
Space-Efficient
Manifest Contracts

Michael Greenberg
Princeton University

POPL 2015

(First-order) contracts
• Specifications

• Written in code

• Checked at runtime

2

(First-order) contracts

assert(n≥0)

• Specifications

• Written in code

• Checked at runtime

2

(First-order) contracts

assert(n≥0)

sqrt : {x:Float | x≥0} → Float

• Specifications

• Written in code

• Checked at runtime

2

Higher-order contracts

({x:Int | x≥0} → {x:Int | x≥0}) → {y:Int | y≥0}

You give a function f on Nats, I return a Nat

“even-odd rule”
—Findler and Felleisen

2002
3

Higher-order contracts

({x:Int | x≥0} → {x:Int | x≥0}) → {y:Int | y≥0}

You give a function f on Nats, I return a Nat

“even-odd rule”
—Findler and Felleisen

2002
3

Higher-order contracts

({x:Int | x≥0} → {x:Int | x≥0}) → {y:Int | y≥0}

You give a function f on Nats, I return a Nat
If you don’t get a Nat, oops—you blame me

“even-odd rule”
—Findler and Felleisen

2002
3

Higher-order contracts

({x:Int | x≥0} → {x:Int | x≥0}) → {y:Int | y≥0}

You give a function f on Nats, I return a Nat
If you don’t get a Nat, oops—you blame me

If f is called with a negative number, oops—you blame me

“even-odd rule”
—Findler and Felleisen

2002
3

Higher-order contracts

({x:Int | x≥0} → {x:Int | x≥0}) → {y:Int | y≥0}

You give a function f on Nats, I return a Nat
If you don’t get a Nat, oops—you blame me

If f is called with a negative number, oops—you blame me

If f returns a negative, oops—I blame you

“even-odd rule”
—Findler and Felleisen

2002
3

Checking contracts at runtime

4

Nat 7

Checking contracts at runtime

4

Nat 7 7

Checking contracts at runtime

4

Nat 7 7

Nat -1

Checking contracts at runtime

4

Nat 7 7

Nat -1 blame

Checking contracts at runtime

4

Nat 7 7

Nat -1 blame

→Pos predPos

Checking contracts at runtime

4

Nat 7 7

Nat -1 blame

→Pos pred 1)(Pos

Checking contracts at runtime

4

Nat 7 7

Nat -1 blame

→Pos pred 1)(
Pos(pred (1))

Pos

Pos

Checking contracts at runtime

4

Nat 7 7

Nat -1 blame

→Pos pred 1)(
Pos(pred (1))

Pos

Pos blame

Bad space behavior

5

Nat → Nat f v)(

Nat (f(Nat v))

Bad space behavior

5

Nat → Nat f v)(

Nat (f(Nat v))
My paper:
a solution!

Function proxies

List
...
head : {l:α list| not (null l)}→α

Set
...
min : {l:α set| not (empty) l}→α

6

Function proxies

List
...
head : {l:α list| not (null l)}→α

Set
...
min : {l:α set| not (empty) l}→α

6

Function proxies

List

...
head = fun x. …

Set

empty = null  

min = head

7

not null → α)(

not empty → α)(

Tail calls

let odd = (λn:Int. if (n==0) then false else even (n-1))

let even = (λn:Int. if (n==0) then true else odd (n-1))

8

→
→

Tail calls

let odd = (λn:Int. if (n==0) then false else even (n-1))

let even = (λn:Int. if (n==0) then true else odd (n-1))

8

→
→

Tail calls

let odd = (λn:Int. if (n==0) then false else even (n-1))

let even = (λn:Int. if (n==0) then true else odd (n-1))

8

→
→

What tail calls?

even (3)

9

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

What tail calls?

even (3)

odd (2)

9

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

What tail calls?

even (3)

odd (2)

even (1)

9

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

What tail calls?

even (3)

odd (2)

even (1)

odd (0)

9

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

What tail calls?

even (3)

odd (2)

even (1)

odd (0)

false

9

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

What tail calls?

even (3)

odd (2)

even (1)

odd (0)

false

9

Contracts
break

tail calls!

