
Combining
Manifest Contracts

with
State

Michael Greenberg
Pomona College

HOPE 2015 / 2015-08-30

what
types? Hindley-Milner dependent

types purity

gradual types
manifest contracts

What are
contracts?

Specifications
written in code

checked dynamically

(First-order) contracts

assert(n≥0)

sqrt : {x:Float | x≥0} → Float

sqrt : {x:Float | x≥0} →
 {y:Float | abs(y2-x) ≤ 𝜖}

5

Higher-order contracts

f:({x:Int | x≥0} → {x:Int | x≥0}) → {y:Int | f y = y}

You give a function f on Nats, I return a fixpoint of f
If you don’t get a fixpoint, oops—you blame me

If f is called with a negative number, oops—you blame me

If f returns a negative, oops—I blame you

“even-odd rule”
—Findler and Felleisen

2002
6

Subset types +
dependency

T ⩴ {x:B | e}

 | (x:T1)→T2

7

checked
dynamically!

Casts

I know e has type T1

Treat it as type T2
If I’m wrong, blame ℓ

8

<T1⇒T2>ℓ e

Casts between refinements
<{x:Int | true}⇒{x:Int | x≥0}>ℓ 7 ⟼* 7

<{x:Int | true}⇒{x:Int | x≥0}>ℓ -1 ⟼* blame ℓ

9

<{x:B | e1}⇒{x:B | e2}>ℓ v 
≣ 

if e2[v/x] then v else blame ℓ

Types for constants

ty(7) = {x:Int | x=7} 
ty(÷) = Int→{y:Int | y ≠ 0}→Int 

5 ÷ 0 is ill typed! 
5 ÷ (<…⇒{y:Int | y ≠ 0}>ℓ 0) ⟼* blame ℓ

10

Casts between functions

<T1 → T2⇒U1 → U2>ℓ f

...is a value a/k/a function proxy.

11

Casts between functions

(<T1 → T2⇒U1 → U2>ℓ f) v ⟼

 <T2⇒U2>ℓ (f (<U1⇒T1>ℓ v))

12

Just add state!

As seen in
DTHF 2012!

Extend types…

T ⩴ {x:B | e}

 | (x:T1)→T2

 | Ref T

Extend expressions…

e ⩴ …

 | ref e
 | !e

 | e1 ≔ e2

Extend values…

v ⩴ …

 | γ
γ ⩴ loc

 | <Ref T1⇒Ref T2>ℓ γ

Extend semantics (reads)…

!(<Ref T1⇒Ref T2>ℓ γ)

 ⟼
<T1⇒T2>ℓ !γ

Extend semantics (writes)…

(<Ref T1⇒Ref T2>ℓ γ) ≔ v

 ⟼
γ ≔ <T2⇒T1>ℓ v

Scoping

Recursion

Semantics

Proofs

Locations aren’t always in scope.

let nonReentrant =

 Λαβ.λf : (α→β). let inside = ref false in

 λx:{x:α | not !inside}.

 inside ≔ true;

 let y = f (<…⇒α>ℓ x) in

 inside ≔ false;

 y

type?

let nonReentrant :

∀αβ. (α→β) → {x:α | not !inside} → β =

 Λαβ.λf : (α→β). let inside = ref false in

 λx:{x:α | not !inside}.

 inside ≔ true;

 let y = f (<…⇒α>ℓ x) in

 inside ≔ false;

 y

scope?!

Recursion

Ref {x:Int | x ≤ !y}

Ref {y:Int | y ≥ !x}

initialization?

let f = ref λx:Int. x in  
let g = <…⇒Ref {x:Int→Int | x 0 = 0}>ℓ f in  
 g ≔ <…⇒{x:Int→Int | x 0 = 0}>ℓ’  

 (λx:Int. (<…⇒Int→Int>ℓ’’ !g) x);  
 !g

Semantics
let x = ref 0 in  
let y = <Ref Int⇒Ref {z:Int | x ≔ -1; z ≥ 0}>ℓ x in  
 y ≔ 5;  
 !y;  
 !y Γ ⊢ v : {x:B | e}

implies

e[v/x] ⟼* true

✗

Proofs

• Axiomatization, LR,
bisimulation

• Type conversion relation

Scoping

Recursion

Semantics

Proofs
Solutions?

Scoping:
contextual typing annotations?

