
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Word expansion supports POSIX shell interactivity
Submission for publication

Michael Greenberg

Pomona College

Claremont, CA, USA

michael@cs.pomona.edu

ABSTRACT
The POSIX shell is the standard tool to deploy, control, and

maintain systems of all kinds; the shell is used on a slid-

ing scale from one-off commands in an interactive mode

all the way to complex scripts managing, e.g., system boot

sequences. For all of its utility, the POSIX shell is feared and

maligned as a programming language: the shell is feared

because of its incredible power, where a single command can

destroy not just local but also remote systems; the shell is

maligned because its semantics is non-standard, using word
expansion where other languages would use evaluation.
I conjecture that word expansion is in fact an essential

piece of the POSIX shell’s interactivity; word expansion is

well adapted to the shell’s use cases and contributes critically

to the shell’s interactive feel.

CCS CONCEPTS
• Software and its engineering→ Scripting languages;
Command and control languages; Language features; Se-
mantics; • General and reference → Design; • Human-
centered computing → Command line interfaces;

KEYWORDS
command line interface, interactive programming, word ex-

pansion, string manipulation, splicing, evaluation

ACM Reference Format:
Michael Greenberg. 2018. Word expansion supports POSIX shell

interactivity: Submission for publication. In Proceedings of Program-
ming Experience Workshop (PX/18). ACM, New York, NY, USA, Arti-

cle 4, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PX/18, April 2018, Nice, France
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Command-line interfaces are the expert’s way of exercising

control over their computer: installing, configuring, and re-

moving software; creating, moving, deleting, or otherwise

manipulating the filesystem; deploying, monitoring, and

shutting down services. The foregoing tasks are often easier

done in a shell; sometimes, these tasks must be done in the

shell, for lack of other options.

While other shells exist, the POSIX shell is the de facto
standard [9]; I’ll simply refer to it as “the shell”. As a pro-

gramming language, the POSIX shell has several distinctive

features [3]: it excels at controlling concurrent processes; it

is used along a continuum from interactive command-at-a-

time use to batching of commands to lightweight scripting

all the way to programming of system-critical scripts; it is

programmed in an exploratory, “print what you do before

you do it” fashion; shell scripts have the computer literally do

what a human would; and, its semantics mixes conventional

evaluation with word expansion. I am particularly interested

in understanding this last feature: what is word expansion,

and how is it essential to the POSIX shell?

In this paper, I explain what word expansion is (Section 2)

and offer arguments for it being a quintessential interactive

shell feature.

I offer two positive arguments (Section 3): first, the shell’s

core abstractions for managing processes are string-based,

and word expansion has convenient defaults for combining

strings (Section 3.1); second, the commands run in the shell

have calling conventions that encourage the use of, if not

word expansion itself, an expansion-like mechanism (Sec-

tion 3.2). I also offer negative arguments (Section 4): two

academic shell ‘replacements’ (scsh and Shill, neither of

which use word expansion [14, 15]) have shown their merit

as replacements for the shell as a programming language,

but not as interactive tools. Similarly, the fish shell replace-

ment works well as an interactive shell but less popular for

programming [7]. Shell-like libraries seem to a do a good

job for scripting, but less so for interactive fork (Section 4.2):

a shell library for Python, Plumbum, ends up falling back

on word expansion [8]; a shell library for Haskell, Turtle,

doesn’t quite work as an interactive shell [2].

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

PX/18, April 2018, Nice, France Michael Greenberg

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

read line parse expand evaluate

expand evaluate

expand evaluate

…

Figure 1: The shell REPL, with parsing in pink and

execution in blue . Execution consists of expansion
followed by evaluation, but expansion can embed fur-
ther executions using command substitutions.

My arguments are by no means exhaustive: we might

assess how important word expansion is in other ways (Sec-

tion 5), and we might make word expansion better or less

error prone without fundamentally changing its character

(Section 6).

The technical parts of the paper are, for the most part,

a recapitulation of the POSIX standard [9]. My arguments

reflect my own bias towards a semantic understanding of

the shell. I use my own experience as evidence; however,

there are other good forms of evidence: historical analysis of

various other shells, user studies, and experiments in shell

design, to name a few.

2 WHAT IS WORD EXPANSION?
The POSIX shell executes somewhat unconventionally (Fig-

ure 1). Like other dynamically typed, interactive languages,

the shell operates in a “read-eval-print loop”, or REPL. But

the shell’s evaluation is split into two phases: first, a phase

of word expansion, followed by a second phase of actually

evaluating code. What’s more, word expansion can itself

trigger expansion and evaluation recursively. Those who are

very familiar with the shell may well skip the next section

and go directly to Section 3. Those who use the shell in a

less thoroughgoing way may benefit from the following high

level overview of its (commonly misunderstood) features.