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

Bad space behavior

Functional Programming - Tail Calls = Bad News  

• Contracts change asymptotic space behavior
• Big barrier to adoption

10

Space-efficient
manifest contracts

a semantics for manifest contracts  
 

checks consume constant space  
 

behave just like classic contracts

11

Westward the Course of Empire Takes Its Way
Emanuel Leutze

Contracts Made Manifest

13

Are
contracts

types?

ManifestLatent

yesno

Greenberg, Pierce, and Weirich POPL 2010

Casts

I know e has type T1

Treat it as type T2
If I’m wrong, blame ℓ

14

<T1⇒T2>ℓ e

Casts

<T1⇒T2>ℓ e
B ::= Bool | ...
T ::= {x:B | e} | T1→T2

15

Casts between refinements

<{x:Int | true}⇒{x:Int | x≥0}>ℓ 7 ⟼* 7

16

Casts between refinements

<{x:Int | true}⇒{x:Int | x≥0}>ℓ 7 ⟼* 7

<{x:Int | true}⇒{x:Int | x≥0}>ℓ -1 ⟼* blame ℓ

16

Casts between functions

<T1 → T2⇒U1 → U2>ℓ f

...is a value a/k/a function proxy.

17

Casts between functions

(<T1 → T2⇒U1 → U2>ℓ f) v ⟼

 <T2⇒U2>ℓ (f (<U1⇒T1>ℓ v))

18

19

(<{x:Int|true}→{x:Int|true}⇒
 {x:Int|x≥0}→{x:Int|x≥0}>ℓ λx:{x:Int|true}. x-1) 0 ⟼

19

(<{x:Int|true}→{x:Int|true}⇒
 {x:Int|x≥0}→{x:Int|x≥0}>ℓ λx:{x:Int|true}. x-1) 0 ⟼

<{x:Int|true}⇒{x:Int|x≥0}>ℓ 
 (λx:{x:Int|true}. x-1 (<{x:Int|x≥0}⇒{x:Int|true}>ℓ 0)) ⟼*

19

(<{x:Int|true}→{x:Int|true}⇒
 {x:Int|x≥0}→{x:Int|x≥0}>ℓ λx:{x:Int|true}. x-1) 0 ⟼

<{x:Int|true}⇒{x:Int|x≥0}>ℓ 
 (λx:{x:Int|true}. x-1 (<{x:Int|x≥0}⇒{x:Int|true}>ℓ 0)) ⟼*

<{x:Int|true}⇒{x:Int|x≥0}>ℓ (λx:{x:Int|true}. x-1 0) ⟼*

19

(<{x:Int|true}→{x:Int|true}⇒
 {x:Int|x≥0}→{x:Int|x≥0}>ℓ λx:{x:Int|true}. x-1) 0 ⟼

<{x:Int|true}⇒{x:Int|x≥0}>ℓ 
 (λx:{x:Int|true}. x-1 (<{x:Int|x≥0}⇒{x:Int|true}>ℓ 0)) ⟼*

<{x:Int|true}⇒{x:Int|x≥0}>ℓ (λx:{x:Int|true}. x-1 0) ⟼*

<{x:Int|true}⇒{x:Int|x≥0}>ℓ -1 ⟼* blame ℓ

19

(<{x:Int|true}→{x:Int|true}⇒
 {x:Int|x≥0}→{x:Int|x≥0}>ℓ λx:{x:Int|true}. x-1) 0 ⟼

<{x:Int|true}⇒{x:Int|x≥0}>ℓ 
 (λx:{x:Int|true}. x-1 (<{x:Int|x≥0}⇒{x:Int|true}>ℓ 0)) ⟼*

<{x:Int|true}⇒{x:Int|x≥0}>ℓ (λx:{x:Int|true}. x-1 0) ⟼*

<{x:Int|true}⇒{x:Int|x≥0}>ℓ -1 ⟼* blame ℓ

19

Pop quiz

20

<(Nat→Nat)→Nat⇒(Pos→Pos)→Pos>ℓ
When we execute

will we check Nat or Pos
 in the domain’s domain?

