
Measure Transformer Semantics for
Bayesian Machine Learning

Johannes Borgström1, Andrew D. Gordon1, Michael Greenberg2,
James Margetson1, and Jurgen Van Gael1

1 Microsoft Research
2 University of Pennsylvania

Abstract. The Bayesian approach to machine learning amounts to inferring pos-
terior distributions of random variables from a probabilistic model of how the
variables are related (that is, a prior distribution) and a set of observations of vari-
ables. There is a trend in machine learning towards expressing Bayesian models
as probabilistic programs. As a foundation for this kind of programming, we pro-
pose a core functional calculus with primitives for sampling prior distributions
and observing variables. We define combinators for measure transformers, based
on theorems in measure theory, and use these to give a rigorous semantics to
our core calculus. The original features of our semantics include its support for
discrete, continuous, and hybrid measures, and, in particular, for observations of
zero-probability events. We compile our core language to a small imperative lan-
guage that has a straightforward semantics via factor graphs, data structures that
enable many efficient inference algorithms. We use an existing inference engine
for efficient approximate inference of posterior marginal distributions, treating
thousands of observations per second for large instances of realistic models.

1 Introduction

In the past 15 years, statistical machine learning has unified many seemingly unrelated
methods through the Bayesian paradigm. With a solid understanding of the theoreti-
cal foundations, advances in algorithms for inference, and numerous applications, the
Bayesian paradigm is now the state of the art for learning from data. The theme of this
paper is the idea of writing Bayesian models as probabilistic programs, which was pi-
oneered by Koller et al. [16] and is recently gaining in popularity [31, 30, 9, 4, 14]. In
particular, we draw inspiration from Csoft [37], an imperative language with an infor-
mal probabilistic semantics. Csoft is the native language of Infer.NET [25], a software
library for Bayesian reasoning. A compiler turns Csoft programs into factor graphs [18],
data structures that support efficient inference algorithms [15]. This paper borrows ideas
from Csoft and extends them, placing the semantics on a firm footing.

Bayesian Models as Probabilistic Expressions Consider a simplified form of TrueSkill
[11], a large-scale online system for ranking computer gamers. There is a population
of players, each assumed to have a skill, which is a real number that cannot be directly
observed. We observe skills only indirectly via a series of matches. The problem is to
infer the skills of players given the outcomes of the matches. In a Bayesian setting, we



represent our uncertain knowledge of the skills as continuous probability distributions.
The following probabilistic expression models the situation by generating probability
distributions for the players’ skills, given three played games (observations).

// prior distributions, the hypothesis
let skill() = random (Gaussian(10.0,20.0))
let Alice,Bob,Cyd = skill(),skill(),skill()
// observe the evidence
let performance player = random (Gaussian(player,1.0))
observe (performance Alice > performance Bob) //Alice beats Bob
observe (performance Bob > performance Cyd) //Bob beats Cyd
observe (performance Alice > performance Cyd) //Alice beats Cyd
// return the skills
Alice,Bob,Cyd

A run of this expression goes as follows. We sample the skills of the three players from
the prior distribution Gaussian(10.0,20.0). Such a distribution can be pictured as a
bell curve centred on 10.0, and gradually tailing off at a rate given by the variance, here
20.0. Sampling from such a distribution is a randomized operation that returns a real
number, most likely close to the mean. For each match, the run continues by sampling
an individual performance for each of the two players. Each performance is centred
on the skill of a player, with low variance, making the performance closely correlated
with but not identical to the skill. We then observe that the winner’s performance is
greater than the loser’s. An observation observe M always returns (), but represents a
constraint that M must hold. A whole run is valid if all encountered observations are
true. The run terminates by returning the three skills.

A classic computational method to learn the posterior distribution of each of the
skills is by Monte Carlo sampling [21]. We run the expression many times, but keep just
the valid runs—the ones where the sampled skills correspond to the observed outcomes.
We then compute the means of the resulting skills by applying standard statistical for-
mulas. In the example above, the posterior distribution of the returned skills has moved
so that the mean of Alice’s skill is greater than Bob’s, which is greater than Cyd’s.

