
Space-Efficient Latent Contracts

Michael Greenberg

Pomona College
michael@cs.pomona.edu

Abstract. Standard higher-order contract monitoring breaks tail re-
cursion and leads to space leaks that can change a program’s asymp-
totic complexity; space-efficiency restores tail recursion and bounds the
amount of space used by contracts. Space-efficient contract monitoring
for contracts enforcing simple type disciplines (a/k/a gradual typing) is
well studied. Prior work establishes a space-efficient semantics for man-
ifest contracts without dependency [10]; we adapt that work to a latent
calculus with dependency. We guarantee space efficiency when no de-
pendency is used; we cannot generally guarantee space efficiency when
dependency is used, but instead offer a framework for making such pro-
grams space efficient on a case-by-case basis.

1 Introduction

Findler and Felleisen [6] brought design-by-contract [16] into the higher-order
world, allowing programmers to write pre- and post-conditions on functions to
be checked at runtime. Pre- and post-conditions are easy in first-order languages,
where it’s very clear who is to blame when a contract is violated: if the pre-
condition fails, blame the caller; if the post-condition fails, blame the callee. In
higher-order languages, however, it’s harder to tell who calls whom! Who should
be to blame when a pre-condition on a higher-order function fails? For example,
consider the following contract:

(pred(λx :Int. x > 0) 7→ pred(λy :Int. y ≥ 0)) 7→ pred(λz :Int. z mod 2 = 0)

This contract applies to a function (call it f , with type (Int→Int)→Int) that takes
another function (call it g , with type Int→Int) as input. The contract says that
g will only be called with positives and only return naturals; f must return an
even number. If f returns an odd number, f is to blame; if g returns a negative
number, then it, too is to blame. But what if g is called with a non-positive
number, say, −1? Who is to blame then? Findler and Felleisen’s insight was
that even in a higher-order setting, there are only two parties to blame. Here,
g was given to f , so any bad values given to g here are due to some nefarious
action on f ’s part—blame f ! That is, the higher-order case generalizes pre- and
post-conditions so that the negative positions of a contract all blame the caller
while the positive positions all blame the callee.

Dependent contracts—where the codomain contract can refer to the func-
tion’s argument—are particularly useful. For example, the square root function,

2 Greenberg

sqrt, satisfies the contract: x :pred(λy :Real. y ≥ 0) 7→ pred(λz :Real. abs (x − z ∗
z) < ε) That is, sqrt takes a non-negative real, x , and returns a non-negative
real z that’s within ε of the square root of x . (The dependent variable x is bound
in the codomain; the variable y is local to the domain predicate.)

1.1 Contracts leak space

While implementations of contracts have proven quite successful (particularly so
in Racket [8,18]), there is a problem: contracts leak space. Why?

The default implementation of contracts works by wrapping a function in a
function proxy. For example, to check that f = λx :Int. x + 1 satisfies the contract
C = pred(λz :Int. z mod 2 = 0) 7→ pred(λz :Int. z mod 2 = 0), we monitor the
function by wrapping it in a function proxy monl(C , f). When this proxy is
called with an input v , we first check that v satisfies C ’s domain contract (i.e.,
that v is even), then we run f on v to get some result v ′, and then check that v ′

satisfies C ’s codomain contract (that the result is even). Here the contract will
always fail blaming l : one of v and v ′ will always be odd.

Contracts leak space in two ways. First, there is no bound on the number of
function proxies that can appear on a given function. More grievously, contracts
break tail recursion. To demonstrate the issue with with tail calls, we’ll use the
simplest example of mutual recursion: detecting parity.

let odd = λx :Int. if (x = 0) false (even (x − 1))
and even = λx :Int. if (x = 0) true (odd (x − 1))

Functional programmers will expect this program to run in constant space, be-
cause it is tail recursive. Adding a contract breaks the tail recursion. If we add
a contract to odd and call odd 5, what contract checks accumulate (Fig. 1)?1

Notice how the checks accumulate in the codomain? Even though the mutually
recursive calls to even and odd are syntactically tail calls, we can’t bound the
number of codomain checks that occur. That is, we can’t bound the size of the
stack, and tail recursion is broken! Even though there’s only one function proxy
on odd, our contracts create a space leak.

1.2 Overview and contributions

Space efficiency for gradual types [23] (a/k/a contracts constrained to type tests)
is well studied [13,14,24,9,22]; Greenberg [10] developed a space-efficient seman-
tics for general, non-dependent contracts. He used a manifest calculus, conflating
contracts and types; however, contracts are typically implemented in latent cal-
culi, where contracts are distinct from whatever types may exist. Greenberg
“believe[s] it would be easy to design a latent version of eidetic λH, following
the translations in Greenberg, Pierce, and Weirich (GPW)” [11]; in this paper,

1 Readers may observe that the contract betrays a deeper knowledge of numbers than
the functions themselves. We offer this example as minimal, not naturally occurring.

Space-Efficient Latent Contracts 3

let odd = monlodd(x :pred(λx :Int. x ≥ 0) 7→ pred(λb:Bool. b or (x mod 2 = 0)),
λx :Int. if (x = 0) false (even (x − 1)))

and even = λx :Int. if (x = 0) true (odd (x − 1))

odd 5

−→∗C monlodd(pred[x 7→5](. . .), even 4)

−→∗C monlodd(pred[x 7→5](. . .),monlodd(pred[x 7→3](. . .),

odd monlodd(pred(λx :Int. x ≥ 0), 3)))

−→∗C monlodd(pred[x 7→5](. . .),monlodd(pred[x 7→3](. . .), even 2))

−→∗C monlodd(pred[x 7→5](. . .),monlodd(pred[x 7→3](. . .),monlodd(pred[x 7→1](. . .),

odd monlodd(pred(λx :Int. x ≥ 0), 1))))

−→∗C monlodd(pred[x 7→5](. . .),monlodd(pred[x 7→3](. . .),monlodd(pred[x 7→1](. . .), even 0)))

Fig. 1. Contracts break tail recursion

we show that belief to be well founded by giving a space-efficient semantics for
a (dependent!) variant of contract PCF (CPCF) [3,4].

The rest of this paper discusses a formulation of contracts that enjoys sound
space efficiency; that is, where we slightly change the implementation of contracts
so that (a) programs are observationally equivalent to the standard semantics,
but (b) contracts consume a bounded amount of space. In this paper, we’ve
omitted some of the more detailed examples and motivation—we refer curious
readers to Greenberg [10], though we intend the paper to be self-contained.