Insight #1: use coercions

21

<T1⇒T2>ℓ

→

Coercions between
predicates

22

<{x:Int | true}⇒{x:Int | x≥0}>ℓ 7 ⟼* 7

<{x:Int | true}⇒{x:Int | x≥0}>ℓ -1 ⟼* blame ℓ

Coercions between
predicates

22

<{x:Int | true}⇒{x:Int | x≥0}>ℓ 7 ⟼* 7

<{x:Int | true}⇒{x:Int | x≥0}>ℓ -1 ⟼* blame ℓ

Totally
ignored!

Coercions between
predicates

23

<{x:Int | true}⇒{x:Int | x≥0}>ℓ 7 ⟼* 7

<{x:Int | true}⇒{x:Int | x≥0}>ℓ -1 ⟼* blame ℓ

Nat

Coercions between
functions

(<{x:Int|true}→{x:Int|true}⇒{x:Int|x≥0}→{x:Int|x≥0}>ℓ f) v
⟼

<{x:Int|true}⇒{x:Int|x≥0}>ℓ (f (<{x:Int|x≥0}⇒{x:Int|true}>ℓ v))

24

Coercions between
functions

(<{x:Int|true}→{x:Int|true}⇒{x:Int|x≥0}→{x:Int|x≥0}>ℓ f) v
⟼

<{x:Int|true}⇒{x:Int|x≥0}>ℓ (f (<{x:Int|x≥0}⇒{x:Int|true}>ℓ v))

24

Nat

Coercions between
functions

(<{x:Int|true}→{x:Int|true}⇒{x:Int|x≥0}→{x:Int|x≥0}>ℓ f) v
⟼

<{x:Int|true}⇒{x:Int|x≥0}>ℓ (f (<{x:Int|x≥0}⇒{x:Int|true}>ℓ v))

24

IntNat

Coercions between
functions

25

Int Nat→

(<{x:Int|true}→{x:Int|true}⇒{x:Int|x≥0}→{x:Int|x≥0}>ℓ f) v
⟼

<{x:Int|true}⇒{x:Int|x≥0}>ℓ (f (<{x:Int|x≥0}⇒{x:Int|true}>ℓ v))

Coercions between
functions

26

<T1 → T2⇒U1 → U2>ℓ

→
<U1⇒T1>ℓ <T2⇒U2>ℓ

Coercions between
functions

26

<T1 → T2⇒U1 → U2>ℓ

→
<U1⇒T1>ℓ <T2⇒U2>ℓ

Coercions between
functions

26

<T1 → T2⇒U1 → U2>ℓ

→
<U1⇒T1>ℓ <T2⇒U2>ℓ

Makeup exam

27

<(Nat→Nat)→Nat⇒(Pos→Pos)→Pos>ℓ
When we execute

will we check Nat or Pos
 in the domain’s domain?

Makeup exam

27

<(Nat→Nat)→Nat⇒(Pos→Pos)→Pos>ℓ
When we execute

Pos→Pos→()Nat

will we check Nat or Pos
 in the domain’s domain?