Deterministic algorithms based on factor graphs [18, 15] are an efficient alternative
to Monte Carlo sampling. To the best of our knowledge, all prior inference techniques
for probabilistic languages, apart from Csoft and recent versions of IBAL [32], are
based on nondeterministic inference using some form of Monte Carlo sampling. The
benefit of using factor graphs in Csoft is to support deterministic but approximative
inference algorithms, which are known to be significantly more efficient than sampling
methods, where applicable.

Observations with zero probability arise commonly in Bayesian models. For exam-
ple, in the model above, a drawn game would be modelled as the performance of two
players being observed to be equal. Since the performances are randomly drawn from
a continuous distribution, the probability of them actually being equal is zero, so we
would not expect to see any valid runs in a Monte Carlo simulation. (To use Monte
Carlo methods, one must instead write that the absolute difference between two drawn
performances is less than some small ε .) However, our semantics based on measure



theory makes sense of such observations, and corresponds to inference as achieved by
algorithms on factor graphs.

Plan of the Paper We propose Fun:

– Fun is a functional language for Bayesian models with primitives for probabilistic
sampling and observations (Section 2).

– Fun has a rigorous probabilistic semantics as measure transformers (Section 3).
– Fun has an efficient implementation: our system compiles Fun to Imp (Section 4),

a subset of Csoft, and then relies on Infer.NET (Section 5).

Our main contribution is a framework for finite measure transformer semantics, which
supports discrete measures, continuous measures, and mixtures of the two, and also
supports observations of zero probability events.

As a substantial application, we supply measure transformer semantics for Fun,
Imp, and factor graphs, and use the semantics to verify the translations in our compiler.
Theorem 2 establishes the correctness of the translation from Fun to Imp and the factor
graph semantics of Imp.

We designed Fun to be a subset of the F# dialect of ML [36], for implementation
convenience: F# reflection allows easy access to the abstract syntax of a program. All
the examples in the paper have been executed with our system, described in Section 5.

We end the paper with a description of related work (Section 6) and some conclud-
ing remarks (Section 7). A companion technical report [5] includes: detailed proofs;
extensions of Fun, Imp, and our factor graph notations with array types suitable for
inference on large datasets; listings of examples including versions of large-scale algo-
rithms; and a description, including performance numbers, of our practical implemen-
tation of a compiler from Fun to Imp, and a backend based on Infer.NET.

2 Bayesian Models as Probabilistic Expressions

We present a core calculus, Fun, for Bayesian reasoning via probabilistic functional
programming with observations.

2.1 Syntax, Informal Semantics, and Bayesian Reading

Expressions are strongly typed, with types t built up from base scalar types b and pair
types. We let c range over constant data of scalar type, n over integers and r over real
numbers. We write ty(c) = t to mean that constant c has type t. For each base type b,
we define a zero element 0b. We have arithmetic and Boolean operations on base types.

Types, Constant Data, and Zero Elements:

a,b ::= bool | int | real Base types
t ::= unit | b | (t1 ∗ t2) Compound types
ty(()) = unit ty(true) = ty(false) = bool ty(n) = int ty(r) = real
0bool = true 0int = 0 0real = 0.0



Signatures of Arithmetic and Logical Operators: ⊗ : b1,b2→ b3

&&, ||,=: bool,bool→ bool >,=: int, int→ bool
+,−,∗ : int, int→ int >: real,real→ bool +,−,∗ : real,real→ real

We have several standard probability distributions as primitive: D : t→ u takes param-
eters in t and yields a random value in u.

Signatures of Distributions: D : (x1 : b1 ∗ · · · ∗ xn : bn)→ b

Bernoulli : (success : real)→ bool
Binomial : (trials : int∗ success : real)→ int
Poisson : (rate : real)→ int
DiscreteUniform : (max : int)→ int
Gaussian : (mean : real∗ variance : real)→ real
Beta : (a : real∗b : real)→ real
Gamma : (shape : real∗ scale : real)→ real

The expressions and values of Fun are below. Expressions are in a limited syntax akin
to A-normal form, with let-expressions for sequential composition.

