
Completeness for Logics on Finite Traces

Eric Campbell1 and Michael Greenberg2

1 Cornell University
ehc86@cornell.edu
2 Pomona College

michael@cs.pomona.edu

Abstract. Temporal logics over finite traces are not the same as tem-
poral logics over potentially infinite traces. We propose that existing
methods for proving deductive completeness for infinite-trace logics are
effective on their finite counterparts. To adapt proofs for infinite-trace
logics, we “inject” finiteness: that is, we alter the proof structure to
ensure that models are finite. As evidence for this claim, we offer deduc-
tive completeness results for two finite temporal logics: linear temporal
logic over finite traces (LTLf) and linear dynamic logic over finite traces
(LDLf). Both proofs of completeness follow a conventional, graph based,
least fixed point structure. Roşu first proved completeness for LTLf with
a novel coinductive axiom; our proof uses fewer and more conventional
axioms [12]. The proof for LDLf is novel; it largely follows our LTLf
proof, using Brzozowski derivatives to define a transition function.

Keywords: finite temporal logic, linear temporal logic, linear dynamic
logic, soundness, completeness, Brzozowski derivative

1 Introduction

Temporal logics have proven useful in a remarkable number of applications, in
particular reasoning about reactive systems. To accommodate the nonterminat-
ing nature of such systems, temporal logics have used a possibly infinite model
of time. For nearly thirty years after Pnueli’s seminal work [11], the prevailing
wisdom held that temporal logics could be ‘truncated’ to work with finite time.
Researchers have recently overturned that conventional wisdom: some formulae
are valid only in finite models [1, 5, 4].

Having realized that finite temporal logics differ from (possibly) infinite ones,
we may wonder: how do these finite temporal logics behave? What of their
model and proof theories? Can we adapt existing metatheoretical techniques
from infinite settings, or must we come up with new ones? Reworking the model
theory of temporal logics for finite time is an easy enough exercise: the standard
model is a (possibly infinite) sequence of valuations on primitive propositions;
to consider only finite models, simply restrict yourself to finite sequences of
valuations. The proof theory is more challenging. In practice, it seems sufficient
to (a) add an axiom indicating that the end of time comes, (b) add an axiom to
say what happens when the end of time arrives, and (c) to relax (or strengthen)

axioms from the infinite logic that may not hold in finite settings. For an example
of (c), consider LTLf . It normally holds that the next modality commutes with
implication, i.e., ◦(φ⇒ ψ)⇔ (◦φ⇒ ◦ψ); in a finite setting, we must relax the
if-and-only-if to merely the left-to-right direction.

Once we settle on a set of axioms, what does a proof of deductive complete-
ness look like? We believe that it is possible to adapt existing techniques for
infinite temporal logics to finite ones directly. As evidence, we offer two proofs of
completeness: one for linear temporal logic over finite traces (LTLf) and one for
linear dynamic logic over finite traces (LDLf). Both proofs have a conventional
structure: we define a graph of positive-negative pairs of formulae (PNPs), fol-
lowing Kröger and Merz’s presentation [9]. The only change we make to their
construction is that when we prove our satisfiability lemma—the core property
relating the PNP graph to provability—we “inject” finiteness, adding a formula
guaranteeing a finite model.

We claim the following contributions:

– Evidence for the claim that the metatheory for infinite temporal logics read-
ily adapts to finite temporal logics by means of injecting finiteness (Section 2
situates our work; Section 3 explains our model of finite time).

– A proof of deductive completeness for linear temporal logic on finite traces
(LTLf ; Section 4) with fewer axioms than any prior proof [12].

– A novel proof of deductive completeness for linear dynamic logic on finite
traces (LDLf ; Section 5).

2 Related work

Pnueli [11] proved his temporal logic programs to be sound and complete over
traces of “discrete systems” which may or not be finite; Lichtenstein et al. [10]
extended LTL with past-time operators and allowed more explicitly for the pos-
sibility of finite or infinite traces. Fischer and Ladner first devised propositional
dynamic logic [8]; Vardi later introduced the linear variant, LDL [13].

Baier and McIlraith were the first to observe that some formulae are only
valid in infinite models, and so LTLf and other ‘truncated’ finite temporal logics
differ from their infinite originals [1]. De Giacomo and Vardi showed that satis-
fiability and validity were PSAPCE-complete for these finite, relating LTLf and
LDLf to other logics (potentially infinite LTL, FO[<], star-free regular expres-
sions, MSO on finite traces) [5]; later, de Giacomo et al. were able to directly
characterize when LTLf and LDLf formulae are sensitive to infiniteness [4]. De
Giacomo and Vardi have also studied the synthesis problem for our two logics of
interest [6, 7]. Most recently, D’Antoni and Veanes offered a decision procedure
for MSO on finite sequences, but without a deductive completeness result [3].

Roşu [12] was the first to show a deductive completeness result for a finite
temporal logic: he showed LTLf is deductively complete by replacing the induc-
tion axiom with a coinduction axiom coInd: if ` •�φ⇒ φ then ` φ.3 He shows

3 In Roşu’s paper, empty circles mean “weak next” and filled ones mean “next”, while
we follow Kröger and Merz and do the reverse [9].

that coInd is equivalent to the combination of the conventional induction axiom
Ind (if ` (φ⇒ •φ) then ` φ⇒ �φ) axiom and a finiteness axiom Fin, ♦ •⊥.

