328487.

[13] Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. In-
heritance as implicit coercion. Information and Computation, 93(1):172 – 221,
1991. ISSN 0890-5401. doi:http://dx.doi.org/10.1016/0890-5401(91)90055-7. Se-
lections from 1989 {IEEE} Symposium on Logic in Computer Science.

[14] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An exten-
sion of system F with subtyping. In Information and Computation, 1991.

[15] Robert Cartwright and Mike Fagan. Soft typing. In Programming Language
Design and Implementation (PLDI), pages 278–292, New York, NY, USA, 1991.
ACM. ISBN 0-89791-428-7. doi:10.1145/113445.113469.

[16] Olaf Chitil and Frank Huch. Monadic, prompt lazy assertions in haskell. In
Asian Symposium on Programming Languages and Systems (APLAS), 2007.

[17] Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for javascript.
In OOPSLA, pages 587–606, 2012.

[18] Ravi Chugh, Patrick M. Rondon, and Ranjit Jhala. Nested refinements: a logic
for duck typing. In Principles of Programming Languages (POPL), POPL ’12,
pages 231–244, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1083-3.
doi:10.1145/2103656.2103686.

[19] Ravi Chugh, Patrick Maxim Rondon, and Ranjit Jhala. Nested refinements: a
logic for duck typing. In Principles of Programming Languages (POPL), pages
231–244, 2012.

[20] Julien Cretin and Didier Rémy. On the power of coercion abstraction. In Princi-
ples of Programming Languages (POPL), POPL ’12, pages 361–372, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1083-3. doi:10.1145/2103656.2103699.

[21] Coq development team. The Coq proof assistant reference manual, version 8.2,
August 2009. http://coq.inria.fr/.

[22] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and Matthias
Felleisen. Correct blame for contracts: no more scapegoating. In Principles
of Programming Languages (POPL), 2011. doi:10.1145/1926385.1926410.

[23] Tim Disney and Cormac Flanagan. Gradual information flow typing. In Work-
shop on Script-to-Program Evolution (STOP), 2011.

238

http://dx.doi.org/10.1145/1328438.1328487
http://dx.doi.org/http://dx.doi.org/10.1016/0890-5401(91)90055-7
http://dx.doi.org/10.1145/113445.113469
http://dx.doi.org/10.1145/2103656.2103686
http://dx.doi.org/10.1145/2103656.2103699
http://coq.inria.fr/
http://dx.doi.org/10.1145/1926385.1926410

[24] Tim Disney, Cormac Flanagan, and Jay McCarthy. Temporal higher-order con-
tracts. In Proceedings of the 16th ACM SIGPLAN international conference on
Functional programming, ICFP ’11, pages 176–188, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0865-6. doi:10.1145/2034773.2034800.

[25] Robert Bruce Findler. Contracts as pairs of projections. In Symposium on Logic
Programming, 2006.

[26] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order func-
tions. In International Conference on Functional Programming (ICFP), 2002.

[27] Robert Bruce Findler, Shu-Yu Guo, and Anne Rogers. Lazy contract checking
for immutable data structures. In Olaf Chitil, Zoltán Horváth, and Viktória
Zsók, editors, Implementation and Application of Functional Languages, pages
111–128. Springer-Verlag, Berlin, Heidelberg, 2008. ISBN 978-3-540-85372-5.
doi:10.1007/978-3-540-85373-2 7.

[28] Cormac Flanagan. Hybrid type checking. In Principles of Programming Lan-
guages (POPL), 2006.

[29] Cédric Fournet, Nikhil Swamy, Juan Chen, Pierre-Évariste Dagand, Pierre-Yves
Strub, and Benjamin Livshits. Fully abstract compilation to javascript. In Prin-
ciples of Programming Languages (POPL), pages 371–384, 2013.

[30] Tim Freeman and Frank Pfenning. Refinement types for ML. In Programming
Language Design and Implementation (PLDI), June 1991.

