Space-Efficient Manifest Contracts

Michael Greenberg
Princeton University
POPL 2015

(First-order) contracts

- Specifications
- Written in code
- Checked at runtime

(First-order) contracts

- Specifications
- Written in code
- Checked at runtime
assert($\mathrm{n} \geq 0$)

(First-order) contracts

- Specifications
- Written in code
- Checked at runtime
assert($n \geq 0$)
sqrt : $\{x:$ Float $\mid x \geq 0\} \rightarrow$ Float

Higher-order contracts

$$
(\{x: \operatorname{lnt} \mid x \geq 0\} \rightarrow\{x: \operatorname{lnt} \mid x \geq 0\}) \rightarrow\{y: \operatorname{lnt} \mid y \geq 0\}
$$

You give a function f on Nats, I return a Nat
"even-odd rule"

- Findler and Felleisen

Higher-order contracts

$$
(\{x: \operatorname{lnt} \mid x \geq 0\} \rightarrow\{x: \operatorname{lnt} \mid x \geq 0\}) \rightarrow\{y: \operatorname{lnt} \mid y \geq 0\}
$$

You give a function f on Nats, I return a Nat
"even-odd rule"

- Findler and Felleisen

Higher-order contracts

$(\{x: \operatorname{lnt} \mid x \geq 0\} \rightarrow\{x: \operatorname{Int} \mid x \geq 0\}) \rightarrow\{y: \operatorname{lnt} \mid y \geq 0\}$

You give a function f on Nats, I return a Nat
If you don't get a Nat, oops-you blame me
"even-odd rule"

- Findler and Felleisen

2002

Higher-order contracts

$(\{x: \operatorname{lnt} \mid x \geq 0\} \rightarrow\{x: \operatorname{Int} \mid x \geq 0\}) \rightarrow\{y: \operatorname{lnt} \mid y \geq 0\}$

You give a function f on Nats, I return a Nat
If you don't get a Nat, oops-you blame me
If f is called with a negative number, oops-you blame me

"even-odd rule"
- Findler and Felleisen
2002

Higher-order contracts

$(\{x: \operatorname{lnt} \mid x \geq 0\} \rightarrow\{x: \operatorname{lnt} \mid x \geq 0\}) \rightarrow\{y: \operatorname{lnt} \mid y \geq 0\}$

You give a function f on Nats, I return a Nat

If you don't get a Nat, oops-you blame me
If f is called with a negative number, oops-you blame me If f returns a negative, oops-I blame you

Checking contracts at runtime

Nat 7

Checking contracts at runtime

Nat $7 \longrightarrow 7$

Checking contracts at runtime

Nat $7 \longrightarrow 7$

Nat -I

Checking contracts at runtime

Nat $7 \longrightarrow 7$

Nat $-\mathrm{I} \longrightarrow$ blame

Checking contracts at runtime

Nat $7 \longrightarrow 7$

Nat $-\mathrm{I} \longrightarrow$ blame

Pos \rightarrow Pos pred

Checking contracts at runtime

Nat 7 7

Nat -I

Pos \rightarrow Pos pred) ।

Checking contracts at runtime

Nat 7 7

Nat -I

Pos \rightarrow Pos pred) I
Pos (pred (Pos I))

Checking contracts at runtime

Nat 7 7

 Nat $-\mathrm{I} \longrightarrow$ blamePos \rightarrow Pos pred) I
Pos $(\operatorname{pred}($ Pos I) $) \longrightarrow$ blame

Bad space behavior

Nat Nat ())

Bad space behavior

Nat
 (速
 (1))

My paper: a solution!

Function proxies

$$
\begin{aligned}
& \hline \operatorname{Set} \\
& \ldots \\
& \min :\{1: \alpha \text { set } \mid \operatorname{not}(\text { empty }) \mid\} \rightarrow \alpha
\end{aligned}
$$

head : $\{I: \alpha$ list \mid not (null I) $\} \rightarrow \alpha$

Function proxies

Function proxies

Tail calls

let odd $=\square(\lambda n: \operatorname{lnt}$. if $(n==0)$ then false else even $(n-I))$
let even $=\square \rightarrow(\lambda n: \operatorname{lnt}$. if $(n==0)$ then true else odd $(n-I))$

Tail calls

Tail calls

What tail calls?

$$
\begin{aligned}
& \text { let odd }=\square \rightarrow(\lambda n: \operatorname{lnt} . \ldots \text { even }(n-I)) \\
& \text { let even }= \\
& (\lambda n: \operatorname{Int} . \ldots \text { odd }(n-I))
\end{aligned}
$$

What tail calls?

