
Understanding the POSIX Shell as a Programming Language

Michael Greenberg
Pomona College

michael@cs.pomona.edu

We build intricate systems with complex algorithms and invari-
ants, aiming for guarantees of correctness and performance... and
then we maintain and deploy these systems with shell scripts! What
are shell scripts? If the POSIX shell is a programming language,
what are its syntax and semantics? Can we apply PL tools to rea-
son about the shell?

In my talk, I will explain why the shell is a good object of study
and present my early progress building models to reason about the
shell.

1. The POSIX shell
Expert computer users interact with the computer using textual in-
terfaces, also known as command-line interfaces or shells. Experts
prefer shells for their concision and power. Critical system tasks—
installation and deployment, automation of routine tasks, mainte-
nance, forensics—are often done via the shell; some tasks can only
be done via the shell. Code for completely compromising a com-
puter system is called “shellcode” because once an attacker has
privileged shell access, they control the system entirely. Shells are
synonymous with complete control.

Among shells, the POSIX shell is the de facto standard; by lines
of code, it is the 9th most commonly used language on github.1

The POSIX shell standard (IEEE and The Open Group 2016)
defines the most widely supported shell, specifying its syntax and
semantics in 122 pages, not counting other operations that may or
may not be built into the shell (e.g., kill, the command for sending
signals to processes).

You don’t need to look far to find examples of fragile, danger-
ous, or confusing shell scripts. Perhaps most famous in recent mem-
ory is “Steam cleaning”:2 when a shell script in the Steam gaming
platform encountered an unexpected filesystem arrangement on a
user’s PC, it would delete all of a user’s files. Despite the untram-
meled power of the shell, it’s not uncommon to see software in-
stalled via curl http://derp.io/install.sh | bash, which
fetches a URL and feeds its input directly to a shell.3

A variety of tools help programmers navigate the POSIX shell’s
hazards (koalaman 2016; Kamara 2016; Weidmann 2016). Unfor-
tunately, existing static analyses work only at a shallow, syntactic
level; existing dynamic analyses only offer limited guarantees. In
terms of academic attention, D’Antoni et al. use machine learn-
ing to repair commands, but offer no semantic insights (D’Antoni
et al. 2016). Mazurak and Zdancewic gave a static analysis for some
of bash’s expansion’s with an eye towards security (Mazurak and
Zdancewic 2007). To my knowledge, Mazurak and Zdancewic offer
the only formal semantic understanding of a shell in the literature.

1 http://githut.info/, as of November 8th, 2016.
2 http://www.theregister.co.uk/2015/01/17/scary_code_of_
the_week_steam_cleans_linux_pcs/
3 https://twitter.com/SwiftOnSecurity/status/
756182802165489665

Programming languages researchers should study the shell as a
programming language. Computer users have much to gain from
increased tool support for the shell; programming languages re-
searches have much to learn, as the POSIX shell has several dis-
tinctive features.

2. Distinctive features
Three features distinguish the shell: its evaluation model, its facility
for controlling concurrent processes, and its natural transition from
command-at-a-time interactivity to automating batch tasks.

2.1 Expansion over evaluation
The POSIX shell diverges from the ordinary evaluation model.
Conventional programming languages evaluate an expression by
evaluating its parts; the POSIX shell evaluates an expression by
expanding its parts.

A conventional programming language might run a function
like so:

e1 eval λx.e e2 eval v2 e[v2/x] eval v

e1 e2 eval v

To run a function e1 on an argument e2, first evaluate e1 to a
function value and e2 to an argument value, substitute the argument
into the body of the function, and then evaluate the substituted
body. Similarly, it might evaluate arithmetic like so:

e1 eval n1 e2 eval n2 n = n1 + n2

e1 plus e2 eval n

That is, the default presumption is that to evaluate an expression,
we must evaluate each of its sub-expressions.

In the POSIX shell, functions and commands are evaluated, but
their arguments are expanded, a process of string substitution. A
comparable rule for applying a function in the shell might read:

e1 expand λx.e e2 expand v2 e[v2/x] eval v

e1 e2 eval v

where e expand v means that the text of e expands to the value v.
The shell has seven stages of expansion (IEEE and The Open Group
2016); for example, the first stage of expansion—tilde expansion—
translates ~ to the current user’s home path. A rule might look like:

LOGNAME = x

~ expand /home/x

While plus might be a function in an conventional language, in the
shell arithmetic operations are also done by expansion; arithmetic
expansion takes place inside $((...)) forms and is the fourth
stage of expansion. We could model addition like so:

e1 expand s1 e2 expand s2
$((e1 + e2)) expand itoa(atoi(s1) + atoi(s2))

where atoi converts strings to numbers and itoa converts num-
bers to strings. While the shell doesn’t, by default, evaluate sub-
expressions, the user can enclose sub-expressions in $(...) or



‘...‘ to have them evaluated using command substitution, the
third stage of expansion:

e eval v

$(e) expand v

These tiny caricatures don’t do justice to the complexity of the
shell; Mazurak and Zdancewic cover a large subset (but not arith-
metic expansion) (Mazurak and Zdancewic 2007); in my talk, I will
report on my own progress modeling the various stages of expan-
sion.

