
Verifying Aspect Advice Modularly∗

Shriram Krishnamurthi
Computer Science Dept.

Brown University

sk@cs.brown.edu

Kathi Fisler
Dept. of Computer Science

WPI

kfisler@cs.wpi.edu

Michael Greenberg
Computer Science Dept.

Brown University

mgreenbe@cs.brown.edu

ABSTRACT
Aspect-oriented programming has become an increasingly
important means of expressing cross-cutting program ab-
stractions. Despite this, aspects lack support for computer-
aided verification. We present a technique for verifying
aspect-oriented programs (expressed as state machines). Our
technique assumes that the set of pointcut designators is
known statically, but that the actual advice can vary. This
calls for a modular technique that does not require repeated
analysis of the entire system every time a developer changes
advice. We present such an analysis, addressing several sub-
tleties that arise. We also present an important optimization
for handling multiple pointcut designators. We have imple-
mented a prototype verifier and applied it to some simple
but interesting cases.

Categories and Subject Descriptors: D.2.4 [Software

Engineering]: Software/Program Verification; D.3.2 [Pro-

gramming Languages]: Language Classifications

General Terms: Algorithms, Languages, Verification

Keywords: modular verification, model checking, aspect-
oriented software

1. INTRODUCTION
There is growing consensus that traditional software struc-

tures have notable abstraction weaknesses, and new tech-
niques are evolving to address them. In general, these tech-
niques perform invasive modifications of programs [4], be-
cause their raison d’être is to capture abstractions that can-
not easily be expressed through the gentler forms of com-
position that traditional modules provide. Some techniques
are purely static, manipulating the program’s source, while
others have dynamic elements, offering the ability to reflect
on the state of the program’s execution and to conditionally
modify it.

∗This work is partially supported by the U.S. National Sci-
ence Foundation grants CCR-0305834 and CCR-0305950.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’04/FSE-12,Oct. 31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010 ...$5.00.

Aspect-oriented programming (aop) [17], especially as re-
alized in the AspectJ language [16], is one of the most pop-
ular forms of invasive program composition. Aspect spec-
ifications have both static and dynamic elements, but the
most distinctive ones are arguably in the latter category. In
particular, AspectJ provides a pattern language that predi-
cates the execution of an aspect on the shape of the runtime
stack. It can therefore express a rich family of coherent,
conceptual ideas that would be difficult to encapsulate in
most traditional notions of a module.

With aop’s popularity burgeoning, software engineers will
expect tool support for all stages of the software cycle—
including validation of behavioral properties. This is espe-
cially important because the expressive power that aspects
unleash heightens the potential for insidious errors.

In this paper, we present a technique for verifying pro-
grams with aspects. In particular, we support an interest-
ing use-case of aop, whereby programmers are able to write
high-level specifications of where aspects should apply (the
pointcut designators) but may need several development it-
erations to write the advice correctly. A näıve approach to
verification would simply compose all the advice against the
program and check the composition on every iteration. This
is, however, time consuming, unwieldy, and potentially diffi-
cult (in a scenario where the developers don’t wish to share
their source with authors of advice).

Our technique adapts model-checking [5] to enable de-
velopers to verify properties against advice without having
access to the program source. Given

1. a set of properties that the program must satisfy, even
in the presence of aspects, and

2. a set of pointcut designators (pcds)

our technique automatically generates sufficient conditions
on the program’s pointcuts to enable verification of advice
in isolation. We do not require simultaneous specification of
the advice that will correspond to each pointcut designator,
or even of its type (before, after, around); this is a departure
from aspect languages like AspectJ. Thus, given the pcds,
this enables a modular verification strategy, whereby nei-
ther the base program nor advice need access to each other
for verification. Our approach even handles, in a modular
fashion, subtleties such as the extension of pointcuts by the
application of advice.

Our approach currently assumes that the programs and
advice are given as state machines. There are tools such as
FLAVERS [11] and Bandera [6] that currently consume Java
source and generate state machines similar to those we need;

we expect similar tools to eventually exist for aspect source,
and thus regard this problem as orthogonal to the work pre-
sented here. For the experiments we have performed with
our prototype checker, we have constructed the automata
manually from AspectJ source programs.

The heart of our result is in the following sections: sec-
tion 3 presents the verification scenario we tackle. Section 5
presents our modular verification technique through a run-
ning example. Section 6 discusses several subtleties that our
work engenders and addresses. Section 7.2 then explains
how we can eliminate a significant performance bottleneck
in the algorithm of section 5. Section 8 outlines the formal
results that support our work.

2. BACKGROUND

2.1 Aspect-Oriented Programming
Each aop system defines a family of program locations,

called joinpoints, at which a programmer can advise pro-
gram execution. Advice is a fragment of code that is typi-
cally executed either before, after or “around” the evaluation
of the joinpoint. An around advice is executed in place of the
original joinpoint, though the author of the advice has the
ability to proceed, i.e., to execute the advised code. These
aop mechanisms thus simulate some of the power found in
advanced object-oriented systems [15].

The AspectJ implementation of aop provides a powerful
language for describing when advice should apply. This lan-
guage of pointcut designators (pcds) can name either static
or dynamic conditions under which to advise the program.
Static pcds name static program attributes, while dynamic
pcds specify a run-time condition. (The “static” assump-
tion in this paper is that the pcds are known statically; our
technique handles both static and dynamic pcds.) The sub-
set of the pcd language of AspectJ that we consider in this
paper essentially expresses patterns over the shape of the
stack, so that programmers can, for instance, write a pcd
of the form “when procedure p is being invoked in the dy-
namic extent of procedure q” (i.e., when a stack frame for
q is lower on the stack, and p becomes the procedure at the
top of the stack).

2.2 Model-Checking
Model-checking is a popular automated verification tech-

nique used to establish properties of finite-state systems. A
model-checker consumes a description of a system, usually
given as a state machine (technically a Kripke structure),
and a specification of a property that the system must obey.
The state machine can be non-deterministic. The property
is typically written in temporal logic. In this paper, we use
model-checkers that employ the temporal logic ctl.