[31] Ronald Garcia. Calculating threesomes, with blame. In International Conference
on Functional Programming (ICFP), 2013.

[32] Mike Gordon. In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof,
language, and interaction, chapter From LCF to HOL: a short history, pages
169–185. MIT Press, Cambridge, MA, USA, 2000. ISBN 0-262-16188-5.

[33] Michael Greenberg. Space-efficient manifest contracts. Rejected from POPL,
2013.

[34] Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. Contracts made
manifest. In Principles of Programming Languages (POPL), 2010.

[35] Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. Contracts made
manifest. JFP, 22(3):225–274, May 2012.

[36] Jessica Gronski and Cormac Flanagan. Unifying hybrid types and contracts. In
Trends in Functional Programming (TFP), 2007.

239

http://dx.doi.org/10.1145/2034773.2034800
http://dx.doi.org/10.1007/978-3-540-85373-2_7

[37] Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram Krishna-
murthi. Relationally-parametric polymorphic contracts. In Dynamic Languages
Symposium (DLS), 2007.

[38] Fritz Henglein. Dynamic typing: Syntax and proof theory. Sci. Comput. Pro-
gram., 22(3):197–230, 1994.

[39] David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual
typing. In Trends in Functional Programming (TFP), pages 404–419, April
2007.

[40] David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual
typing. Higher Order Symbol. Comput., 23(2):167–189, June 2010. ISSN 1388-
3690. doi:10.1007/s10990-011-9066-z.

[41] Ralf Hinze, Johan Jeuring, and Andres Löh. Typed contracts for functional
programming. In Functional and Logic Programming (FLOPS), 2006.

[42] Tony Hoare. Null references: The billion dollar mistake. QCon talk, 2009.

[43] Catalin Hritcu, Michael Greenberg, Ben Karel, Benjamin C. Pierce, and Greg
Morrisett. All your IFCException are belong to us. In Security and Privacy
(SP), 2013 IEEE Symposium on, pages 3–17, 2013. doi:10.1109/SP.2013.10.
The author is deeply embarassed by the title of this paper.

[44] Kenneth Knowles and Cormac Flanagan. Hybrid type checking. ACM Transac-
tions on Programming Languages and Systems, 32:6:1–6:34, 2010.

[45] Kenneth Knowles, Aaron Tomb, Jessica Gronski, Stephen N. Freund, and Cor-
mac Flanagan. Sage: Hybrid checking for flexible specifications. In Scheme and
Functional Programming Workshop, 2006.

[46] Jacob Matthews and Amal Ahmed. Parametric polymorphism through run-time
sealing or, theorems for low, low prices! In European Symposium on Programming
(ESOP), 2008.

[47] Bertrand Meyer. Eiffel: the language. Prentice-Hall, Inc., 1992. ISBN 0-13-
247925-7.

[48] Yasuhiko Minamide. Runtime behavior of conversion interpretation of subtyping.
In Selected Papers from the 13th International Workshop on Implementation of
Functional Languages, IFL ’02, pages 155–167, London, UK, UK, 2002. Springer-
Verlag. ISBN 3-540-43537-9.

[49] Yasuhiko Minamide and Jacques Garrigue. On the runtime complexity of type-
directed unboxing. In International Conference on Functional Programming
(ICFP), ICFP ’98, pages 1–12, New York, NY, USA, 1998. ACM. ISBN 1-
58113-024-4. doi:10.1145/289423.289424.

240

http://dx.doi.org/10.1007/s10990-011-9066-z
http://dx.doi.org/10.1109/SP.2013.10
http://dx.doi.org/10.1145/289423.289424

[50] Georg Neis, Derek Dreyer, and Andreas Rossberg. Non-parametric parametricity.
In International Conference on Functional Programming (ICFP), 2009.

[51] Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic typ-
ing with dependent types. In IFIP Conference on Theoretical Computer Science
(TCS), 2004.

