
The Dynamic Practice and Static Theory of
Gradual Typing
Michael Greenberg
Pomona College, Claremont, CA, USA
http://www.cs.pomona.edu/~michael/
michael@cs.pomona.edu

Abstract
We can tease apart the research on gradual types into two ‘lineages’: a pragmatic, implementation-
oriented dynamic-first lineage and a formal, type-theoretic, static-first lineage. The dynamic-first
lineage’s focus is on taming particular idioms—‘pre-existing conditions’ in untyped programming
languages. The static-first lineage’s focus is on interoperation and individual type system features,
rather than the collection of features found in any particular language. Both appear in programming
languages research under the name “gradual typing”, and they are in active conversation with each
other.

What are these two lineages? What challenges and opportunities await the static-first lineage?
What progress has been made so far?
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1 A tale of two gradualities

It was the best of types, it was the worst of types,
it was the age of static guarantees, it was the age of blame,
it was the epoch of implementations, it was the epoch of core calculi,
it was the season of pragmatism, it was the season of principles.

—with apologies to Charles Dickens

In 2006, the idea of gradual typing emerged in two papers. Tobin-Hochstadt and Felleisen
introduced the idea of mixing untyped and typed code such that “code in typed modules
can’t go wrong” using contracts [102, 34]; Siek and Taha showed how to relax the simply
typed lambda calculus (plus some extensions) to allow for unspecified “dynamic” types to be
resolved at runtime via casts [87].1

In these two papers, two parallel lines of research on gradual typing began with quite
different approaches. Sam Tobin-Hochstadt summarized the distinction as ‘type systems for
existing untyped languages’ [Tobin-Hochstadt and Felleisen] and ‘sound interop btw typed
and untyped code’ [Siek and Taha] [101]. I draw slightly different lines, identifying one
lineage as being “dynamic-first” and the other as “static-first”. That is: one can think about
taking a dynamic language and building a type system for it, or one can think about taking
a statically typed language and relaxing it to allow for dynamism.

The differences at birth between these two approaches are still evident, and the latter
approach has an opportunity for interesting new discoveries from proof-of-concept (and more
serious) implementations.2

Disclaimer: I have made an effort to be thorough but not comprehensive in my citations.
Readers looking for a comprehensive survey will enjoy Sam Tobin-Hochstadt’s “Gradual
Typing Bibliography” [117]. Even so, I make general claims about trends in gradual types. I
try to mention the inevitable exceptions to my generalizations, but I may have missed some.

1.1 The dynamic-first approach
Tobin-Hochstadt and Felleisen use a ‘macro’ approach, where the unit of interoperation is
the module. They are directly inspired by Racket’s module system. They see the dynamic
language as being somehow primary, with a static layer above:

First, a program is a sequence of modules in a safe, but dynamically typed pro-
gramming language. The second assumption is that we have an explicitly, statically
typed programming language that is [a] variant of the dynamically typed language.
Specifically, the two languages share run-time values and differ only in that one has a
type system and the other doesn’t. [102]

1 Flanagan showed how to use a similar cast framework to relax a fancy subset type system to a series
of dynamic checks [36]. Dynamic checking is necessary in Flanagan’s hybrid typing, because not every
refinement is easy to send to an SMT solver. While the approach is different, the spirit is similar: there
must have been something in the water.

2 There are three other distinctions one could make. First, the macro/micro distinction from Takikawa
et al. and Greenman et al. [98, 49]; second, the latent/manifest distinction [45, 46]; and third, the
distinction between languages with static semantics that influence runtime behavior (e.g., type classes)
and those languages where types can be erased. These distinctions are important but less salient for my
analysis.
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Their paper takes an “expanded core calculus” approach, defining an extension of the lambda
calculus with a notion of module (untyped, contracted, or typed).

Dynamic-first gradual typing is about accommodating particular programming idioms
in programs that allow legacy untyped code to interoperate with the newly typed frag-
ment. Typed Racket is a canonical example, though TypeScript’s various dialects, Dart,
DRuby/Rubydust/rtc, Clojure’s specs, Gradualtalk, and Reticulated Python are all compa-
rable efforts in the research community [103, 39, 8, 81, 80, 5, 112]. These languages all share
an approach going back chiefly to the 1990s but also earlier: we have a dynamic language
in hand and we’d like the putative benefits of static typing (for, e.g., maintenance [59],
documentation [64], performance) [20, 100, 17, 21, 50].

Dynamic idioms vary widely [82, 4], but a common theme is untypability in conven-
tional systems. Accordingly, the type systems used in the dynamic-first approach tend to
the unfamiliar, with features designed to capture particular language idioms: occurrence
typing [103, 104, 56], ‘like’ types [119], severe relaxations of runtime checking disciplines to
avoid disrupting reference equality [112, 113], and ad hoc rules for inferring particular types
(e.g., telling the difference between a tuple and an array in TypeScript or Flow).