The atoms of ctl are propositions that label states. ctl
permits combination of these atoms using standard propo-
sitional operators and connectives (negation, conjunction,
implication, etc). Finally, ctl can capture temporal proper-
ties. A formula of the form [φ U ψ] (where φ and ψ are both
ctl formulas) is true at a state if φ is true now and in the
future until a state where ψ is true (read the U as “until”).
Because many paths leave a state, we must quantify this
formula to express whether we expect the property to hold
in all possible future worlds or only in some. The ctl for-
mula A[φ U ψ] expects that on All paths, φ will hold in every
state until a state where ψ is true, while E[φ U ψ] requires

that there Exists a path where this holds. In this paper we
also use AG, whose sub-formula must hold in all states; AF,
which holds of a state exactly when its sub-formula eventu-
ally holds along every path from that state; and EX, whose
sub-formula must hold in at least one next state.

The semantics of ctl model-checking is given in terms of
state labelings. The model-checker labels the state machine
with the sub-formulas of the property, working bottom-up.
As a result, when the checker is done, each state is labeled
with all the sub-formulas of the property that are true of that
state. We will exploit this important invariant in this paper.

3. VERIFICATION PROBLEM SETUP
Our verification system consumes a program along with

a set of pointcut designators, sans advice, and a family of
properties that express desired temporal behaviors in ctl.
The developer expects the system to exhibit these behaviors
and the application of advice to not violate them.

Verifying whether the main program exhibits the proper-
ties is relatively straightforward using model-checking. In
contrast, establishing that the advice does not violate the
properties is challenging. The model-checker needs to tra-
verse the paths of both the program and the advice to be
able to establish the property. Demanding, however, that
the developer combine the advice and program prior to each
verification is not always feasible:

1. The advice may be authored at a different time or in a
different place from the program, just as modules are
developed in spatial and temporal independence.

2. The advice may be edited repeatedly; verification time
is proportional to the size of the system, so constantly
verifying the changing advice against a fixed program
is inefficient.

We can extend the module simile to demand “separate
verification” analogous to separate compilation. In the lat-
ter setting, the use of descriptive interfaces enables program-
mers to work independently. Writing such interfaces for ver-
ification is, however, onerous. Instead, given a program, a
set of pcds, and a property, our verifier automatically gen-
erates interfaces relative to these inputs. These interfaces
can be published for use by advice authors, who can employ
them to validate advice over a much smaller input (the ad-
vice alone, rather than the composed program). When the
pcds change, of course, the corresponding interfaces have to
be generated afresh, forcing advice re-verification. On the
other hand, changes to the base program that do not affect
the interfaces are guaranteed to not affect the results of ad-
vice verification. The rest of this paper presents the details
of this process.

4. FORMAL MODELS
We establish some terminology for the rest of the paper.

4.1 Programs
A state machine M is a tuple 〈S, T, L, Ssrc, Ssink, Scall, Srtn〉.

The machine intuitively represents the control-flow graph of
a program fragment.

• S is a set of states. Intuitively, these are statements
and expressions in the program.

• T ⊆ S × S. This reflects the flow of control between
the states of M .

• L : S → 2AP for some set of atomic propositions AP.
This labels what is known to hold at each state.

• Ssrc ∈ S and Ssink ∈ S such that Ssrc is a source
and Ssink is a sink when viewing 〈S, T 〉 as a directed
graph. We call these the source and sink states of M .
Intuitively, these are the entry and exit points of the
program fragment.

• Scall ⊂ S and Srtn ⊂ S. We call the states in these sets
call and return states, respectively. Scall and Srtn are
disjoint and are in a bijective relationship. The states
in Scall carry the label call(p) (where p is the function
being called), and those in Srtn are correspondingly la-
beled return(p). Intuitively, every state in Scall denotes
an invocation of a function, and the corresponding Srtn

state is where control returns when the functions com-
pletes execution. We represent this in the graph with
an edge between the two related states, with no other
outgoing edges from that call state, and no other in-
coming edges to that return state.

A function is a state machine with a name taken from
some set of symbols. A program source is a set of functions
with distinct names, including a function named main. This
is a sufficiently general model to handle most programming
languages; most modern programming abstractions can be
mapped to it using standard program analyses.

A program is constructed from a program source relative
to some inline depth parameter. To generate a program from
the program source, traverse main. At each call-return state
pair, inline a fresh copy of the state machine for the func-
tion labeling the call state. To inline a function F between
states c and r in M , remove the edge between c and r; add
an edge from c to the source of F ; and add an edge from the
sink of F to r. Inlining then proceeds recursively in F until
it exceeds the depth parameter. This definition of program
construction corresponds to the intuition that program ex-
ecution begins at main and proceeds through each function
call. While a better treatment of inlining is a candidate for
future work, note that our definitions do not require main
(and hence the program) to terminate.

4.2 Aspects
Advice is a state machine. Advice machines can, in addi-

tion, have distinguished proceed and resume states, analo-
gous to function call and return states.

The joinpoints used in this paper are function calls. A
pointcut atom is one of the following:

• call(f) for some function name f

• !call(f) for some function name f

• true

A pointcut element is one of the following

• a pointcut atom

• a∗ where a is a pointcut atom

• (e) where e is a pointcut element

• e1 ∧ e2 where e1 and e2 are pointcut elements

• e1 ∨ e2 where e1 and e2 are pointcut elements

A pointcut designator (pcd) is one of the following:

b

b

b

b

b

bb

b b

b

aaaa

call(h)

ret(h)

ret(f)

call(f) call(g)

ret(g)

Figure 1: Sample Program

• a pointcut element

• (d) where d is a pointcut designator

• d1; d2 where d1 and d2 are pointcut designators

• d1|d2 where d1 and d2 are pointcut designators

In other words, pcds are a restricted form of regular ex-
pressions. A pcd subscribes a set of states of the program
at which it applies. This set of states is called a pointcut.
We describe the process of identifying the states that match
a pcd in section 7.

An aspect consists of a pcd, an advice type, and the ad-
vice. The advice types are before, after, and around.

Given a program and an aspect, applying advice at the
aspect’s pointcut yields a new, composed, program. This
program is constructed according to the type of advice (re-
call that we advise only function invocations):

before For each state in the pointcut, replace the edge from
the call state to the source state of the function with
an edge to the source state of the advice; add an edge
from the sink state of the advice to the source state of
the function.

after After is treated analogously.

around Replace the edge from the call state to the source
state of the function with an edge to the source state
of the advice. Replace the edge from the sink state of
the function to the return state with an edge from the
sink state of the advice. Between each pair of proceed-
resume states in the advice, insert a copy of the body
of the advised function.