We follow Greenberg’s general structure, defining two forms of dependent
CPCF: CPCFC is the classic semantics; CPCFE follows the space-efficient eide-
tic semantics. We are able to prove space efficiency without dependency, bound-
ing the amount of space consumed by contracts; we are unable to prove space
efficiency in general with dependency, but instead offer a framework that allows
for dependent contracts to be made space efficient.

We offer two primary contributions: adapting Greenberg’s work to a latent
calculus and extending the possibility of space efficiency to dependent contracts.

There are some other, smaller, contributions as well. First, adding in nonter-
mination moves beyond Greenberg’s strongly normalizing calculi, showing that
the POPL 2015 paper’s result isn’t an artifact of strong normalization (where
we can, in theory, bound the size of the any term’s evaluation in advance, not
just contracts). Second, the simpler type system here makes it clear which type
system invariants are necessary for space-efficiency and which are bookkeeping
for proving that the more complicated manifest type system is sound. Third,
by separating contracts and types, we can give tighter space bounds. Finally,
we explore how space efficiency can be attained in dependent contracts. While
we can’t give a guarantee for dependent contracts, we show that it’s possible to
achieve and discuss different ways to do so.

4 Greenberg

Types B ::= Bool | Int | . . .
T ::= B | T1→T2

Terms e ::= x | k | e1 op e2 | e1 e2 | λx :T . e | µ(x :T). e | if e1 e2 e3 |
errl | monl(C , e) | mon(c, e)

op ::= add1 | sub1 | . . .
k ::= true | false | 0 | 1 | . . .
w ::= v | errl
v ::= k | λx :T . e | monl(x :C1 7→ C2, v) | mon(x :c1 7→ c2, λx :T . e)
C ::= predσ(e) | x :C1 7→ C2

c ::= r | x :c1 7→ c2
r ::= nil | predlσ(e); r

Fig. 2. Syntax of classic and space-efficient CPCF

2 Classic and space-efficient Contract PCF

We present classic and space-efficient CPCF as separate calculi sharing syntax
and some typing rules (Fig. 2 and Fig. 3), and a single, parameterized operational
semantics with some rules held completely in common (omitted to save space)
and others specialized to each system (Fig. 4). The formal presentation is modal,
with two modes: C for classic and E for space-efficient. While much is shared
between the two modes—types, T ; the core syntax of expressions, e; most of the
typing rules—we use colors to highlight parts that belong to only one system.
Classic CPCF is typeset in salmon while space-efficient CPCF is in periwinkle.

2.1 Contract PCF (CPCF)

Plain CPCF is an extension of Plotkin’s 1977 PCF [17], developed first by Di-
moulas and Felleisen [3,4] (our syntax is in Fig. 2). It is a simply typed language
with recursion. The typing rules are straightforward (Fig. 3). The operational
semantics for the generic fragment also uses conventional rules (omitted to save
space). Dimoulas and Felleisen use evaluation contexts to offer a concise de-
scription of their system; we write out our relation in full, giving congruence
rules (E*L, E*R, EIf) and error propagating rules (E*Raise) explicitly—we
will need to restrict congruence for casts, and our methods are more transparent
written with explicit congruence rules than using the subtly nested evaluation
contexts of Herman et al. [13,14].

Contracts are CPCF’s distinguishing feature. Contracts, C , are installed via
monitors, written monl(C , e); such a monitor says “ensure that e satisfies the
contract C ; if not, the blame lies with label l”. Monitors only apply to appropri-
ate types (TMon). There are two kinds of contracts in CPCF: predicate contracts
over base type, written predσ(e), and function contracts, written x :C1 7→ C2.

Predicate contracts predσ(e) have two parts: a predicate on base types, e,
which identifies which values satisfy the contract; and a closing substitution σ

Space-Efficient Latent Contracts 5

which keeps track of values substituted into the contract. For example, if ι is the
identity substitution mapping variables to themselves:

– predι(λx :Int. x > 0) identifies the positives;
– predι(λx :Int. x > y) identifies numbers greater than an unspecified number

y ; and,
– pred[y 7→47](λx :Int. x > y) identifies numbers greater than 47.

When the closing substitution σ is the identity mapping ι, we write pred(e)
instead of predι(e). In CPCFC, closing substitutions will map each variable to
either (a) itself or (b) a value. Substitution into contracts is a non-issue without
dependency: each contract is just closed. Having introduced dependency, we use
explicit closing substitutions rather than direct substitution for three reasons:
first, it simplifies our space efficiency proof for simple contracts (Sec. 4.1); sec-
ond, explicitness lets us distinguish the contract pred[x 7→0](λx :Int. x = 0) from
pred[x 7→0](λx :Int. 0 = 0); third, it emphasizes that contracts are just another
form of closure. Predicates are solely over base types, not functions.

Function contracts x :C1 7→ C2 are satisfied by functions satisfying their parts:
functions whose inputs all satisfy C1 and whose outputs all satisfy C2. Function
contracts are dependent: the codomain contract C2 can refer back to the input to
the function. For example, the contract x :pred(λz :Int. z > 0) 7→ pred(λy :Int. y >
x) is satisfied by increasing functions on the positives. Note that x is bound in
the codomain, but z is not.2 When function contracts aren’t dependent, we omit
the binder at the front, e.g., pred(λx :Int. x > 0) 7→ pred(λx :Int. x > 0) means
operators on positives. We check that contracts are satisfied at runtime.

We use explicit, delayed substitutions to keep track of which values are sub-
stituted into predicate contracts. To help with our proof of space efficiency, we
don’t track variables that don’t appear in the predicate:

predσ(e)[v/x] =

{
predσ[x 7→v](e) x ∈ fv(σ(e))

predσ(e) otherwise

Alpha equivalence allows us to give fresh names to variables in the domain of σ
by consistently renaming those variables inside of the predicate e. Only holding
on to substitutions that close up free variables in e is a way of modeling closures.
A dependent predicate closes over some finite number of variables; a compiled
representation would generate a closure with a corresponding number of slots
in the closing environment. Restricting substitutions to exactly those variables
appearing free in the predicate serves another purpose: we can easily recover
space-efficiency bounds for programs without dependent contracts (Sec. 4.1).