1.2 The static-first approach
Siek and Taha take a ‘micro’ approach, where the unit of interoperation is the expres-
sion [87]. They are inspired by Thatte’s quasi-static typing and Oliart’s algorithmic treatment
thereof [100, 73]. While they imagine migrating programs from dynamic to static—would
one ever want to go the other way?—they implicitly see the type system as primary, and
gradual types as a relaxation. In their contributions:

We present a formal type system that supports gradual typing for functional languages,
providing the flexibility of dynamically typed languages when type annotations are
omitted by the programmer and providing the benefits of static checking when function
parameters are annotated.

Siek and Taha’s paper does not, however, identify any particular dynamic idioms they want
to write but that their static type discipline disallows. Such an example might serve as
motivation for wanting to relax the type system, either to accommodate existing dynamic
code that uses hard-to-type idioms (e.g., as in Takikawa et al. [99]) or to write new code
that goes beyond their system (e.g., as in Tobin-Hochstadt and Findler [106]). To be sure,
adding the dynamic type does add a new behavior—nontermination [1]. Siek and Taha don’t
explicitly observe as much beyond mentioning that the untyped lambda calculus embeds in
their system. The code of their two lambda calculus interpreters is identical (their Figure 1;
reproduced in our Figure 1); only the type annotations change.

According to Siek et al.’s refined definition [90], gradual typing “provides seamless
interoperability, and enables the convenient evolution of code between the two disciplines”; it
is critical to their conception of gradual typing that it “relates the behavior of programs that
differ only with respect to their type annotations”. Lacking particular dynamic idioms to
accommodate, the examples in static-first papers tend to be toy snippets mixing static and
dynamic code to highlight this interoperation, even when pointing out the oversight (e.g.,
Section 6 from Garcia and Cimini [41]).

Work in the ‘static-first’ lineage cites interoperation as a motivation, not only in Siek
and Taha’s seminal paper [87] but especially in Wadler and Findler [114]. Later papers take
interesting type feature X and show how to relax the typing rules, resolving static imprecision
with dynamic checks. X ranges widely: objects [88], polymorphism [2, 3, 108], typestate [118],
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(define interp
(� (env e)

(case e
[(Var ,x) (cdr (assq x env))]
[(Int ,n) n]
[(App ,f ,arg) (apply (interp env f) (interp env arg))]
[(Lam ,x ,e) (list x e env)]
[(Succ ,e) (succ (interp env e))])))

(define apply
(� (f arg)

(case f
[(,x ,body ,env)
(interp (cons (cons x arg) env) body)]

[,other (error ”in application, expected a closure”)])))

(type expr (datatype (Var ,symbol)
(Int ,int)
(App ,expr ,expr)
(Lam ,symbol ,expr)
(Succ ,expr)))

(type envty (listof (pair symbol ?)))

(define interp
(� ((env : envty) (e : expr))

(case e
[(Var ,x) (cdr (assq x env))]
[(Int ,n) n]
[(App ,f ,arg) (apply (interp env f) (interp env arg))]
[(Lam ,x ,e) (list x e env)]
[(Succ ,e) (succ (interp env e))])))

(define apply
(� (f arg)

(case f
[(,x ,body ,env)
(interp (cons (cons x arg) env) body)]

[,other (error ”in application, expected a closure”)])))

Figure 1. An example of gradual typing: an interpreter with varying amounts of type annotations.

notated terms, is equivalent to that of the simply-typed lambda cal-
culus (Theorem 1). This property ensures that for fully-annotated
programs all type errors are caught at compile-time. Our type sys-
tem is the first gradual type system for structural types to have this
property. To show that our approach to gradual typing is suitable
for imperative languages, we extend �?

! with ML-style references
and assignment (Section 4).
We define the run-time semantics of �?

! via a translation to a
simply-typed calculus with explicit casts, �h⌧i

! , for which we de-
fine a call-by-value operational semantics (Section 5). When ap-
plied to fully-annotated terms, the translation does not insert casts
(Lemma 4), so the semantics exactly matches that of the simply-
typed �-calculus. The translation preserves typing (Lemma 3) and
�h⌧i
! is type safe (Lemma 8), and therefore �?

! is type safe: if eval-
uation terminates, the result is either a value of the expected type
or a cast error, but never a type error (Theorem 2).
On the way to proving type safety, we prove Lemma 5 (Canonical
Forms), which is of particular interest because it shows that the
run-time cost of dynamism in �?

! can “pay-as-you-go”. Run-time
polymorphism is restricted to values of type ?, so for example,
a value of type int must actually be an integer, whereas a value
of type ? may contain an integer or a Boolean or anything at all.
Compilers for �?