What tail calls?

$$
\begin{aligned}
& \text { let odd }=\square \rightarrow(\lambda n: \text { Int. } \ldots \text { even }(n-I)) \\
& \text { let even }=
\end{aligned} \rightarrow(\lambda n: \text { Int. } \ldots \text { odd }(n-I))
$$

What tail calls?

$$
\begin{aligned}
& \text { let odd }=\square \rightarrow(\lambda n: \text { Int. } \ldots \text { even }(n-I)) \\
& \text { let even }=
\end{aligned} \rightarrow(\lambda n: \ln t . \ldots \text { odd }(n-I))
$$

What tail calls?

$$
\begin{aligned}
& \text { let odd }=\square \rightarrow(\lambda n: \text { Int. } \ldots \text { even }(n-I)) \\
& \text { let even }=
\end{aligned} \rightarrow(\lambda n: \text { Int. } \ldots \text { odd }(n-I))
$$

What tail calls?

let odd $=\square \rightarrow(\lambda n: \operatorname{lnt} . \ldots$ even $(n-I))$
let even $=\longrightarrow(\lambda n: I n t . \ldots$ odd $(n-I))$

	even (2)
Contracts	
break	
tail calls!	

false

Bad space behavior

Functional Programming - Tail Calls = Bad News

- Contracts change asymptotic space behavior
- Big barrier to adoption

Space-efficient manifest contracts

a semantics for manifest contracts

checks consume constant space
behave just like classic contracts

Contracts Made Manifest

Greenberg, Pierce, and Weirich POPL 2010

Casts

I know e has type T_{1}
Treat it as type T_{2}
If I'm wrong, blame l

Casts

$\mathrm{B}::=$ Bool | \ldots
$\mathrm{T}::=\{\mathrm{x}: \mathrm{B} \mid \mathrm{e}\} \mid \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$

Casts between refinements

$<\{x: I n t \mid$ true $\} \Rightarrow\{x: I n t \mid x \geq 0\} \gg^{\ell} 7 \longmapsto{ }^{*} 7$

Casts between refinements

$<\{x: \operatorname{lnt} \mid$ true $\} \Rightarrow\{x: I n t \mid x \geq 0\}>\ell 7 \longmapsto{ }^{\star} 7$
$<\{x:$ Int | true $\} \Rightarrow\{x: I n t \mid x \geq 0\}>\ell-1 \longmapsto *$ blame ℓ

Casts between functions

$$
<\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2} \Rightarrow \mathrm{U}_{1} \rightarrow \mathrm{U}_{2}>^{\ell} \mathrm{f}
$$

...is a value $\mathrm{a} / \mathrm{k} /$ a function proxy.

Casts between functions

$$
\begin{aligned}
& \left(<T_{1} \rightarrow T_{2} \Rightarrow U_{1} \rightarrow U_{2}>\ell f\right) v \longmapsto \\
& <T_{2} \Rightarrow U_{2}>^{\ell}\left(f\left(<U_{1} \Rightarrow T_{1}>\ell v\right)\right)
\end{aligned}
$$