Word expansion is specified in Section 2.6 of the POSIX

IEEE Std 1003.1-2008 [9]. At a high level, word expansion is

the process that converts user input into fields, which will

become, e.g., a command and its arguments. There are seven

stages of word expansion:

(1) tilde expansion, which replaces ~with the current user’s
home directory and ~user with a given user’s home

directory;

(2) parameter expansion, which replaces variable refer-

ences like $x with the value of the given variable, pos-

sibly applying one of a number of formats, e.g., ${x=5}
will either return the value of x or, if x is unset, it will

assign the result of recursively expanding 5 to x;
(3) command substitution, which nests evaluation inside of

expansion by running a given command, e.g. ‘cmd‘ or
$(cmd) will splicing in cmd’s output via the recursive
expansions and evaluations in Figure 1;

(4) arithmetic expansion, which computes the result of an

arithmetic expression, e.g., $((x += 2)) will add 2 to

the current value of x (interpreted as a number) and

return the string representing the number two greater

than x;
(5) field splitting, which breaks the expanded input string

into fields;

(6) pathname expansion, which uses the current working

directory to expand special symbols like * and ?; and
(7) quote removal, which removes any double quotes that

the user used to control field splitting.

The first four stages are properly expansions on user input

and are run in a left-to-right fashion; the last three stages

arrange for splitting the string into fields. It seems typical of

shell implementations to perform all seven stages in one go

from left to right, generating a linked list of fields.

For example, suppose we were to run the following com-

mand:

echo ${x=5} $((x+=1)) ${x}

There are three control codes subject to expansion:

• ${x=5} will expand via parameter expansion; if x is

set, then it will return the current value of x; if not, the
string 5 will be expanded (to itself), set as the value of

x, and then it will return the new value of x, viz., 5.
• $((x+=1))will expand via arithmetic expansion, adding

1 to x’s value.
• ${x} will expand to x’s current value (or the empty

string, if x is unset.

In this example, expansion runs as follows if x is unset:

echo ${x=5} $((x+=1)) ${x}
echo 5 $((x+=1)) ${x} # x set to 5
echo 5 6 ${x} # x set to 6
echo 5 6 6

Field splitting will generate four fields: one for echo, one for
5, one for the 6 that came out of arithmetic expansion, and

one for the 6 that came out of the final parameter expansion.

2

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

Word expansion supports POSIX shell interactivity PX/18, April 2018, Nice, France

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

Word expansion is subtle in terms of (a) the order of events,

and (b) the nature of field splitting.

For an example of the subtlety of the order of events, con-

sider the string $((1 $op 2)). Before arithmetic expansion

can begin, the string 1 $op 2 must be fully expanded so it

can be parsed as an arithmetic expression. If op is bound to a
valid binary operator, like +, then the fully expanded string 1
+ 2 will parse and evaluate to 3. If, however, the variable op
is unset, then $op will expand to the empty string, and the

string 1 2 will fail to parse. (We’d find a similar failure of op
produced something other than operator, like hello or 47.)
The issue isn’t only with arithmetic substitution: other forms

of expansion have nested expansion in them. Using com-

mand substitution, a word expansion can trigger multiple

layers of expansion and evaluation, e.g., $(echo ${x=$(echo
5)}) will begin by trying to expand ${x=$(echo 5)}; if the
variable x is unset, it will then run a nested command sub-

stitution on echo 5, after which it will update the value of

x and run the outer command substitution—the recursive

expansion/evaluation shown in Figure 1.

For an example of field splitting being subtle, suppose x is

bound to the string a␣b␣c (where ␣ represents a space). By
default, ${x} would expand to three fields: one for a, one for
b, and one for c. If the user sets the IFS variable, the internal
field separators can be configured so that ${x}would expand
as a single field, retaining spaces. Understanding which and

howmany fields will be expanded can be challenging, and the

defaults are particularly awkward for filenames with spaces.

For example, suppose we have a directory with three files:

one called file1, one called file2, and one, unfortunately,

called file1␣file2. If we set x to "file1␣file2" and run

rm ${x}, we might be in for a surprise: x expands to two

fields and the first two files are deleted! Putting the variable

substitution in quotes solves the problem: rm "${x}" will

delete only "file1␣file2". That is, field splitting can be

controlled at use sites but not at definition sites.

2.1 Word expansion in evaluation
Expansion aside, the shell’s evaluation model is fairly con-

ventional for its control operators: sequence (...; ...),
conditionals (if ...; then ...; else ...; fi) and
while loops (while ...; do ...; done) work as expected.

The shell also supports some operations for controlling pro-

cesses, like short-circuiting conjunction (... && ...) and
disjunction (... || ...). Along with negation (! ...),

these logical operators use commands’ exit codes to deter-

mine conditionals, noting that the notion that a command

is ‘truthy’ when it yields an exit code of 0. Pipes set up file

descriptors from one process to another (... | ...). None
of these command forms make particular use of word expan-

sion in their semantics.