! may use efficient, unboxed, representations for
values of ground and function type, achieving the performance
benefits of static typing for the parts of programs that are statically
typed.
The proofs of the lemmas and theorems in this paper were writ-
ten in the Isar proof language [28, 42] and verified by the Isabelle
proof assistant [29]. We provide proof sketches in this paper and
the full proofs are available in the companion technical report [39].
The statements of the definitions (including type systems and se-
mantics), lemmas, propositions, and theorems in this paper were
automatically generated from the Isabelle files. Free variables that
appear in these statements are universally quantified.

2. Introduction to Gradual Typing
The gradually-typed �-calculus, �?

!, is the simply-typed �-calculus
extended with a type ? to represent dynamic types. We present grad-
ual typing in the setting of the simply-typed �-calculus to reduce
unnecessary distractions. However, we intend to show how gradual

typing interacts with other common language features, and as a first
step combine gradual typing with ML-style references in Section 4.

Syntax of the Gradually-Typed Lambda Calculus e 2 �?
!

Variables x 2 X
Ground Types � 2 G
Constants c 2 C
Types ⌧ ::= � | ? | ⌧ ! ⌧
Expressions e ::= c | x | �x :⌧. e | e e

�x. e ⌘ �x :?. e

A procedure without a parameter type annotation is syntactic sugar
for a procedure with parameter type ?.
The main idea of our approach is the notion of a type whose struc-
ture may be partially known and partially unknown. The unknown
portions of a type are indicated by ?. So, for example, the type
number ⇤ ? is the type of a pair whose first element is of type
number and whose second element has an unknown type. To pro-
gram in a dynamically typed style, omit type annotations on pa-
rameters; they are by default assigned the type ?. To enlist more
help from the type checker, add type annotations, possibly with ?
occurring inside the types to retain some flexibility.
The job of the static type system is to reject programs that have
inconsistencies in the known parts of types. For example, the pro-
gram

((� (x : number) (succ x)) #t) ;; reject

should be rejected because the type of #t is not consistent with
the type of the parameter x, that is, boolean is not consistent with
number. On the other hand, the program

((� (x) (succ x)) #t) ;; accept

should be accepted by the type system because the type of x is
considered unknown (there is no type annotation) and therefore not
within the realm of static checking. Instead, the type error will be
caught at run-time (as is typical of dynamically typed languages),
which we describe in Section 5.

Figure 1 The lambda calculus interpreter from Siek and Taha (Figure 1 [87])

information flow control [29, 33, 107], ownership types [85], effects [9], session types [55],
etc. The process of relaxation was characterized and made beautifully concrete in Garcia,
Clark, and Tanter’s “Abstracting Gradual Typing” (AGT) [42]. In AGT, one ‘abstracts’ a
gradual type system starting from a syntax-directed, fully static type system that enjoys a
preservation-based proof of type safety. Matteo Cimini and Jeremy Siek built the Gradualizer,
a tool for automatically turning a variety of type systems gradual [27]. AGT is a human
methodology, but has been shown to apply to a broad swath of systems [9, 61, 107, 108].
The Gradualizer is automatic, but is substantially less general than the principles in AGT.

The type systems in the static-first lineage tend to look much more like those found in
the conventional types literature... unsurprising, in light of AGT! The resulting theories are
typically conservative extensions of their original system, where statically typed programs
remain acceptable—satisfying the static gradual guarantee (removing type information retains
typeability) [90]. Many systems also enjoy the dynamic gradual guarantee (removing type
information retains successful runs of the program), though notably not for several type
systems implementing hyperproperties [107, 108].

2 Dynamic trouble in static paradise

It is easy to design a type system, and it is reasonably straightforward to validate
some theoretical property. However, the true proof of a type system is a pragmatic
evaluation. To this end, it is imperative to integrate the novel ideas with an existing
programming language. Otherwise it is difficult to demonstrate that the type system
accommodates the kind of programming style that people find natural and that it
serves its intended purpose.
To evaluate occurrence typing rigorously, we have implemented Typed Scheme.

—Tobin-Hochstadt and Felleisen [103]

2.1 A distinction without a difference?
Does it matter whether one starts from dynamic typing and works up to static typing or
starts with static typing and relaxes to allow dynamic typing [53]? Only the dynamic-first
lineage addresses particular examples and the particular difficulties they introduce into the
resulting systems.
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1 ( define ( flatten x)
2 (cond
3 [( null? x) ’()]
4 [( cons? x) ( append ( flatten (car x)) ( flatten (cdr x)))]
5 [else (list x)]))

> ( flatten ’(1 (2 3) (((4) (5)) (6 7 8 (9))))) ; example
’(1 2 3 4 5 6 7 8 9)

Figure 2 The flatten function in Scheme/Racket

Dynamic-first gradual typing is motivated by particular, existing legacy code in partic-
ular, existing languages. Whatever theory dynamic-first systems come up with must be
accommodated to the host language’s pre-existing conditions.