Fun: Values and Expressions

V ::= x | c | (V,V ) Value
M,N ::= Expression

V value
V1⊗V2 arithmetic or logical operator
V.1 left projection from pair
V.2 right projection from pair
if V then M1 else M2 conditional
let x = M in N let (scope of x is N)
random (D(V )) primitive distribution
observe V observation

In the discrete case, Fun has a standard sampling semantics; the formal semantics for
the general case comes later. A run of a closed expression M is the process of evaluating
M to a value. The evaluation of most expressions is standard, apart from sampling and
observation.

To run random (D(V )), where V = (c1, . . . ,cn), choose a value c at random, with
probability given by the distribution D(c1, . . . ,cn), and return c.

To run observe V , always return (). We say the observation is valid if and only if
the value V is some zero element 0b.

Due to the presence of sampling, different runs of the same expression may yield
more than one value, with differing probabilities. Let a run be valid so long as every
encountered observation is valid. The sampling semantics of an expression is the con-
ditional probability of returning a particular value, given a valid run.

(Boolean observations are akin to assume statements in assertion-based program
specifications, where runs of a program are ignored if an assumed formula is false.)



Example: Two Coins, Not Both Tails

let heads1 = random (Bernoulli(0.5)) in
let heads2 = random (Bernoulli(0.5)) in
let u = observe (heads1 || heads2) in
(heads1,heads2)

The subexpression random (Bernoulli(0.5)) generates true or false with equal likeli-
hood. The whole expression has four distinct runs, each with probability 1/4, corre-
sponding to the possible combinations of Booleans heads1 and heads2. All these runs
are valid, apart from the one for heads1 = false and heads2 = false (representing two
tails), since the observation observe(false||false) is not valid. The sampling semantics
of this expression is a probability distribution assigning probability 1/3 to the values
(true, false), (false, true), and (true, true), but probability 0 to the value (false, false).

The sampling semantics allows us to interpret an expression as a Bayesian model.
We interpret the distribution of possible return values as the prior probability of the
model. The constraints on valid runs induced by observations represent new evidence
or training data. The conditional probability of a value given a valid run is the posterior
probability: an adjustment of the prior probability given the evidence or training data.

Thus, the expression above can be read as a Bayesian model of the problem: I toss
two coins. I observe that not both are tails. What is the probability of each outcome?

2.2 Syntactic Conventions and Monomorphic Typing Rules

We identify phrases of syntax up to consistent renaming of bound variables. Let fv(φ)
be the set of variables occurring free in phrase φ . Let φ {ψ/x} be the outcome of sub-
stituting phrase ψ for each free occurrence of variable x in phrase φ . We treat function
definitions as macros with call-by-value semantics. In particular, in examples, we write
first-order non-recursive function definitions in the form let f x1 . . . xn = M, and we
allow function applications f M1 . . . Mn as expressions. We consider such a function
application as being a shorthand for the expression let x1 = M1 in . . . let xn = Mn in M,
where the bound variables x1, . . . , xn do not occur free in M1, . . . , Mn. We allow ex-
pressions to be used in place of values, via insertion of suitable let-expressions. For
example, (M1,M2) stands for let x1 = M1 in let x2 = M2 in (x1,x2), and M1⊗M2 stands
for let x1 = M1 in let x2 = M2 in x1⊗ x2, when either M1 or M2 or both is not a value.
Let M1;M2 stand for let x = M1 in M2 where x /∈ fv(M2). The notation t = t1 ∗· · ·∗ tn for
tuple types means the following: when n = 0, t = unit; when n = 1, t = t1; and when
n > 1, t = t1 ∗(t2 ∗· · ·∗tn). In listings, we rely on syntactic abbreviations available in F#,
such as layout conventions (to suppress in keywords) and writing tuples as M1, . . . ,Mn
without enclosing parentheses.

Let a typing environment, Γ , be a list of the form ε,x1 : t1, . . . ,xn : tn; we say Γ

is well-formed and write Γ ` � to mean that the variables xi are pairwise distinct. Let
dom(Γ ) = {x1, . . . ,xn} if Γ = ε,x1 : t1, . . . ,xn : tn. We sometimes use the notation x : t
for Γ = ε,x1 : t1, . . . ,xn : tn where x = x1, . . . ,xn and t = t1, . . . , tn.