(< $<\mathrm{x}: \operatorname{Int|true}\} \rightarrow\{\mathrm{x}:$ Int|true $\} \Rightarrow$
$\{x: \operatorname{Int} \mid x \geq 0\} \rightarrow\{x: \ln \mid x \geq 0\}>^{\ell} \lambda x:\{x:$ Int|true $\left.\} . x-1\right) 0 \longmapsto$
(< $<\mathrm{x}: \operatorname{Int|true}\} \rightarrow\{\mathrm{x}:$ Int|true $\} \Rightarrow$
$\{x: \operatorname{Int} \mid x \geq 0\} \rightarrow\{x: \ln \mid x \geq 0\}>^{\ell} \lambda x:\{x:$ Int|true $\left.\} . x-1\right) 0 \longmapsto$
$<\{x:$ Int|true $\} \Rightarrow\{x: \ln | | x \geq 0\}>\ell$
$\left(\lambda x:\{x: I n t \mid t r u e\} . x-1\left(<\{x: \operatorname{lnt} \mid x \geq 0\} \Rightarrow\left\{x: \operatorname{Int|true}>^{\ell} 0\right)\right)\right.$
(< $\{\mathrm{x}:$ Int|true $\} \rightarrow\{\mathrm{x}:$ Int|true $\} \Rightarrow$
$\{x: \operatorname{Int|} x \geq 0\} \rightarrow\{x: \ln \mid x \geq 0\}>^{\ell} \lambda x:\{x:$ Int|true $\left.\} . x-1\right) 0 \longmapsto$
$<\{x:$ Int|true $\} \Rightarrow\{x: I n t \mid x \geq 0\}>\ell$
$\left(\lambda x:\{x: I n t \mid t r u e\} . x-1\left(<\{x: I n t \mid x \geq 0\} \Rightarrow\{x: I n t \mid t r u e\}>{ }^{\ell} 0\right)\right) \longmapsto{ }^{*}$
$<\{x: \ln t \mid t r u e\} \Rightarrow\{x: \ln t \mid x \geq 0\}>^{\ell}(\lambda x:\{x: \ln \mid t r u e\} . x-10)$
(< $\{\mathrm{x}:$ Int|true $\} \rightarrow\{\mathrm{x}:$ Int|true $\} \Rightarrow$
$\{x: \operatorname{Int|} x \geq 0\} \rightarrow\{x: \ln \mid x \geq 0\}>^{\ell} \lambda x:\{x:$ Int|true $\left.\} . x-1\right) 0 \longmapsto$
$<\{x: \operatorname{Int} \mid t r u e\} \Rightarrow\{x: \operatorname{Int} \mid x \geq 0\}>\ell$
$\left(\lambda x:\{x: I n t \mid t r u e\} . x-1\left(<\{x: I n t \mid x \geq 0\} \Rightarrow\{x: I n t \mid t r u e\}>{ }^{\ell} 0\right)\right) \longmapsto^{*}$
$<\{x: \operatorname{Int|true}\} \Rightarrow\{x: \ln t \mid x \geq 0\}>{ }^{\ell}(\lambda x:\{x: \ln \mid t r u e\} . x-10)$
$<\{\mathrm{x}:$ Int|true $\} \Rightarrow\{\mathrm{x}: \operatorname{Int|} \mathrm{x} \geq 0\}>^{\ell}-1 \longmapsto *$ blame ℓ
(< $\{\mathrm{x}:$ Int|true $\} \rightarrow\{\mathrm{x}:$ Int|true $\} \Rightarrow$
$\{x: \operatorname{Int|} x \geq 0\} \rightarrow\{x: \ln \mid x \geq 0\}>^{\ell} \lambda x:\{x:$ Int|true $\left.\} . x-1\right) 0 \longmapsto$
$<\{x: \operatorname{Int} \mid t r u e\} \Rightarrow\{x: \operatorname{Int} \mid x \geq 0\}>\ell$
$\left(\lambda x:\{x: I n t \mid t r u e\} . x-1\left(<\{x: I n t \mid x \geq 0\} \Rightarrow\{x: I n t \mid t r u e\}>{ }^{\ell} 0\right)\right) \longmapsto^{*}$
$<\{x: \operatorname{Int|true}\} \Rightarrow\{x: \ln t \mid x \geq 0\}>{ }^{\ell}(\lambda x:\{x: \ln \mid t r u e\} . x-10)$
$<\{\mathrm{x}:$ Int|true $\} \Rightarrow\{\mathrm{x}: \operatorname{Int|} \mathrm{x} \geq 0\}>^{\ell}-1 \longmapsto *$ blame ℓ

Pop quiz

When we execute
$<($ Nat \rightarrow Nat $) \rightarrow \mathrm{Nat} \Rightarrow(\mathrm{Pos} \rightarrow \mathrm{Pos}) \rightarrow \mathrm{Pos}>\ell$

will we check Nat or Pos
 in the domain's domain?