Four shell forms deal concretely with word expansion in

their semantics: redirections, simple commands, for loops,

and case statements.

Redirections set up file descriptors for a single process (...
>..., etc.). The targets of redirections are generated by word
expansion. For example, echo hi >$f will:

(1) run word expansion on $f to find out which file should
be used—here, whatever the variable f holds, collaps-
ing the list of expanded fields to a string;

(2) create a new process with the standard out file de-

scriptor (file descriptor number 1) redirected to the

resulting word expansion; and

(3) run the echo command (which could either be an ex-

ecutable on the system, e.g., /bin/echo, or a built-in
command in the shell).

Simple commands depend even more heavily on word ex-

pansion. Simple commands have the shape of zero or more as-

signments followed by zero or more arguments: VAR1=val1
VAR2=val2 ... VARm=valm arg1 arg2 ... argn. Each
val and arg is subject to expansion, which is performed from

left to right. (The variable names VAR are statically known

strings and neither an input nor an output of expansion.) If

there are no args, then the variables are assigned globally in

the shell environment. If there are any args, then the vari-

able assignments have a more restricted scope, and the shell

evaluates as follows:

(1) Every val is expanded, but the environment isn’t up-

dated yet.

(2) Every arg is expanded. The very first field is used to

determine which command is being run, where each

command could be either (a) an executable somewhere

on the system, (b) a function call, or (c) a shell built-in.

(3) In the case of (a) and (b), each VARi is bound for the

result of expanding vali when running the command

or calling the function. In the case of (c), shell built-ins

do not typically look at the environment, but some

special built-ins will update the environment with the

variable bindings (Section 2.14 [9]).

For loops and case statements use word expansion to de-

termine control flow. The loop for x in args; do ...;
done begins by expanding args; after splitting the expanded
args into some number of fields, the body of the loop is run

with x bound to each resulting field in turn.

Case statements case args in pat1) ... ;; pat2)
...;; esac evaluate by expanding args, collapsing the split
fields into a single string, and attempting to match the re-

sulting string against each pattern, pat, in the given order.

When a pattern matches against the string, the commands

in that branch are run and the other branches are ignored.

In this context, matching is a limited form of regular ex-

pressions, where the star pattern * matches an arbitrary

3

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

PX/18, April 2018, Nice, France Michael Greenberg

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

span of characters and ? matches any single character. The

shell also permits alternation in patterns, as well as various

locale-defined character classes.

Only four command forms make particular use of word

expansion, but it still turns out that executing nearly any

command will require some number of word expansions:

simple commands are in some sense the “base case” of the

recursive evaluation function. Up to a first approximation,

though, it’s more or less sound to imagine the shell has a stan-

dard evaluation semantics. When field splitting is involved,

however, the shell lives up to its reputation for unpredictabil-

ity.

In the remainder of this paper, I argue that word expan-

sion as a critical enabling feature for the POSIX shell. The

shell is successful both as an interactive way of controlling a

computer—and word expansion supports that interactivity.

3 WHY IS EXPANSION IMPORTANT?
Word expansion is a critical, enabling component of the

POSIX shell: the shell’s niche is fundamentally about string

processing, and word expansion is a good default for the

operations the shell invokes.

3.1 The shell’s core abstractions
The POSIX shell is fundamentally about managing processes

and their file descriptors: commands create processes; redi-

rections and pipes arrange file descriptors; the various con-

trol primitives like for, do, and user-defined functions serve
to automate process management. The core process manage-

ment tasks, however, are all about strings: the strings used to

specify a command and its arguments to execve1, the strings
used to refer to filesystem locations, the strings that are the

contents of important files in UNIX, and the strings that are

the values of environment variables.

While the ultimate goal of the interactive shell is job

control—starting and stopping programs—the job control

process is itself all about strings. Languages like Perl, Python,

and JavaScript all have good support for string manipulation

in the language and standard library; these languages include

some string manipulation features that the shell lacks, and

all three make do without word expansion. Nevertheless, all

three are unsuitable for interactive use as a shell and are less

suited for job control (but see Section 4.2).

3.2 The shell’s operators and operands
Two characteristics of the shell make word expansion partic-

ularly useful: first, more things are operators than operands

1
The execve system call is how a command is run in the shell: given

the path to an executable, a list of arguments, and an environment,

execve(cmd,args,env) replaces the current executing process with the

command cmd on arguments args in environment env.

Figure 2: Three sessions of interactive work in the
shell; more than 75% of all commands take at least one
argument.

in the shell; second, the POSIX shell’s operators tend to be

variadic—commands like accept anywhere from zero or more

(ls), one or more (rm), up to two or more (mv and cp) argu-
ments. These variadic commands are particularly well suited

to word expansion, which produces multiple arguments.