The typing rules for this monomorphic first-order language are standard.



Representative Typing Rules for Fun Expressions: Γ `M : t

(FUN OPERATOR)
⊗ : b1,b2→ b3
Γ `V1 : b1 Γ `V2 : b2

Γ `V1⊗V2 : b3

(FUN RANDOM)
D : (x1 : b1 ∗ · · · ∗ xn : bn)→ b

Γ `V : (b1 ∗ · · · ∗bn)

Γ ` random (D(V )) : b

(FUN OBSERVE)
Γ `V : b

Γ ` observe V : unit

3 Semantics as Measure Transformers

If we can only sample from discrete distributions, the semantics of Fun is straightfor-
ward. In our technical report, we formalize the sampling semantics of the previous sec-
tion as a small-step operational semantics for the fragment of Fun where every random
expression takes the form random (Bernoulli(c)) for some real c ∈ (0,1). A reduction
M→p M′ means that M reduces to M′ with non-zero probability p.

We cannot give such a semantics to expressions that sample from continuous dis-
tributions, such as random (Gaussian(1,1)), since the probability of any particular
sample is zero. A further difficulty is the need to observe events with probability zero, a
common situation in machine learning. For example, consider the naive Bayesian clas-
sifier, a common, simple probabilistic model. In the training phase, it is given objects
together with their classes and the values of their pertinent features. Below, we show
the training for a single feature: the weight of the object. The zero probability events are
weight measurements, assumed to be normally distributed around the class mean. The
outcome of the training is the posterior weight distributions for the different classes.

Naive Bayesian Classifier, Single Feature Training:

let wPrior() = sample (Gaussian(0.5,1.0))
let Glass,Watch,Plate = wPrior(),wPrior(),wPrior()
let weight objClass objWeight =

observe (objWeight−(sample (Gaussian(objClass,1.0)))
weight Glass .18; weight Glass .21
weight Watch .11; weight Watch .073
weight Plate .23; weight Plate .45
Watch,Glass,Plate

Above, the call to weight Glass .18 modifies the distribution of the variable Glass. The
example uses observe (x−y) to denote that the difference between the weights x and
y is 0. The reason for not instead writing x=y is that conditioning on events of zero
probability without specifying the random variable they are drawn from is not in gen-
eral well-defined, cf. Borel’s paradox [12]. To avoid this issue, we instead observe the
random variable x−y of type real, at the value 0.

To give a formal semantics to such observations, as well as to mixtures of contin-
uous and discrete distributions, we turn to measure theory, following standard sources
[3]. Two basic concepts are measurable spaces and measures. A measurable space is a
set of values equipped with a collection of measurable subsets; these measurable sets



generalize the events of discrete probability. A finite measure is a function that assigns
a numeric size to each measurable set; measures generalize probability distributions.

3.1 Types as Measurable Spaces

We let Ω range over sets of possible outcomes; in our semantics Ω will range over
B = {true, false}, Z, R, and finite Cartesian products of these sets. A σ -algebra over
Ω is a set M⊆ P(Ω) which (1) contains ∅ and Ω , and (2) is closed under complement
and countable union and intersection. A measurable space is a pair (Ω ,M) where M is
a σ -algebra over Ω ; the elements of M are called measurable sets. We use the notation
σΩ (S), when S ⊆ P(Ω), for the smallest σ -algebra over Ω that is a superset of S; we
may omit Ω when it is clear from context. If (Ω ,M) and (Ω ′,M′) are measurable
spaces, then the function f : Ω → Ω ′ is measurable if and only if for all A ∈ M′,
f−1(A) ∈ M, where the inverse image f−1 : P(Ω ′)→ P(Ω) is given by f−1(A) ,
{ω ∈Ω | f (ω) ∈ A}. We write f−1(x) for f−1({x}) when x ∈Ω ′.

We give each first-order type t an interpretation as a measurable space T[[t]] ,
(Vt ,Mt) below. We write () for ∅, the unit value.