Insight \#1: use coercions

$<\top_{1} \Rightarrow T_{2}>^{\ell}$

Coercions between predicates

$<\{x: \operatorname{lnt} \mid$ true $\} \Rightarrow\{x: \operatorname{Int} \mid x \geq 0\}>{ }^{\ell} 7 \longmapsto{ }^{*} 7$
$<\{x:$ Int | true $\} \Rightarrow\{x: I n t \mid x \geq 0\}>\ell-1 \longmapsto *$ blame ℓ

Coercions between predicates

$<\{x: \operatorname{lnt} \mid$ true $\} \Rightarrow\{x: \operatorname{Int} \mid x \geq 0\} \gg^{\ell} 7 \longmapsto{ }^{*} 7$
$<\{x:$ Int | true $\} \Rightarrow\{x: I n t \mid x \geq 0\}>\ell-1 \longmapsto *$ blame ℓ

Totally ignored!

Coercions between predicates

$$
<\{x: \operatorname{lnt} \mid \text { true }\} \Rightarrow\{x: \operatorname{Int} \mid x \geq 0\}>^{\ell} 7 \longmapsto{ }^{*} 7
$$

$<\{x:$ Int | true $\} \Rightarrow\{x: I n t \mid x \geq 0\}>\ell-1 \longmapsto *$ blame ℓ

Nat

Coercions between functions

$\left(<\{x: \operatorname{Int} \mid t r u e\} \rightarrow\{x: \operatorname{Int|true}\} \Rightarrow\{x: \operatorname{Int} \mid x \geq 0\} \rightarrow\{x: \operatorname{Int|x} \geq 0\}>{ }^{\ell} f\right) \vee$
\longmapsto
$<\{x: \operatorname{Int|true}\} \Rightarrow\{x: \operatorname{lnt} \mid x \geq 0\}>^{\ell}\left(f\left(<\{x: \operatorname{lnt} \mid x \geq 0\} \Rightarrow\{x: \operatorname{Int|true}\}>^{\ell} v\right)\right)$

Coercions between functions

$(<\{x: \operatorname{Int} \mid t r u e\} \rightarrow\{x: \operatorname{Int|true}\} \Rightarrow\{x: \operatorname{Int} \mid x \geq 0\} \rightarrow\{x: \operatorname{Int|x} \geq 0\}>\ell f) v$
\longmapsto
$<\{x: \operatorname{Int|true}\} \Rightarrow\{x: \operatorname{lnt} \mid x \geq 0\}>\ell(f(<\{x: \operatorname{lnt} \mid x \geq 0\} \Rightarrow\{x: \ln | | t r u e\}>\ell))$

Nat

Coercions between functions

$(<\{x: \ln | | t r u e\} \rightarrow\{x: \operatorname{Int|true}\} \Rightarrow\{x: \ln | | x \geq 0\} \rightarrow\{x: \ln t \mid x \geq 0\}>\ell f) v$

$<\{x: \operatorname{Int|true}\} \Rightarrow\{x: \operatorname{lnt} \mid x \geq 0\}>\ell\left(f\left(<\{x: \operatorname{Int|} x \geq 0\} \Rightarrow\{x: \operatorname{lnt} \mid t r u e\}>^{\ell} v\right)\right)$

Coercions between functions

$(<\{x: \ln | | t r u e\} \rightarrow\{x: \operatorname{Int|true}\} \Rightarrow\{x: \ln | | x \geq 0\} \rightarrow\{x: \ln t \mid x \geq 0\}>\ell f) v$

Coercions between functions

$$
<\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2} \Rightarrow \cup_{1} \rightarrow \cup_{2}>^{l}
$$

$$
<\cup_{1} \Rightarrow T_{1}>\ell \quad<T_{2} \Rightarrow \cup_{2}>\ell
$$

Coercions between functions

$$
<\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2} \Rightarrow \cup_{1} \rightarrow \cup_{2}>^{l}
$$

Coercions between functions

$$
<\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2} \Rightarrow \cup_{1} \rightarrow \cup_{2}>_{l}^{l}
$$

Makeup exam

When we execute
$<($ Nat \rightarrow Nat $) \rightarrow$ Nat $\rightarrow($ Pos \rightarrow Pos $) \rightarrow$ Pos $>\ell$
will we check Nat or Pos in the domain's domain?