Bodies in Urban Spaces
Willi Dorner / Studio 70

Insight #2:
avoid redundant checks

29

Nat 6EvenNat

Insight #2:
avoid redundant checks

29

Nat 6EvenNat 6EvenNat

Insight #2:
avoid redundant checks

29

Nat 6EvenNat 6EvenNat 6Nat

Insight #2:
avoid redundant checks

29

Nat 6Even

6

Nat 6EvenNat 6Nat

Insight #2:
avoid redundant checks

29

Nat 6Even

6

Nat 6EvenNat

Nat 7EvenNat

6Nat

Insight #2:
avoid redundant checks

29

Nat 6Even

6

Nat 6EvenNat

Nat 7EvenNat 7EvenNat

6Nat

Insight #2:
avoid redundant checks

29

blame

Nat 6Even

6

Nat 6EvenNat

Nat 7EvenNat 7EvenNat

6Nat

Insight #2:
avoid redundant checks

29

blame

Nat 6Even

6

Nat 6EvenNat

Nat 7EvenNat

Nat -1EvenNat

7EvenNat

6Nat

Insight #2:
avoid redundant checks

29

blame

blame

Nat 6Even

6

Nat 6EvenNat

Nat 7EvenNat

Nat -1EvenNat

7EvenNat

6Nat

Insight #2:
avoid redundant checks

29

blame

blame

Nat 6Even

6

Never fails!

Nat 6EvenNat

Nat 7EvenNat

Nat -1EvenNat

7EvenNat

6Nat

Eliminating redundant checks

30

even (3)

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

Eliminating redundant checks

30

even (3)

odd (2)

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

Eliminating redundant checks

30

even (3)

odd (2)

even (1)

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

Eliminating redundant checks

30

even (3)

odd (2)

even (1)

odd (0)

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

Eliminating redundant checks

30

even (3)

odd (2)

even (1)

odd (0)

Redundant!

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

Eliminating redundant checks

30

even (3)

odd (2)

even (1)

odd (0)

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

Eliminating redundant checks

30

even (3)

odd (2)

even (1)

odd (0)

false

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

Eliminating redundant checks

30

even (3)

odd (2)

even (1)

odd (0)

false

Redundant!

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

Eliminating redundant checks

30

even (3)

odd (2)

even (1)

odd (0)

false

let odd = (λn:Int. … even (n-1))

let even = (λn:Int. … odd (n-1))

→
→

Redundant checks
• Same color — same check

• Formally: decidable pre-order on refinement types

• Is this enough?

31

How many checks?

Finitely many

…because of simple types!

How many checks?

Finitely many

…because of simple types!

Types:

Bounds

Finitely many types

Appear once, at most

What’s the worst that
can happen?

Types:

Bounds

Finitely many types

Appear once, at most

What’s the worst that
can happen?

→
→

Types:

Bounds

Finitely many types

Appear once, at most

What’s the worst that
can happen?

→
→

Types:

Bounds

Finitely many types

Appear once, at most

What’s the worst that
can happen?

→
→

Types:

Bounds

Finitely many types

Appear once, at most

What’s the worst that
can happen?

→
→

Types:

Eliminating redundant checks

How do we merge lists of checks?

34

ee

Invariant: the checks on the stack have no redundancy.

We’ll merge the new checks in,
 dropping redundant checks.

Eliminating redundant checks

How do we merge lists of checks?

34

e e’()e

Invariant: the checks on the stack have no redundancy.

We’ll merge the new checks in,
 dropping redundant checks.

Merging, in detail

How do we merge lists of checks?

35

ee

+ = ?

Merging, in detail

How do we merge lists of checks?

35

e e’()e

+ = ?

Merging, in detail

How do we merge lists of checks?

35

e e’()e

+ = ?
new

Merging, in detail

How do we merge lists of checks?

35

e e’()e

+ = ?
new old

Merging, in detail

36

+ =

e e’()e

How do we merge lists of checks?

Merging, in detail

36

+ =

e e’()e

How do we merge lists of checks?

Merging, in detail

36

+ =

e e’()e

How do we merge lists of checks?

Merging, in detail

36

+ =

e e’()e

How do we merge lists of checks?

Merging, in detail

36

+ =

e e’()e

How do we merge lists of checks?

Merging, in detail

36

+ =

e e’()e

How do we merge lists of checks?

Merging, in detail

36

+ =

e e’()e

How do we merge lists of checks?