[52] Benjamin Pierce and Eijiro Sumii. Relating cryptography and polymorphism,
July 2000.

[53] A. M. Pitts. Typed operational reasoning. In B. C. Pierce, editor, Advanced
Topics in Types and Programming Languages, chapter 7. The MIT Press, 2005.

[54] A. M. Pitts. Typed operational reasoning. In B. C. Pierce, editor, Advanced
Topics in Types and Programming Languages, chapter 7, pages 245–289. The
MIT Press, 2005. ISBN 0-262-16228-8.

[55] PLT. PLT Racket, 2013. URL http://racket-lang.org.

[56] PLT. PLT Racket contract system, 2013. URL http://pre.plt-scheme.org/

docs/html/guide/contracts.html.

[57] Jakob Rehof. Polymorphic dynamic typing: Aspects of proof theory and infer-
ence. Master’s thesis, DIKU, 1995. DIKU Technical Report D-249.

[58] Patrick M. Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid types. In Pro-
gramming Language Design and Implementation (PLDI), 2008.

[59] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Low-level liquid
types. In Principles of Programming Languages (POPL), 2010.

[60] Taro Sekiyama and Atsushi Igarashi. Personal communication, November 2013.

[61] Taro Sekiyama and Atsushi Igarashi. Logical relations for a manifest calculus,
fixed. In preparation for submission., 2013.

[62] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Tom Ridge,
Susmit Sarkar, and Rok Strnisa. Ott: effective tool support for the working
semanticist. In International Conference on Functional Programming (ICFP),
2007.

[63] Zhong Shao. Flexible representation analysis. In International Conference on
Functional Programming (ICFP), pages 85–98, Amsterdam, The Netherlands,
June 1997.

[64] Avraham Shinnar. Safe and Effective Contracts. PhD thesis, Harvard University,
May 2011.

241

http://racket-lang.org
http://pre.plt-scheme.org/docs/html/guide/contracts.html
http://pre.plt-scheme.org/docs/html/guide/contracts.html

[65] Jeremy Siek, Ronald Garcia, and Walid Taha. Exploring the design space
of higher-order casts. In Giuseppe Castagna, editor, Programming Languages
and Systems, volume 5502 of Lecture Notes in Computer Science, pages 17–31.
Springer Berlin Heidelberg, 2009. ISBN 978-3-642-00589-3. doi:10.1007/978-3-
642-00590-9 2.

[66] Jeremy G Siek and Ronald Garcia. Interpretations of the gradually-typed lambda
calculus. In Scheme and Functional Programming (SFP), 2012.

[67] Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In
Scheme and Functional Programming Workshop, September 2006.

[68] Jeremy G. Siek and Philip Wadler. Threesomes, with and without blame. In
Principles of Programming Languages (POPL), pages 365–376, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-479-9. doi:10.1145/1706299.1706342.

[69] Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van Straaten, Robby
Findler, and Jacob Matthews, editors. Revised [6] Report on the Algorithmic
Language Scheme. Cambridge University Press, Cambridge, UK, June 2010.
ISBN 9780521193993.

[70] Nikhil Swamy, Michael Hicks, and Gavin M. Bierman. A theory of typed co-
ercions and its applications. In International Conference on Functional Pro-
gramming (ICFP), ICFP ’09, pages 329–340, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-332-7. doi:10.1145/1596550.1596598. URL http:

//doi.acm.org/10.1145/1596550.1596598.

[71] Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin
Livshits. Verifying higher-order programs with the dijkstra monad. In Program-
ming Language Design and Implementation (PLDI), pages 387–398, 2013.

[72] Naoshi Tabuchi, Eijiro Sumii, and Akinori Yonezawa. Regular expression types
for strings in a text processing language. Electronic Notes in Theoretical Com-
puter Science, 2003. doi:10.1016/S1571-0661(04)80781-3. International Work-
shop in Types in Programming.

[73] Satish Thatte. Quasi-static typing. In Principles of Programming Languages
(POPL), 1990.