[D]ynamic language programmers often employ programming idioms that impede
precise yet sound static analysis. For example, programmers often give variables
flow-sensitive types that differ along different paths, or add or remove methods from
classes at run-time using dynamic features such as reflection and eval. [8]

Static-first gradual typing typically lacks such concrete examples as motivation, studying
interoperation more abstractly. Static-first gradual typing often studies type system features
without any attempt to accommodate the idiosyncrasies of any particular implementation of
those features. (There are, of course, laudable exceptions [85, 6].)

The distinction becomes clear when we see what is actually implemented: the overwhelm-
ing majority of the existing implementations of gradual typing start with a dynamic language
and grow an appropriate type system for it [103, 39, 8, 81, 80, 5, 112]. There are several
notable exceptions: Nom and Grift are direct implementations of the static-first theory
of gradual typing for new static languages [68, 60]; Thorn invents its own theory of ‘like‘
types [13]; C# is a statically typed language which grew a dynamic runtime unrelated to the
theory of gradual types [65].

It is surprising that the theory takes a static-first approach, but the practice takes a
dynamic-first one. It would seem that nobody has tried to apply the static-first theory to
a pre-existing statically typed language. A set of concrete, desirable idioms from dynamic
typing would allow the dynamic-first and static-first lineages to address the same challenges
and benefit more from each other’s insights. I offer one such challenge in detail, followed by
some higher level challenges (Section 3).

2.2 A dynamic idiom: flatten

A canonical example of a dynamic programming idiom is the flatten function (Figure 2).
The flatten function takes arbitrarily nested lists (formed by cons cells) and produces a
single flat list containing all of the elements in a left-to-right traversal. Thinking of such
nested lists as trees, flatten computes the fringe of the tree. The flatten function works
because there are predicates null? and cons? of conceptual type ? → bool. While it is a
perfectly safe function—nothing in it can go wrong at runtime—it is hard to assign a type to
flatten, since the type of uniformly constructed, heterogeneous lists cannot be written down
in simple type languages. Like in Tobin-Hochstadt and Findler’s “gradual typing poem” [106],
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we assign the dynamic type to patch over a programming idiom that our type system cannot
account for (there, cyclic data structures; here, heterogeneity and arbitrary nesting).

2.2.1 flatten in dynamic-first gradual typing
Occurrence typing captures the reasoning in flatten perfectly, allowing Typed Racket to
infer the type of flatten without any annotations.3

Occurrence typing is not a standard type system feature. It is not even a particularly
desirable one according to the tastes of the static typing community, as evidenced by
its lack of adoption there. Folks who like static types seem to prefer dependent pattern
matching for flow-sensitive reasoning. Occurrence typing is used in Typed Racket because it
suffices to characterize many of the idioms used: it “accommodates ... modes of reasoning ...
programmers use”—Typed Racket was designed “to support Scheme idioms and programming
styles” [103]. To put it in terms of Ron Garcia’s 2018 ICFP keynote, Typed Racket is an
exercise in “type system anthropology”, finding the folk type system that corresponds to
Racket programmers’ mental models [40].

2.2.2 flatten in static-first gradual typing
How might one write flatten in the static-first lineage? First, let us be clear that statically
typed languages can already more or less accommodate the flatten function! Zhe Yang
implemented it in SML two ways: once with functors, and once with embeddings to and
projections from a universal-datatype [121]; the embedding/projection model is not too
hard to use but is not the most efficient [10, 11]. One can implement flatten in Haskell
using recent reflection support (see Figure 3). CDuce can express this function directly (see
Figure 4).

Static languages accommodate flatten with either significant runtime cost or fancy type
systems. Work in the static-first lineage of gradual typing has only recently devised systems
that can accommodate this simple function. Most static-first gradual type systems don’t offer
type tests, though there are noteworthy exceptions [62, 63, 16]. Siek and Tobin-Hochstadt’s
true union types [89] can handle the definition at the same moral type of ? → list ? (in
their notation, ?→ µX.unit ∪ ?×X). Recent work by Castagna, Lanvin, and others might
be able to accommodate the idiom, as well [24, 25].

3 An opportunity

We ought to (a) identify the particular new programs gradual typing allows us to write or
interoperate with and (b) verify that we can implement gradual type systems accommodating
these new programs. Enumerating concrete examples and implementing the theory will
stress-test our understanding, leading to refinements and improvements in both theory and
practice.

Since there are multiple motivations for wanting gradual typing, I’ve broken the chal-
lenges up into sections by motivation: added expressiveness (Section 3.1), interoperation
(Section 3.2), and types themselves (Section 3.3). I conclude by addressing possible objections
(Section 3.4).

3 Typed Racket assigns the type (-> Any (Listof Any)). Unfortunately, Typed Racket cannot
express the negation lurking in the codomain under the Listof, where one might want to write
(-> Any (Listof (- Any (Listof Any))).
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3.1 Gradual typing for expressiveness
For any interesting programming language, there will always be some programs that
[the] user must rewrite to accommodate a static type checker.