5. MODULAR VERIFICATION
Given our model of programs and aspects, we can now

describe the actual verification technique. To make the pre-
sentation more accessible, we will present our work in terms
of a simple running example.

The sample program is given in figure 1. The solid lines
show transitions within a function, and the dashed lines
show function invocation and return. The main program

p1p1

p1 p1

p1

p1p1

b

b b

bb

b b

b

a a

a

p1

q1

q1 q1

q2 q2p1

p1q2

q2

q1

q2

q2

q1

q1

q1

p2

p1

p1

b

pcd Q is partially
enabled

ret(h)

call(h)

ret(f)

ret(g)

call(g)

call(f)

pcd P is enabled

a

Before2

After1
After2

Around2

Around1
Before1

Figure 2: Cross Product

invokes function f and then h, while f invokes g. We will
use the ctl property

AG(A[a U b])

which says that in all states of the system, a is true on
all paths until reaching a state where b is true. A quick
inspection reveals that the program satisfies this property.

Suppose we are verifying this program in the presence of
two pcds, which we shall refer to as P and Q respectively:1

P : true∗; call(g)

Q: true∗; call(f); true∗; call(h)

Observe that the program enables pcd P . Furthermore,
the program partially enables pcd Q by calling f , leaving
open the possibility that advice might invoke h and thereby
trigger the pcd.

Because the pcds are regular, we can imagine using stan-
dard algorithms for converting them into automata (as we
discuss in section 7) and labeling the program with the states
of the pcd automata. Figure 2 shows what such a labeling
might look like. The labels p1 and p2 represent states in the
automaton for P . The label p2 represents having witnessed
an invocation of g while p1 indicates being prepared to do
so. Therefore, p2 labels only the state where g is invoked.
Similarly, q1 and q2 capture the state of matching Q. The
state q1 is the initial state, while q2 represents a call to f
currently being on the stack.

This labeled automaton identifies states that satisfy a
pcd. These are states where a programmer might even-
tually apply advice. As we have observed, only pcd P is
enabled, at the state indicated by the label and arrow.

This labeled state-machine and a property are fed to a
model-checker. The model-checker labels each state with all
the sub-formulas of the property that are true of that state.

1In AspectJ, these would be written as call(g) and call(h)
&& cflow(call(f)), respectively.

b

ba

a

call(h)

ret(h)

applies after P

in

out

p1 q2
in

p1 q3

a
p1 q2

b
p1 q2

a

pcd Q is enabled

out

ret(h)

b
p1 q2

call(h)

Figure 3: Advice A and Labeled

Because the indicated state matches a pcd, we generate
an interface at this state to use for verifying the advice
when it becomes available. The interface reflects the state of
the model checking process. It contains the labels that the
model checker ascribes to the states that lead to and return
from the advice, but does not include information about the
rest of the program’s states.2

The heart of the modular verification process is as follows.
Suppose the advice A (shown on the left in figure 3), which
invokes h, is applied as after-advice at the pointcut of pcd
P . Note that A in isolation does not satisfy the property
(because the state before the sink satisfies a but not b), but
that the program composed with A continues to do so. Our
model-checker seeds A’s sink state out with the labels for
After2 from the interface (b, A[a U b], and AG(A[a U b]))
and seeds A’s source state in with the propositions from
After1 from the interface (b). It then model-checks each la-
bel stored for After1 on A (checking source labels against
copied sink labels matches the backward propagation inher-
ent in the ctl model-checking algorithm [5]). If all of these
checks pass, the composed program will satisfy the property.
If a check fails, the advice may violate that property (if the
property depended on the violated label); the checker uses
the location of the pointcut to report the potential violation
of the program’s behavior at that locus and by the corre-
sponding aspect. Before-advice is treated analogously using
the states Before1 and Before2 in figure 2.

Observe that the algorithm verifies the advice state ma-
chine without traversing the body of the program. Ideally,
we would like to show that this process is nonetheless suffi-
cient: if this check succeeds, so would verifying the program
with the advice explicitly spliced in. Unfortunately, this is
not (yet) true!

To see the problem, recall the pcd Q. The main program
invoked f ; the applied advice A invokes h. Therefore, the
program and advice combine to trigger the pcd. Indeed, an
actual aop implementation would detect this condition.

While it is clear we must label the advice A with the states
of the pcd automata (for the same reason we did with the
main program), it is easy to do this incorrectly. If we effec-

2While there is one interface for each state in the pointcut,
we expect the number of states in a pointcut relative to a
pcd to often be small. Furthermore, in most cases these in-
terfaces will have logically related formulas (because, in gen-
eral, the advice will tend to apply in similar circumstances).

tively compute the cross-product with the pcd automata in
their initial states, we would still fail to notice the enabling
of pcd Q. Instead, we need to initialize the pcd automata
in the states they were in at the point of applying the advice,
which is information we must record in the interface; indeed,
the automaton for pcd Q is not in its initial state, since it
has witnessed an invocation of f .

The resulting labeling is shown on the right in figure 3.
This labeling correctly identifies that pcd Q is satisfied by
a combination of the main program and advice A in the in-
dicated state (q3 labels the state in the automaton for Q
where it is satisfied), resulting in a second generated inter-
face. If advice associated with Q violates a property, our
verifier is able to report the violation in terms of both as-
pects, resulting in a helpful diagnostic.

Verifying around-advice modularly is

b

call

ret

AF(b)

no b
AF(b)

AF(b)

more subtle. This verification uses the
Around i labels. Around (without pro-
ceed) can bypass existing states, ren-
dering them unreachable after the ad-
vice is applied. In contrast, before- and
after-advice merely expand an existing
transition with additional states. In
the figure at right, solid edges are tran-
sitions of the base program while the
dashed edges reflect an around-advice. Only the indicated
state has the label b. This is sufficient for the base program
to satisfy the property AF(b). The advice neither invokes
proceed nor has a state labeled b, with the result that this
property no longer holds of the advised system. Unfortu-
nately, the verification process described above will fail to
notice this property violation. The heart of the problem
is that around advice can invalidate a label copied to the
advice’s sink state.

