
Combining Manifest Contracts with State

Michael Greenberg
Pomona College

Manifest contracts combine the rich specifications and runtime
checking of higher-order contracts [11] with a static type disci-
pline. Conventional type systems prevent simple errors, like call-
ing a boolean as a function, but manifest contracts can prevent
more complex errors. For example, we could give the sqrt func-
tion the very precise type {x:Float | x ≥ 0} → {y:Float |
|x2 − y| < ε}, where subset types like {x:Float | x ≥ 0} refer to
those floating-point numbers x such that x ≥ 0.1 Extending types
with contract-like specifications in code yield powerful reasoning
principles [5, 22] and better abstractions [14]. Sound manifest con-
tract systems enjoy an inversion principle, invaluable for reasoning
about parameters in function bodies:

` v : {x:T | e} implies e[v/x] −→∗ true

Working out the metatheory for a manifest contract semantics of-
fers evidence that the semantics correctly checks all of its specifi-
cations.

Dimoulas et al. [8] introduced a latent2 semantics for stateful
contracts (in line with the implemented behavior of Racket’s con-
tracts [13, Version 6.1.1 (Ch. 8)]). They check contracts on both
reads and writes, carefully tracking which party is to blame.

We can adapt their operational semantics for state to a mani-
fest setting, using casts 〈T1 ⇒ T2〉l to dynamically move values
between types (Figure 1; we omit a detailed semantics of casts to
save space). We can just follow the types: reading a guarded loca-
tion reads the location and guards the result; writing a guarded lo-
cation writes a (contravariantly!) guarded value. Following Wadler
[29], we could complement the blame label for writes.

What challenges remain in proving this manifest semantics and
its reasoning principles correct? And how might we address these
challenges? This is work in progress.

1. Moving beyond the latent semantics
Dimoulas et al. [8] are primarily interested in showing that their no-
tion of blame is coherent. In papering over deeper semantic ques-
tions, they miss three interesting interactions: contracts over entire
reference cells, atomic updates of separate state, and contracts on
pure values with hidden state.

In Figure 1, we interpret Dimoulas et al.’s ref/c(κ) contract as
a reference containing a value of subset type (Ref {x1:T | e1}).
We could also have subset types over state: {x1:Ref T | e2}. Such
general refinements [5] add expressivity: e1 can only see the value
stored in x1, while e2 can read and write the reference x2 itself.

Suppose we have two reference cells holding integers, x and y,
and x’s sign must always be the inverse of y’s. To maintain that
invariant, the program must initialize and update the two values
atomically. In simple cases it may suffice to instead have a ref-

1 These are also known as refinement types and predicate contracts [15].
2 See Greenberg et al. [17] semantics for a fuller discussion of the difference
between latent and manifest contracts.

Syntax extensions for state
e ::= . . . | ref e | !e | e1 := e2 terms
v ::= . . . | γ values
γ ::= loc | 〈Ref T1 ⇒ Ref T2〉l γ guarded locations
σ : Locations ⇀ Values stores

Operational semantics for state σ, e1 −→ σ, e2

σ, ref v −→ σ] [loc 7→ v], loc
σ, !loc −→ σ, σ(loc)

σ, loc := v −→ σ[loc 7→ v], unit
σ, !(〈Ref T1 ⇒ Ref T2〉l loc) −→ σ, 〈T1 ⇒ T2〉l !loc

σ, (〈Ref T1 ⇒ Ref T2〉l loc) := v −→ σ, loc := 〈T2 ⇒ T1〉l v

Figure 1. Operational semantics for manifest contracts with state

erence cell holding a pair, but in general this won’t be possible:
stateful contract languages need atomic updates.