How might I substantiate the claim that interactive use

of the shell tends to have multi-argument, variadic com-

mands? There hasn’t been much research on how the shell

is used today. So far as I can tell, all of the work examining

the POSIX shell as a user interface comes from nearly thirty

years ago [4, 12, 18]. Both Kraut et al.’s early analysis of UNIX

shell usage and Hanson et al.’s later extension of that anal-

ysis provide valuable insight into the design of commands,

though they seem to take a menu based system as a fore-

gone conclusion [4, 12]. Their studies are more than thirty

years old, track processes rather than actual shell commands,

don’t account for the POSIX shell as a language (pipes | are

treated as commands rather than command-formers), and

may not reflect current usage. Wixon and Bramhall [18] of-

fer comparative counts of commands in UNIX and VMS, but

don’t keep track of how many arguments these commands

were given, whether or not word expansion was triggered,

etc. Their numbers are more than thirty years old, and may

reflect differences in interaction styles. For example, nearly

15% of VMS commands were to open an editor, when I almost

never explicitly run such a command—instead I run open,
which calls the default OS handler for that item’s file type,

or I directly open it from a separate text editor window.

Absent other sources of information, I offer a brief anal-

ysis of my own shell history. I analyzed three sessions of

interactive work, finding that the vast majority of shell com-

mands take multiple arguments and variadic commands are

common (Figure 2). In the first session—programming a web

4

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

Word expansion supports POSIX shell interactivity PX/18, April 2018, Nice, France

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

application written in Ruby/Sinatra—an overwhelming ma-

jority of commands take at least one argument (81.9%), with

more than a quarter of commands takingmore than one argu-

ment (27.1%). Out of 500 commands, 38 made use of a variadic

interface (7.6%). In the second session—writing LaTeX, ver-

sion control with git, and package manager configuration—

80.9% of commands take at least one argument, with 29.3% of

commands taking more than one. Out of 155 commands, 15

made use of a variadic interface (9.7%). In the third session—

programming in Haskell and C, version control with git

and subversion, some package and build management, and

homework grading—78.1% of commands take at least one

argument, with 26.7% of commands taking more than one.

Out of 500 commands, 62 made use of a variadic interface

(12.4%). Summarizing these results, more things in the shell

are operands than operators, and many operators take mul-

tiple arguments.

Only my third sample session contained loops—several re-

visions of a for loop for sending out emails about homework

grades; I found no other programmatic constructs, like if
or while. In their sample of more than 30K Debian package

installation scripts, Jeannerod et al. find plenty of loops. In

their setting, 59% of these for loops are directly unrollable,

i.e., iterated over constant argument—that is, their loops

were over constant arguments and needn’t have made use of

expansion at all (my loops depended on the filesystem were

not unrollable) [11]. I attribute this difference to the samples:

mine are drawn from interactive use, while theirs are from

stylistically constrained, programmatic maintainer scripts

for managing package installation.

Four of the most common commands used in a variadic

way are mv (to move files), cp (to copy files), rm (to remove

files), and grep (to search files). Each of these commands is

variadic: one may supply as many arguments as one likes.

My first session had 65 uses of these commands (13.0%), my

second had 15 (9.75%), and my third also had 65 (15.0%).

Note that these counts are slightly different from above:

here I cound every use of these common variadic functions,

whether it uses many arguments or not; above I count only

those uses of any command with a variadic interface.

Variadic functions are far from the norm inmost languages.

Comparable file manipulation functions take one (rm, grep)
or two arguments (mv, cp). But with interactivity in mind,

variadic commands for file manipulation are ergonomic: it

is quite common to treat bundles of files together. Word

expansion dovetails with variadic commands: field splitting

allows one to store many filenames in one variable, or to use

pathname expansion to produce multiple files matching a

pattern, as in *.hs referring to all Haskell source files.

There is a critical weakness, however, in the way the shell

splits strings: the defaults use whitespace to split fields, so

filenames with strings in themwill be grossly mistreated. See

Section 2 for an example and Section 6 for further discussion.

3.3 Interactive, exploratory programming
I frequently use the shell to automate repetitive tasks: run-

ning homework graders on students’ assignments, generat-

ing grade emails, etc. Writing such scripts is fairly different

from programming in conventional languages, where I tend

to write large chunks of a program at a time along with

its tests, checking on functionality in large batches. In the

shell, I always hesitate to actually run the commands that

manipulate the filesystem, for fear that something could go

awry. Instead, I tend to write a script that prints out which

commands would be run, and I can verify that those are the

very commands I want to execute.

One of the main reasons for the shell’s “print first, run

later” paradigm is the general lack of data structures. I’m not

at all afraid to add an item to, say, a list or map inmy program,

because data structures are ephemeral. If my program goes

wrong and the data structure becomes corrupted, not much

is lost—I can simply start over. But there are really only two

data structures in the shell: strings (concomitant with word

expansion) and the filesystem. I am very wary of updating

my filesystem, since it’s easy for a single shell command to

have widespread and irrevocable effect.