Fortunately, this problem arises only with formulas that
capture eventual behavior where there is a path from the
state at the exit of the advice to the state that enters the
advice. The problem illustrated in the figure arises because
the eventuality is satisfied on a path that the around ad-
vice eliminates. Whenever model-checking labels a call state
with an eventuality property that labels the corresponding
return state, we must determine whether the property is
discharged before reaching the return state. This test is
easily generated from the property and expressed in ctl; in
this example, it is A[!return U b]. (Had the property been
an existential, the test would correspondingly have used an
existential path quantifier.) If this formula succeeds at the
call state of the base program, the formula is included in the
interface for the call state, and is also checked against the
advice during modular verification. This check would have
failed in the example shown above. A formal description of
a similar problem, the solution and its proof of correctness
appear in our technical report [13].

Verification Process Summary
Given a fixed set of pcds, we can verify advice in isolation
from the base program. To do so, we must generate an inter-
face that “caches” the state of the verification at pointcut
states. The challenge is to cache correctly. The interface
must store labels on the states Before1, Before2, After1 and
After2 (Around1 is the same as Before1 and Around2 is Af-
ter2), and the state of the pcd automata. (We can shrink
the interface slightly if we know the advice type in advance.)

At each pointcut state, the verifier seeds the advice program
fragment with interface labels and verifies their preservation.
It also employs the state of the other pcds at this joinpoint
to determine whether additional advice must apply.

6. SUBTLETIES
The above approach has the potential to fall prey to nu-

merous subtleties. We discuss each of these in turn.
. Can applying advice cause joinpoints in the advice to become

members of a pointcut?
Yes, and our technique is sensitive to this possibility. In-

deed, the running example of section 5 addresses this sce-
nario. The interfaces described in this paper store informa-
tion to accurately identify such additions to pointcuts.

. What happens when an around advice uses proceed?
Suppose we are advising an application of function f . The

body of f in the source program has already been traversed
by the model checker at the point of application of the ad-
vice. Since this is the same code that will execute at the
proceed-resume states, it is tempting to reuse this verifica-
tion effort by adopting the labels already in the program
and avoiding re-verification of the body of f .

Reusing the labels on this copy of f is, unfortunately, not
necessarily sound. The fragment of the advice that appears
after resumption may invalidate some of the labels that are
on the states of f . (For instance, since we have added a new
path, a label of the form AF(φ) may no longer hold.) For
this reason, we currently inline a copy of f and verify f ’s
body in the context of the proceed-resume states.

In practice, however, we believe this will often be unneces-
sary. When an around advice invokes proceed, the aspect it-
self often performs operations orthogonal to those being ad-
vised. For instance, the aspect might increment and decre-
ment counters, a generic operation that has no effect on the
program’s properties. In such cases, the set of labels will
not be affected by the advice, which means the labels on f
can be reused safely. We believe a value-flow analysis can
help identify cases when we can reuse the existing labels.

. Can applying advice cause new joinpoints in the program to
enter a pointcut once the advice has completed?

This cannot happen in our model. Once advice completes,
it restores the stack to the same state it had before invoca-
tion. Invoking advice can therefore have no impact on the
pointcuts of either static or dynamic pcds.

In a system like AspectJ, which has a richer pcd language,
this claim is no longer true. As just one example, the use
of if in a pcd makes it possible to write complex predi-
cates that can, for instance, detect mutations performed by
advice. In such cases, our tool would need to perform a
value-flow analysis to determine when an advice can cause a
joinpoint to enter a pointcut, to conservatively over-estimate
to preserve soundness, and to use the body of the advice to
determine whether or not to perform verification at a join-
point. The model we present here remains applicable—only
the set of states for which we generate interfaces changes—
though a weak analysis would generate interfaces and sug-
gest verification at unreasonably many states.

. What happens when multiple pcds apply at a state?
Implementations like AspectJ employ a simple strategy

to order the applicable advice. In our model, if two pcds
match at a state, the application of the advice correspond-
ing to one pcd cannot affect whether or not the second pcd
still applies. This follows by the same reasoning about the

stack discipline used to establish that advice cannot cause
new joinpoints to enter a pointcut once the advice has com-
pleted. We therefore simulate AspectJ’s strategy of ordering
applicable advice.

. Can applying advice remove states from pointcuts?
Yes! For instance, suppose an around advice does not

invoke proceed; pointcut elements in the fragment being ad-
vised will no longer execute. Or, if the advice terminates
program execution, then the rest of the program is no longer
reachable. While it is sound to verify advice application at
these states anyway, it can certainly lead to predictions of
errors that do not occur on execution (since the program
does not visit those states).

This problem is not serious. Any advice can affect point-
cuts if it terminates program execution in some or all paths,
but this is easy to detect and address (indeed, this often
indicates an error in the advice). In the absence of this, be-
fore and after advice are not problematic. The only remain-
ing case is when no path through an around advice invokes
proceed (which is easy to detect by reachability). In this
instance, we need not verify joinpoints in the advised code.
The set of such joinpoints can be recorded in the interface.

. What about properties introduced by aspects?
The technique presented in this paper is designed to es-

tablish the preservation of program properties by aspects.
In fact, aspects often introduce new invariants about pro-
grams. While our approach is not designed to tackle this,
we can partially simulate it: see the example in section 9.

7. IDENTIFYING POINTCUT STATES
FROM PCDS

The technique presented in section 5 depends on being
able to identify the pointcut states corresponding to each
pcd, independently of how the program was constructed.
We will begin by describing a straightforward technique for
doing so (which we believe is the one most readers would
expect), explain its shortcomings, and provide a superior
solution that does not suffer from these difficulties.

7.1 Using Cross-Products
For simplicity, assume there is only one pcd. Suppose

we can convert the pcd into an automaton (henceforth re-
ferred to as a pcd automaton). Taking the cross-product
of the program with this automaton identifies the states of
the program that belong in the pointcut. As the example
in section 5 showed, the cross-product is a useful conceptual
model: it both identifies states where advice applies and
helps generate accurate interfaces that correctly predict the
addition of advice joinpoints to pointcuts.

In principle, we can use standard algorithms to compile
the pcd, which is regular, into an automaton. There are,
however, several reasons why this is not straightforward.
Some of these are relatively easy to resolve. In a näıve com-
pilation of pcds, the resulting automata will expect nested
function calls to happen immediately on entry into the en-
closing function; the generated automata must instead stut-
ter. Also, standard algorithms for generating automata from
regular expressions produce Mealy machines, whereas veri-
fication relies on Moore machines; however, converting be-
tween the two is routine.