We can construct a contract over a seemingly pure type that is
nevertheless stateful. Such contracts are temporal contracts [10]—
their meaning varies over time. For example, we can take a function
and wrap it to ensure that it is not called during its own dynamic
extent:

let nonReentrant =
Λαβ. λf : (α→ β). let inside = ref false in
λ{x:α | not !inside}.

inside := true; let y = fx in inside := false; y

2. Challenges
State and effects complicate type theories with subset types. Ou
et al. [18] were the first to combine code-based specifications and
references. They use special dynamic reference cells to mediate
interactions between simple and dependent code, with a pack-
ing/unpacking discipline corresponding closely to Dimoulas et al.’s
guarded locations (though Ou et al. don’t use blame).

Ou et al. try to bake in optimizations: they augment their calcu-
lus with a theorem prover that identifies checks that always succeed
and can be omitted. But they pay a price, restricting the set of terms
that can appear as predicates in subset types.

We set a more modest goal: define a sound, stateful manifest
contract calculus with arbitrary predicates—we can optimize after
the fact [5, 22]. We highlight three problems before discussing
possible solutions in Section 3.

2.1 State complicates scoping
Earlier work on dependent manifest contracts resolved dependency
with substitution, but that won’t work when we add state. What
type does nonReentrant from Section 1 have? It must be:

∀αβ. (α→ β)→ {x:α | not !inside} → β

Unfortunately, this type isn’t well formed; inside isn’t in scope.

2.2 State introduces circularity
Not only can we use state to encode the usual fixpoint operators, we
can use guarded locations themselves to write diverging contracts:

let f : Ref (Int→ Int) = ref λx. x in
let g = 〈. . .⇒ Ref {x:Int→ Int | x 0 = 0}〉l f in
g := λx. g := (λx. x+ 1− 1);x;
!g 0

The call to g triggers a contract check, which writes to g, which
triggers another check, and so on. We may want to statically forbid
divergently circular contracts, but even converging circularity is an
issue. Contracts can invalidate themselves:

let x : Ref Int = ref 0 in
〈Ref Int⇒ Ref {z:Int | x := −1; z ≥ 0}〉l x

The first time we check the contract, it will succeed... but not the
second! What inversion principle should apply here? That is, what
does the type Ref {z:Int | x := −1; z ≥ 0} mean?

2.3 State is metatheoretically challenging
Soundness proofs for manifest systems typically involve some kind
of semantic subtyping. Early work included semantic subtyping as
an optimization, but also to account for the types of constants and
congruence steps. (See Belo et al. [5] for a full discussion.) Prov-
ing type soundness calls for heavyweight methods, like axiomati-
zation [12, 18], logical relations [16], and bisimulation [22]. State
complicates these proof techniques, but we can start by using step-
indexing and Kripke models in our logical relations [2, 3].

3. Ways forward
How can we assign meaning to stateful contracts? Two approaches
seem promising for handling scoping and circularity.

3.1 Type and effect systems
Talpin and Jouvelot [27]’s type and effect systems extend a static
typing discipline with information about effects. Some of this infor-
mation will be critical for scoping. In order to have nonReentrant
from Section 1 have a well formed dependent type, we must ac-
count for the allocation that happens in its body:

∀αβ. (α→ β)
alloc inside→ {x:α | not !inside} → β

Not only will effect annotations resolve issues with scoping, they’ll
be essential for exposing the stateful parts invariants—the contract
might also want to track when inside is true.

Effect tracking could help us manage circularity in contracts.
Effect-free contracts aren’t circular. We can allow some effects
while still avoiding circularity by putting memory locations (or
other possible sources of effects) in a partial order. Contracts writ-
ten at level l can allow effects at lower levels l′ @ l.

To manage scoping, we’ll need static effect tracking. But dy-
namic or gradual (mixed static and dynamic) approaches would
suffice [4] for dealing with circularity.

3.2 Information flow control
Information flow control (IFC) offers a strong security guarantee:
noninterference. That is, changing the secure inputs to a program
doesn’t change the insecure outputs. IFC won’t help with scoping,
but it can prevent circularities in contract checking. We can mark
contract code as insecure and mark some bits of state as secure—
then contracts won’t interfere (read or write) such forbidden state.