Makeup exam

When we execute
$<($ Nat \rightarrow Nat $) \rightarrow$ Nat $\Rightarrow($ Pos \rightarrow Pos $) \rightarrow$ Pos $>\ell$

will we check Nat or Pos in the domain's domain?

Bodies in Urban Spaces

Insight \#2: avoid redundant checks

Nat Even Nat 6

Insight \#2: avoid redundant checks

Nat Even Nat $6 \longrightarrow$ Nat Even 6

Insight \#2: avoid redundant checks

Nat Even Nat $6 \longrightarrow$ Nat Even $6 \longrightarrow$ Nat 6

Insight \#2: avoid redundant checks

Nat Even Nat
 $6 \longrightarrow$ Nat Even
 Nat 6

Insight \#2: avoid redundant checks

Nat Even Nat $6 \longrightarrow$ Nat Even

 $\longrightarrow 6$
Nat Even Nat 7

Insight \#2:
 avoid redundant checks

Nat Even Nat $6 \longrightarrow$ Nat Even Nat 6

$6 \longrightarrow \mathrm{~N}$
$\longrightarrow 6$

Nat Even Nat $7 \longrightarrow$ Nat Even 7

Insight \#2:
 avoid redundant checks

$\begin{aligned} \text { Nat Even Nat } 6 \longrightarrow \text { Nat Even } 6 & \longrightarrow \mathrm{~N} \\ & \longrightarrow 6\end{aligned}$

Nat Even Nat $7 \longrightarrow$ Nat Even $7 \longrightarrow$ blame

Insight \#2:
 avoid redundant checks

Nat Even Nat
 $6 \longrightarrow$ Nat Even
 Nat 6

$6 \longrightarrow N$
$\longrightarrow 6$

Nat Even Nat $7 \longrightarrow$ Nat Even $7 \longrightarrow$ blame

Nat Even Nat -I

Insight \#2:
 avoid redundant checks

Nat Even Nat
 $6 \longrightarrow$ Nat Even
 Nat 6

$6 \longrightarrow N$
$\longrightarrow 6$

Nat Even Nat $7 \longrightarrow$ Nat Even $7 \longrightarrow$ blame

Nat Even Nat -I blame

Never fails!

Nat Even Nat $6 \longrightarrow$ Nat Even
$\begin{aligned} 6 & \longrightarrow \\ & \end{aligned}$
Nat 6

Nat
Nat Even Nat $-I \longrightarrow$ blame

Eliminating redundant checks

$$
\begin{aligned}
& \text { let odd }=\square \rightarrow(\lambda n: \operatorname{lnt} . \ldots \text { even }(n-I)) \\
& \text { let even }=\square \\
& (\lambda n: \ln t . \ldots \text { odd }(n-I))
\end{aligned}
$$

Eliminating redundant checks

$$
\begin{aligned}
& \text { let odd }=\square \rightarrow(\lambda n: \operatorname{lnt} . \ldots \text { even }(n-I)) \\
& \text { let even }=\square \\
& (\lambda n: \ln t . \ldots \text { odd }(n-I))
\end{aligned}
$$

Eliminating redundant checks

$$
\begin{aligned}
& \text { let odd }=\square \rightarrow \square(\lambda n: \ln t . \ldots \text { even }(n-I)) \\
& \text { let even }=
\end{aligned} \rightarrow \begin{aligned}
& (\lambda n: \ln t . \ldots \text { odd }(n-I))
\end{aligned}
$$

Eliminating redundant checks

$$
\begin{aligned}
& \text { let odd }=\square \rightarrow \square(\lambda n: \ln t . \ldots \text { even }(n-I)) \\
& \text { let even }=
\end{aligned} \rightarrow \begin{aligned}
& (\lambda n: \ln t . \ldots \text { odd }(n-I))
\end{aligned}
$$

Eliminating redundant checks

$$
\begin{aligned}
& \text { let odd }=\square \rightarrow \square \\
& \text { let even }=\square \rightarrow \square n: \operatorname{lnt} . \ldots \text { even }(n-I)) \\
& (\lambda n: \operatorname{lnt} . \ldots \text { odd }(n-I))
\end{aligned}
$$