—Mike Fagan’s Fundamental Theorem of Static Typing [32]

If one studies gradual typing in order to be able to write new kinds of programs, I offer three
examples of dynamic idioms that might serve as motivating examples: heterogeneous struc-
tures, semi-structured data, and an object annotation strategy drawn from the ‘middleware’
approach to webservers.

3.1.1 Heterogeneous structures
It is very common to program with uniformly constructed, heterogeneous data structures
in dynamic programming languages: the lists in flatten nest arbitrarily and hold arbitrary
values (heterogeneity) but are constructed using only ’() and cons (uniformity). While
flatten is a “toy” function, it manipulates the heterogeneous lists with a non-trivial use
of type predicates in a way that is simultaneously realistic but also challenging to existing
static-first type theories. Fagan’s PhD thesis is rich in such examples [32].

Not only do static type systems limit the kinds of values that get put into data structures,
they often limit the shapes of those data structures themselves. It is not a trivial exercise
to construct a non-statically known, immutable, circular list in OCaml. Programming in a
static language, I might want to temporarily “cheat” and view my structured data a little less
formally than the type system would ordinarily allow. For example, one might temporarily
allow mutation to make a list circular before ‘freezing’ it as an immutable one [106]. How
can such shenanigans be safely accommodated in languages that want types to mean things?
What does heterogeneity mean for more complicated structures like tree-based sets and maps
that, e.g., compare values to maintain invariants?

3.1.2 Semi-structured data, like JSON, YAML, and XML
A great deal of information is stored and exchanged in semi-structured formats like JSON,
YAML, and XML. Even when these formats don’t take advantage of recursion, they represent
heterogeneous data that isn’t easily accommodated by type systems. Much of XML can be
handled with some moderately fancy type system features—unions and recursive types [12]—
but a proper account of names has proven elusive, in part due to the challenging type system
features necessary (e.g., row types and first-class names). While Typed Racket is good at
working with heterogeneous structures, it accommodates semi-structured data less well. Can
gradual typing help us work with these common structures? Might we be able to gradualize
recent advances in reasoning about rows [67]? Might we offer a gradual treatment of the
row-based metaprogramming of Ur/Web [26]?

3.1.3 Attaching information to HTTP request and response objects
So-called “middleware” in web servers is typically implemented as a quasi-continuation-passing
function mw : Req × Resp × (unit → α) → α, where Req and Resp are (mutable) HTTP
request and response objects and the third argument is a (thunked) continuation. Middleware
can be used for many tasks: application transformers which, e.g., compress outgoing data
with gzip, but also session management and authentication regimes for tracking which user a
request belongs to. Such authentication middleware might look up user information and then
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attach that user information to the request object, making it available for other portions of
the web application that rely on such user information being present.

Authentication middleware amounts to a form of strong update, where a record—the
HTTP request object—gets a new field, or its field changes type. Sound gradual systems
can support strong update [91]; can we extend and implement these systems to write mostly
typed web-servers that can accommodate this “attachment” idiom?

3.2 Gradual typing for interoperation

If one studies gradual typing in order to interoperate programs from different idioms, what
better way to show it than by implementing an interoperation library for, say, OCaml and
Python or Haskell and Julia or Scala and Clojure?

There are several challenges left unaddressed by theoretical treatments of interoperation.
High level concerns include design issues surrounding numerics, annotations, type-driven
features, and how data structures (and their invariants) can be ported from one language
to another. There are also critical lower level concerns, like garbage collection, linking, and
debugging.

3.2.1 Numerics

Dynamic languages typically have a “numeric tower” with rules for when values move from
more precise types (e.g., unbounded bignum integers or precise rationals) to less precise ones
(e.g., fixed or floating point numbers). Statically typed languages typically require explicit
coercions (e.g., fromIntegral and other conversions in Haskell’s numeric type classes) and
sometimes have separate operations for each numeric type (e.g., + and +. in OCaml).

For static languages to interoperate with dynamic ones, the promotion rules will leak.
A statically polymorphic function run in the dynamic side could result in a promotion,
which might violate parametricity. These thorny questions have been studied for Racket’s
complicated numeric tower already [93]; what should happen in other settings?

3.2.2 Data structures, interfaces vs. translations, and guarantees

Tobin-Hochstadt and Felleisen assume that “the two languages share run-time values and
differ only in that one has a type system and the other doesn’t” [102]. This will not generally
hold. The representation of Racket and OCaml strings are different, but so are their interfaces:
string constants in Racket are immutable,4 while OCaml’s are mutable.