Our goal is to show that existing, conventional methods for infinite temporal
logics suffice for proving that finite temporal logics are deductively complete. For
LTLf , we take the conventional inductive framing, extending Kröger and Merz’s
axioms with the axiom Fin : ♦ •⊥, i.e., ♦ end (we call this axiom Finite).
Surprisingly, we are able to prove completeness with only six temporal axioms—
one fewer than Roşu’s seven, though he conjectures his set is minimal. It turns
out that some of his axioms are in fact consequences of others—his N� can
be proved from N• and coInd (via Ind). Our results for LTLf show that a
smaller axiom set exists. In fact, we could go still smaller: using Roşu’s proofs,
we can replace Finite and Induction with coInd... only five axioms! We see
our proof as offering a separate contribution, beyond shrinking the number of
axioms needed. We follow Kröger and Merz’s least fixed-point construction quite
closely, adapting their proof from LTL to LTLf by injecting finiteness. Our key
idea is that existing techniques for infinite systems readily adapt to finite ones:
we can reuse model theory which uses potentially infinite models so long as we
can force the theory to work exclusively with finite models.

3 Modeling finite time

Both of our logics, LTLf and LDLf , share a model of finite time: traces. A
trace over a fixed set of propositional variables is a (possibly infinite) sequence
(η1, η2, . . .) where ηi is a valuation, i.e., a function establishing the truth value (t
or f) for each propositional variable. We refer to each valuation as a ‘state’, with
the intuition that each valuation represents a discrete moment in time. Formally:

Definition 1 (Valuations and Kripke structures). Given a set of proposi-
tional variables Var, a valuation is a function η : Var→ {t, f}. A Kripke structure
or a trace is a finite, non-empty sequence of valuations; we write Kn ∈ Modeln
to refer to a model with n valuations, i.e., Kn = (η1, . . . , ηn).

We particularly emphasize the finiteness of our Kripke structures, writing Kn

and explicitly stating the number of valuations as a superscript each time. The
number n is not directly accessible in either of our logics, though the size of
models is observable in both of them (e.g., the LTLf formula ◦ ◦ ◦> will be
satisfiable only in models with four or more steps). Our traces are not only finite,
but they are necessarily non-empty—both LTLf and LDLf would be trivial in
empty models.

Suppose we have Var = {x, y, z}. As a first example, the smallest possible
model will be one with only one time step, K1 = η1, where η1 is a function from
Var to the booleans, i.e., a subset of Var. As a more complex example, consider
the following model K4 with four time steps:

K4 =
η1 η2 η3 η4

{x} {x, y} ∅ {x, y, z}

Both of our logics use Kripke structures to interpret formulae, defining a
function Kni : Formula → {t, f}. (Put another way: we define a function interp :
Modeln × {1, . . . , n} × Formula → {t, f}.) We lift this interpretation function to
define validity and satisfiability abstractly for both logics.

Definition 2 (Satisfiability and validity in a Kripke structure). Given
an interpretation function Kni : Formula→ {t, f}, we say for φ ∈ Formula:

– φ is satisfiable in Kn iff Kn1 (φ) = t;
– φ is satisfiable iff ∃Kn such that φ is satisfiable in Kn;
– Kn |= φ (pronounced “Kn models φ”) iff ∀1 ≤ i ≤ n, Kni (φ) = t;
– |= φ (pronounced “φ is valid”) iff ∀Kn, Kn |= φ; and
– F |= φ for F ⊆ Formula (pronounced “φ is valid under F”) iff ∀Kn, if
∀ψ ∈ F , Kn |= ψ then Kn |= φ.

4 LTLf : linear temporal logic on finite traces

Linear temporal logic is a logic for reasoning on potentially infinite traces. The
syntax of linear temporal logic on finite traces (LTLf) is identical to that of its
(potentially) infinite counterpart. We define LTLf as propositional logic with two
temporal operators (Figure 1). The propositional fragment comprises: variables
v from some fixed set of propositional variables Var; the false proposition ⊥; and
implication φ ⇒ ψ. The temporal fragment comprises two operators: the next
modality, written ◦φ; and, weak until, written φW ψ.

Given these parts, we can encode a more conventional looking logic, with
the usual logical operators and an enriched set of temporal operators. Of these
standard encodings, we remark on two in particular: end, the end of time, and
•φ, the weak next modality. In the usual (potentially infinite) semantics, it is
generally the case that ◦> holds, i.e., that the true proposition holds in the
next state, i.e., that there is a next state. But at the end of time, there is no
next state—and so ◦> ought not adhere. In every state but the last, we have
◦> as usual. We can therefore define end = ¬◦>—if end holds, then we must
be at the end of time. We define the weak next modality as •φ = ¬◦¬φ. In an
infinite model, next and weak next generally coincide. But we have •> in every
state, but ◦> in all but the last. That is, weak next is insensitive to the end of
time—when •φ holds for all φ—but ◦φ is senstitive to the end of time—when
◦φ fails for all φ. To realize these intuitions, we must define our model.