Semantics of Types as Measurable Spaces:

T[[unit]] = ({()},{{()},∅}) T[[bool]] = (B,P(B))
T[[int]] = (Z,P(Z)) T[[real]] = (R,σR({[a,b] | a,b ∈ R}))
T[[t ∗u]] = (Vt ×Vu,σVt×Vu({m×n | m ∈Mt , n ∈Mu}))

The set σR({[a,b] | a,b ∈ R}) in the definition of T[[real]] is the Borel σ -algebra on
the real line, which is the smallest σ -algebra containing all closed (and open) intervals.
Below, we write f : t→ u to denote that f : Vt→Vu is measurable, that is, that f−1(B)∈
Mt for all B ∈Mu.

3.2 Finite Measures

A finite measure µ on a measurable space (Ω ,M) is a function M→ R+ that is count-
ably additive, that is, if the sets A0,A1, . . . ∈M are pairwise disjoint, then µ(∪iAi) =
∑i µ(Ai). We write |µ|, µ(Ω). Let M t be the set of finite measures on the measurable
space T[[t]]. We make use of the following constructions on measures.

– Given a function f : t → u and a measure µ ∈ M t, there is a measure µ f−1 ∈ M u
given by (µ f−1)(B), µ( f−1(B)).

– Given a finite measure µ and a measurable set B, we let µ|B(A), µ(A∩B) be the
restriction of µ to B.

– We can add two measures on the same set as (µ1 + µ2)(A), µ1(A)+ µ2(A).
– The (independent) product (µ1× µ2) of two measures is also definable, and satis-

fies (µ1×µ2)(A×B) = µ1(A) ·µ2(B). (Existence and uniqueness follows from the
Hahn-Kolmogorov theorem.)

– Given a measure µ on the measurable space T[[t]], a measurable set A ∈Mt and a
function f : t → real, we write

∫
A f dµ or equivalently

∫
A f (x)dµ(x) for standard

(Lebesgue) integration. This integration is always well-defined if µ is finite and f
is non-negative and bounded from above.



– Given a measure µ on a measurable space T[[t]] let a function µ̇ : t → real be a
density for µ iff µ(A) =

∫
A µ̇ dλ for all A ∈M, where λ is the standard Lebesgue

measure on T[[t]]. (We also use λ -notation for functions, but we trust any ambiguity
is easily resolved.)

Standard Distributions Given a closed well-typed Fun expression random (D(V )) of
base type b, we define a corresponding finite measure µD(V ) on measurable space T[[b]].

In the discrete case, we first define probability masses D(V ) c of single elements,
and hence of singleton sets, and then define the measure µD(V ) as a countable sum.

Masses D(V ) c and Measures µD(V ) for Discrete Probability Distributions:

Bernoulli(p) true, p if 0≤ p≤ 1, 0 otherwise
Bernoulli(p) false, 1− p if 0≤ p≤ 1, 0 otherwise
Binomial(n, p) i,

( i
n

)
pi/n! if 0≤ p≤ 1, 0 otherwise

DiscreteUniform(m) i, 1/m if 0≤ i < m, 0 otherwise
Poisson(l) n, e−l ln/n! if l,n≥ 0, 0 otherwise
µD(V )(A), ∑i D(V ) ci if A =

⋃
i{ci} for pairwise distinct ci

In the continuous case, we first define probability densities D(V ) r at individual ele-
ments r. and then define the measure µD(V ) as an integral. Below, we write G for the
standard Gamma function, which on naturals n satisfies G(n) = (n−1)!.

Densities D(V ) r and Measures µD(V ) for Continuous Probability Distributions:

Gaussian(m,v) r , e−(r−m)2/2v/
√

2πv if v > 0, 0 otherwise
Gamma(s, p) r , rs−1e−pr ps/G(s) if r,s, p > 0, 0 otherwise
Beta(a,b) r , ra−1(1− r)b−1G(a+b)/(G(a)G(b))

if a,b≥ 0 and 0≤ r ≤ 1, 0 otherwise
µD(V )(A),

∫
A D(V )dλ where λ is the Lebesgue measure

The Dirac δ measure is defined on the measurable space T[[b]] for each base type b, and
is given by δc(A), 1 if c ∈ A, 0 otherwise. We write δ for δ0.0.