2.2 Classic Contract PCF (CPCFC)

Classic CPCF gives a straightforward semantics to contracts (Fig. 4), largely
following the seminal work by Findler and Felleisen [6]. To check a predicate

2 Concrete syntax for such predicates can be written much more nicely, but we ignore
such concerns here.

6 Greenberg

Typing rules Γ ` e : T

x :T ∈ Γ

Γ ` x : T
TVar

Γ ` k : ty(k)
TConst

Γ ` errl : T
TBlame

Γ, x :T1 ` e12 : T2

Γ ` λx :T1. e12 : T1→T2
TAbs

Γ, x :T ` e : T

Γ ` µ(x :T). e : T
TRec

ty(op) = T1→T2→T
Γ ` e1 : T1 Γ ` e2 : T2

Γ ` e1 op e2 : T
TOp

Γ ` e1 : T1→T2 Γ ` e2 : T1

Γ ` e1 e2 : T2
TApp

Γ ` e1 : Bool Γ ` e2 : T Γ ` e3 : T

Γ ` if e1 e2 e3 : T
TIf

Γ ` e : T Γ ` C : T

Γ ` monl(C , e) : T
TMon

Γ ` e : T Γ ` c : T

Γ ` mon(c, e) : T
TMonC

Contract typing Γ ` C : T Γ ` c : T

Γ,Γ′ ` e : B→Bool Γ′ ` σ
Γ ` predσ(e) : B

TPred
Γ ` C1 : T1 Γ, x :T1 ` C2 : T2

Γ ` x :C1 7→ C2 : T1→T2
TFun

Γ ` nil : B
TCNil

Γ ` predσ(e) : B Γ ` r : B

Γ ` predlσ(e); r : B
TCPred

Γ ` c1 : T1 Γ, x :T1 ` c2 : T2

Γ ` x :c1 7→ c2 : T1→T2
TCFun

Closing substitutions Γ ` σ

∅ ` ι TId
Γ ` σ x :T ` v : T

Γ, x :T ` σ[x 7→ v]
TMap

Fig. 3. Typing rules of classic and space-efficient CPCF

Space-Efficient Latent Contracts 7

monl(predσ(e1), v2) −→C if (σ(e1) v2) v2 errl
EMonPred

monl(x :C1 7→ C2, v1) v2 −→C monl(C2[v2/x], v1 monl(C1, v2))
EMonApp

e −→C e ′

monl(C , e) −→C monl(C , e ′)
EMon

monl(C , errl′) −→C errl′
EMonRaise

monl(C , e) −→E mon(labell(C), e)
EMonLabel

mon(nil, v1) −→E v1
EMonCNil

mon(predlσ(e); r , v1) −→E if (σ(e) v1) mon(r , v1) errl
EMonCPred

mon(x :c1 7→ c2, v1) v2 −→E mon(c2[v2/x], v1 mon(c1, v2))
EMonCApp

e 6= mon(c′, e ′′) e −→E e ′

mon(c, e) −→E mon(c, e ′)
EMonC

mon(c, errl) −→E errl
EMonCRaise

mon(c2,mon(c1, e)) −→E mon(join(c1, c2), e)
EMonCJoin

Fig. 4. Operational semantics of classic and space-efficient CPCF

contract, we simply test it (EMonPred), returning either the value or an ap-
propriately labeled error. Function contracts are deferred: monl(x :C1 7→ C2, v) is
a value, called a function proxy. When a function proxy is applied, it unwraps the
proxy, monitoring the argument with the domain contract, running the function,
and then monitoring the return value with the codomain contract (EMonApp).

Our semantics may seem to be lax, where no monitor is applied to dependent
uses of the argument in the codomain monitor [11]. In fact, it is agnostic: we could
be picky by requiring that function contract monitors monl(x :C1 7→ C2, e) have
the substitution [x 7→ monl(C1, x)] throughout C2; we could be indy by having
[x 7→ monl

′
(C1, x)] throughout C2 [4]. We default to a lax rule to make our proof

of soundness easier, but we’ll have as a corollary that classic and space-efficient
semantics yield the same result regardless of what the closing substitutions do
in the codomain (Sec. 3).

Standard congruence rules allow for evaluation inside of monitors (EMon)
and the propagation of errors (EMonRaise).

8 Greenberg

labell(predσ(e1)) = predlσ(e1)

labell(x :C1 7→ C2) = x :labell(C1) 7→ labell(C2)

join(nil, r2) = r2
join(predlσ(e); r1, r2) = predlσ(e); drop(join(r1, r2), predσ(e))

join(x :c11 7→ c12, x :c21 7→ c22) = x :join(c21, c11) 7→ join(wrap(c12, x , c22), c22)

drop(nil, predσ(e)) = nil
drop(predlσ2(e2); r , predσ1(e1)) ={

drop(r , predσ2(e2)) predσ1(e1) ⊃ predσ2(e2)

predlσ2(e2); drop(r , predσ1(e1)) predσ1(e1) 6⊃ predσ2(e2)

wrap(predlσ(e), x , c) =

predlσ(e) x 6∈ fv(σ(e))

predlσ[x 7→mon(join(c′,c),e)](e) σ(x) = mon(c′, e)

predlσ[x 7→mon(c,σ(x))](e) otherwise

wrap(nil, x , c) = nil
wrap(predlσ(e); r , x , c) = wrap(predlσ(e), x , c);wrap(r , x , c)
wrap(y :c1 7→ c2, x , c) = y :wrap(c1, x , c) 7→ wrap(c2, x , c)

Fig. 5. Contract labeling and predicate stack management

2.3 Space-efficient Contract PCF (CPCFE)

How can we recover tail calls in CPCF? CPCFC will happily wrap arbitrarily
many function proxies around a value, and there’s no bound on the number of
codomain contract checks that can accumulate. The key idea is joining contracts.
We’ll make two changes to the language: we’ll bound function proxies so each
function has at most one, and we’ll bound stacks to avoid redundant checking.
We ultimately show that contracts without dependency use constant space, but
that the story for dependent functions is more complex (Sec. 4).

Fortuitously, our notion of join solves both of our problems, working identi-
cally for both simple and dependent contracts. To ensure a function value can
have only one proxy, we change the semantics of monitoring: when monitoring
a proxied value, we join the new monitor and the old one. To bound the size of
stacks contract checks, we join pending contracts to avoid redundancy.

The join operation works on labeled contracts, which (a) move the label from
the monitor into the contract and (b) allow us to keep track of many predicates
at once (Fig. 5). Concretely, labeled contracts use the metavariable c (as opposed
to C), comprising function contracts as usual (x :c1 7→ c2) and predicate stacks,
r (Fig. 2). A predicate stack r is a list of labeled predicates predl(e), where nil is
the empty stack.

The join operation takes two labeled contracts and combines them, elim-
inating redundant contracts as it goes. To join a new and an old predicate
stack, we keep new contracts and eliminate redundant old ones; only more “re-

Space-Efficient Latent Contracts 9

cent” contracts are kept. Joining functions works contravariantly, being careful
to maintain correct substitution behavior using wrap.

Finally, we establish what we mean by “redundant” using predicate implica-
tion: when does one contract imply another?