Dunfield and Pfenning 2004, “Tridirectional typechecking”  
 Thanks, reviewer 1!

Xi already noticed this problem and introduced a term-level ab-
straction over index variables,Λa.e, to mirror universal index quan-
tification Πa:γ. A [26]. But this violates the basic principle of
property types that the term should remain unchanged, and fails
in the presence of intersections. For example, we would expect the
reverse function on lists, rev, to satisfy

rev : (Πa:N . list(a) → list(a))

∧ ((Σb:N . list(b)) → Σc:N . list(c))

but the first component of the intersection would demand a term-
level index abstraction, while the second would not tolerate one.

4.3 Contextual Subtyping
We address these two problems by a method that extends and

improves the notation of comma-separated alternatives. The essen-
tial idea is to allow a context to appear in the annotation along with
each type:

e ::= . . . | (e : Γ1 ⊢ A1 , . . . , Γn ⊢ An)

where each context Γk declares the types of some, but not necessar-
ily all, free variables in e.
In the first approximation we can think of such an annotated term

as follows: if Γk ⊢ e ↓ Ak then Γ ⊢ (e : Γ1 ⊢ A1 , . . . , Γn ⊢
An) ↑ Ak if the current assumptions in Γ validate the assumptions
in Γk . For example, the second judgment below is not derivable,
since x:odd does not validate x:even (because odd ̸≤ even).

x:even ⊢ ((λy.Cons(42, x)) : x:even ⊢ 1 → odd,
x:odd ⊢ 1 → even) ↑ 1 → odd

x:odd ̸⊢ ((λy.Cons(42, x)) : x:even ⊢ 1 → odd,
x:odd ⊢ 1 → even) ↑ 1 → odd

In practice, this should significantly reduce the nondeterminism
associated with type annotations in the presence of intersection.
However, we still need to generalize the rule in order to correctly
handle index variable scoping.
Returning to our earlier example, we would like to find an anno-

tation As allowing us to derive

⊢ λx. ((λz. x) : As)() ↓ Πa:N . list(a) → list(a)

The idea is to use a locally declared index variable (here, b)

λx. ((λz. x) : (b:N , x:list(b) ⊢ 1 → list(b)))

to make the typing annotation self-contained. Now, when we check
if the current assumptions for x validate local assumption for x, we
are permitted to instantiate b to any index object i. In this exam-
ple, we could substitute a for b. As a result, we end up checking
(λz. x) ↓ 1 → list(a), even though the annotation does not men-
tion a. Note that in an annotation e : (Γ0 ⊢ A0), As, all index
variables declared in Γ0 are considered bound and can be renamed
consistently in Γ0 and A0 . In contrast, the free term variables in Γ0

may actually occur in e and so cannot be renamed freely.
These considerations lead to a contextual subtyping relation ! :

(Γ0 ⊢ A0) ! (Γ ⊢ A)

which is contravariant in the contexts Γ0 and Γ . It would be covari-
ant in A0 and A, except that in the way it is invoked, Γ0 , A0 , and
Γ are known and A is generated as an instance of A0 . This should
become more clear when we consider its use in the new typing rule

(Γ0 ⊢ A0) ! (Γ ⊢ A) Γ ⊢ e ↓ A

Γ ⊢ (e : (Γ0 ⊢ A0), As) ↑ A
(ctx-anno)

Typings As ::= Γ ⊢A | Γ ⊢A, As

Terms e ::= . . . | (e : As)

Values v ::= . . . | (v : As)

Eval. contexts E ::= . . . | (E : As)

Figure 4: Language additions for contextual typing annotations

(· ⊢ A) ! (Γ ⊢ A)
(!-empty)

Γ ⊢ i : γ0 ([i/a] Γ0 ⊢ [i/a]A0) ! (Γ ⊢ A)

(a:γ0 , Γ0 ⊢ A0) ! (Γ ⊢ A)
(!-ivar)

Γ |= P (Γ0 ⊢ A0) ! (Γ ⊢ A)

(P, Γ0 ⊢ A0) ! (Γ ⊢ A)
(!-prop)

Γ ⊢ Γ (x) ≤ B0 (Γ0 ⊢ A0) ! (Γ ⊢ A)

(x:B0 , Γ0 ⊢ A0) ! (Γ ⊢ A)
(!-pvar)