When we move a value from language A to language B, we may want to send it over as
an object with an interface—allowing B to use the object with A’s semantics—or to translate
it to one of many possible targets in B. Such translations will come with a computational
cost—typically linear but sometimes worse!—but allow several benefits: it may be more
efficient to avoid the A/B language barrier, B may have more efficient representations in
general, and B may provide guarantees that A does not. Can gradual typing theory or
implementations help us think about these questions? There has been some related work for
contracts and data structures [35]; how might it port over?

4 Though Racket documentation indicates that not all strings are immutable [77].
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3.2.3 Type-driven features
Muehlboeck and Tate have shown that a variety of type-based features in C# lead to violations
of the dynamic gradual guarantee [68]. The core issue is that the runtime semantics of
some features depend on the decisions made during static typing. Haskell’s type classes are
another example of this phenomenon: it is determined statically how to resolve each call of a
constrained function, which determines, e.g., which monad to use. How might Haskell mix
with dynamic code that performs IO or other effects? How might dynamic values in Haskell
enjoy the Ord instances necessary to build, e.g., heterogeneous sets?

3.2.4 Minimizing annotation overhead
Static-first gradual typing typically studies elaborated core calculi—many papers do not
describe the surface language that generates the runtime checks. How can we minimize the
annotation overhead in the source language? What check insertion strategies are appropriate?
Swamy et al. give a theoretical starting point for thinking about coercions more generally [96],
subsuming Henglein’s seminal work [50] but not offering an algorithm.. Allende et al. offer a
concrete analysis of the issue and a novel, hybrid cast insertion strategy in an object-oriented
setting [7]. Greenman and Felleisen consider “a spectrum of type soundness” for cast insertion
but not alternative sound strategies [47]; What tool support do we need—inference [86]?
Something more exploratory, along the lines of Campora et al. [18, 19]? More tools for
eliminating checks [71]?

The idea of minimizing annotation overhead is implicit in gradual versions of fancy
type systems, where the “dynamic” side is a typical static type system and the “static”
side is a fancier type system (e.g., information flow [29, 33, 107]). Experiments with an
implementation are a natural next step.

3.2.5 Lower-level concerns: garbage collection, linking, and debugging
When two languages interoperate, which is responsible for allocating and deallocating? When
does each language’s GC run? This question is a serious one: in Ramsey’s Lua-ML, the thorny
issue of whose garbage collector is in charge led him to reimplement Lua in OCaml [79]! Not
only is such a “duplication of effort ... regrettable”, it means that Ramsey’s Lua may not
behave identically to the original Lua and won’t necessarily keep up as Lua evolves.

What is the right object/header format? It is a shame that if we were to try to link
Rust and Haskell, we would probably have to go through a C API! How does one take the
hodgepodge of stack frames, thunks, and continuations from mixing two real languages and
produce something intelligible?

3.3 Gradual typing for typing’s sake
One could summarize the gradual types approach as finding runtime-enforceable safety
properties that simultaneously (a) allow one to relax the strictures of type checking in part
of one’s program while (b) not compromising the safety guarantees in the checked parts of
the program. But types are more than safety guarantees! Folklore and substantial engineer
experience assign high value to what I called before the “putative benefits of static typing”.
Types are executable documentation [64]; they rule out whole classes of errors, assist in
maintenance [59], and can lead to more efficient code. So far, the literature on gradual types
has focused on the “rule out whole classes of errors” benefit. But there are others! To what
extent do the existing, implemented dynamic-first systems buy you the benefits of static
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typing? To what extent would implementations of theoretical, static-first systems buy you
those same benefits?

For efficiency, it’s a mixed bag. Typed Racket sometimes generates better code than one
would get without the type systems [78]. But Typed Racket has a hard row to hoe: it lives
within the strictures of Racket’s dynamic-first world, where the primitives by default perform
runtime checks. Typed Racket already adds its own checks at module boundaries; avoiding
checks on internal uses of primitives takes both effort and care. Working in ActionScript,
which has a less constrained runtime, Rastogi et al. find an average 1.6x improvement when
using their type inference algorithm over partially annotated programs. Nom and Grift both
show that gradual types can be implemented efficiently [68, 60]; while both can generate
good static code, neither recovers global, type-based optimizations.

For maintenance, Typed Racket exhibits some of the desirable behaviors: on changing an
algebraic datatype definition to include new possibilities, the type system can find functions
that are now missing cases. But having the right features in the small and behaving correctly
in the large are two different things. A ten-year retrospective on Typed Racket’s “migratory
typing” suggests that deeper study is required [105].

3.4 In which I am gravely mistaken
“No, no,” you say, “that’s not right. We can already do all of this!” There has indeed been
good progress towards meeting these challenges! I don’t mean to diminish the substantial
literature on these topics, but rather to help direct its aims. What do we have so far, and
how close are we to meeting the challenges I’ve laid out?