Definition 1 (Predicate implication). Let predσ1
(e1) ⊃ predσ2

(e2) be a re-
lation on predicates such that:

(Reflexivity) If ∅ ` predσ(e) : B then predσ(e) ⊃ predσ(e).
(Transitivity) If predσ1

(e1) ⊃ predσ2
(e2) and predσ2

(e2) ⊃ predσ3
(e3), then

predσ1
(e1) ⊃ predσ3

(e3).
(Substitutivity) When Γi 1, x :T ′,Γi 2 ` predσi

(ei) : T and ∅ ` v : T ′, if
predσ1

(e1) ⊃ predσ2
(e2) then predσ1

(e1)[v/x] ⊃ predσ2
(e2)[v/x].

(Adequacy) If ∅ ` predσi
(ei) : T and predσ1

(e1) ⊃ predσ2
(e2) then ∀k ∈

KB . σ1(e1) k −→m true implies σ2(e2) k −→m true.
(Decidability) For all ∅ ` predσ1

(e1) : B and ∅ ` predσ2
(e2) : B, it is decidable

whether predσ1
(e1) ⊃ predσ2

(e2) or predσ1
(e1) 6⊃ predσ2

(e2).

The entire development of space-efficiency is parameterized over this implica-
tion relation, ⊃, characterizing when one first-order contract subsumes another.
We write 6⊃ for the negation of ⊃. The ⊃ relation is a total pre-order (a/k/a
a preference relation)—it would be a total order, but it may not necessar-
ily enjoy anti-symmetry. For example, we could have predι(λx :Int. x ≥ 0) ⊃
predι(λx :Int. x + 1 > 0) and vice versa, even though the two predicates aren’t
equal. You can also view ⊃ as a total order up-to contextual equivalence.

There is at least one workable implication relation: syntactic equality. We
say predσ1

(e1) ⊃ predσ2
(e2) iff e1 = e2 and σ1 = σ2. Since we’ve been careful

to store only those values that are actually referenced in the closure of the
predicate, the steps to determine these equalities are finite and computable at
runtime. For example, suppose we wish to show that pred[y 7→47](λx :Int. x >
y) ⊃ pred[y 7→47](λx :Int. x > y). The code part—the predicate λx :Int. x > y—
is the same; an implementation might observe that the function pointers are
equal. The environment has only one slot, for y , with the value 47 in it; an
implementation might compare the two environments slot-by-slot.

Substitution in the codomain: lax, picky, and indy We extend Green-
berg’s notion of join to account for dependency with a new function, wrap.
Greenberg, Pierce, and Weirich identified two variants of latent contracts in
the literature, differing in their treatment of the dependent substitution of ar-
guments in the codomain: picky, where we monitor the value substituted in the
codomain with the domain contract; and lax, where the actual parameter value
substituted into the codomain is unmonitored [11]. There is a third variant,
indy, which applies a monitor to the argument value but uses a different blame
label [4]. These different models of substitution all exhibit different behavior for
abusive contracts, where the codomain contract violates the domain contract.

There is another source of substitutions in the codomain: multiple function
proxies. How do the monitors unfold when we have two function proxies? In the

10 Greenberg

C1 = f :(pred(λx :Int. x > 0) 7→ pred(λx :Int. x > 0)) 7→ pred(λx :Int. x > 0)
C2 = f :(pred(λx :Int. true) 7→ pred(λx :Int. true)) 7→ pred(λx :Int. f 0 = 0)

monl1(C1,monl2(C2, λf :(Int→Int). f 5)) (λx :Int. x)

−→C monl1(C12[(λx :Int. x)/f],

monl2(C2, λf :(Int→Int). f 5) monl1(C11, (λx :Int. x)))

−→∗C monl1(C12[(λx :Int. x)/f],monl2(C22[monl1(C11, λx :Int. x)/f], 5))

−→C monl1(C12[(λx :Int. x)/f],

if ((λx :Int. monl1(C11, λx :Int. x) 0 = 0) 5) 5 errl2)

−→C monl1(C12[(λx :Int. x)/f], if (monl1(C11, λx :Int. x) 0 = 0) 5 errl2)

−→∗C errl2

Fig. 6. Abusive function proxies in CPCFC

classic lax semantics, we find (leaving the domain check unevaluated):

mon(x :c11 7→ c12,mon(x :c21 7→ c22, f)) v
−→C mon(c12[v/x],mon(x :c21 7→ c22, f) mon(c11, v))
−→C mon(c12[v/x],mon(c22[mon(c11, v)/x], f mon(c21,mon(c11, v))))

Even though we’re using the lax semantics, we substitute contracts into the
codomain. For the space-efficient semantics to be sound, it must behave exactly
like the classic semantics: no matter what joins happen, CPCFE must repli-
cate the contract substitutions done in CPCFC. We can construct an abusive
contract in CPCFC—even though it has lax semantics—by having the inner
function proxy abuse the outer one (Fig. 6). Why was blame raised? Because
c2’s codomain contract abused c1’s domain contract. Even though CPCFC has a
lax semantics, wrapping multiple function proxies leads to monitoring domains
from one contract in the codomain of another—a situation ripe for abuse.

Space-efficiency means joining contracts, so how can we emulate this classic-
semantics substitution behavior? We use the wrap function, forcing a substitution
when two function contracts are joined. By keeping track of these substitutions
at every join, any joins that happen in the future will be working on contracts
which already have appropriate substitutions.

CPCFE uses labeled contracts (Fig. 2); substitution for labeled predicate con-
tracts is explicit and delayed, as for ordinary contracts:

predlσ(e)[v/x] =

{
predlσ[x 7→v](e) x ∈ fv(σ(e))

predlσ(e) otherwise

nil[v/x] = nil

(predlσ(e); r)[v/x] = predlσ(e)[v/x]; r [v/x]

We do not do any joining when a substitution occurs (but see Sec. 6). In CPCFE,
closing substitutions map each variable to (a) itself ([x 7→ x]), (b) a monitor on
itself ([x 7→ mon(c, x)]), or (c) a value. We add an evaluation rule taking ordinary

Space-Efficient Latent Contracts 11

contract monitors monl(C , e) to labeled-contract monitors mon(c, e) by means
of the labeling function label (EMonLabel).

Space-efficiency comes by restricting congruence to only apply when there are
abutting monitors (cf. EMonC here in CPCFE to EMon in CPCFC). When two
monitors collide, we join them (EMonCJoin). Checking function contracts is as
usual (EMonCApp is the same as EMonApp, only the latter works over labeled
contracts); checking predicate stacks proceeds straightforwardly predicate-by-
predicate (EMonCNil and EMonCPred).