Figure 5: Contextual subtyping

where we regard the annotations as unordered (so Γ0 ⊢ A0 could
occur anywhere in the list). In the bidirectional style, Γ , e, Γ0 , A0

andAs are known when we try this rule. While finding a derivation
of (Γ0 ⊢ A0) ! (Γ ⊢ A) we generate A, which is the synthe-
sized type of the original annotated expression e, if in fact e checks
against A. It is also possible that (Γ0 ⊢ A0) ! (Γ ⊢ A) fails to
have a derivation (when Γ0 and Γ have incompatible declarations
for the term variables occurring in them), in which case we need to
try another annotation (Γk ⊢ Ak).
The formal rules for contextual subtyping are given in Figure 5.

Besides the considerations above, we also must make sure that any
possible assumptions P about the index variables in Γ0 are indeed
entailed by the current context, after any possible substitution has
been applied (this is why we traverse Γ0 from left to right).
While the examples above are artificial, similar situations arise

in ordinary programs in the common situation when local function
definitions reference free variables. Two small examples of this
kind are given in Figure 6 presented in the style of ML; we have
omitted the evident constructor types and, following the tradition of
implementations such as Davies’, written typing annotations inside
bracketed comments.
The essence of the completeness result we prove in Section 4.5

is that annotations can be added to any term that is well typed
in the type assignment system to yield a well typed term in the
tridirectional system. For this result to hold, ! must be reflexive,
(Γ ⊢ A) ! (Γ ⊢ A). Furthermore, in a judgment

Γ ⊢ (e : (Γ1 ⊢ A1 , . . . , Γn ⊢ An)) ↑ A

we must be able to consistently rename index variables in Γ , all
Γk , and e. This different treatment of index variables and term
variables arises from the fact that index variables are associated
with property types and so do not appear in expressions, only in
types.
Reflexivity (together with proper α-conversion) is sufficient for

completeness: in the proof of completeness, where we see Γ ⊢ e :
A we can simply add an annotation (Γ ⊢ A). But it would be
absurd to make programmers type in entire contexts—not only is
the length impractical, but whenever a declaration is added every
contextual annotation in its scope would have to be changed!
Reflexivity of ! follows easily from the following lemma.

LEMMA 1. (Γ2 ⊢ A) ! (Γ1, Γ2 ⊢ A).

287

let nonReentrant :

 ∀αβ. (α→β) → {x:α | not !inside} → β = …

let nonReentrant :

 ∀αβ. (α→β) → {x:α | not !inside} → β = …
∃inside.

let nonReentrant :

 ∀αβ. (α→β) → {x:α | not !inside} → β = …
new(inside)

Scoping:
effects

Recursion, semantics:
effects

Γ ⊢ Ref {x:B | e}

Γ,x:B ⊢ e : Bool,∅

Γ ⊢ Ref {x:B | e} : *,ξ
Γ,x:B ⊢ e : Bool,ξ’ ξ’ ≺ ξ

Information-flow control

<{x:B|e1}⇒{x:B|e2}>ℓ v, pc

 ⟼

if e2[v/x]then v else blame ℓ,  
 pc ⊔ CTC

Other ideas?
• Proofs?!

• Can we borrow from work on lock ordering?  
Something substructural?

• Split pure/impure contracts using a monadic
framework?

• Borrow ideas from transactional memory for IO?  
Cf. Avi Shinnar’s thesis

Appendix

what
types?

Coq

Hindley-Milner dependent
types

Agda

Haskell

ML
Scheme

Python

purity

Liquid Types

TRELLYS
modal puritygradual types

Typed Racket,
DRuby,

Reticulated Python

F* DML

What are contracts for?

“Well-typed expressions do not go wrong” 
 —Robin Milner, “A Theory of Type Polymorphism in Programming”

What’s “wrong”?

• Applying a boolean

• Conditioning on a lambda

38

What are contracts for?

• Contracts expand our notion of wrong

• Division by zero, square root of negatives

• Incomplete pattern matches

• Array indexing

39

Dynamic by default

• Type refinement systems, dependent types 
 static checking by default

• Manifest contracts 
 dynamic checking by default 
 static checking as an optimization

40

Stateful contracts, take 2

T ⩴ {x:T | e}

 | (x:T1)→T2

 | Ref T

refine any
type!