There are, unfortunately, two significant shortcomings with
actually computing the cross-product. First, pcds men-

tion only calls, not returns. This is problematic because
pcds, which are regular, monitor stack contents, which are
context-free, and could hence incorrectly recognize a se-
quence of non-nested calls as a sequence of nested calls.

Second, consider a small number of pcds, each with simple
pcd automata: say 5 pcds with automata of 5 states each.
Each automaton contributes a multiplicative factor to the
number of states in the cross-product, with the result that
the resulting state machine will have 55 or about 3000 times
as many states as the original program. Model-checking is
sensitive only to the number of reachable states, but the
more distinct the pcd automata are (representing different
conditions that trigger the application of distinct features),
the more the states that will actually be reachable.

We can address the first problem by adding additional
transitions to a pcd automaton to track function returns.
Indeed, because we have bounded the depth of inlining (and
thus of recursion), we can modify the automaton generator
to precisely count the number of function applications and
returns. Doing this, however, magnifies the size of the pcd
automata even more, thereby further exacerbating the effect
of the cross-product on automaton size. Therefore, we would
benefit from a strategy that avoids an explicit cross-product
construction while preserving the two benefits that the cross-
product confers.

7.2 Avoiding Cross-Products
In the absence of an explicit cross-product, pointcuts can

be identified by traversing the program and advice graphs.
We exploit the graph traversal power of model-checkers to
perform this identification.

Consider the pcd labeled Q in section 5, and suppose the
program contains calls of h nested within those of f . We
can easily express this pcd as a temporal logic formula, but
a direct application of model-checking would not properly
identify pointcut states. This is because the model-checker
would label the formula at the start of a path that could reach
a pointcut state, rather than at the pointcut state itself—a
reflection of the future-time nature of ctl. Capturing the
pointcut states requires a way to examine the past from a
given state and ask whether it reflects the correct sequence
of calls in progress. (Past-time ctl could handle this, but
would require either a separate algorithm or would incur an
exponential blow-up on translation into regular ctl.)

We can examine the past efficiently as follows. First, we
reverse each of the edges in the program’s state machine.
Second, we employ a ctl formula that matches the stack’s
contents in reverse. For the pcd Q, this formula would be

call(h) ∧ E[true U call(f)] (1)

This formula should label exactly those states in the reversed
machine with a call(h) label and for which the stack has
a form that matches the pcd. It is crucial to note that
this model-checking run cannot “fail”: failure to assign a
label to a state only signifies that the state does not belong
in a pointcut. (Observe that we are exploiting the model-
checking’s traversal power to do something quite distinct
from verification.)

This proposal is, however, not sound. Consider a program
that invokes f and h in sequence, with f in turn invoking h
also. Figure 4 (left) shows such an example. This program
should match the pcd only once (the call to h within the
dynamic extent of f).

call(h)

call(f)

call(h)

call(h)

call(f)

call(h)

Figure 4: A Reverse-Bypass Construction

Formula 1 matches this machine with its edges reversed at
two places. The error here is similar to that with näıve pcd
automata, namely a failure to handle return states. (Put
otherwise, this formula cannot distinguish between sequen-
tial and nested calls.) In this case, the formula needs to
check that f does not return on the path from the invoca-
tion of h to that of f . While we can patch the formula to
include this as an additional temporal condition, it is cum-
bersome to properly accommodate nested calls to the same
function; in addition, adding these terms magnifies the size
of the formula, which is a multiplicative factor in the run-
ning time of the model-checker. The situation is therefore
analogous to the one we faced with pcd automata.

The solution to this problem lies in constructing the re-
versed state machine differently. On a reverse path from a
given state s, subpaths that traverse the program between
a return statement and its corresponding call explore states
that have been popped from the stack before control arrives
at s. The traversal should therefore “bypass” matching call
and return states and the paths betwixt, visiting only call
states whose returns have not yet occurred. Bypassing states
is straightforward: any edge in the reverse graph that would
point to a return state should instead point to the succes-
sors (in the reversed graph) of the corresponding call. For
instance, the graph on the right of figure 4 shows a version
of the graph on the left with the edges reversed and calls by-
passed. Formulas checked against this state machine need
not match calls with returns, because completed function
invocations have been elided from the traversed paths.

We translate pcds into ctl formulas over these machines
as follows. Since the pcd grammar disallows | operators
within ∗, we can distribute ; over |, resulting in a pcd with
all | operators at the outermost level. Since | corresponds to
logical or, the heart of the algorithm is therefore the conver-
sion of pcds with the ; operator into ctl formulas. Given a
pcd pcd, we define its ctl identifier as follows. Reverse pcd
and append the symbol ◦; call this pcd′. The ctl identifier
is pcd2ctl(pcd′) where pcd2ctl is defined as:

pcd2ctl(pcd) =
case pcd of

a = a
(e) = (pcd2ctl(e))
e1 ∧ e2 = pcd2ctl(e1) ∧ pcd2ctl(e2)
e1 ∨ e2 = pcd2ctl(e1) ∨ pcd2ctl(e2)

◦ = start
a1; a

∗

2; p = (call ∧ a1) ∧ EX(E[(call → a2) U pcd2ctl(p)])
a∗; p = (call ∨ start) ∧ E[(call → a) U pcd2ctl(p)]
a; p = (call ∧ a) ∧ EX(E[!call U pcd2ctl(p)])

where a, a1, and a2 are pointcut atoms and p is a pcd. This
algorithm assumes every call state has the label call and that
the source state of the main function has the label start.

Identifying pointcut states in this manner requires model-
checking the ctl identifier against the reverse-bypass state
machine. The labels generated on states by this process now
become part of the interface associated with each pointcut
state. They take the place of the pcd automata states we
alluded to in section 5, fulfilling essentially the same role.