3 Soundness for space efficiency

CPCFC and CPCFE are operationally equivalent, even though their cast seman-
tics differ. We can make this connection formal by proving that every CPCF
term either: (a) diverges in both CPCFC and CPCFE or (b) reduces to equiva-
lent terms in both CPCFC and CPCFE.

One minor technicality: some of the forms in our language are necessary only
for runtime or only appear in one of the two calculi. We characterize source
programs as those which omit runtime terms.

Definition 2 (Source program). A well typed source program does not use
TBlame or TMonC (and so TCNil, TCPred, and TCFun cannot be used).

Greenberg identified the key property for proving soundness of a space effi-
cient semantics: to be sound, the space-efficient semantics must recover a notion
of congruence for checking.

Lemma 3 (Monitor congruence (single step)). If ∅ ` e1 : T and ∅ ` c : T
and e1 −→E e2, then mon(c, e1) −→∗E w iff mon(c, e2) −→∗E w.

Proof. By cases on the step taken to find e1 −→E e2. In the easy case, there’s
no joining of coercions and the same rule can apply in both derivations. In the
more interesting case, two contract monitors join. In either case, it suffices to
show that the terms are ultimately confluent, since determinism will do the rest.

It is particularly satisfying that the key property for showing soundness of
space efficiency can be proved independently of the inefficient semantics. Imple-
mentors can work entirely in the context of the space-efficient semantics, know-
ing that congruence ensures soundness. We show the observational equivalence
of CPCFC and CPCFE by logical relations (Fig. 7), which gives us contextual
equivalence—the strongest equivalence we could ask for.

Lemma 4 (Similar contracts are logically related). If Γ ` C1 ∼ C2 : T
and Γ ` v1 ' v2 : T then Γ ` monl(C1, v1) ' monl(C2, v2) : T .

Proof. By induction on the type index of the invariant relation Γ ` C1 ∼ C2 : T .

Lemma 5 (Unwinding). If ∅ ` µ(x :T). e : T , then µ(x :T). e −→∗m w iff
there exists an n such that unrolling the fixpoint only n times converges to the
same value, i.e., e[µ(x :T). . . . e[µ(x :T). e/x] . . . /x] −→∗m w.

12 Greenberg

Result rules e1 ∼ e2 : T

k ∼ k : B ⇐⇒ ty(k) = B
v11 ∼ v21 : T1→T2 ⇐⇒ ∀e12 ∼ e22 : T1. v11 e12 ' v21 e22 : T2

errl ∼ errl : T

Term rules e1 ' e2 : T

e1 ' e2 : T ⇐⇒ (e1 diverges ∧ e2 diverges)∨(e1 −→∗C w1∧e2 −→∗E w2∧w1 ∼ w2 : T)

Contract rules (invariant relation) Γ ` C1 ∼ C2 : T

Γ ` predσ1(e1) ∼ predσ2(e2) : B ⇐⇒ Γ ` σ1 (e1) ' σ2(e2) : B→Bool
Γ ` x :C11 7→ C12 ∼ x :C21 7→ C22 : T1→T2 ⇐⇒

Γ ` C11 ∼ C21 : T1 ∧ Γ, x :T1 ` C12 ∼ C22 : T2

Closing substitutions and open terms Γ |= δ Γ ` e1 ' e2 : T

Γ |= δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼ δ2(x) : Γ(x)
Γ ` e1 ' e2 : T ⇐⇒ ∀Γ |= δ. δ1(e1) ' δ2(e2) : T

Fig. 7. Logical relation between classic and space-efficient CPCF

Theorem 6 (CPCFC and CPCFE terms are logically related).

1. If Γ ` e : T as a source program then Γ ` e ' e : T .
2. If Γ ` C : T as a source program then Γ ` C ∼ C : T .

Proof. By mutual induction on the typing relations.

4 Bounds for space efficiency

We have seen that CPCFE behaves the same as CPCFC (Theorem 6), but is
CPCFE actually space efficient? For programs that don’t use dependency, yes!
With dependency, the story is more complicated.

4.1 The simple case

Greenberg showed that for simple contracts—without dependency—we can put
a bounds on space [10]. We can recover his result in our more general framework.
Observe that a given source program e starts with a finite number of predicate
contracts in it. As e runs, no new predicates appear (because dependent substi-
tutions have no effect), but predicates may accumulate in stacks. In the worst
case, a predicate stack could contain every predicate contract from the original
program e exactly once... but no more than that, because joins remove redun-
dancy! Function contracts are also bounded: e starts out with function contracts

Space-Efficient Latent Contracts 13

Predicate extraction preds(e), preds(C), preds(c) : P(e × (Var ⇀ e))

preds(x) = ∅
preds(k) = ∅

preds(λx :T . e) = preds(e)

preds(monl(C , e)) = preds(C) ∪ preds(e)
preds(mon(c, e)) = preds(c) ∪ preds(e)

preds(e1 e2) = preds(e1) ∪ preds(e2)
preds(e1 op e2) = preds(e1) ∪ preds(e2)

preds(if e1 e2 e3) =
preds(e1) ∪ preds(e2) ∪ preds(e3)

preds(errl) = ∅

preds(predσ(e)) =
{(e, σ)} ∪ preds(e) ∪

⋃
[x 7→v]∈σ preds(v)

preds(x :C1 7→ C2) = preds(C1) ∪ preds(C2)

preds(nil) = ∅
preds(predlσ(e); r) = {(e, σ)} ∪ preds(e) ∪⋃

[x 7→e′]∈σ preds(e
′) ∪ preds(r)

preds(x :c1 7→ c2) = preds(c1) ∪ preds(c2)

Contract size PB : N SB : N size(C) : N

PB = |{e ∈ preds(e) | Γ ` predσ(e) : B}| SB = L · PB · log2 PB

size(predσ(e)) = SB when ∅ ` predσ(e) : B size(x :C1 7→ C2) = size(C1) + size(C2)

Fig. 8. Predicate extraction and contract size

of a certain height, and evaluation can only shrink that height. The leaves of
function contracts are labeled with predicate stacks, so the largest contract we
could ever see is of maximum height with maximal predicate stacks at every leaf.
As the program runs, abutting monitors are joined, giving us a bound on the
total number of monitors in a program (one per non-monitor AST node).

We can make these ideas formal by first defining what we mean by “all the
predicates in a program”, and then showing that evaluation doesn’t introduce
predicates (Lemma 9). We let preds(e) be the set of predicates in a term, where
a predicate is represented as a pair of term and a closing substitution.

We say program e uses simple contracts when all predicates in e are closed
and every predicate stack has no redundancies. As such a program reduces, no
new contracts appear (and contracts may disappear).

Lemma 7. preds(e[e ′/x]) ⊆ preds(e) ∪ preds(e ′)

Proof. By induction on e. If e is a predicate contract, it has no free variables
(by assumption), so the substitution doesn’t hold on to anything.