The simple, standard model for LTL is a trace; we will use finite traces (Def-
inition 1). Given a Kripke structure Kn, we assign a truth value to a proposition
φ at time step 1 ≤ i ≤ n with the function Kni (φ), defined as a fixpoint on for-
mulae. The definitions for Kni in the propositional fragment are straightforward
implementations of the conventional operations. The definitions for Kni in the
temporal fragment also assign the usual meanings, being mindful of the end of
time. When there is no next state, the formula ◦φ is necessarily false; when there
is no next state, the formula φ W ψ degenerates into φ ∨ ψ. Why? Suppose we
are at the end of time; one of two cases adheres. Either (weakly) we have φ until

Syntax

Variables v ∈ Var
LTLf formulae φ, ψ ∈ LTLf ::= v | ⊥ | φ⇒ ψ | ◦φ | φW ψ

Encodings

¬φ = φ⇒ ⊥ > = ¬⊥ φ ∨ ψ = ¬φ⇒ ψ φ ∧ ψ = ¬(φ ∨ ψ)

end = ¬◦> •φ = ¬◦¬φ �φ = φW ⊥ ♦φ = ¬�¬φ
φ U ψ = φW ψ ∧ ♦ψ

Semantics Kni : LTLf → {t, f}

Kni (v) = ηi(v)
Kni (⊥) = f

Kni (φ⇒ ψ) =

{
t Kni (φ) = f or Kni (ψ) = t

f otherwise

Kni (◦φ) =

{
Kni+1(φ) i < n

f i = n

Kni (φW ψ) =

t ∀i ≤ j ≤ n, Knj (φ) = t or

∃i ≤ k ≤ n, Knk (ψ) = t and ∀i ≤ j < k, Knj (φ) = t

f otherwise

Proof theory ` ⊆ 2LTLf × LTLf

Axioms
all propositional tautologies Taut

` •(φ⇒ ψ)⇔ (•φ⇒ •ψ) WkNextDistr

` end⇒ ¬◦φ EndNextContra

` ♦ end Finite

` φW ψ ⇔ ψ ∨ (φ ∧ •(φW ψ))
WkUntilUnroll

` φ
` •φ WkNextStep

` φ⇒ ψ ` φ⇒ •φ
` φ⇒ �ψ

Induction

Consequences
` ¬(◦> ∧ ◦⊥)

NextContra
` ¬◦φ⇔ end ∨ ◦¬φ

NextNeg
` •φ⇔ ◦φ ∨ end

NextWkNext
` •(φ ∧ ψ)⇔ •φ ∧ •ψ

WkNextConj
` ¬•φ⇒ •¬φ

WkNextNeg
` �φ⇔ φ ∧ •�φ

AlwaysUnroll

F ` φ iff assuming ` ψ for each ψ ∈ F we have ` φ

Fig. 1. LTLf syntax, semantics, and proof theory

the end of time (now!), or we have ψ and have satisfied the until. We can verify
our earlier intuitions about end and •φ. Observe that Kni (end) = t exactly when
i = n; similarly, Kni (•>) = t for all 1 ≤ i ≤ n.

By way of example, consider K4 from Section 3. We have K4 |= y ⇒ x,
because K4

i (y ⇒ x) = t for all i, i.e., whenever y holds, so does x. Similarly,
xW y is satisfiable in K4 with k = 2; z W x is also satisfiable in K4, but trivially
with k = 1. The formula � z is not satisfiable in K4, but K4 |= ♦ z. We lift Kni
to satisfiability and validity in the usual way (Definition 2).

For our axioms, we adapt Kröger and Merz’s presentation [9]. Two axioms
are new: Finite says that time will eventually end; EndNextContra says
that at the end of time, there is no next state. Other axioms are lightly adapted:
wherever we would ordinarily use the next modality, ◦φ, we instead use weak
next, •φ. The axioms with strong next are unsound in finite models. We can,
however, characterize the relationship between the next modality, negation, and
the end of time (“Consequences” in Figure 1).

Roşu proves completeness with a slightly different set of axioms, replacing
Finite and Induction with a single coinduction axiom he calls coInd:

` •�φ⇒ φ

` φ

He proves that coInd is equivalent to the conjunction of Finite and Induction,
so it does not particularly matter which axioms we choose. In order to emphasize
how little must change to make our logic finite, we keep our presentation as close
to Kröger and Merz’s as possible4.

Proving that our axioms are sound is, as usual, relatively straightforward.

Theorem 3 (LTLf soundness). If ` φ then |= φ.

Proof. By induction on the derivation of ` φ.

4.1 Completeness

To show deductive completeness for LTLf , we must find that if |= φ then ` φ.
To do so we will construct a graph that does two things at once: first, paths from
the root of the graph to a terminal state correspond to Kripke structures which
φ satisfies; second, consistency properties in the graph relate to the provability
of the underlying formula φ.

Our construction follows the standard least-fixed point approach found in
Kröger and Merz’s book [9]: we construct a graph whose nodes assign truth
values to each subformula of our formula of interest, φ, by putting each sub-
formula in either the true, “positive” set or in the false, “negative” set. Our
completeness proof ultimately construct a graph for the negation of φ, showing
that the negated graph has no satisfiable models—therefore showing that ` ¬¬φ
4 They use a less-expressive syntax, omittingW and U . We extend their methodology

to include these operators.

is unprovable, and so ` φ is provable (since the propositional logic undergirding
LTLf is classical).