Eliminating redundant checks

$$
\begin{aligned}
& \text { let odd }=\square \rightarrow \square(\lambda n: \ln t . \ldots \text { even }(n-I)) \\
& \text { let even }=
\end{aligned} \rightarrow \begin{aligned}
& (\lambda n: \ln t . \ldots \text { odd }(n-I))
\end{aligned}
$$

Eliminating redundant checks

$$
\begin{aligned}
& \text { let odd }=\square \rightarrow \square(\lambda n: \operatorname{lnt} . \ldots \text { even }(n-I)) \\
& \text { let even }=\square \rightarrow \square n: \ln t . \ldots \text { odd }(n-I))
\end{aligned}
$$

Eliminating redundant checks

let odd $=\square \rightarrow(\lambda n: \operatorname{Int} . \ldots$ even $(n-I))$
let even $=\longrightarrow(\lambda n: \operatorname{Int} . \ldots$ odd $(n-I))$

Eliminating redundant checks

$$
\begin{aligned}
& \text { let odd }=\square \rightarrow \square(\lambda n: \operatorname{lnt} . \ldots \text { even }(n-I)) \\
& \text { let even }=\square \rightarrow \square n: \ln t . \ldots \text { odd }(n-I))
\end{aligned}
$$

Redundant checks

- Same color - same check
- Formally: decidable pre-order on refinement types
- Is this enough?

How many checks?

Finitely many
...because of simple types!

How many checks?

Types: an

Finitely many
...because of simple types!

Bounds

Types: -י"

Finitely many types

Appear once, at most

What's the worst that can happen?

Bounds

Types: I07

Finitely many types

Appear once, at most

What's the worst that can happen?

Bounds

Types: I00

Finitely many types

Appear once, at most

What's the worst that can happen?

Bounds

Types: I07

Finitely many types

Appear once, at most

What's the worst that can happen?

Bounds

Types:

Finitely many types

Appear once, at most

What's the worst that can happen?

Eliminating redundant checks

How do we merge lists of checks?

Invariant: the checks on the stack have no redundancy.

> We'll merge the new checks in, dropping redundant checks.

Eliminating redundant checks

How do we merge lists of checks?

Invariant: the checks on the stack have no redundancy.

> We'll merge the new checks in, dropping redundant checks.

Merging, in detail

How do we merge lists of checks?

$$
+\quad=?
$$

Merging, in detail

How do we merge lists of checks?

Merging, in detail

How do we merge lists of checks?

new

Merging, in detail

How do we merge lists of checks?

Merging, in detail

How do we merge lists of checks?

Merging, in detail

How do we merge lists of checks?

Merging, in detail

How do we merge lists of checks?

$=$

Merging, in detail

How do we merge lists of checks?

Merging, in detail

How do we merge lists of checks?

$+$

$=$

Merging, in detail

How do we merge lists of checks?

Merging, in detail

How do we merge lists of checks?

Merging, in detail

How do we merge lists of checks?

Merging, in detail

Go from new to old

How do we merge lists o

Drop redundant checks on the old coercion

Merging function proxies $(>\rightarrow(\square) f)) v$

Merging function proxies $(\rightarrow(\square \rightarrow \mathrm{f})) \mathrm{V}$

Merging function proxies

Merging function proxies

Merging function proxies

$$
\stackrel{((\square \rightarrow \square f)}{ })
$$

$$
\square(f(\square-v))
$$

Merging function proxies

Merging function checks

Domain: new to old Codomain: old to new

\longrightarrow

Merging function checks

Domain: new to old Codomain: old to new

Merging function checks

Domain: new to old Codomain: old to new

Merging function checks

Domain: new to old
Codomain: old to new

Merging function checks

I: new to old in: old to new
Go from right to left

Drop redundant checks

Contravariance

Proofs

Soundness

Classic semantics and
Classic semantics

Congruence Iemma

behave identically

result $_{\mathrm{E}} e$

Congruence lemma

$e \rightarrow e^{\prime}$

Congruence lemma

Congruence lemma

Outlook

- Use coercions, not casts
- Merge redundant checks

Outlook

- Can we scale to dependency?

- Simple types-finite number
- Dependent types-infinite number

Outlook

- Can we scale to dependency and effects?

- Idea: partial orders/lattices

Space-Efficient Manifest Contracts

Michael Greenberg
Princeton University
POPL 2015