Reversing the machine takes time linear in its size (the
stack tracks the bypass states). The formula is linear in the
size of the pcd. The model-checker takes time linear in the
size of the state machine and the formula. As a result, in
linear time we can determine the pointcut states and avoid
the explosion in the size of the input to the verification.
This is crucial because space is often the dominant factor
in verification. We note in passing that our optimization
can be implemented easily with symbolic representations [5]
also, because reversing the edges corresponds to swapping
the current- and next-state variables in the bdd for the tran-
sition relation, identifying the edges to add and delete (for
bypassing) is accomplished by projection, and actual addi-
tion and deletion are just bdd-or and -and, respectively.

Finding Pointcut States in Advice
As we saw in section 5, advice can induce new states in
pointcuts. There, we suggested that cross-producting the
advice with automata for the pcd, initialized to their state
taken from the interface, can identify these new pointcut
states. Now that we have shown the use of a model-checker
to identify pointcut states in the program, we must demon-
strate that this idea applies to advice as well.

Identifying pointcut states in advice composes two tech-
niques we have already seen: model-checking a program
fragment, and constructing the reverse-bypass version of a
fragment. There are two salient details:

1. Because we will model-check the reversed advice ma-
chine, we must copy labels to the source end of the
advice (rather than to its sink). Note that the only
labels that matter for this process are those generated
by pcd2ctl; these are unrelated to the labels from
verifying the system’s desired behavior.

2. Rather than confirm labels, we model-check the ctl
identifiers on the reverse advice. Whereas with veri-
fication we are trying to establish the preservation of
properties, here we only want to label states to deter-
mine whether or not a state belongs in a pointcut (just
as with the base program).

8. THEOREMS
The correctness of this work relies on the modular algo-

rithms producing the same results as analyzing the com-
posed program. Our modular technique identifies a state
as belonging to a pointcut iff that state would lie in the
pointcut in the composed program. The modular algorithm
labels a state with a ctl formula if model checking the com-
posed program would ascribe that label to that state. The

b

d

u

ret(move_obj)
c

call(move_obj)

out

in

Figure 5: Display Update Example

following formally state these correctness criteria. We omit
the details owing to lack of space.

In the following theorem statements, let P be a program,
A be advice to be applied to P , and P ·A be the composed
program. Let GRB denote the reverse-bypass of graph G.

Theorem 1 (optimization). Let sp be a state in P ,
pcd be a pcd, and ϕpcd be the ctl identifier of pcd. PRB, sp |=
ϕpcd iff sp is a call state for which the sequence of calls on
the stack at sp (viewed as strings) is in the language defined
by (the regular expression) pcd.

Theorem 2 (modular identification). Let sa be a
state in A. Let ϕ be the ctl identifier of a pcd. ARB, sa |= ϕ
by the modular pointcut identification algorithm (section 7.2)
iff (P ·A)RB, sa |= ϕ.

Theorem 3 (modular verification). Let ϕ be a ctl
formula. For all states s in P , (P ·A), s |= ϕ if P, s |= ϕ and
the advice verification algorithm reports all labels are pre-
served. For all states s in A, (P ·A), s |= ϕ if A, s |= ϕ by
the advice verification algorithm.

9. ADDITIONAL EXAMPLE
We have successfully applied our model-checker to some

examples that are inspired by samples in the Eclipse AspectJ
tutorial. Our goal in this study has only been to establish
the potential of our approach. Because we are working with
a prototype model-checker (we are not aware of checkers
that let users seed states with labels, which we need), the
actual performance numbers are not meaningful. Due to
space limitations, we present only one example here.

Figure 5 shows the controller fragment of a gui imple-
mented using the model-view-controller paradigm. The fig-
ure shows the controller’s program (the primary state ma-
chine) and an advice (shown in the box). The controller cre-
ates, moves and deletes objects based on user interactions.
In our example, we show states where the controller deletes
objects (labeled d) and moves them (by invoking move obj).
When an object has been moved, its status is marked as
changed in the state labeled c until the controller has issued
a broadcast (at b).

With this program, we would like to establish the follow-
ing property: when an object changes, it should not get
deleted until the change has been appropriately broadcast.
We can encode this as

AG(c → A[!d U b]) (2)

The program clearly exhibits this property, as the model-
checker establishes. Given the pcd true∗; call(move object)
(in AspectJ notation, call(move_object)), the checker also
generates an interface at the call to move object. This in-
terface now enables us to verify multiple pieces of concrete
advice. For example, the advice in figure 5 performs a vi-
sual update of the moved object (at state u). Since the
update must happen after a move, this is inserted as an af-
ter advice. From the perspective of the program, this advice
creates new control-flow paths between the change and its
broadcast. Fortunately, our modular technique establishes
that the property continues to hold without traversing the
program again. (It also introduces properties about u at
the source of the advice. Modularity keeps these from being
propagated to the program states, highlighting the incom-
pleteness of state label ascription.) When, instead, we apply
advice that (prematurely) deletes the object, our verifier re-
ports the offending aspect and program location.

Formula 2 is about the program’s behavior, and we are
interested in its preservation by advice. We might also want
to verify properties that emerge as a result of applying an
aspect. For instance, the advice in figure 5 introduces the
property

AG(c → AF(u))

This property fails of the original program (which has no
updating), but is manifest in the system once the aspect is
applied. To demonstrate that applying the aspect impacts
the establishment of this property, we can instead verify
the negation of the property—which the program does in
fact satisfy. Verifying the advice then violates the (negated)
property, which indicates that the property holds in at least
some cases. (This violation of the property does not au-
tomatically guarantee that the original property holds, be-
cause our technique is not complete.)

10. RELATED WORK
There are many efforts to define formal semantics for as-

pects, some of which have been accompanied by proposals
on employing the semantics for verification. For instance,
Andrews [3] uses process algebras to offer a foundation for
aop. That work emphasizes proofs of the correctness of pro-
gram weaving, using program equivalence to establish the
correctness of a particular weaver.

The notion of compiling the pcds to automata and match-
ing these against the stack is due to Masuhara et al. [22],
later refined by Sereni and de Moor [26]. They provide a
language of pcd primitives (which we used as the basis for
ours) and present a static analysis based on this. The anal-
ysis determines the shapes of the stacks possible at each site
and presents a pre-computation on a fixed set of pcds that
can reduce the work of the analysis. Their work does not,
however, discuss verification (though it is a natural appli-
cation) and, in particular, does not provide a methodology
for, or discuss the subtleties of, modular verification in this
context. Adaptive programming systems like Demeter [21]
also rely on compiling regular specifications into automata

to guide the traversal process. While we have not formally
investigated the application of our techniques to Demeter,
we believe such an application should indeed be possible.