3.4.1 Static languages can accommodate those idioms
You can just make a datatype for JSON; OCaml already has S-expression support instead of
the general dynamic type. Polymorphic variants offer some of the flexibility and reuse of
dynamic types while also admitting a meaningful typing discipline [43].

Standard examples like heterogeneous lists and maps are typeable using some of the
fancier features of Haskell’s type system [58, 57, 115]. Haskell has dependency, Data.Dynamic
and Type.Reflection, and the Aeson library.

Response: Maybe the static world never really wanted to interoperate with dynamic
types. But there are still challenges.

Type-based programming in Haskell is strong medicine, and every project has a limited
complexity budget. Not everyone wants to spend their complexity budget on types, even if
some claim (tongue in cheek) that Haskell is already gradually typed [31]. For example, the
flatten function can be written in Haskell (Figure 3), but it is somewhat less readable than
its Racket counterpart. The definition itself is not so much longer than the Racket code,
and the supporting functions could live in a library. One could presumably write a similar
program in Scala using the Dynamic trait.

Or consider Yesod, a mature Haskell web application framework [92]. Yesod uses idioms
like routing and middleware for specifying servers, as is common in dynamic web frameworks
like ExpressJS [37].

Yesod supports sessions directly, using cookies to allow a notion of continuity in stateless
HTTP sessions. Yesod’s sessions are implemented as maps from Text to ByteString. Could
one build a version of Yesod that used Haskell’s type system to guarantee that user information
was available in the session map for stages of processing that needed it? Could we construct
a gradual version of that system?
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1 {-# LANGUAGE
2 GADTs , TypeApplications , ScopedTypeVariables , ViewPatterns ,
3 PolyKinds , DataKinds
4 # -}
5 module Flatten where
6
7 import Data. Dynamic
8 import Type. Reflection
9
10 data MaybeMatch (a :: k1) (b :: k2) where
11 Match :: MaybeMatch a a
12 NoMatch :: MaybeMatch a b
13
14 isType :: forall a b. Typeable a => TypeRep b -> MaybeMatch a b
15 isType ( eqTypeRep ( typeRep @a) -> Just HRefl) = Match
16 isType _ = NoMatch
17
18 smartToDyn :: TypeRep a -> a -> Dynamic
19 smartToDyn ( isType @Dynamic -> Match) x = x
20 smartToDyn rep x = Dynamic rep x
21
22 flatten :: [ Dynamic ] -> [ Dynamic ]
23 flatten [] = []
24 flatten (dx@( Dynamic rep x): dxs) = x’ ++ flatten dxs
25 where
26 x’ | App ( isType @[] -> Match) arg <- rep
27 = flatten (map ( smartToDyn arg) x)
28 | otherwise
29 = [dx]

Figure 3 A version of flatten using Haskell’s Dynamic type

3.4.2 We can use linking types

Patterson and Ahmed’s linking types solve this problem [76].
Response: Let’s implement it! Linking types have been successful for proving things about

translations [15, 14]. Do they have any bearing on implementations? Work by Matthews et
al. offers some gestures in this direction [63, 62];

3.4.3 These ideas are already implemented

Typed Racket, Gradualtalk, DRuby/rtc/Rubydust, Reticulated Python, Thorn, Nom and
Grift are implementations [103, 5, 39, 8, 81, 112, 13, 68, 60]; some theoretical work offers
web interfaces for experimentation with their type theory [107].

Response: Let’s do more! Let’s scale them to real, existing languages; let’s implement
the various challenge problems I’ve described.

GradualTalk, DRuby/Rubydust/rtc, Reticulated Python, and the various TypeScript
dialects are all more or less in the dynamic-first lineage, since they are put on top of existing
dynamic languages. While Reticulated Python is inspired by gradual typing, the transient
checking strategy they invented for it only loosely corresponds to anything found in the
static-first lineage [113] (see Greenman and Felleisen [47] and Greenman and Migeed [48]).
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1 let flatten ( Any -> [ (Any \[ Any *])* ] )
2 | [] -> []
3 | (h,t) -> ( flatten h)@( flatten t)
4 | x -> [x]
5
6 type Tree(’a) = (’a\[ Any *]) | [ (Tree(’a))* ]
7
8 let flattenTree ( (Tree(’a)) -> [’a*] )
9 | [] -> []

10 | [h ; t] -> ( flattenTree h)@( flattenTree t)
11 | x -> [x]

Figure 4 Flatten in CDuce, with and without a custom type

Of course, there are exceptions. C# is an example of a statically typed language that
added dynamic features; this effort doesn’t seem particularly informed by gradual typing
theory, but its dynamic language runtime draws on some of the challenges here as motivation,
e.g., working with JSON and XML [65].