Lemma 8. If ∅ ` c1 : T and ∅ ` c2 : T then preds(join(c1, c2)) ⊆ preds(c1) ∪
preds(c2).

Proof. By induction on c1, ignoring wrap’s substitution by Lemma 7.

Lemma 9 (Reduction is non-increasing in simple predicates). If ∅ ` e :
T and e −→m e ′ then preds(e ′) ⊆ preds(e).

Proof. By induction on the step taken.

14 Greenberg

To compute the concrete bounds, we define PB as the number of distinct
predicates at the base type B . We can represent a predicate stack at type B
in SB bits, where L is the number of bits needed to represent a blame label. A
given well typed contract ∅ ` C : T can then be represented in size(C) bits,
where each predicate stacks are represented is SB bits and function types are
represented as trees of predicate stacks. Finally, since reduction is non-increasing
(Lemma 9), we can bound the amount of space used by any contract by looking
at the source program, e: we can represent all contracts in our program in at
most s = maxC∈e size(C) space—constant for a fixed source program.

Readers familiar with Greenberg’s paper (and earlier work, like Herman et
al. [13]) will notice that our bounds are more precise, tracking the number of
holes in contracts per type (size(C)) rather than simply computing the largest
conceivable type (2height(T)).

4.2 The dependent case

In the dependent case, we can’t generally bound the number of contracts by the
size of contracts used in the program. Consider the following term, where n ∈ N:

let downTo = µ(f :Int→Int).
monl(x :pred(λx :Int. x ≥ 0) 7→ pred(λy :Int. x ≥ y),
λx :Int. if (x = 0) 0 (f (x − 1))) in

downTo n

How many different contracts will appear in a run of this program? As downTo
runs, we’ll see n different forms of the predicate predlσi

(λy :Int. x ≥ y). We’ll
have one σn = [x 7→ n] on the first call, σn−1 = [x 7→ n − 1] on the second
call, and so on. But n’s magnitude doesn’t affect our measure of the size of
source program’s contracts. The number of distinct contracts that appear will
be effectively unbounded.

In the simple case, we get bounds automatically, using the smallest pos-
sible implication relation—syntactic equality. In the dependent case, it’s up
to the programmer to identify implications that recover space efficiency. We
can recover space efficiency for downTo by saying predσ1

(λy :Int. x ≥ y) ⊃
predσ2

(λy :Int. x ≥ y) iff σ1(x) ≤ σ2(x). Then the codomain checks from recur-
sive calls will be able to join:

downTo n −→∗E monl(pred[x 7→n](. . .), . . .)

−→∗E monl(pred[x 7→n](. . .),monl(pred[x 7→n− 1](. . .), . . .))

−→∗E monl(pred[x 7→n− 1](. . .), . . .)

Why are we able to recover space efficiency in this case? Because we can come
up with an easily decidable implication rule for our specific predicates matching
how our function checks narrower and narrower properties as it recurses.

Recall the mutually recursive even/odd example (Fig. 1). We can make this
example space-efficient by adding the implication that:

predσ1
(λb:Bool. b or (x mod 2 = 0)) ⊃ predσ2

(λb:Bool. b or (x mod 2 = 0))

Space-Efficient Latent Contracts 15

iff σ1(x) + 2 = σ2(x). Suppose we put contracts on both even and odd:

let odd = monlodd(x :pred(λx :Int. x ≥ 0) 7→ pred(λb:Bool. b or (x mod 2 = 0)),
λx :Int. if (x = 0) false (even (x − 1)))

and even =
monleven(x :pred(λx :Int. x ≥ 0) 7→ pred(λb:Bool. b or ((x + 1)mod 2 = 0)),

λx :Int. if (x = 0) true (odd (x − 1)))

Now our trace of contracts won’t be homogeneous; eliding domain contracts:

odd 5 −→∗C monlodd(pred[x 7→5](. . .), even 4)

−→∗C monlodd(pred[x 7→5](. . .),monleven(pred[x 7→4](. . .),

monlodd(pred[x 7→3](. . .),monleven(pred[x 7→2](. . .),

monlodd(pred[x 7→1](. . .), even 0)))))

To make these checks space efficient, we’d need several implications; we write
oddp for λb:Bool. b or (x mod 2 = 0) and evenp for λb:Bool. b or ((x + 1)mod 2 =
0). The following table gives conditions on the implication relation for the row
predicate to imply the column predicate:

⊃ predσ2
(oddp) predσ2

(evenp)
predσ1

(oddp) σ1(x) + 2 = σ2(x) σ1(x) + 1 = σ2(x)
predσ1

(evenp) σ1(x) + 1 = σ2(x) σ1(x) + 2 = σ2(x)

Having all four of these implications allows us to eliminate any pair of checks
generated by the recursive calls in odd and even, reducing the codomain checking
to constant space—here, just one check. We could define a different implication
relation, where, say, predσ1

(oddp) ⊃ predσ2
(oddp) iff σ1(x)mod 2 = σ2(x)mod 2.

Such an implication would apply more generally than those in the table above.
As usual, there is a trade-off between time and space. It’s possible to write

contracts where the necessary implication relation for space efficiency amounts to
checking both contracts. Consider the following tail-recursive factorial function:

let any = λz :Int. true
let fact = µ(f :Int→Int→Int).

monl(x :pred(any) 7→ acc:pred(any) 7→ pred(λy :Int. x ≥ 0),
λx :Int. λacc:Int. if (x = 0) acc (f (x − 1) (x ∗ acc)))

This contract isn’t wrong, just strange: if you call fact with a negative number,
the program diverges and you indeed won’t get a value back out (contracts
enforce partial correctness). A call of fact 3 yields monitors that check, from
outside to inside, that 3 ≥ 0 and 2 ≥ 0 and 1 ≥ 0 and 0 ≥ 0. When should we
say that predσ1

(λy :Int. x ≥ 0) ⊃ predσ1
(λy :Int. x ≥ 0)? We could check that

σ1(x) ≥ σ2(x)... but the time cost is just like checking the original contract.

5 Where should the implication relation come from?

The simplest option is to punt: derive the implication relation as the reflexive
transitive closure of a programmer’s rules. A programmer might specify how
several different predicates interrelate as follows:

16 Greenberg

1 y:Int{x1 >= y} implies y:Int{x2 >= y} when x1 <= x2

2 y:Int{x1 > y} implies y:Int{x2 >= y} when x1 <= x2 + 1

3 y:Int{x1 > y} implies y:Int{x2 > y} when x1 <= x2

A default collection of such implications might come with the language; library
programmers should be able to write their own, as well. But it is probably unwise
to allow programmers to write arbitrary implications: what if they’re wrong? A
good implementation would only accept verified implications, using a theorem
prover or an SMT solver to avoid bogus implications.