2.2 Controlling concurrent processes
The POSIX shell has many primitives for managing file descriptors
(via >, etc.), setting up pipes between processes (via |, command
substitution, etc.), and controlling concurrent jobs (via &, wait,
etc.). It has succinct syntax and powerful semantics for managing
the flow of information. Commands in the shell run in separate
memory spaces, using the filesystem as shared “memory”. Can we
apply the shell’s model elsewhere?

2.3 Interactivity, live coding, and automation
I typically use the shell to issue one (possibly compound) command
at a time. When facing a repetitive task, I’ll try to see if my
commands form a pattern, as in:

$ grade hw1-latest
$ parse hw1-latest/grades.txt >hw1.csv
$ grade hw2-latest
$ parse hw2-latest/grades.txt >hw2.csv
...

Noticing the pattern, I try to automate what I’m doing. But as much
as I know the shell, I fear it—so I’ll start out with some exploratory
debugging.

$ for d in *-latest; do
echo ${d} ${d%-latest}

done
hw1-latest hw1
hw2-latest hw2
...

Once I’ve found the expansions I’m looking for, I’ll actually run
the commands I want:

$ for d in *-latest; do
echo ${d%-latest}
grade ${d}
parse ${d}/grades.txt >${d%-latest}.csv

done
hw1
hw2
...

The shell encourages a sliding scale from interactivity to batch
programming using an iterative “print what you’ll do before you do
it” programming style. Programming languages are seen as a means
for automation, even though conventional languages often perform
tasks very differently than humans would. The shell automates
human tasks more literally: the for loop above runs exactly the
commands I would have run manually. By literally “doing what a
human would do”, the shell is more like a macro system (in the
sense of document processing) than a conventional programming
language.

Collins et al. looked at “live coding” with an eye towards live
development of programmatic musical scores, and there is a siz-
able literature on the topic (Collins et al. 2003). Shell scripts are
also composed in an interactive fashion; what insights might we

borrow? Can we apply recent developments in programming by
example (Gulwani et al. 2015) and feedback-oriented program-
ming (Chugh et al. 2016) to the shell? Can the shell teach us any-
thing about programming by example? D’Antoni et al. make some
progress in this direction, but their synthesis algorithms use exam-
ples without any semantic information (D’Antoni et al. 2016). Can
we do better if we know something about how the shell works?

3. Opportunities
Tools for making users of shell scripts safer and authors of shell
scripts more confident would be a huge boon. Beyond such im-
mediate practical applications, what can we learn from the shell’s
evaluation and concurrency models? Many shell bugs are due to
difficulties in understanding the order of expansion; can we define
something close to the POSIX shell that doesn’t suffer from these
confusions? Can we design languages that offer the same ease of
transition between interactive use and programming, but in differ-
ent domains?

4. Proposal
In my talk, I will (a) motivate command-line interfaces and shells
as objects of study, (b) argue for the POSIX shell in particular, (c)
explain the unique structure of the shell, and (d) report on my early
progress understanding the shell and building tools for it.

Acknowledgments
Arjun Guha helped me develop some of my ideas on the topic; Sam
Tobin-Hochstadt gave encouragement and pointed me in interest-
ing directions. Two undergraduates at Pomona College have been
assisting in the early work: Calvin Aylward and Austin Blatt.

References
Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. Program-

matic and direct manipulation, together at last. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’16, pages 341–354, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-4261-2. doi: 10.1145/2908080.2908103.
URL http://doi.acm.org/10.1145/2908080.2908103.

Nick Collins, Alex McLean, Julian Rohrhuber, and Adrian Ward. Live
coding in laptop performance. Organised sound, 8(3):321–330, 2003.

Loris D’Antoni, Rishabh Singh, and Michael Vaughn. NoFAQ: Synthe-
sizing command repairs from examples. CoRR, abs/1608.08219, 2016.
URL http://arxiv.org/abs/1608.08219.

Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H.
Muggleton, Ute Schmid, and Benjamin Zorn. Inductive programming
meets the real world. Commun. ACM, 58(11):90–99, October 2015.
ISSN 0001-0782. doi: 10.1145/2736282. URL http://doi.acm.org/
10.1145/2736282.

IEEE and The Open Group. The Open Group Base Specifications Issue 7
(IEEE Std 1003.1-2008). IEEE and The Open Group, 2016.

Idan Kamara. explainshell, 2016. URL http://explainshell.com/.
koalaman. Shellcheck, 2016. URL https://github.com/koalaman/

shellcheck/.
Karl Mazurak and Steve Zdancewic. Abash: Finding bugs in bash scripts.

In PLAS, pages 105–114, 2007. doi: 10.1145/1255329.1255347.
Philipp Emanuel Weidmann. maybe, 2016. URL https://github.com/

p-e-w/maybe.