IFC can be enforced statically, dynamically, or gradually [9, 21,
24]. Either way would be fine for enforcing non-circularity, but how
do we take a noninterference proof and use it to derive inversion
principles and type soundness?

4. Other related work
Xi and Pfenning [30]’s subset types use a more restricted language
of indices than Ou et al. [18]; Rondon et al. [20] makes a sim-
ilar restriction on the language of indices. Svendsen et al. [25],
F∗ [26] and Casinghino et al. [6]’s λθ mix dependently typed pro-
grams with effects, but checking dependent and other ‘refined’
types statically—which we check dynamically. Ahman [1] studies
a static refinement type theory over an algebraic theory of effects.

Tov and Pucella [28] use stateful latent contracts to dynamically
check interactions between affine and unlimited types. Ideally, a
manifest version of their makeAffineFunContract could be proved
correct directly using the reasoning principles of a stateful manifest
language (an open version [31] of a parametricity relation [5])

Owens [19] interprets contract checking itself as an effect, fol-
lowing Degen et al. [7]’s observations about contracts and laziness.

Shinnar [23] uses delimited checkpoints to implement stateful
latent contracts in Haskell. Checking is delimited—contracts roll
back their writes after checking. Can we adapt these techniques to
manifest contracts, which need not just an intuitive semantics, but
a coherent notion of meaning?

Acknowledgments
Greg Morrisett suggested the idea of using noninterference to avoid
circularity in contract checking. This work was supported in part by
the NSF under grant CNS 1111520 at Princeton University.

References
[1] D. Ahman. Refinement types and algebraic effects, 2013. HOPE.
[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-

tion independence. In Principles of Programming Languages (POPL),
2009. doi: 10.1145/1480881.1480925.

[3] A. W. Appel and D. McAllester. An indexed model of recursive types
for foundational proof-carrying code. ACM Trans. Program. Lang.
Syst., 23(5):657–683, Sept. 2001. doi: 10.1145/504709.504712.

[4] F. Bañados Schwerter, R. Garcia, and E. Tanter. A theory of gradual
effect systems. In International Conference on Functional Program-
ming (ICFP), 2014. doi: 10.1145/2628136.2628149.

[5] J. F. Belo, M. Greenberg, A. Igarashi, and B. C. Pierce. Polymorphic
contracts. In European Symposium on Programming (ESOP), 2011.

[6] C. Casinghino, V. Sjöberg, and S. Weirich. Combining proofs and pro-
grams in a dependently typed language. In Principles of Programming
Languages (POPL), 2014. doi: 10.1145/2535838.2535883.

[7] M. Degen, P. Thiemann, and S. Wehr. True lies: Lazy contracts for
lazy languages (faithfulness is better than laziness). In ATPS, Lübeck,
Germany, 2009.

[8] C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen. Complete mon-
itors for behavioral contracts. In Programming Languages and Sys-
tems, volume 7211. 2012. doi: 10.1007/978-3-642-28869-2 11.

[9] T. Disney and C. Flanagan. Gradual information flow typing. In
Workshop on Script-to-Program Evolution (STOP), 2011.

[10] T. Disney, C. Flanagan, and J. McCarthy. Temporal higher-order
contracts. In International Conference on Functional Programming
(ICFP). ACM, 2011. doi: 10.1145/2034773.2034800.

[11] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In International Conference on Functional Programming (ICFP),
2002.

[12] C. Flanagan. Hybrid type checking. In Principles of Programming
Languages (POPL), 2006.

[13] M. Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-
1, PLT Design Inc., 2010. http://racket-lang.org/tr1/.

[14] M. Greenberg. Manifest Contracts. PhD thesis, University of Penn-
sylvania, November 2013.