What about the ‘f ’ in LTLf? Nothing described so far differs in any way from
the Henkin-Hasenjaeger graph approach used by Kröger and Merz [9]. Kröger
and Merz’s graphs were always finite, but their notion of satisfying paths allows
for infinite paths. We restrict our attention to terminating paths: paths where
not only is our formula of interest satisfied, but so is ♦ end. To ensure such paths
exist, we inject ♦ end when we create the graph.

The proof follows the following structure: we define the nodes of the graph
(Definition 4); we define the edge relation on the graph (Figure 2) and show
that it maps appropriately to time steps in the proof theory (Lemma 6 finds
a consistent successor; Lemma 5 shows the successor is a state in our graph);
we show that the graph structure results in a finite structure with appropriate
consistency properties (Lemma 10); we define which paths in the graph represent
our Kripke structure of interest (Lemma 12 shows that our graph’s transitions
correspond to the semantics; Lemma 14 guarantees that we have appropriate
finite models). The final proof comes in two parts: we show that consistent
graphs correspond to satisfiable formulae (Theorem 15), which is enough to
show completeness (Theorem 16).

Definition 4 (Positive-negative pairs (PNPs)). A positive-negative pair
(PNP) P is a pair of sets of formulae (pos(P), neg(P)). We refer to the collected
formulas of P as FP = pos(P) ∪ neg(P); we call the set of all PNPs PNP.

We write the literal interpretation of P as P̂ =
∧
φ∈pos(P) φ ∧

∧
ψ∈neg(P) ψ.

We say P is inconsistent if ` ¬P̂; conversely, P is consistent when it is not
the case that ` ¬P̂.

We write P � Q (read “P is extended by Q” or “Q extends P”) when Q’s
positive and negative sets subsume P’s (Figure 2). We say P is complete when
FP = τ(P). We say a complete PNP Q is a completion of P when P � Q and
Q is consistent. We define the set of all consistent completions of a given PNP
P with comps(P). Our goal is to generate successors states to build a graph
of PNPs; the step function σ takes a PNP and generates those formulae which
must hold in the next step, thereby characterizing the transitions in our graph.

Lemma 5 (Transitions are provable). For all PNPs P, we have ` P̂ ⇒
• σ̂(P).

Proof. By cases on the clauses of σ.

Lemma 6 (Consistent completions are provable). For all consistent PNPs

P, we have ` P̂ ⇒
∨
Q∈comps(P) Q̂.

Proof. By showing that `
∨
P∈assigns(F) P̂ (by induction on the size of F) and

that for all consistent PNPs P and for all Q ∈ assigns(P̂), if ` P̂ ⇒ Q̂ then
Q ∈ comps(P).

Transition functions σ•i : PNP→ 2LTLf σ : PNP→ PNP

σ+
1 (P) = {φ | ◦φ ∈ pos(P)}

σ+
2 (P) = {φW ψ | φW ψ ∈ pos(P), ψ ∈ neg(P)}

σ−3 (P) = {φ | ◦φ ∈ neg(P)}

σ−4 (P) = {φW ψ | φW ψ ∈ neg(P), φ ∈ pos(P)}

σ(P) = (σ+
1 (P) ∪ σ+

2 (P), σ−3 (P) ∪ σ−4 (P))

Closure τ : LTLf → 2LTLf τ : 2LTL
f → 2LTLf τ : PNP→ 2LTLf

τ(v) = {v} τ(⊥) = {⊥}
τ(φ⇒ ψ) = {φ⇒ ψ} ∪ τ(φ) ∪ τ(ψ) τ(◦φ) = {◦φ}
τ(φW ψ) = {φW ψ} ∪ τ(φ) ∪ τ(ψ)

τ(F) =
⋃
φ∈F τ(φ) τ(P) = τ(FP)

Extensions, completions, and possible assignments � ⊆ PNP× PNP

comps : 2LTLf → 2PNP comps : PNP→ 2PNP assigns : 2LTLf → 2PNP

P � Q iff pos(P) ⊆ pos(Q) and neg(P) ⊆ neg(Q)

assigns(F) = {P | FP = τ(F)} comps(P) = {Q | FQ = τ(P), P � Q, Q consistent}

Fig. 2. Step and closure functions; extensions and completions

Having established the fundamental properties of consistent completions, we set
about defining the structure on which we build our proof. We show that, starting
from a PNP formed from a given formula, we can construct a graph where nodes
are PNPs and a node P’s successors are consistent completions of σ(P).

Definition 7 (Proof graphs). For a consistent and complete PNP P (i.e., it

is not the case that ` ¬P̂ and FP = τ(P)), we define a proof graph GP as
follows: (a) P is the root of GP ; (b) P has an edge to the root of GQ for each
Q ∈ comps(σ(P)). The Q ∈ V(GP) are those PNPs reachable from P.

Is this graph finite?5 To see that GP is indeed finite, observe that each node
of GP is a complete PNP Q where FQ ⊆ τ(P) (because both σ and comps are
non-increasing). There are therefore a finite number of nodes in GP .

The innovation in adapting the completeness proof to finite time is finiteness
injection, where we make sure that ♦ end is in the positive set of the root of

5 In fact, Kröger and Merz [9] call this graph an “infinite tree” in their proof of
completeness for potentially infinite LTL.

the proof graph we construct to show completeness. After injecting finiteness,
every node of the proof graph will either have end in its positive set (and no
successors) or all of its successors have ♦ end in their positive set.

