
43:8 Michael Greenberg and Austin J. Blatt

Shell state σ ::= ⟨pidroot,boutermost, opts, jobs, traps, traps
?
supershell

,

ρ, s∗
$*
, ℓ∗,Vro,Vexport, ρf , aliases, locale,

scwd, pid$!,n$?,nloop,n
?
optoff

⟩

Shell options opts ∈ Opts = {allexport, . . . }
Traps traps : Sig⇀ s
Jobs jobs : id:N⇀ {ji | ji.nid = id}
Job info ji ::= ⟨nid, (pid c)

∗
pipe, pid, c, js⟩

Job status js ::= running | stopped (TSTP | STOP | TTIN | TTOU) |
terminated sig | done n$?

Signals sig ∈ Sig = {SIGHUP, . . . }
Global environments ρ : s ⇀ s
Local environments ℓ : s ⇀ s? × bro × bexport
Sets of variable names V ⊆ P(Σ+)
Function definitions ρf : s ⇀ c
Aliases aliases : s ⇀ s
Locales locale ∈ L (e.g., C, it_IT.UTF-8)

Fig. 3. The shell’s state

The first line is about high-level process info. The root process ID, pidroot, is used for the special
parameter $$ (even in subshells). Each shell knows whether it is the outermost shell or a subshell
(boutermost), since only the outermost shell should perform certain job control and signal-handling
functions. Shell options are tracked in opts; current jobs are tracked in (jobs). Smoosh tracks not
only the current shell’s signal handlers a/k/a traps (traps), but also any traps from the supershell
(traps?

supershell
). In order to find out which traps are currently set without writing to a file, but

$(traps --) will execute in a subshell. By tracking the supershell’s traps, we can implement the
optional POSIX behavior of subshells inheriting the supershell’s traps for display purposes. The
traps field is a partial function from signals to strings. Signals not in the domain of σ .traps have
default dispositions; signals that map to empty strings are ignored; otherwise, the strings are parsed
and interpreted when signals are handled (see checkTraps in Figure 10).
The second line of the shell’s state characterizes the environment: ρ is the global, dynamically

scoped environment; the current positional parameters are stored in a list s∗
$*
. In addition to

environment and positional parameters, Smoosh also tracks a stack of local environments, ℓ∗.
These local environments exist not only to support the non-POSIX builtin local, but also for
scoped assignments for function calls (see Section 8.3). The shell tracks the read-only and exported
variables in ρ via Vro and Vexport, respectively. Aliases and the current locale information are also
tracked. (Smoosh only supports the ambient locale, though; see Section 5.1.)

The third and final line of the shell’s state holds finer grained information: the current working
directory (scwd), the PID of the last background command (pid$!), the exit status of the last command
(n$?), how deeply nested we are in the current loop (nloop), and the offset into the argument for
parsing in getopts (n?

optoff
) (see Section 8.2).

Smoosh’s state is just one way to keep track of everything a shell needs to know. For example,
the entire last line of the shell state could instead be kept in the shell’s environment, σ .ρ. Some
shell state in fact must be kept there, e.g., the OPTIND variable used by the getopts builtin. We find
it more convenient to manually track the last exit status in σ .n$? as a number than to repeatedly
coerce a string-valued numerical representation from an environment variable in σ .ρ.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 43. Publication date: January 2020.