Having strings as the primary data structure more or less

forces an exploratory or interactive approach to program-

ming. The shell’s interactivity comes, in part, perhaps, from

wariness of the shell itself.

4 MAKING DOWITHOUTWORD
EXPANSION

I’ve argued that word expansion is essential to the shell’s

core abstractions (Section 3.1) and the shell’s operators and

operands (Section 3.2). We can see that word expansion is

critical to interactive shell use by looking at attempts to

replace the shell, in particular the academic efforts scsh [15]

and Shill [14] and the popular open source shell fish [7].

Both scsh and Shill aim to replace the scripting portion

of the shell. Shill explicitly renounces any claim to interac-

tivity:

Shill is not an interactive shell, but rather a lan-

guage that presents operating system abstrac-

tions to the programmer and is used primarily

to launch programs.

Scsh offers a similar caveat:

It is important to note what scsh is not, as well

as what it is. Scsh, in the current release, is pri-

marily designed for the writing of shell scripts–

programming. It is not a very comfortable sys-

tem for interactive command use: the current

5

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

PX/18, April 2018, Nice, France Michael Greenberg

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

release lacks job control, command-line editing,

a terse, convenient command syntax, and it does

not read in an initialisation file analogous to

.login or .profile. We hope to address all of

these issues in future releases; we even have

designs for several of these features; but the sys-

tem as-released does not currently provide these

features.

Shill’s focus is very much on its capability system. Shill

of course supports calling arbitrary executables:

exec(jpeginfo, ["jpeginfo","-i",file],

stdout = out, extras = [libc,libjpeg])

The first argument to exec is a reference to the executable

to be run, which is also a capability to actually execute it

(here, jpeginfo—we are not shown how this capability is

obtained); this capability is not a string. Next comes the actual

command as a string, and then comes the redirection (here,

piping the command’s output to a stream named out). Finally,
the extras indicate other capabilities that will be necessary

to safely run the program (here, the C standard library and a

JPEG manipulation library used by the executable). Shill is

very good at its job—managing capabilities—but is unsuited

to interactive use. Features like the collections of capabilities

they call ‘wallets’ ease the programmatic burden, but Shill

is meant only to replace “the scripting portion of Bash”.

While Shill doesn’t go so far to identify precisely what

makes it less suited for interactive use, scsh offers a list of

features that they conjecture would foster interactive use.

The list of features doesn’t mention word expansion, yet I

believe that word expansion is in fact critical for the interac-

tive feel. To see why, let us consider a few common uses of

expansion and compare scsh with the POSIX shell.

As a first example, consider the scsh re-implementation

of the echo command:

(define (ekko args)

(for−each

(lambda (arg)

(display arg) (display " "))

args)

In a shell, a similar command can take advantage of the

variadic echo built-in, to write:

ekko() { echo "$@"; }

To avoid tautology, we could have instead used printf, but
in either definition, variadic commands and expansion give

a simpler model than manual, programmatic iteration.

The examples get more extreme when running more com-

plex commands. The following scsh snippet will move all of

the files ending in .c in the current directory to the directory

code:

(for−each

(lambda (f)

(rename−file

f

(string−append "code/" f)))

(file−match "." #f "*.c"))

The scsh code is programmatic: we generate a list of files

(file-match) in the current directory (".") excluding hid-

den dotfiles (#f) that end in .c, and then we iterate through

them (for-each) renaming each one to a carefully reassem-

bled name in a subdirectory. Compare with the shell snippet:

mv ∗.c code/

How is the shell so concise? Two factors contribute: the

mv function is variadic, and the pathname expansion stage

automatically ‘iterates’ through the matching files.

To be fair, scsh (and Scheme in general) has some of the

features one might want: the apply function allows for vari-

adic interfaces, and quasiquoting allows the progammer to

easily mix code and data in way not dissimilar to word ex-

pansion. One could write the bulk file move above in maybe

less idiomatic scsh as:

(run (mv ,@(file−match "." #f "*.c") code/))

Here ,@ is the ‘unquote-splicing’ operator in quasiquotation.

Unquote-splicing splices its argument into the quasiquoted

list: after computing the list of matching files, the result-

ing list is flattened into the list given to run. Quasiquoting
has a non-splicing insertion, as well. For example, we could

abstract out the target as follows:

(define (bulk−move−c tgt)

(run (mv ,@(file−match "." #f "*.c") ,tgt)))

Here , is the ‘unquote’ operator. It adds what follows as-is
into the list, without splicing. Since the run primitive expects

a valid command-line to run, the result of quasiquotation

here had better be a list of plain strings.