Merging, in detail

36

+ =

e e’()e

How do we merge lists of checks?

Merging, in detail

+ =

new old

How do we merge lists of checks?

e e’()e

Go from new to old

Drop redundant checks
on the old coercion

Merging function proxies

38

→→)(f()v→)(f v

Merging function proxies

38

→→)(f()v→)(f v

Merging function proxies

38

→→)(f()v

→)(f v()

→)(f v

Merging function proxies

38

→→)(f()v

→)(f v()

→)(f v

Merging function proxies

38

→→)(f()v

→)(f v()

→)(f v

(f v)()

Merging function proxies

38

→→)(f()v

→)(f v()

→)(f v

(f v)()

oldnew

Merging function checks

39

→ →+ =

Domain: new to old
Codomain: old to new

→

new old

Merging function checks

39

→ →+ =

Domain: new to old
Codomain: old to new

→+

new old

Merging function checks

39

→ →+ =

Domain: new to old
Codomain: old to new

→+

new old

+

Merging function checks

40

→ →+ =

Domain: new to old
Codomain: old to new

→

new old

Merging function checks

40

→ →+ =

Domain: new to old
Codomain: old to new

→

new oldGo from right to left

Drop redundant checks

Contravariance

Proofs

41

Lemma [Eidetic canonical forms (A.15)]: If ; `E e : T and
valE e then:

– If T = {x :B | e

0}, then e = k and ty(k) = B and
e

0
[e/x] �!⇤

E true.
– If T = T21!T22, then either e = �x :T . e

0 or e =

hT11!T12
c1 7!c2) T21!T22i• �x :T11. e

0.

Lemma [Eidetic progress (A.16)]: If ; `E e : T , then either:

1. resultE e , i.e., e = *l or valE e; or
2. there exists an e

0 such that e �!E e

0.

Lemma [Eidetic preservation (A.20)]: If ; `E e : T and e �!E

e

0 then ; `E e

0
: T .

Eidetic �H shares source programs (Definition 3.1) with classic
�H. We can therefore say that classic and eidetic �H are really just
modes of a single language.

Lemma [Source program typing for eidetic �H (A.21)]:
Source programs are well typed in C iff they are well typed in E,
i.e.:

– � `C e : T as a source program iff � `E e : T as a source
program.

– `C T as a source program iff `E T as a source program.
– `C � as a source program iff `E � as a source program.

5. Soundness for space efficiency
We want space efficiency to be sound: it would be space efficient
to never check anything. Classic �H is normative: the more a mode
behaves like classic �H, the “sounder” it is.

A single property summarizes how a space-efficient calculus
behaves with respect to classic �H: cast congruence. In classic
�H, if e1 �!C e2 then hT1

•)T2il e1 and hT1
•)T2il e2 be-

have identically. This cast congruence principle is easy to see,
because E CASTINNERC applies freely. In eidetic �H, however,
E CASTINNER can only apply when E CASTMERGEE doesn’t.
Merged casts may not behave the same as running the two casts
separately. Eidetic �H recovers a complete cast congruence, just
like classic �H has. Diagrammatically:

e1 e2

+

hT1
•)T2il e1 hT1

•)T2il e2

resultE e

E

⇤
E ⇤

E

The proof is in Appendix B, but it is worth observing here that
eidetic �H needs a proof of idempotency to justify the way it uses
reflexivity to eliminate redundant coercions: checking a property
once is as good as checking it twice. Naturally, this property only
holds without state.

Our proofs relating classic �H and eidetic �H are by logical
relations, found in Figure 6. In the extended version, the sound-
ness proofs for all three different space-efficient modes use a single
mode-indexed logical relation. Here we give its restriction to eidetic
�H. As far as alternative techniques go, an induction over evalua-
tion derivations wouldn’t give us enough information about evalua-
tions that return lambda abstractions. Other contextual equivalence
techniques (e.g., bisimulation) would probably work, too.