Lemma 8 (end injection is invariant). If P is a consistent and complete
PNP with ♦ end ∈ pos(P), then either:

– end ∈ pos(P) and P has no successors (i.e., comps(σ(P)) = ∅), or
– end ∈ neg(P) and for all Q ∈ comps(σ(P)), we have ♦ end ∈ pos(Q).

Proof. Recall that ♦ end desugars to ¬(¬¬◦> W ⊥). Since P is complete, we
know that end ∈ FP . By cases on where end appears.

We can go further, showing that ♦ end is in fact in every node’s positive set.

Lemma 9 (Nodes are consistent and complete). For all consistent and
complete PNPs P, every node Q ∈ GP is consistent and complete. If ♦ end ∈
pos(P), then ♦ end ∈ pos(Q).

Proof. By induction on the length of the shortest path from P to Q in GP , using
Lemma 8.

Each node has the potential for successors: for each node Q ∈ GP , we can prove
that Q̂ implies the disjunction of every other node’s literal interpretation.

Lemma 10 (Step implication). For all consistent and complete PNPs P
where ♦ end ∈ pos(P) then `

∨
Q∈GP Q̂ ⇒ •

∨
Q∈GP Q̂.

Proof. By Lemma 5, we know that ` Q̂ ⇒ • σ̂(Q).
By Lemma 9, we know that Q is consistent and complete and ♦ end ∈ pos(Q).

Since Q is complete, we know that end ∈ FQ. We go by cases on where end is.

We have so far established that the proof graph GP is rooted at P, preserves
any finiteness we may inject, and has provable successors. We are nearly done:
we show that our proof graph corresponds to a Kripke structure which models
P.

Definition 11 (Terminal nodes and paths). A node Z ∈ GP is terminal
when ◦> ∈ neg(Z). A path P1, . . . ,Pn is terminal when Pn is terminal.

Lemma 12 (Proof graphs match the semantic model). For all consistent
and complete PNPs P, if P1,P1,P2, . . . ,Pn is a terminal path in GP , then for
all i:

1. For all formulae φ, if ◦φ ∈ FPi then ◦φ ∈ pos(Pi) iff φ ∈ pos(Pi+1).
2. For all formulae φ and ψ, if φ W ψ ∈ FPi

then φ W ψ ∈ pos(Pi) iff either
φ ∈ pos(Pj) for all j ≥ i or there is some k ≥ i such that ψ ∈ pos(Pk) and
∀i ≤ j < k, φ ∈ pos(Pj).

Proof. The first part follows by consistency of node (Lemma 9). The second part
goes by induction on the length of the path.

Here we slightly depart from Kröger and Merz’s presentation: since their models
can be infinite, they must make sure that their paths are able to in some sense
‘fulfill’ temporal predicates. We, on the other hand, know that all of our paths
will be finite, so our reasoning can be simpler. First, there must exist some
terminal node.

Lemma 13 (Injected finiteness guarantees terminal nodes). For all con-
sistent and complete PNPs P, if ♦ end ∈ pos(P) then there is a terminal node
Z ∈ GP .

Proof. By Lemma 10.

Next, our proof graph is constructed to be connected, so the existence of a
terminal node implies the existence of a terminal path.

Corollary 14 (Injected finiteness guarantees terminal paths). For all
consistent and complete PNPs P, if ♦ end ∈ pos(P) then there is a terminal
path P,P2, . . . ,Pn−1,Z ∈ GP .

Proof. By Lemma 13, there exists some terminal node Z ∈ GP . Since GP is
constructed by iterating comps and σ on P, there must exist some Pn−1 such
that Z ∈ comps(σ(Pn−1)), and some Pn−2 such that Pn−1 ∈ comps(σ(Pn−2))
and so on back to P—yielding a path.

We can now prove the key lemma: consistent PNPs are satisfiable—a proof
graph for a consistent PNP P induces a Kripke structure modeling P’s literal
interpretation, P̂.

Theorem 15 (LTLf satisfiability). If P is a consistent PNP, then P̂ is sat-
isfiable.

Proof. Since P is consistent, so is adding ♦END to its positive set. The proof
graph with injected finiteness GP has a terminal path of length n for some n
(Corollary 14); construct a Kripke structure of length n, where pos(Pi) deter-
mines the ith valuation. By induction on n, Kni (φ) = t iff φ ∈ pos(Pi) for all

φ ∈ FP by Lemma 12. Therefore Kn1 (P̂) = t.

Finally, we can show completeness. The proof is the usual one, where we to find
a proof of φ we try to see if ¬φ is satisfiable—if not, then the PNP for ¬φ will
be inconsistent... and so ` ¬¬φ, which yields ` φ.

Theorem 16 (LTLf completeness). If |= φ then ` φ.

Proof. If |= φ, then for all Kripke structures Kn, we have Kni (φ) = t for all i.
Conversely, it must also be the case that Kni (¬φ) = f for all i, and so ¬φ is unsat-
isfiable. In other words, the PNP (∅, {φ}) is unsatisfiable. By the contrapositive
of Theorem 15, it must be the case that (∅, {φ}) is inconsistent, i.e., ` ¬¬φ. By
Taut, we can conclude that ` φ.