Quasiquoting gets us closer to something we might inter-

actively write, but we’re still a ways away from an interactive

shell:

(1) The default ought to be running commands, while scsh

requires one to type run before every command.

(2) Having pathname expansion with * greatly simplifies

enumerating files.

(3) Quasiquoting requires the user to explicitly decide

between unquote and unquote-splice at each inclusion.

(4) Word expansion supports concatenation automatically:

if we wanted to make sure tgt ends with a slash in

bulk-move-c, we must write ... ,(string-append
tgt "/"), whereas in the shell, we simply tack a / on

the end.

6

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

Word expansion supports POSIX shell interactivity PX/18, April 2018, Nice, France

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

In summary, scsh is unsuitable for interactive use not because

it’s missing .login, but because it lacks the concision the

shell gains by use of word expansion.

I should be very clear: the programmatic features in scsh

and Shill are excellent, and I too seek out similarly well-

structured interfaces when programming. My point is rather

that there’s a dovetail effect that makes the POSIX shell

particularly good at interactive work: on the one hand, we

have standard POSIX utilities with variadic interfaces; on

the other hand, word expansion in the shell gives us a light-

weight, concise interface for specifying multiple arguments.

4.1 REPLs and interactivity
While a variety of languages offer REPLs for interactive ex-

ploration, two classes of languages are particularly good for

both interactive use and programming: scientific computing

platforms, like Matlab and R; and dynamic languages in the

Lisp tradition, like Racket and Clojure. Neither of these use

word expansion, yet they manage to be throughly interactive.

How?

Scientists use workbenches like Matlab and R for interac-

tive/exploratory use, ranging from one off commands to, say,

generate a graph all the way to longer workflows that are

then transitioned to more permanent scripts and programs.

I suspect that the following factors contribute: a restricted

set of datatypes of interest (largely scalars, vectors, matrices,

and data frames); good defaults for visualization (plots and

graphs); and large operations bundled up so that a single

command includes a great deal of computation (e.g., BLAST,

SVD, PCA, and regression libraries). Some of the exploratory

nature of these workbenches may be come from their visu-

alizations: it’s very easy for a scientist to inspect partially

constructed models. I see a cognate in the shell program-

mer’s habit of echoing commands before actually running

them. Some of the interactivity may also come from training:

if scientists are taught to use these workbenches to explore,

then the workbenches develop a reputation for being good

for interactivity and exploration whether or not they are

good for the task.

Lisp family languages like Racket and Clojure support a

great deal of interactivity: it’s quite common to iteratively

add definitions to a file of code during interactive work. That

is, programming is a sort of cycle of “explore, find and commit

to a definition, explore again, revise or find a new definition”.

Such a cycle is qualitatively different from shell program-

ming, which is perhaps more about processes (scripting a

particular sequence of events) than definitions (designing

and manipulating a particular data structure). To put it differ-

ently, these interactive sessions in Lisp-y languages are about

processes for new data structures, while shell scripts tend

to deal with only one data structure—the filesystem. Scsh

is an example of a Lisp-like language that is well and truly

about manipulating the filesystem, but it is substantially less

interactive than the shell (see Section 4, above).

I list these examples of REPLs—scientific workbenches,

Lisp-like languages—to make it clear that by no means does

the shell have a monopoly on interactive work. But each of

these examples is either narrow in scope (scientific work-

benches) or not about manipulating the filesystem (Lisp-like

languages).

4.2 Shell-like libraries
The Plumbum library for Python and the turtle library for

Haskell offer ‘shell combinators’ [2, 8]. Programmers can

reflect shell utilities into language-level functions. Neither

is really ideal for interactive use, but both do a good job of

embedding shell-scripting DSLs in a more general program-

ming language. I omit further consideration of turtle, since

it doesn’t aim to be interactive:

The turtle library focuses on being a "better

Bash" by providing a typed and light-weight

shell scripting experience embedded within the

Haskell language.

The following examples are taken from the Plumbum docu-

mentation, and are meant to represent an interactive Python

session with Plumbum. First, overloaded operators allow for

a shell-like syntax:

>>> # compose a shell-like pipe

>>> chain = ls["-l"] | grep[".py"]

>>> # expose the Plumbum representation

>>> print chain

C:\Program Files\Git\bin\ls.exe −l

| C:\Program Files\Git\bin\grep.exe .py

>>>

>>> chain() # run the pipe

'−rw−r−−r−− 1 sebulba Administ

0 Apr 27 11:54 setup.py\n'

Once utilities can be invoked like normal functions, one can

use built-in Python features like apply, *args, and **kw to
support variadic interfaces. The syntax is not quite as spare

as that of the POSIX shell, though it’s considerably more

concise than standard Python idioms for opening processes,

like popen. Plumbum supports some level of nesting of com-

mands: one can invoke the reflected ssh command with a

Plumbum pipe itself; the following will connect to somehost,
then connect to anotherhost, and then find files that end in

.py:

>>> ssh["somehost",

ssh["anotherhost", ls | grep["\\.py"]]]

...

