Combining Manifest Contracts with State

Michael Greenberg *Pomona College* HOPE 2015 / 2015-08-30

What are contracts?

Specifications written in code checked dynamically

(First-order) contracts

assert(n≥0)

sqrt : {x:Float | $x \ge 0$ } \rightarrow Float sqrt : {x:Float | $x \ge 0$ } \rightarrow {y:Float | $abs(y^2-x) \le \epsilon$ }

You give a function f on Nats, I return a fixpoint of f

- If you don't get a fixpoint, oops-you blame me
- If *f* is called with a negative number, oops—you blame me
- If *f* returns a negative, oops—I blame you

"even-odd rule" — *Findler and Felleisen* 2002

Subset types + dependency

 $T := \{x:B \mid e\}$ $\mid (x:T_1) \rightarrow T_2$

Casts

$\langle T_1 \Rightarrow T_2 \rangle e$

I know e has type T₁

Treat it as type T₂ If I'm wrong, blame l

Casts between refinements

< x:Int | true} \Rightarrow {x:Int | x \ge 0} $>^{\ell}$ 7 \mapsto *7

< x:Int | true} \Rightarrow {x:Int | x \ge 0} $>^{\ell} - 1 \mapsto^{*}$ blame ℓ

Types for constants

5 ÷ 0 is ill typed! 5 ÷ (<... \Rightarrow {y:Int | y ≠ 0}>[{]0} \mapsto * blame {

Casts between functions

$\langle T_1 \rightarrow T_2 \Rightarrow U_1 \rightarrow U_2 \rangle^{\ell} f$

... is a value a/k/a function proxy.

Casts between functions

$(\langle \mathsf{T}_1 \to \mathsf{T}_2 \Rightarrow \mathsf{U}_1 \to \mathsf{U}_2 \rangle^{\ell} f) \lor \mapsto$ $\langle \mathsf{T}_2 \Rightarrow \mathsf{U}_2 \rangle^{\ell} (f (\langle \mathsf{U}_1 \Rightarrow \mathsf{T}_1 \rangle^{\ell} \lor))$

Just add state!

As seen in DTHF 2012!

Extend types...

$T \coloneqq \{x:B \mid e\}$ $\mid (x:T_1) \rightarrow T_2$ $\mid RefT$

Extend expressions...

e ≔ ...

| ref e| !e $| e_1 \coloneqq e_2$

Extend values...

V = ...

| Y

 $Y = \mathbf{loc}$

 $| < \operatorname{Ref}_{I} \Rightarrow \operatorname{Ref}_{2}^{\ell} \gamma$

Extend semantics (reads)...

$!(\langle \mathsf{RefT}_{\mathsf{I}} \Rightarrow \mathsf{RefT}_2 \rangle^{\ell} \gamma)$

Extend semantics (writes)...

$(\langle \operatorname{Ref} \mathsf{T}_1 \Rightarrow \operatorname{Ref} \mathsf{T}_2 \rangle^{\ell} \gamma) \coloneqq \mathsf{v}$

 $\gamma := \langle T_2 \Rightarrow T_1 \rangle^{\ell} v$

 \mapsto

Scoping

Recursion

Semantics

Proofs

Locations aren't always in scope.

 $\Lambda \alpha \beta \lambda f: (\alpha \rightarrow \beta)$. let inside = ref false in $\lambda x: \{x: \alpha \mid not ! inside\}.$ inside = true; let $y = f(<... \Rightarrow \alpha >^{\ell} x)$ in inside = false;

let nonReentrant :

$$\forall \alpha \beta. (\alpha \rightarrow \beta) \rightarrow \{x: \alpha \mid not !inside\} \rightarrow \beta =$$
 $\land \alpha \beta. \lambda f: (\alpha \rightarrow \beta).$ let inside = nef false in
 $\lambda x: \{x: \alpha \mid not !inside\}.$
inside = true;
let $y = f(<... \Rightarrow \alpha >^{\ell} x)$ in
inside = false;
 y

Recursion initialization? Ref {x:lnt $| x \leq !y$ } $\operatorname{Ref}\left\{y: \operatorname{Int} \mid y \geq !x\right\}$

Semantics

Proofs

- Axiomatization, LR, bisimulation
- Type conversion relation

Recursion

Semantics

Solutions

Scoping: contextual typing annotations?

$$\frac{(\Gamma_{0} \vdash A_{0}) \lesssim (\Gamma \vdash A) \qquad \Gamma \vdash e \downarrow A}{\Gamma \vdash (e : (\Gamma_{0} \vdash A_{0}), As) \uparrow A}$$
(ctx-anno)

Dunfield and Pfenning 2004, "Tridirectional typechecking" Thanks, reviewer 1! let nonReentrant :

 $\forall \alpha \beta. (\alpha \rightarrow \beta) \rightarrow \{x: \alpha \mid not ! inside\} \rightarrow \beta = \dots$

let nonReentrant :

$$\exists \text{inside.} \\ \forall \alpha \beta. (\alpha \rightarrow \beta) \rightarrow \{x: \alpha \mid \text{not !inside}\} \rightarrow \beta = \dots$$

Scoping: effects

Recursion, semantics: effects

$\Gamma, x: B \vdash e: Bool, \emptyset$

 $\Gamma \vdash \operatorname{Ref} \{ \mathbf{x}: B \mid e \}$

$\Gamma, \mathbf{x}: \mathbf{B} \vdash \mathbf{e} : \mathsf{Bool}, \xi' \quad \xi' < \xi$ $\Gamma \vdash \mathsf{Ref} \{\mathbf{x}: \mathbf{B} \mid \mathbf{e}\} : *, \xi$

Information-flow control

 $\{x:B|e_1\} \Rightarrow \{x:B|e_2\} >^{\ell} v, pc$

\mapsto

if $e_2[^v/_x]$ then v else blame ℓ , pc \sqcup CTC

Other ideas?

- Proofs?!
- Can we borrow from work on lock ordering? Something substructural?
- Split pure/impure contracts using a monadic framework?
- Borrow ideas from transactional memory for IO?
 Cf. Avi Shinnar's thesis

Appendix

What are contracts for?

"Well-typed expressions do not go wrong"

—Robin Milner, "A Theory of Type Polymorphism in Programming"

What's "wrong"?

- Applying a boolean
- Conditioning on a lambda

What are contracts for?

- Contracts expand our notion of wrong
 - Division by zero, square root of negatives
 - Incomplete pattern matches
 - Array indexing

Dynamic by default

- Type refinement systems, dependent types static checking by default
- Manifest contracts

 dynamic checking by default
 static checking as an optimization

Stateful contracts, take 2