Rather than having programmers write their own implications, we could try
to automatically derive the implications. Given a program, a fixed number of
predicates occur, even if an unbounded number of predicate/closing substitu-
tion pairings might occur at runtime. Collect all possible predicates from the
source program, and consider each pair of predicates over the same base type,
pred(e1) and pred(e2) such that Γ ` ei : B→Bool. We can derive from the typing
derivation the shapes of the respective closing substitutions, σ1 and σ2. What
are the conditions on σ1 and σ2 such that predσ1

(e1) ⊃ predσ2
(e2)? We are

looking for a property P (σ1, σ2) such that:

∀k ∈ KB , P (σ1, σ2) ∧ σ1(e1) k −→∗E true⇒ σ2(e2) k −→∗E true

Ideally, P is also efficiently decidable—at least more efficiently than deciding
both predicates. The problem of finding P can be reduced to that of finding the
weakest precondition for the safety of the following function:

1 fun x:B =>

2 let y0 = v10, ..., yn = v1n (* σ1’s bindings *)

3 z0 = v20, ..., zn = v2m (* σ2’s bindings *) in

4 if e1 x then (if e2 x then () else error) else ()

Since P would be the weakest precondition, we would know that we had found
the most general condition for the implication relation. Whether or not the
most general condition is the best condition depends on context. We should also
consider a cost model for P ; programmers may want to occasionally trade space
for time, not bothering to join predicates that would be expensive to test.

Finding implication conditions resembles liquid type inference [19,27,15]: pro-
grammers get a small control knob (which expressions can go in P) and then
an SMT solver does the rest. The settings are different, though: liquid types are
about verifying programs, while we’re executing checks at runtime.

5.1 Implementation

Implementation issues abound. How should the free variables in terms be repre-
sented? What kind of refactorings and optimizations can the compiler do, and
how might they interfere with the set of contracts that appear in a program?
When is the right moment in compilation to fix the implication relation? More
generally, what’s the design space of closure representations and calling conven-
tions for languages with contracts?

Space-Efficient Latent Contracts 17

6 Extensions

Generalizing our space-efficient semantics to sums and products does not seem
particularly hard: we’d need contracts with corresponding shapes, and the join
operation would push through such shapes. Recursive types and datatypes are
more interesting [21]. Findler et al.’s lazy contract checking keeps contracts from
changing the asymptotic time complexity of the program [7]; we may be able to
adapt their work to avoid changes in asymptotic space complexity, as well.

The predicates here range over base types, but we could also allow predi-
cates over other types. If we allow predicates over higher types, how should the
adequacy constraint on predicate implication (Definition 1) change?

Impredicative polymorphism in the style of System F would require even
more technical changes. The introduction of type variables would make our rea-
soning about names and binders trickier. In order to support predicates over type
variables, we’d need to allow predicates over higher types—and so our notion
of adequacy of ⊃ would change. In order to support predicates over quantified
types, we’d need to change adequacy again. Adequacy would end up looking
like the logical relation used to show relational parametricity: when would we
have ∀α.T1 ⊃ ∀α.T2? If we substitute T ′1 for α on the left and T ′2 for α on
the right (and T ′1 and T ′2 are somehow related), then T1[T ′1/α] ⊃ T2[T ′2/α]. Not
only would the technicalities be tricky, implementations would need to be careful
to manage closure representations correctly (e.g., what happens if polymorphic
code differs for boxed and unboxed types?).

We don’t treat blame as an interesting algebraic structure—it’s enough for
our proofs to show that we always produce the same answer. Changing our
calculus to have a more interesting notion of blame, like indy semantics [4] or
involutive blame labels [29,28], would be a matter of pushing a shallow change
in the semantics through the proofs.

Finally, it would make sense to have substitution on predicate stacks perform
joins, saying (predlσ(e); r)[v/x] = join(predlσ(e)[v/x]; nil, r [v/x]), so that substi-
tuting a value into a predicate stack checks for newly revealed redundancies. We
haven’t proved that this change would be sound, which would require changes
to both type and space-efficiency soundness.

7 Related work

For the technique of space efficiency itself, we refer the reader to Greenberg [10]
for a full description of related work. We have striven to use Greenberg’s notation
exactly, but we made some changes in adapting to dependent contracts: the cons
operator for predicate stacks is a semi-colon, to avoid ambiguity; there were
formerly two things named join, but one has been folded into the other; and our
predicates have closing substitutions to account for dependency. We place one
more requirement on the implication relation than Greenberg did: monotonicity
under substitution, which we call substitutivity. Substitutions weren’t an issue in
his non-dependent system, but we must require that if a join can happen without
having a value for x , then the same join happens when we know x ’s value.

18 Greenberg

CPCF was first introduced in several papers by Dimoulas et al. in 2011 [3,4],
and has later been the subject of studies of blame for dependent function con-
tracts [5] and static analysis [26]. Our exact behavioral equivalence means we
could use results from Tobin-Hochstadt et al.’s static analysis in terms of CPCFC

to optimize space efficient programs in CPCFE. More interestingly, the predi-
cate implication relation ⊃ seems to be doing some of the work that their static
analysis does, so there may be a deeper relationship.

Thiemann introduces a manifest calculus where the compiler optimizes casts
for time efficiency: a theorem prover uses the “delta” between types to synthesize
more efficient checks [25]. His deltas and our predicate implication relation are
similar. He uses a separate logical language for predicates and restricts depen-
dency (codomains can only depend on base values, avoiding abusive contracts).

Sekiyama et al. [20] also use delayed substitutions in their polymorphic man-
ifest contract calculus, but for different technical reasons. While delayed sub-
stitutions resemble explicit substitutions [1] or explicit bindings [12,2], we use
delayed substitutions more selectively and to resolve issues with dependency.

The manifest type system in Greenberg’s work is somewhat disappointing
compared to the type system given here. Greenberg works much harder than we
do to prove a stronger type soundness theorem... but that theorem isn’t enough
to help materially in proving the soundness of space efficiency. Developing the
approach to dependency used here was much easier in a latent calculus, though
several bugs along the way would have been caught early by a stronger type
system. Type system complexity trade-offs of this sort are an old story.