The notion of density can be generalized as follows, yielding an unnormalized coun-
terpart to conditional probability. Given a measure µ on T[[t]] and a measurable function
p : t→ b, we consider the family of events p(x) = c where c ranges over Vb. We define
µ̇[A||p = c] ∈ R (the µ-density at p = c of A) following [8], by:

Conditional Density: µ̇[A||p = c]

µ̇[A||p = c], limi→∞ µ(A∩ p−1(Bi))/
∫

Bi
1dλ if the limit exists

and is the same for all sequences {Bi} of closed sets converging regularly to c.

Where defined, letting A ∈Ma,B ∈Mb, conditional density satisfies the equation∫
B

µ̇[A||p = x] d(µ p−1)(x) = µ(A∩ p−1(B)).



In particular, we have µ̇[A||p = c] = 0 if b is discrete and µ(p−1(c)) = 0. To show that
our definition of conditional density generalizes the notion of density given above, we
have that if µ has a continuous density µ̇ on some neighbourhood of p−1(c) then

µ̇[A||p = c] =
∫

A
δc(p(x))µ̇(x)dλ (x).

3.3 Measure Transformers

We will now recast some standard theorems of measure theory as a library of combi-
nators, that we will later use to give semantics to probabilistic languages. A measure
transformer is a function from finite measures to finite measures. We let t  u be the
set of functions M t→ M u. We use the following combinators on measure transformers
in the formal semantics of our languages.

Measure Transformer Combinators:

pure ∈ (t→ u)→ (t u)
>>> ∈ (t1 t2)→ (t2 t3)→ (t1 t3)
choose ∈ (Vt → (t u))→ (t u)
extend ∈ (Vt → M u)→ (t (t ∗u))
observe ∈ (t→ b)→ (t t)

The definitions of these combinators occupy the remainder of this section. We recall
that µ denotes a measure and A a measurable set, of appropriate types.

To lift a pure measurable function to a measure transformer, we use the combinator
pure ∈ (t → u)→ (t  u). Given f : t → u, we let pure f µ A , µ f−1(A), where µ

is a measure on T[[t]] and A is a measurable set from T[[u]].
To sequentially compose two measure transformers we use standard function com-

position, defining >>> ∈ (t1 t2)→ (t2 t3)→ (t1 t3) as T >>> U ,U ◦T .
The combinator choose ∈ (Vt → (t  u))→ (t  u) makes a conditional choice

between measure transformers, if its first argument is measurable and has finite range.
Intuitively, choose K µ first splits Vt into the equivalence classes modulo K. For each
equivalence class, we then run the corresponding measure transformer on µ restricted
to the class. Finally, the resulting finite measures are added together, yielding a finite
measure. We let choose K µ A , ∑T∈range(K) T (µ|K−1(T ))(A). In particular, if K is a
binary choice mapping all elements of B to TB and all elements of C = B to TC, we have
choose K µ A = TB(µ|B)(A)+ TC(µ|C)(A). (In fact, our only uses of choose in this
paper are in the semantics of conditional expressions in Fun and conditional statements
in Imp, and in each case the argument K to choose is a binary choice.)

The combinator extend ∈ (Vt → M u)→ (t  (t ∗ u)) extends the domain of a
measure using a function yielding measures. It is reminiscent of creating a depen-
dent pair, since the distribution of the second component depends on the value of
the first. For extend m to be defined, we require that for every A ∈ Mu, the func-
tion fA , λx.m(x)(A) is measurable, non-negative and bounded from above. This will
always be the case in our semantics for Fun, since we only use the standard distribu-
tions for m above. We let extend m µ AB ,

∫
Vt

m(x)({y | (x,y) ∈ AB})dµ(x), where



we integrate over the first component (call it x) with respect to the measure µ , and the
integrand is the measure m(x) of the set {y | (x,y) ∈ A} for each x.

The combinator observe ∈ (t → b)→ (t  t) conditions a measure over T[[t]] on
the event that an indicator function of type t→ b is zero. Here observation is unnormal-
ized conditioning of a measure on an event. We define:

observe p µ A,
{

µ̇[A||p = 0b] if µ(p−1(0b)) = 0
µ(A∩ p−1(0b)) otherwise

As an example, if p : t→ bool is a predicate on values of type t, we have

observe p µ A = µ(A∩{x | p(x) = true}).