7

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

PX/18, April 2018, Nice, France Michael Greenberg

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

Plumbum’s abstractions ultimately fail for commands, though:

“command nesting works by shell-quoting (or shell-escaping)

the nested command” [8]. That is, Plumbum cannot avoid

relying, at some point, on the string-based, word-expansion

approach of the shell. Plumbum’s abstractions seem partic-

ularly successful for paths: globbing is explicit, and paths

are kept as objects, rather than strings—doing so allows for

much more graceful handling of lists of paths than in the

shell, where field splitting interacts poorly with spaces in

filenames. Relatedly, the Sh library for Python is similar to

Plumbum (and inspired Plumbum itself), but aims even less

than Plumbum to be a shell replacement. Sh is instead a nicer

way to interact with processes in general [6].

Shell libraries like Plumbum and turtle help write scripts,

but don’t achieve the interactivity of the shell.

5 ASSESSING THE IMPORTANCE OF
WORD EXPANSION

The foregoing qualitatively and theoretically examines how

word expansion is important for the shell, with my own

experience as the sole empirical source. I could instead quan-

titatively study how the POSIX shell is used in a variety of

settings: which features are meaningfully employed by a

variety of users when working in the shell? Such a study

would bring new forms of evidence to my argument, would

complement my approach, and would probably offer other

interesting insights into the design of the POSIX shell. I can

imagine performing a study in the manner of Whiteside et

al. [17]: compare user performance in a variety of modes (the

shell; Python or scsh; Python with Plumbum) on the sort

of task one would ordinarily perform interactively with the

shell (say, The Command Line Murders [16]), breaking users

up into groups based on past experience and preference. I

suspect that, in general, HCI/UI methods would have inter-

esting ways of phrasing and answering questions about the

importance of particular features of the POSIX shell.

6 FIXING AND EXTENDINGWORD
EXPANSION

I have argued that word expansion is an essential element in

the POSIX shell’s interactivity: the activities and core abstrac-

tions o of the shell demand extensive string manipulation;

more things in the shell are operands than operators, and the

shell’s operators are often variadic; attempts at replacing the

shell that leave out word expansion have failed to produce

compellingly interactive shells.

Supposing I am correct, and word expansion is critical
to the shell’s interactivity: what can we do to fix the shell,

which is undeniably error prone?What features is it missing?

Some popular shells are more (bash [5]) or less (fish [7])

POSIX compliant, extending the POSIX shell with helpful

features. For example, bash extends word expansion. Two

examples are brace expansion—where a{b,c} expands to

the two fields ab and ac—and pattern substitution, where

${x/.c/.o/} expands to test.o when x is test.c. These
extensions are useful, but do nothing to address issues with,

e.g., filenames with spaces. Fish’s extensions are much more

extreme, and with an eye to avoiding errors: they replace

the command language with a more ‘modern’ syntax; some

variables, like PATH, can range over lists rather than strings,

which solves some issues with spaces; they use a different

command substitution syntax; they provide automatic shell

completion based on parsing manual pages and highlight

syntax in the shell based on those completions. While fish’s

extensions are popular, the fish scripting language does not

seem to have the traction of the POSIX shell and does nothing

to address existing scripts.

Giger and Wilde [1] add yet another stage of expansion to

the shell, extending the * and ? from the POSIX standard’s

pathname expansion with XPath.

Jeannerod et al. [10] propose using the CoLiS language

as a core calculus for studying shell. Their evaluation of

string expressions amounts to something akin to word expan-

sion, though their setting is deliberately less complex than

what the POSIX standard specifies. Interactive programming

seems to be a non-goal for them, since their focus is on an-

alyzing Debian “maintainer scripts” for packages, rejecting

programs outside a certain subset of the shell.

Mazurak and Zdancewic [13] describe an analysis for cal-

culating the number of fields that will come out of a given

term. More such analyses—perhaps with syntax highlight-

ing à la fish—would surely help identify potential scripting

errors.

Word expansion is a critical piece of the shell, dovetailing

with the POSIX utilities to offer a concise and powerful in-

terface. Is there some design adjacent to the POSIX shell as

it exists that (a) works for many existing scripts, (b) doesn’t

change the character of the shell so much as to hurt inter-

activity, but (c) avoids the unpredictability that comes with

field splitting?

REFERENCES
[1] Kaspar Giger and Erik Wilde. 2006. XPath Filename Expansion in

a Unix Shell. In Proceedings of the 15th International Conference on
World Wide Web (WWW ’06). ACM, New York, NY, USA, 863–864.

https://doi.org/10.1145/1135777.1135916

[2] Gabriel Gonzalez. [n. d.]. Turtle: shell programming, Haskell style. ([n.

d.]). https://github.com/Gabriel439/Haskell-Turtle-Library Accessed

2018-02-07.