Syntax

Variables v, a, b ∈ Var
LDLf programs α, β, γ ∈ Program ::= v | α+ β | α;β | α∗
LDLf formulae φ, ψ, θ ∈ Formula ::= v | ⊥ | φ ∨ ψ | ¬φ | 〈α〉φ

Encodings

any =
∑
v∈Var

v end = ¬〈any〉> [α]φ = ¬ 〈α〉 ¬φ

Semantics Kni : Formula→ {t, f} R(α,Kn) ⊆ {1, . . . , n} × {1, . . . , n}

Kni (⊥) = f
Kni (v) = ηi(v)

Kni (φ ∨ ψ) = t iff Kni (φ) = t or Kni (ψ) = t
Kni (¬φ) = t iff Kni (φ) = f

Kni (〈α〉φ) = t iff ∃j ∈ [i, n] such that (i, j) ∈ R(α,Kn) and Knj (φ) = t

R(v,Kn) = {(i, i+ 1) | Kni (v) = t}
R(α+ β,Kn) = R(α,Kn) ∪R(β,Kn)
R(α;β,Kn) = {(i, j) | ∃k such that (i, k) ∈ R(α,Kn) and (k, j) ∈ R(β,Kn)}
R(α∗,Kn) = {(i, i)} ∪ {(i, j) | ∃k such that (i, k) ∈ R(α,Kn)

and (k, j) ∈ R(α∗,Kn)}

Fig. 3. LDLf syntax and semantics

5 LDLf

Finite-time linear dynamic logic (LDLf) adapts linear dynamic logic (LDL [13]),
which itself adapts propositional dynamic logic [8]. All three of these logics share
a syntax (Figure 3); the differences come in the model. The core idea is to allow
formulae to reason explicitly about state transitions.

Concretely, LDLf ’s syntax has two layers: formulae φ and programs (a/k/a
path expressions) α. Formulae are the top-level construct, comprising proposi-
tional logic (here, variables a ∈ Var, false (⊥), negation (¬), and disjunction ∨)6

and a modal path operator 〈α〉φ, where α is a program and φ is another formula.
We pronounce this path operator literally as “angle α φ”, meaning that “after
we move through time along an α path, φ holds”. Programs α are regular ex-
pressions: they include propositional variables a/k/a primitive programs a ∈ Var,
alternation α + β, concatenation α;β, and Kleene star α∗. We additionally en-
code three other forms: any, which represents any single primitive program; end,
which represents the end of time, and [α]φ, which is the dual of 〈α〉φ.

6 For LTLf , we used ⊥ and ⇒ as our logical basis, but it is more convenient for our
proofs to use this ⊥, ¬, and ∨ for LDLf .

Before defining the model, we offer some examples of formulae and their
intuitive meanings. The formula φ = 〈any〉 y says that after one time step, y will
hold; the formula ψ = [z] y says that after every z-step, y will hold; the formula
θ = 〈x+ y〉x ∧ y says that after taking a step with either x or y, x and y will
both hold; the formula χ = ¬ 〈any∗〉 z says that it is not the case that after any
number of time steps, z will hold; χ is an encoding of the LTLf formula ¬♦ z [5].
To better undstand these formulae, we define our semantics concretely.

LDLf is distinct from LDL and PDL in its model. Models of PDL branch
arbitrarily; models in LDL are linear; models in LDLf are linear and finite.
We reuse finite Kripke structures (Section 3), to define semantics (Figure 3),
though we need two functions: one to assign meaning to formulaes, written Kni :
Formula → {t, f} just like in LTLf , and one to assign meaning to programs,
written R(,) : Program ×Modeln → 2{1,...,n}×{1,...,n}. These two functions are
defined as mutually recursive fixpoints over formulae and programs, respectively.
The second part of the semantics amounts to a relation identifying successor
states: if (i, j) ∈ R(α,Kn), then there is an α-path from state i to state j in Kn.
Looking at the variable case, we take a v-step from state i to i+1 when Kni (v) = t;
other cases are defined with the conventional regular semantics. We define the
program any =

∑
v∈Var v to mean “any possible step”. (For any given formula

or set of models, we can restrict an infinite Var to a relevant finite subset.) The
step relation R(α,Kn) does not enforce sensibility of its step indices—that is,
it can produce indices past n. We make sure we only use reasonable indices in
the definition for Kni (〈α〉φ). We lift the function on formulas to satisfiablity and
validity in the usual way (Definition 2).

Let us consider each of the example formulae above in the model K4 from
Section 3. First, φ is satisfiable in K4 because we can take an x-step to find y.
Next, ψ is satisfiable in K4 as well, because there are no z-steps. The formula θ
is also satisfiable—we can only take an x-step from the first state, but then y
indeed holds. Finally, χ is also satisfiable—perhaps surprisingly so. Why is it the
case that K4

1(¬ 〈any∗〉 z) = t when η4(z) = t? We set η3 = λx. f, i.e., no primitive
propositions hold in the third time step. It is not possible to take an any-step
from η3 to η4, so the definition for R(any∗,K4) will never look past η3.

LDLf ’s semantics are particularly subtle in states where no propositions
hold at all: such states break the timeline into multiple, separate fragments.
Fragmented timelines effectively truncate the model when thinking about satis-
fiability (which looks for a formula to hold only from the first state); fragmented
timelines encapsulate multiple timelines when thinking about validity (which
looks for a formula to hold in every state). In general, it is unsafe to assume that
(i, i+ 1) ∈ R(any,Kn), even for i < n; we are particularly careful while proving
that Finite is sound to recognize that end might come at times other than the
nth state.