[15] M. Greenberg. A refinement type by any other name, Mar. 2015. URL
http://goo.gl/KaHLBG. Blog post.

http://dx.doi.org/10.1145/1480881.1480925
http://dx.doi.org/10.1145/504709.504712
http://dx.doi.org/10.1145/2628136.2628149
http://dx.doi.org/10.1145/2535838.2535883
http://dx.doi.org/10.1007/978-3-642-28869-2_11
http://dx.doi.org/10.1145/2034773.2034800
http://racket-lang.org/tr1/
http://goo.gl/KaHLBG

[16] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest.
In Principles of Programming Languages (POPL), 2010.

[17] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made mani-
fest. Journal of Functional Programming (JFP), 22(3):225–274, May
2012.

[18] X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing
with dependent types. In IFIP Conference on Theoretical Computer
Science (TCS), 2004.

[19] Z. Owens. Contract monitoring as an effect, 2012. HOPE.
[20] P. M. Rondon, M. Kawaguchi, and R. Jhala. Low-level liquid types.

In Principles of Programming Languages (POPL), 2010.
[21] A. Sabelfeld and A. Myers. Language-based information-flow secu-

rity. Selected Areas in Communications, IEEE Journal on, 21(1):5 –
19, jan 2003. ISSN 0733-8716. doi: 10.1109/JSAC.2002.806121.

[22] T. Sekiyama, A. Igarashi, and M. Greenberg. Polymorphic manifest
contracts, revised and resolved, 2015. In submission.

[23] A. Shinnar. Safe and Effective Contracts. PhD thesis, Harvard Uni-
versity, May 2011.

[24] D. Stefan, A. Russo, J. Mitchell, and D. Maziéres. Flexible dynamic
information flow control in haskell. In Haskell Symposium, 2011.

[25] K. Svendsen, L. Birkedal, and A. Nanevski. Partiality, state and
dependent types. In Typed Lambda Calculi and Applications, volume
6690. 2011. doi: 10.1007/978-3-642-21691-6 17.

[26] N. Swamy, C. Hriţcu, C. Keller, P.-Y. Strub, A. Rastogi, A. Delignat-
Lavaud, K. Bhargavan, and C. Fournet. Semantic purity and ef-
fects reunited in F∗. Unpublished., 2015. URL https://www.
fstar-lang.org/papers/icfp2015/.

[27] J.-P. Talpin and P. Jouvelot. The type and effect discipline. Inf.
Comput., 111(2):245–296, June 1994. doi: 10.1006/inco.1994.1046.

[28] J. Tov and R. Pucella. Stateful contracts for affine types. In Pro-
gramming Languages and Systems, volume 6012 of LNCS. 2010. doi:
10.1007/978-3-642-11957-6 29.

[29] P. Wadler. A Complement to Blame. In SNAPL, volume 32 of LIPIcs,
2015. doi: 10.4230/LIPIcs.SNAPL.2015.309.

[30] H. Xi and F. Pfenning. Dependent types in practical program-
ming. In Principles of Programming Languages (POPL), 1999. doi:
10.1145/292540.292560.

[31] J. Zhao, Q. Zhang, and S. Zdancewic. Relational parametricity for
a polymorphic linear lambda calculus. In Programming Languages
and Systems, volume 6461 of LNCS. 2010. doi: 10.1007/978-3-642-
17164-2 24.

http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1007/978-3-642-21691-6_17
https://www.fstar-lang.org/papers/icfp2015/
https://www.fstar-lang.org/papers/icfp2015/
http://dx.doi.org/10.1006/inco.1994.1046
http://dx.doi.org/10.1007/978-3-642-11957-6_29
http://dx.doi.org/10.1007/978-3-642-11957-6_29
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.309
http://dx.doi.org/10.1145/292540.292560
http://dx.doi.org/10.1145/292540.292560
http://dx.doi.org/10.1007/978-3-642-17164-2_24
http://dx.doi.org/10.1007/978-3-642-17164-2_24

	Moving beyond the latent semantics
	Challenges
	State complicates scoping
	State introduces circularity
	State is metatheoretically challenging

	Ways forward
	Type and effect systems
	Information flow control

	Other related work