In the continuous case, if Vt = R×Rk, p = λ (y,x).(y− c) and µ has density µ̇ then

observe p µ A =
∫

A
µ(y,x)d(δc×λ )(y,x) =

∫
{x|(c,x)∈A}

µ̇(c,x)dλ (x).

Notice that observe p µ A can be greater than µ(A), for which reason we cannot
restrict ourselves to transformation of (sub-)probability measures.

3.4 Measure Transformer Semantics of Fun

In order to give a compositional denotational semantics of Fun programs, we give a
semantics to open programs, later to be placed in some closing context. Since obser-
vations change the distributions of program variables, we may draw a parallel to while
programs. In this setting, we can give a denotation to a program as a function from vari-
able valuations to a return value and a variable valuation. Similarly, we give semantics
to an open Fun term by mapping a measure over assignments to the term’s free variables
to a joint measure of the term’s return value and assignments to its free variables. This
choice is a generalization of the (discrete) semantics of pWHILE [2].

First, we define a data structure for an evaluation environment assigning values to
variable names, and corresponding operations. Given an environment Γ = x1:t1, . . . ,xn:tn,
we let S〈Γ 〉 be the set of states, or finite maps s = {x1 7→V1, . . . ,xn 7→Vn} such that for
all i = 1, . . . ,n, ε ` Vi : ti. We let T[[S〈Γ 〉]] , T[[t1 ∗ · · · ∗ tn]] be the measurable space of
states in S〈Γ 〉. We define dom(s), {x1, . . . ,xn}. We define the following operators.

Auxiliary Operations on States and Pairs:

add x (s,V ), s∪{x 7→V} if ε `V : t and x /∈ dom(s), s otherwise.
lookup x s, s(x) if x ∈ dom(s), () otherwise.
drop X s, {(x 7→V ) ∈ s | x /∈ X} fst((x,y)), x snd((x,y)), y

We apply these combinators to give a semantics to Fun programs as measure trans-
formers. We assume that all bound variables in a program are different from the free
variables and each other. Below, V[[V ]] s gives the valuation of V in state s, and A[[M]]
gives the measure transformer denoted by M.



Measure Transformer Semantics of Fun:

V[[x]] s, lookup x s
V[[c]] s, c
V[[(V1,V2)]] s, (V[[V1]] s,V[[V2]] s)

A[[V ]], pure λ s.(s,V[[V ]] s)
A[[V1⊗V2]], pure λ s.(s,((V[[V1]] s)⊗ (V[[V2]] s)))
A[[V.1]], pure λ s.(s,fst(V[[V ]] s))
A[[V.2]], pure λ s.(s,snd(V[[V ]] s))

A[[if V then M else N]], choose λ s.if V[[V ]] s then A[[M]] else A[[N]]
A[[random (D(V ))]], extend λ s.µD(V[[V ]] s)
A[[observe V ]], (observe λ s.V[[V ]] s) >>> pure λ s.(s,())
A[[let x = M in N]],A[[M]] >>>

pure (add x) >>> A[[N]] >>> pure λ (s,y).((drop {x} s),y)

A value expression V returns the valuation of V in the current state, which is left un-
changed. Similarly, binary operations and projections have a deterministic meaning
given the current state. An if V expression runs the measure transformer given by the
then branch on the states where V evaluates true, and the transformer given by the
else branch on all other states, using the combinator choose. A primitive distribution
random (D(V )) extends the state measure with a value drawn from the distribution D,
with parameters V depending on the current state. An observation observe V modifies
the current measure by restricting it to states where V is zero. It is implemented with the
observe combinator, and it always returns the unit value. The expression let x = M in N
intuitively first runs M and binds its return value to x using add. After running N, the
binding is discarded using drop.

Lemma 1. If s : S〈Γ 〉 and Γ `V : t then V[[V ]] s ∈ Vt .

Lemma 2. If Γ `M : t then A[[M]] ∈ S〈Γ 〉 (S〈Γ 〉 ∗ t).