We show LDLf ’s axioms (Figure 4) are sound with respect to the model.

Theorem 17 (Soundness). If ` φ then |= φ.

Proof. By induction on the derivation of ` φ.

Proof theory ` ⊆ 2Formula × Formula

Axioms
all propositional tautologies Taut
` 〈a〉 ¬φ⇒ ¬〈a〉φ ModalNegComm
` 〈α+ β〉φ⇔ 〈α〉φ ∨ 〈β〉φ FormOrDistr
` 〈α〉 (φ ∨ ψ)⇔ 〈α〉φ ∨ 〈α〉ψ ModalOrDistr
` 〈α∗〉φ⇔ φ ∨ 〈α〉 〈α∗〉φ StarUnroll
` 〈α;β〉φ⇔ 〈α〉 〈β〉φ ModalSeq
` 〈any∗〉 end Finite
` 〈a〉φ⇒ [b]φ UniqueSucc
` φ⇒ [α]φ

` φ⇒ [α∗]φ
Induction

` φ
` [v]φ

VarGeneralize

Consequences
` end⇒ ¬〈a〉φ

EndContra
` end ∧ 〈α∗〉φ⇒ φ

EndStar
` φ
` [α]φ

Generalize

` 〈a〉φ ∨ end⇔ [a]φ
CommNeg

` [α∗]φ⇔ φ ∨ [α] [α∗]φ
SquareUnroll

` ¬ 〈a〉⊥ ModalContra

Fig. 4. LDLf proof theory

5.1 Completeness

Our proof of completeness for LDLf follows the same general structure as that
for LTLf (Section 4.1): we define positive-negative pairs, construct a graph, fi-
nally using the graph to produce a Kripke structure in a satisfiability lemma.
The situation for LDLf is slightly complicated by its more refined notion of
“successor”: in LTLf , every state either has a successor or it is the final state; in
LDLf , a state may have an a successor but not a b successor. Our proofs change
accordingly: where we would have used •φ in LTLf , we use [a]φ for an arbitrary
a ∈ Var; in the last state, we cannot make an any transition, i.e., ¬ 〈any〉>.

Following the proof structure of Section 4.1, we construct a proof graph
of PNPs using adapted comps and σ functions. We omit the definition of LDLf
PNPs—they correspond exactly to LTLf ’s PNPs (Definition 4). In the remainder
of the paper, we omit proofs for LDLf when they correspond more or less directly
to those for LTLf .

Just as in Section 4.1, we define completions (using a variation on the Fischer-
Ladner closure, which handles star unrollings better than τ (Figure 2), omitted
for space [8]) and successor functions for LDLf terms (Figure 5). The definitions
of assignments, completions, and extensions mirror those for LTLf .

Lemma 18 (Consistent completions are provable). For P a consistent

PNP, ` P̂ ⇒
∨
Q∈compsP Q.

We define our step function in terms of Brzozowski derivatives [2] with re-
spect to a primitive program a ∈ Var, which we write δa(α, φ) (Figure 5). The
positive cases for our step function lift a nullability predicate on paths, ν, into
our meta-logic, and our result characterizing the derivative of α is predicated
on whether or not ν(α) holds; the negative case need not bother—if ν(α) and

Step functions and derivatives σ•i : Var × PNP→ 2LDLf ν ⊆ Program

δa : Program× Formula→ 2Formula

σ+
1 (a,P) = {ψ | 〈α〉φ ∈ pos(P), ψ ∈ δa(α, φ), not ν(α)}
σ+
2 (a,P) = {ψ | 〈α〉φ ∈ pos(P), ψ ∈ δa(α, φ), ν(α), φ ∈ neg(P)}
σ−(a,P) = {ψ | 〈α〉φ ∈ neg(P), ψ ∈ δa(α, φ)}

ν(a)

ν(α) ν(β)

ν(α;β)

ν(α)

ν(α+ β)

ν(β)

ν(α+ β) ν(α∗)

δa(a, φ) = {φ}
δa(b, φ) = ∅

δa(α;β, φ) =

{
{ψ ∨ χ | ψ ∈ δa(α, 〈β〉φ), χ ∈ δa(β, φ)} ν(α)

{ψ | ψ ∈ δa(α, 〈β〉φ)} otherwise

δa(α+ β, φ) = {ψ ∨ χ | ψ ∈ δa(α, φ), χ ∈ δa(β, φ)}
δa(α∗, φ) = δa(α, 〈α∗〉φ)

Fig. 5. Closure function; step functions and derivations

〈α〉φ ∈ neg(P), it must be the case that φ ∈ neg(P) in any case. As a first step
toward understanding our step function, we characterize the derivative.

Lemma 19 (Brzozowski partial equivalence).
For a program α and a formula φ,

– if ν(α), then ` 〈α〉φ⇔ φ ∨
∧
a∈Var

∧
ψ∈δa(α,φ) 〈a〉ψ;

– if not ν(α), then ` 〈α〉φ⇔
∧
a∈Var

∧
ψ∈δa(α,φ) 〈a〉ψ.

Proof. By induction on the structure of α, leaving φ general.

We adapt LTLf ’s proof graphs to record labels on each transition.