[74] Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation
of typed scheme. In Principles of Programming Languages (POPL), 2008.

[75] Sam Tobin-Hochstadt and David Van Horn. Higher-order symbolic execution
via contracts. In OOPSLA, OOPSLA ’12, pages 537–554, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1561-6. doi:10.1145/2384616.2384655.

242

http://dx.doi.org/10.1007/978-3-642-00590-9_2
http://dx.doi.org/10.1007/978-3-642-00590-9_2
http://dx.doi.org/10.1145/1706299.1706342
http://dx.doi.org/10.1145/1596550.1596598
http://doi.acm.org/10.1145/1596550.1596598
http://doi.acm.org/10.1145/1596550.1596598
http://dx.doi.org/10.1016/S1571-0661(04)80781-3
http://dx.doi.org/10.1145/2384616.2384655

[76] Philip Wadler. Theorems for free! In Conference on Functional Programming
and Computer Architecture (FPCA), 1989.

[77] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed.
In Scheme and Functional Programming Workshop, 2007.

[78] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed.
In European Symposium on Programming (ESOP), 2009.

[79] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115:38–94, 1994.

[80] Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Static contract checking
for haskell. In Principles of Programming Languages (POPL), 2009.

243

	1 Introduction
	1.1 Latent and manifest contracts
	1.2 Contracts and abstraction
	1.3 Efficiency and contract checking
	1.4 Summary
	1.5 Notation and other conventions

	2 Contracts made manifest
	2.1 The nondependent languages
	2.1.1 The language Lambda_C
	2.1.2 The language Lambda_H

	2.2 The nondependent translations
	2.3 The dependent languages
	2.3.1 Dependent Lambda_C
	2.3.2 Dependent Lambda_H

	2.4 The translations
	2.4.1 Translating Lambda_C to Lambda_H: phi
	2.4.2 Translating Lambda_H to Lambda_C: psi

	2.5 Exact translations
	2.5.1 Translating picky Lambda_C to Lambda_H
	2.5.2 Translating Lambda_H to lax Lambda_C

	2.6 Inexact translations
	2.6.1 Translating lax Lambda_C to Lambda_H
	2.6.2 Translating Lambda_H to picky Lambda_C
	2.6.3 Alternative calculi

	2.7 Conclusion

	3 Polymorphic manifest contracts
	3.1 Examples
	3.2 Defining F_H
	3.3 Parametricity
	3.4 Subtyping and Upcast Elimination
	3.5 Type conversion: parallel reduction vs. common subexpression reduction
	3.6 Conclusion

	4 Space-efficient manifest contracts
	4.1 Design philosophy
	4.2 A cast calculus
	4.2.1 Syntax and typing
	4.2.2 Operational semantics
	4.2.3 Proofs

	4.3 A naïve coercion calculus
	4.3.1 Syntax and typing
	4.3.2 Operational semantics
	4.3.3 Proofs

	4.4 Soundness of Naive with regard to Cast
	4.5 A space-efficient coercion calculus
	4.5.1 Space-efficient coercions
	4.5.2 Operational semantics
	4.5.3 Proofs

	4.6 Soundness of Efficient with regard to Naive
	4.7 Space efficiency
	4.8 Conclusion

	5 Related work
	5.1 Contracts: a survey
	5.1.1 Refinement types and contracts
	5.1.2 Situating Lambda_H

	5.2 F_H: polymorphism and manifest metatheory
	5.2.1 Dynamically checked polymorphism
	5.2.2 F_H and other manifest calculi

	5.3 Space efficiency and gradual types
	5.3.1 Space efficiency, gradual typing, and refinement types
	5.3.2 Coercions

	6 Conclusion and future work
	6.1 Future work
	6.1.1 State and effects
	6.1.2 Datatypes
	6.1.3 Coercion insertion
	6.1.4 Theoretical curiosities
	6.1.5 Extensions for Efficient

	Bibliography