Nick Benton showed how to use call/cc to get clean errors at the dynamic/static interface
when mixing untyped and typed code [11], but never scaled up to a real language. Similar
embedding/projection pairs can be found in Yang’s work, Benton’s earlier work on embedding
languages in ML, and Ramsey’s Lua-ML [121, 10, 79]. The idea of embedding/projection
pairs as a core idea in gradual types goes back at least to Henglein [51], but has seen a
resurgence in recent work by New et al. [69, 70]. Only Ramsey’s work seems to have ever
enjoyed a serious implementation; even so, it seems that the up-to-date Lua-OCaml interface
is via a more conventional, ctypes-based API [30]. Gray et al.’s reflection-based approach
offer a substantial interface between two very different languages (Java and Scheme) [44].
Their interface compiles the Java to Scheme, though, sidestepping the “two runtimes” issue
in much the same way Ramsey does.

CDuce deserves particular attention, as its set-theoretic types allow for concise implemen-
tations of functions like flatten [12]. We can write two good implementations of flatten
in CDuce (Figure 4): the first version uses ordinary types, while the second uses a custom
type definition to better characterize the list structure of the input. CDuce doesn’t address
issues of interoperation at all, but recent work has shown that CDuce’s set-theoretic types
are relevant to gradual typing [25]. How much of the reasoning done in dynamic languages
can be done using set-theoretic types? What kinds of reasoning lie outside those types?

Various recent systems have moved beyond core calculi, studying surface syntax di-
rectly [120, 66, 24, 25]; why not try practical experiments?

3.4.4 That’s not what gradual typing is about
The dynamic and static ends of the gradual typing spectrum are relative. As Ron Garcia
shows in his 2018 ICFP keynote, one could consider SML as a dynamic language in light of
the static verification of partial pattern matches used in the datasort refinement system of
Refined ML [38, 40]. Some of the gradual notions of, e.g., security typing [29, 33, 107], have
this flavor.

Response: The particular challenge problems may change, but a focus on implementations
will help the community relate efforts in the world of gradual types and efforts outside.

Taking security typing as a concrete instance, there are already researchers working hard
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on runtime enforcement mechanisms for information flow control [95, 54, 52, 94, 110]. While
these systems generally don’t support a notion of graduality, they do support important
security properties overlooked in the gradual types approaches (for example, protection from
side channels and termination sensitivity). It would be productive to hold a “Build It, Break
It, Fix it” contest between gradual and conventional systems [83]. LIO’s implementation
has already been used to build systems of moderate size [75]; why not build a comparable
system in a gradual security-typed language?

There has been some work on enforcing linearity at runtime, with ALMS being a realistic
implementation [109]; Scherer et al.’s theory comes with a toy implementation [84]. To test
these ideas, why not implement such a system for Rust, allowing runtime checking for affinity
as an alternative to unsafe blocks?

Finally, the first question asked after Ron Garcia’s keynote was, “I’d like to use ‘dynamic‘
Haskell programs from Agda. What do I do about nontermination?” A good deal of
work studies how to gracefully allow nontermination in languages with consistent logical
interpretations of their types [116, 22, 74, 23, 97, 111, 28]. What might a ‘gradual’ system
look like here? Does the AGT methodology help?

The gradual types approach is to find safety properties—i.e., runtime enforcement
mechanisms—that are sufficient to guarantee the desirable properties of a given type system.
Nguyen et al.’s runtime semantics for checking size-change termination is related: their
runtime checks can be lifted to static ones via an analysis [72]. Their implementation isn’t
‘gradual’, though, as there’s no notion of ‘mixed’ dynamic and static checking.

More broadly, is ‘graduality’ even the right fit for thinking about nontermination? There
is some recent evidence that the dynamic gradual guarantee—which some see as essential to
gradual typing [70]—is incompatible with various hyperproperties, like noninterference [107]
and parametricity [108]. Binary formulations of parametricity generalize unary formulations
of termination arguments. Can a language satisfy the gradual guarantees but also preserve
strong properties like logical consistency in mixed programs?

4 Conclusion

I come to praise gradual types, not to bury them.

—with apologies to William Shakespeare

Gradual types is a thriving research area. Work is plentiful in both the implementation-
focused dynamic-first lineage and the theoretically-focused static-first lineage. Our community
has made good progress so far, and recent implementation efforts give me hope that the
two lineages will enter into a more fruitful dialog. Significant challenges remain for both
the theory and practice of gradual types; there are thorny practical questions that deserve
immediate attention, as they will determine the direction of our efforts. Which programs do
we want to write? How do theoretical models generalize to whole languages? What of the
low-level concerns of interoperation, viz. the “two runtimes” problem?

Finally, perhaps I am wrong. Maybe the distinction between these lineages is a trivial
one, and the theory is already applicable to practice. The best proof that the distinction I
draw is trivial would be an interoperation layer for an existing language that follows existing
theory directly, without any need to adapt to pre-existing conditions. I would welcome such
proof, and I encourage the gradual types community to take advantage of this opportunity
and implement their ideas.
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