7.1 Racket’s implementation

If contracts leak space, how is it that they are used so effectively throughout PLT
Racket? Racket is designed to avoid using contracts in leaky ways. In Racket,
contracts tend to go on module boundaries. Calls inside of a module then don’t
trigger contract checks—including recursive calls, like in the even/odd example.
Racket will monitor recursive calls across module boundaries, and these checks
can indeed lead to space leaks. In our terms, Racket tends to implement contract
checks on recursive functions as follows:

downTo = monl(x :pred(λx :Int. x ≥ 0) 7→ pred(λy :Int. x ≥ y),
µ(f :Int→Int). λx :Int. if (x = 0) 0 (f (x − 1)))

Note that calling downTo n will merely check that the final result is less than n—
none of the intermediate values. Our version of downTo above puts the contract
inside the recursive knot, forcing checks every time (Sec. 4.2).

Racket also offers a less thorough form of space efficiency. We can construct
a program where Racket will avoid redundant checks, but but wrapping the un-
derlying function with the same contract twice leads to a space leak (Figure 9).3

Finally, contracts are first-class in Racket. Computing new contracts at run-
time breaks our framing of space-efficiency: if we can’t predetermine which con-
tracts arise at runtime, we can’t fix an implication relation in advance. We hope

3 Robby Findler, personal correspondence, 2016-05-19.

Space-Efficient Latent Contracts 19

1 (define (count-em-integer? x)

2 (printf "checking ~s\n" x)

3 (integer? x))

4 (letrec

5 ([f (contract (-> any/c count-em-integer ?)

6 (lambda (x) (if (zero? x) x (f (- x 1))))

7 ’pos ’neg)])

8 (f 3))

Fig. 9. Space-efficiency in Racket

that CPCFE is close enough to Racket’s internal model to provide insight into
how to achieve space efficiency for at least some contracts in Racket.

8 Conclusion

We have translated Greenberg’s original result [10] from a manifest calculus [11]
to a latent one [3,4]. In so doing, we have: offered a simpler explanation of the
original result; isolated the parts of the type system required for space bounds;
and, extended the original result, by covering more features (dependency and
nontermination) and more precisely bounding non-dependent programs.

Acknowledgments. The existence of this paper is due to comments from Sam
Tobin-Hochstadt and David Van Horn that I chose to interpret as encourage-
ment. Robby Findler provided the Racket example and helped correct and clarify
a draft; Sam Tobin-Hochstadt also offered corrections and suggestions. The re-
views offered helpful comments, too.

References

1. Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit substitutions. Journal of
Functional Programming (JFP) 1(4), 375–416 (1991)

2. Ahmed, A., Findler, R.B., Siek, J., Wadler, P.: Blame for all. In: Principles of
Programming Languages (POPL) (2011)

3. Dimoulas, C., Felleisen, M.: On contract satisfaction in a higher-order world.
TOPLAS 33(5), 16:1–16:29 (Nov 2011)

4. Dimoulas, C., Findler, R.B., Flanagan, C., Felleisen, M.: Correct blame for con-
tracts: no more scapegoating. In: Principles of Programming Languages (POPL)
(2011)

5. Dimoulas, C., Tobin-Hochstadt, S., Felleisen, M.: Complete monitors for behavioral
contracts. In: Seidl, H. (ed.) Programming Languages and Systems, LNCS, vol.
7211, pp. 214–233. Springer Berlin Heidelberg (2012)

6. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: International
Conference on Functional Programming (ICFP) (2002)

7. Findler, R.B., Guo, S.Y., Rogers, A.: Lazy contract checking for immutable data
structures. In: Chitil, O., Horváth, Z., Zsók, V. (eds.) Implementation and Appli-
cation of Functional Languages, pp. 111–128. Springer-Verlag, Berlin, Heidelberg
(2008)

20 Greenberg

8. Flatt, M., PLT: Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT Design Inc.
(2010), http://racket-lang.org/tr1/

9. Garcia, R.: Calculating threesomes, with blame. In: International Conference on
Functional Programming (ICFP) (2013)

10. Greenberg, M.: Space-efficient manifest contracts. In: Principles of Programming
Languages (POPL) (2015)

11. Greenberg, M., Pierce, B.C., Weirich, S.: Contracts made manifest. In: Principles
of Programming Languages (POPL) (2010)

12. Grossman, D., Morrisett, G., Zdancewic, S.: Syntactic type abstraction. TOPLAS
22(6), 1037–1080 (Nov 2000)

13. Herman, D., Tomb, A., Flanagan, C.: Space-efficient gradual typing. In: Trends in
Functional Programming (TFP). pp. 404–419 (Apr 2007)

14. Herman, D., Tomb, A., Flanagan, C.: Space-efficient gradual typing. Higher Order
Symbol. Comput. 23(2), 167–189 (Jun 2010)

15. Jhala, R.: Refinement types for haskell. In: Programming Languages Meets Pro-
gram Verification (PLPV). pp. 27–27. ACM, New York, NY, USA (2014)

16. Meyer, B.: Eiffel: the language. Prentice-Hall, Inc. (1992)
17. Plotkin, G.: LCF considered as a programming language. Theoretical Computer

Science 5(3), 223 – 255 (1977)
18. Racket contract system (2013)
19. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Programming Language

Design and Implementation (PLDI) (2008)
20. Sekiyama, T., Igarashi, A., Greenberg, M.: Polymorphic manifest contracts, revised

and resolved. TOPLAS (2016), accepted in September; to appear
21. Sekiyama, T., Nishida, Y., Igarashi, A.: Manifest contracts for datatypes. In: Prin-

ciples of Programming Languages (POPL). pp. 195–207. ACM, New York, NY,
USA (2015)

22. Siek, J., Thiemann, P., Wadler, P.: Blame, coercion, and threesomes: Together
again for the first time. In: Programming Language Design and Implementation
(PLDI) (2015)

23. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and
Functional Programming Workshop (September 2006)

24. Siek, J.G., Wadler, P.: Threesomes, with and without blame. In: Principles of
Programming Languages (POPL). pp. 365–376. ACM, New York, NY, USA (2010)

25. Thiemann, P.: A delta for hybrid type checking. In: Wadler Festschrift. pp. 411–
432. LNCS 9600, Springer Switzerland

26. Tobin-Hochstadt, S., Van Horn, D.: Higher-order symbolic execution via contracts.
In: OOPSLA. pp. 537–554. ACM, New York, NY, USA (2012)

27. Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Felleisen, M.,
Gardner, P. (eds.) European Symposium on Programming (ESOP). pp. 209–228.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

28. Wadler, P.: A Complement to Blame. In: Ball, T., Bodik, R., Krishnamurthi, S.,
Lerner, B.S., Morrisett, G. (eds.) SNAPL. LIPIcs, vol. 32, pp. 309–320. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik (2015)

29. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: European
Symposium on Programming (ESOP) (2009)

http://racket-lang.org/tr1/

	Space-Efficient Latent Contracts