[3] Michael Greenberg. 2017. Understanding the POSIX Shell as a Pro-

gramming Language. (2017). OBT.

[4] Stephen José Hanson, Robert E. Kraut, and James M. Farber. 1984.

Interface Design and Multivariate Analysis of UNIX Command Use.

8

https://doi.org/10.1145/1135777.1135916
https://github.com/Gabriel439/Haskell-Turtle-Library

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

Word expansion supports POSIX shell interactivity PX/18, April 2018, Nice, France

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

ACM Trans. Inf. Syst. 2, 1 (Jan. 1984), 42–57. https://doi.org/10.1145/

357417.357421

[5] http://savannah.gnu.org/project/memberlist.php?group=bash. [n. d.].

GNU Bash: the Bourne Again SHell. ([n. d.]). https://www.gnu.org/

software/bash/ Accessed 2018-02-05.

[6] https://github.com/amoffat/sh/graphs/contributors. [n. d.]. Sh: Python

process launching. ([n. d.]). http://amoffat.github.io/sh/ Accessed

2018-01-31.

[7] https://github.com/fish-shell/fish shell/graphs/contributors. [n. d.].

Fish: the friendly interactive shell. ([n. d.]). https://fishshell.com/

Accessed 2018-01-19.

[8] https://github.com/tomerfiliba/plumbum/graphs/contributors. [n. d.].

Plumbum: shell combinators. ([n. d.]). http://plumbum.readthedocs.

io/en/latest/ Accessed 2018-01-31.

[9] IEEE and The Open Group. 2016. The Open Group Base Specifications
Issue 7 (IEEE Std 1003.1-2008). IEEE and The Open Group.

[10] Nicolas Jeannerod, Claude Marché, and Ralf Treinen. 2017. A Formally

Verified Interpreter for a Shell-Like Programming Language. In Verified
Software. Theories, Tools, and Experiments - 9th International Conference,
VSTTE 2017, Heidelberg, Germany, July 22-23, 2017, Revised Selected
Papers. 1–18. https://doi.org/10.1007/978-3-319-72308-2_1

[11] Nicolas Jeannerod, Yann Régis-Gianas, and Ralf Treinen. 2017. Having
Fun With 31.521 Shell Scripts. Technical Report hal-01513750.

[12] Robert E. Kraut, Stephen J. Hanson, and James M. Farber. 1983. Com-

mand Use and Interface Design. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’83). ACM, New York,

NY, USA, 120–124. https://doi.org/10.1145/800045.801594

[13] Karl Mazurak and Steve Zdancewic. 2007. ABASH: Finding Bugs

in Bash Scripts. In PLAS. 105–114. https://doi.org/10.1145/1255329.

1255347

[14] Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. 2014.

Shill: A Secure Shell Scripting Language. In 11th USENIX Symposium
on Operating Systems Design and Implementation. USENIX. To appear.

[15] Olin Shivers. 2006. SCSH manual 0.6.7. (2006). https://scsh.net/docu/

html/man.html

[16] Noah Veltman. [n. d.]. The Command Line Murders. ([n. d.]). https:

//github.com/veltman/clmystery Accessed 2018-02-05.

[17] John Whiteside, Sandra Jones, Paula S Levy, and Dennis Wixon. 1985.

User performance with command, menu, and iconic interfaces. ACM
SIGCHI Bulletin 16, 4 (1985), 185–191.

[18] Dennis Wixon and Mark Bramhall. 1985. How Operating Systems are

Used: A Comparison of VMS and UNIX. In Proceedings of the Human
Factors Society Annual Meeting, Vol. 29. SAGE Publications Sage CA:

Los Angeles, CA, 245–249.

9

https://doi.org/10.1145/357417.357421
https://doi.org/10.1145/357417.357421
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
http://amoffat.github.io/sh/
https://fishshell.com/
http://plumbum.readthedocs.io/en/latest/
http://plumbum.readthedocs.io/en/latest/
https://doi.org/10.1007/978-3-319-72308-2_1
https://doi.org/10.1145/800045.801594
https://doi.org/10.1145/1255329.1255347
https://doi.org/10.1145/1255329.1255347
https://scsh.net/docu/html/man.html
https://scsh.net/docu/html/man.html
https://github.com/veltman/clmystery
https://github.com/veltman/clmystery

	Abstract
	1 Introduction
	2 What is word expansion?
	2.1 Word expansion in evaluation

	3 Why is expansion important?
	3.1 The shell's core abstractions
	3.2 The shell's operators and operands
	3.3 Interactive, exploratory programming

	4 Making do without word expansion
	4.1 REPLs and interactivity
	4.2 Shell-like libraries

	5 Assessing the importance of word expansion
	6 Fixing and extending word expansion
	References