Value rules e1 ⇠E e2 : T

k ⇠E k : {x :B | e} () ty(k) = B ^ e[k/x] �!⇤
E true

e11 ⇠E e21 : T1!T2 () valC e1 ^ valE e2 ^
8e12 ⇠E e22 : T1. e11 e12 'E e21 e22 : T2

Term rules e1 'E e2 : T

e1 'E e2 : T

()
✓
e1 �!⇤

C *l ^
e2 �!⇤

E *l

◆
_

0

@
e1 �!⇤

C e

0
1 ^ valC e

0
1 ^

e2 �!⇤
E e

0
2 ^ valE e

0
2 ^

e

0
1 ⇠E e

0
2 : T

1

A

Type rules T1 ⇠E T2

{x :B | e1} ⇠E {x :B | e2} ()
8e01 ⇠E e

0
2 : {x :B | true}. e1[e01/x] 'E e2[e

0
2/x] : {x :Bool | true}

T11!T12 ⇠E T21!T22 () T11 ⇠E T21 ^ T12 ⇠E T22

Closing substitutions and open terms � |=E �

� ` e1 'E e2 : T

� |=E � () 8x 2 dom(�). �1(x) ⇠E �2(x) : �(x)

� ` e1 'E e2 : T () 8� |=E �. �1(e1) 'E �2(e2) : T

Figure 6. Blame-exact, symmetric logical relation between classic
�H and eidetic �H

Mode Cast size Pending casts
Classic (m = C) 2Wh + L 1
Eidetic (m = E) s2

L+W
B |e|

Table 1. Space efficiency of �H

Lemma [Similar casts are logically related (B.3)]: If T1 ⇠E T

0
1

and T2 ⇠E T

0
2 and e1 ⇠E e2 : T1, then hT1

•)T2il e1 'E

hT 0
1

•)T

0
2il e2 : T2.

Lemma [Relating classic and eidetic source programs (B.4)]:

1. If � `C e : T as a source program then � ` e 'E e : T .
2. If `C T as a source program then T ⇠E T .

6. Bounds for space efficiency
We have claimed that eidetic �H is space efficient: what do we
mean? What sort of space efficiency have we achieved? We sum-
marize the results in Table 1; proofs are in Appendix C. From a
high level, there are only a finite number of types that appear in
our programs, and this set of types can only reduce as the program
runs. We can effectively code each type in the program as an inte-
ger, allowing us to efficiently run the � predicate.

Suppose that a type of height h can be represented in Wh bits
and a label in L bits. (Type heights are defined in Figure 7 in
Appendix C.) Casts in classic �H each take up 2Wh + L bits: two
types and a blame label. Coercions in eidetic �H have a different
form: the only types recorded are those of height 1, i.e., refinements
of base types. Pessimistically, each of these may appear at every
position in a function coercion c1 7! c2. We use s to indicate the
“size” of a function type, i.e., the number of positions it has. As
a first pass, a set of refinements and blame labels take up 2

L+W1

space. But in fact these coercions must all be between refinements

Soundness Congruence lemma

Classic semantics
and

space-efficient semantics
behave identically

Congruence lemma

42

e e’

e’’

e e’

Congruence lemma

43

e1 e1’

e’’

e1’e1() ()

Our step:
check

Congruence lemma

44

e1 e1’

e’’

e1’e1() ()

e1 e1’

Our step:
check

Outlook

45

Types:

• Use coercions, not casts

• Merge redundant checks

+ =

Outlook
• Can we scale to dependency?

46

Types:
+ =

• Simple types—finite number

• Dependent types—infinite
number

Outlook
• Can we scale to dependency and effects?

47

• Idea: partial orders/lattices

+ =

≤ 5

≤ 6

≤ 7

≤ 8

≤ 9

keep
lowest
check

≤ xx: →

Space-Efficient
Manifest Contracts

Michael Greenberg
Princeton University

POPL 2015