Some researchers have considered aspect verification but
in the context of analyzing the program after composition.
Deng, et al. [8] use aspects to specify concurrency proper-
ties, then synthesize code with appropriate safety protocols
and verify the result. Nelson, et al. [24] use both model-
checkers and model-builders to verify woven programs. Both
Ubayashi and Tamai [31] and Denaro and Monga [7] employ
model-checkers to verify Java programs. These papers do
not, however, describe a modular verification methodology
or address the accompanying subtleties.

There is a growing body of work on techniques to study
interference between aspects, such as those of Störzer and
Krinke [29] and Kniesel [personal comm.]. These approaches
are essentially orthogonal to our work in that they do not
consume a user-specified property but rather analyze aspects
for a fixed characteristic (like traditional type systems do).
We believe these techniques can strengthen our work.

In a series of papers (e.g., [10]), Douence, et al. also study
this problem through a formalism for aop based on events.
This has the benefit of lifting aspects to a more semantic
level, which they use to define two notions of independence
of an aspect, depending on whether or not it can be impacted
by a particular program. (This is related to work on inter-
face generation under parallel composition [14, 18].) The
event-based definition shifts the work to a fundamentally
parallel setting, however, which is difficult to compare with
ours. While they provide proof rules for reasoning about
programs, they do not specify the implementation status
and whether the tools would run in as automated a fashion
as a model-checker.

Devereux [9] also maps programs and aspects to concur-
rent systems. This leads to a fundamentally different style
of reasoning, since our composition is sequential while his
is parallel. His approach supports a rich family of aspect-
like mechanisms, and may too be able to exploit results on
generating environment models under parallel composition.
It is, however, unclear what price this model extracts in re-
turn for its power, especially given that languages such as
AspectJ use sequential composition. His formalization em-
ploys alternating-time logic, for which tool support does not
appear to be as mature as for ctl.

Mousavi, et al. [23] discuss a new tool-suite for embed-
ded systems. This suite is designed to exploit aspects in
the design phase. While they discuss the desire to support
verification at this level, it is not yet clear that they pro-
vide concrete support for it. Regimbal, et al. [25] discuss
the use of aspects in hardware specification, concretely in
a system-on-a-chip packet filter using the e [sic] language,
which includes an aspect-like advice mechanism. They also
discuss the advantages of reusing verification in this set-
ting but do not appear to provide a formal framework for
actually performing such reasoning. Tesanovic, et al. [30]
perform timing analysis of real-time programs. Their work,
however, offers only a very simple model of pointcuts, and
does not identify pointcuts in advice.

Xu, et al. [32] reduce aspect verification to prior work on
reasoning about implicit invocation systems. In particular,
they suggest using work that employs model- rather than
proof-theoretic techniques. It is, however, unclear how their
work addresses several issues that we study. They do not

discuss around-advice, which is arguably the most interest-
ing kind, since it elides paths through a previously verified
program, potentially rendering the result of prior verification
invalid. At a more abstract level, it is unclear what the con-
sequences of their reduction would be: whether verification
works in a way that is meaningful to aspects, whether they
can identify pointcuts induced by advice, what the formal
properties about implicit invocation verification mean in the
context of aspects, or how to translate results of verification
into a form meaningful to aop developers.

Sihman and Katz employ “superimpositions”, which are
aspect-like notations parameterized to be more reusable.
Their work helps users of Bandera model-checking [27] avoid
the practical problem of annotating the program differently
for each aspect’s properties by employing superimpositions
to weave in the annotations specific to each aspect. Their
focus is on properties of aspects that programs might vio-
late, and their interfaces target verifying the preservation
of such properties. These interfaces, however, appear to be
written entirely manually. Their methodology also covers
preserving properties of the base program by aspects, but
not through separate analysis of program and aspects as in
our work. They do discuss the possibility of verifying the
aspect independently in the context of a dummy program,
and observe that this is an open-system verification prob-
lem, but do not offer a prescription for the generation of
these dummy programs. In another paper [28], they present
a sophisticated discussion of exactly what it means to ver-
ify advice and program. They also classify types of advice
based on whether or not they alter control- and data-flow
in the program. In sum, while their work deals heavily with
issues of modularity, they do not appear to have an actual
modular analysis.

Modular verification is an old problem, often referred to
as assume-guarantee reasoning in the verification commu-
nity. Most assume-guarantee techniques assume that mod-
ules compose in parallel, while AspectJ aspects compose se-
quentially. Some research [2, 19] has considered modular
model-checking with sequential control flow. The original
work [19] lacks a design framework that drives the decom-
position of the design, and hence is not concerned with the
problems of interface generation that we address. The other
works use, for instance, hierarchical state machines [2] to
provide this decomposition. All of these works, however,
assume that the whole program is given at analysis time;
in other words, they assume closed rather than the open
systems aspects give rise to.

Alur, et al. [1] present a temporal logic that includes call
and return statements for capturing properties of pushdown
systems. While their logic would capture pcds without the
need for the bypass construction we use to identify point-
cuts, their work does not address modular verification, and
their use of pushdown systems makes it difficult to reuse
existing verification tools. Their work would nevertheless
be useful for extending our results to lift the restriction on
nesting depth.

Fisler and Krishnamurthi [12] present a model for verify-
ing product-line systems where each module encapsulates a
feature. That work, which inspires our result, addresses the
possibility of concurrency within each module, which is not
addressed here. However, their composition occurs only at
fixed points in the source, corresponding to static joinpoints
and ignoring dynamic ones, which we address. Li, et al. [20]

extend these results to address open-system problems that
also apply to aspects, but again their work is restricted to a
much simpler notion of composition.

11. DISCUSSION AND FUTURE WORK
We have presented a verification technique for modularly

analyzing aspects relative to fixed pcds. This work leaves
many questions for future exploration. First, we explore
only a very limited source language, excluding features such
as exceptions and concurrency. Second, the technique is
limited by assumptions such as an inlining depth for the
call-stack. Third, we do not address several AspectJ features
such as initialization advice. Finally, model extraction tools
currently do not address the features of aspect languages.