Definition 20 (Labeled proof graph). For a consistent and complete PNP
P, we define the labeled proof graph GP as follows: (a) P is the root; (b) for
each a ∈ Var, there is an a-edge from P to Q for each Q ∈ comps(σ(a,P)).

Having constructed our labeled proof graph, we must find a terminal path—
redefining ‘terminal’ to use LDLf ’s notion of end. Once we have the path, we
can use it to construct a Kripke structure.

For LTLf , we show that injecting ♦ end guarantees that every PNP in the
graph has ♦ end in its positive set. We can prove a similar lemma for LDLf ,
being more careful about successors.

Lemma 21 (end injection is weakly invariant). If P is a consistent and
complete PNP with 〈any∗〉 end ∈ pos(P), then either:

– ¬ 〈a〉> ∈ pos(P) for every a and P has no successors (i.e. comps(σ(a,P) =
∅) for all a ∈ Var), or

– 〈a〉> ∈ neg(P) for some a and for all Q ∈ comps(σ(P)), 〈any∗〉 end ∈
pos(Q).

In showing that successors always exist, we use an arbitrary primitive predicate
a—because [a]φ implies [any]φ.

Lemma 22 (Step Implication). For all consistent and complete PNPs P
where 〈any∗〉 end ∈ pos(P),, if Q ∈ GP then for every primitive program a,

` Q̂ ⇒ [a] ̂σ(a,Qi).

Lemma 23 (All non-terminal PNPs have successors in the labeled
graph). For all consistent and complete PNPs P, if 〈any∗〉 end ∈ pos(P), then

for every a ∈ Var, we have `
(∨
Q∈V(GP) Q̂

)
⇒ [a]

(∨
Q∈V(GP) Q̂

)
.

Corollary 24 (Terminal path existence). For all consistent and complete
PNPs P where 〈any∗〉 end ∈ pos(P), the labeled proof graph GP has a terminal
path.

We omit (due to space constraints) proofs showing that the labeled proof graph
adequately generates Kripke structures; our proofs show that (a) the labeled
proof graph has an appropriate relationship to programs, and (b) that the graph
respects temporal operators. From here, the proof is the usual one: prove satis-
fiability and then completeness.

Theorem 25 (LDLf satisfiability). If P is a consistent PNP, then P̂ is sat-
isfiable.

Theorem 26 (LDLf completeness). If |= φ then ` φ.

6 Discussion

We have defined two finite temporal logics for linear time: LTLf and LDLf .
The two logics share models, though their proof theories differ. In both cases,
we were able to adapt techniques for infinite temporal logics to show deductive
completeness in a finite setting. The former proof improves on Roşu’s axioms [12];
the latter proof is novel. In both cases, the proofs of deductive completeness call
for only minor changes to the proof for logics with potentially infinite time: by
injecting finiteness, we are able to directly adapt methods from infinite logics.
We believe that the technique is general, and will adapt to other temporal logics;
we offer these two proofs as evidence.

To be clear, we claim that the proof of completeness is relatively straight-
forward once you find the right axioms. We can offer only limited guidance on
finding the right axioms. Finite temporal logics should have an axiom saying
that time is, indeed, finite; some sort of axiom will be needed to establish the
meaning of temporal modalities at the end of time; when porting axioms from
the infinite logic, one must be careful to check that the axioms are sound at the
end of time, when temporal modalities may change in meaning.

References

1. Baier, J.A., McIlraith, S.A.: Planning with first-order temporally extended goals
using heuristic search. In: Proceedings of the 21st National Conference on Artificial
Intelligence - Volume 1. pp. 788–795. AAAI’06, AAAI Press (2006), http://dl.
acm.org/citation.cfm?id=1597538.1597664

2. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (Oct
1964), http://doi.acm.org/10.1145/321239.321249

3. D’Antoni, L., Veanes, M.: Monadic second-order logic on finite sequences. In:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-
ming Languages. pp. 232–245. POPL 2017, ACM, New York, NY, USA (2017),
http://doi.acm.org/10.1145/3009837.3009844

4. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on ltl on finite traces:
Insensitivity to infiniteness. In: AAAI. pp. 1027–1033. Citeseer (2014)

5. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI’13 Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence. pp. 854–860. Association for Computing Ma-
chinery (2013)

6. De Giacomo, G., Vardi, M.Y.: Synthesis for ltl and ldl on finite traces. In: Proc.
of IJCAI (2015)

7. De Giacomo, G., Vardi, M.Y.: Ltlf and ldlf synthesis under partial observability.
In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence. pp. 1044–1050. IJCAI’16, AAAI Press (2016), http://dl.acm.org/
citation.cfm?id=3060621.3060766

8. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Jour-
nal of computer and system sciences 18(2), 194–211 (1979)

9. Kroger, F., Merz, S.: Temporal logic and state systems. Springer (2008)
10. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Workshop on Logic

of Programs. pp. 196–218. Springer (1985)
11. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,

1977., 18th Annual Symposium on. pp. 46–57 (Oct 1977)
12. Roşu, G.: Finite-trace linear temporal logic: Coinductive completeness. In: Inter-

national Conference on Runtime Verification. pp. 333–350. Springer (2016)
13. Vardi, M.Y.: The rise and fall of linear temporal logic. In: Proceedings of the 2nd

International Syposium on Games, Automata, Logics, and Formal Verification (11)