The execution cost of our algorithm depends on several
parameters. While the underlying model checker runs in
time linear in the size of the model (which can be the base
program or an advice machine), in the worst case each advice
must be verified once per state in the pointcut it advises. We
believe, however, that in many cases the differences between
the labels on states will not matter relative to the advice
machine in question, and in such cases we can avoid what is
effectively redundant verification. We can potentially iden-
tify such related interfaces using deductive techniques.

Finally, this paper presents a technique for preserving
those properties of a program that aspects must not invali-
date. Aspects, however, engender several other verification
scenarios. For one, aspects may themselves introduce prop-
erties that the base program must not affect. In addition,
an aspect may be applied to “repair” a program’s behavior,
i.e., to transform a program that “almost” satisfies a prop-
erty to actually obeying it. These are interesting challenges
for future work.

Acknowledgments.We are grateful to Gregor Kiczales for
valuable discussions. We thank the anonymous reviewers
and Christopher Dutchyn for their detailed comments. We
parenthetically toast Dan Friedman, thanks to whom this
trio of authors came to know one another over a period of
twelve years.

12. REFERENCES
[1] Alur, R., K. Etassami and P. Madhusudan. A temporal logic of

nested calls and returns. In Tools and Algorithms for the
Construction and Analysis of Systems, 2004.

[2] Alur, R. and M. Yannakakis. Model checking of hierarchical
state machines. In Symposium on the Foundations of Software
Engineering, pages 175–188, 1998.

[3] Andrews, J. H. Process-algebraic foundations of aspect-oriented
programming. In Reflection, pages 187–209, September 2001.

[4] Aßmann, U. Invasive Software Composition. Springer-Verlag,
2003.

[5] Clarke, E., O. Grumberg and D. Peled. Model Checking. MIT
Press, 2000.

[6] Corbett, J. C., M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby and H. Zheng. Bandera: Extracting
finite-state models from Java source code. In International
Conference on Software Engineering, 2000.

[7] Denaro, G. and M. Monga. An experience on verification of
aspect properties. In International Workshop on Principles of
Software Evolution, September 2001.

[8] Deng, X., M. B. Dwyer, J. Hatcliff and M. Mizuno.
Invariant-based specification, synthesis, and verification of
synchronization in concurrent programs. In International
Conference on Software Engineering, pages 442–452, 2002.

[9] Devereux, B. Compositional reasoning about aspects using
alternating-time logic. In Foundations of Aspect-Oriented
Languages, March 2003.

[10] Douence, R., P. Fradet and M. Südholt. A framework for the
detection and resolution of aspect interactions. In
International Conference on Generative Programming and
Component Engineering, October 2002.

[11] Dwyer, M. B. and L. A. Clarke. Flow analysis for verifying
specifications of concurrent and distributed software. Technical
Report UM-CS-1999-052, University of Massachusetts,
Computer Science Department, August 1999.

[12] Fisler, K. and S. Krishnamurthi. Modular verification of
collaboration-based software designs. In Joint European
Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
pages 152–163, September 2001.

[13] Fisler, K. and S. Krishnamurthi. Modular verification of
feature-oriented software models. Technical Report
WPI-CS-TR-02-28, WPI, Department of Computer Science,
October 2002.

[14] Giannakopoulou, D., C. Pasareanu and H. Barringer.
Assumption generation for software component verification. In
IEEE International Symposium on Automated Software
Engineering, pages 3–12, 2002.

[15] Kiczales, G., J. des Rivières and D. G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[16] Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and
W. Griswold. An overview of AspectJ. In European Conference
on Object-Oriented Programming, 2001.

[17] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier and J. Irwin. Aspect-oriented
programming. In European Conference on Object-Oriented
Programming, June 1997.

[18] Kupferman, O., M. Vardi and P. Wolper. Module checking. In
International Conference on Computer-Aided Verification,
number 1102 in Lecture Notes in Computer Science, pages
75–86. Springer-Verlag, 1998.

[19] Laster, K. and O. Grumberg. Modular model checking of
software. In Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 1998.

[20] Li, H. C., S. Krishnamurthi and K. Fisler. Modular verification
of open features through three-valued model checking.
Automated Software Engineering: An International Journal,
2003.

[21] Lieberherr, K. J. Adaptive Object-Oriented Programming.
PWS Publishing, Boston, MA, USA, 1996.

[22] Masuhara, H., G. Kiczales and C. Dutchyn. A compilation and
optimization model for aspect-oriented programs. In Compiler
Construction, pages 46–60, 2003.

[23] Mousavi, M., G. Russello, M. Chaudron, M. Reniers,
T. Basten, A. Corsaro, S. Shukla, R. Gupta and D. C. Schmidt.
Using Aspect-GAMMA in design and verification of embedded
systems. In International Workshop on High Level Design
Validation and Test, October 2002.

[24] Nelson, T., D. D. Cowan and P. S. C. Alencar. Supporting
formal verification of crosscutting concerns. In Reflection,
pages 153–169, 2001.

[25] Regimbal, S., J.-F. Lemire, Y. Savaria, G. Bois, E. M.
Aboulhamid and A. Baron. Aspect partitioning for hardware
verification reuse. In Workshop on System-on-Chip for
Real-Time Applications, 2002.

[26] Sereni, D. and O. de Moor. Static analysis of aspects. In
International Conference on Aspect-Oriented Software
Development, pages 30–39, March 2003.

[27] Sihman, M. and S. Katz. Model checking applications of
aspects and superimpositions. In Foundations of
Aspect-Oriented Languages, March 2003.

[28] Sihman, M. and S. Katz. Superimpositions and aspect-oriented
programming. The Computer Journal, 46(5):529–541,
September 2003.

[29] Störzer, M. and J. Krinke. Interference analysis for AspectJ. In
Foundations of Aspect-Oriented Languages, 2003.

[30] Tesanovic, A., J. Hansson, D. Nyström, C. Norström and
P. Uhlin. Aspect-level WCET analyzer. In International
Workshop on Worst-Case Execution Time Analysis, July
2003.

[31] Ubayashi, N. and T. Tamai. Aspect oriented programming with
model checking. In International Conference on
Aspect-Oriented Software Development, pages 148–154, April
2002.

[32] Xu, J., H. Rajan and K. Sullivan. Aspect reasoning by
reduction to implicit invocation. In Foundations of
Aspect-Oriented Languages, March 2004.