The measure transformer semantics of Fun is hard to use directly, except in the case of
discrete measures where they can be directly implemented: a naive implementation of
M〈S〈Γ 〉〉 is as a map assigning a probability to each possible variable valuation. If there
are N variables, each sampled from a Bernoulli distribution, in the worst case there are
2N paths to be explored in the computation, each of which corresponds to a variable val-
uation. In this simple case, the measure transformer semantics of closed programs also
coincides with the sampling semantics. We write PM [value = V | valid] for the probabil-
ity that a run of M returns V given that all observations in the run succeed.

Theorem 1. Suppose ε ` M : t for some M only using Bernoulli distributions.
If µ = A[[M]] δ() and ε `V : t then PM [value = V | valid] = µ({V})/|µ|.

A consequence of the theorem is that our measure transformer semantics is a gener-
alization of the sampling semantics for discrete probabilities. For this theorem to hold,
it is critical that observe denotes unnormalized conditioning (filtering). Otherwise pro-
grams that perform observations inside the branches of conditional expressions would



have undesired semantics. As the following example shows, the two program fragments
observe (x=y) and if x then observe (y=true) else observe (y=false) would have differ-
ent measure transformer semantics although they have the same sampling semantics.

Simple Conditional Expression: Mif

let x = sample (Bernoulli(0.5))
let y = sample (Bernoulli(0.1))
if x then observe (y=true) else observe (y=false)
y

In the sampling semantics, the two valid runs are when x and y are both true (with
probability 0.05), and both false (with probability 0.45), so we have P [true | valid] = 0.1
and P [false | valid] = 0.9.

If, instead of the unnormalized definition observe p µ A = µ(A∩{x | p(x)}), we
had either of the flawed definitions

observe p µ A =
µ(A∩{x | p(x)})

µ({x | p(x)})
or |µ|µ(A∩{x | p(x)})

µ({x | p(x)})

then A[[Mif]] δ() {true}= A[[Mif]] δ() {false}, which would invalidate the theorem.
Let M′ = Mif with observe (x = y) substituted for the conditional expression. With

the actual or either of the flawed definitions of observe we have A[[M′]] δ() {true}=
(A[[M′]] δ() {false})/9.

4 Semantics as Factor Graphs

A naive implementation of the measure transformer semantics of the previous section
would work directly with measures of states, whose size could be exponential in the
number of variables in scope. For large models, this becomes intractable. In this sec-
tion, we instead give a semantics to Fun programs as factor graphs [18], whose size will
be linear in the size of the program. We define this semantics in two steps. We first com-
pile the Fun program into a program in the simple imperative language Imp, and then
the Imp program itself has a straightforward semantics as a factor graph. Our semantics
formalizes the way in which our implementation maps F# programs to Csoft programs,
which are evaluated by Infer.NET by constructing suitable factor graphs. The imple-
mentation advantage of translating F# to Csoft, over simply generating factor graphs
directly [22], is that the translation preserves the structure of the input model (including
array processing in our full language), which can be exploited by the various inference
algorithms supported by Infer.NET.

4.1 Imp: An Imperative Core Calculus

Imp is an imperative language, based on the static single assignment (SSA) intermediate
form. It is a sublanguage of Csoft, the input language of Infer.NET [25], and is intended
to have a simple semantics as a factor graph. A composite statement C is a sequence of



statements, each of which either stores the result of a primitive operation in a location,
observes the contents of a location to be zero, or branches on the value of a location.
Imp shares the base types b with Fun, but has no tuples.

Syntax of Imp:

l, l′, . . . Locations (variables) in global store
E,F ::= c | l | (l⊗ l) Expression
I ::= Statement

l← E assignment
l s←− D(l1, . . . , ln) random assignment
observeb l observation
if l thenΣ1 C1 elseΣ2 C2 conditional

C ::= nil | I | (C;C) Composite Statement

When making an observation observeb, we make explicit the type b of the observed
location. In the form if l thenΣ1 C1 elseΣ2 C2, the environments Σ1 and Σ2 declare the
local variables assigned by the then branch and the else branch, respectively. These
annotations simplify type checking and denotational semantics.

The typing rules for Imp are standard. We consider Imp typing environments Σ to be
a special case of Fun environments Γ , where variables (locations) always map to base
types. The judgment Σ `C : Σ ′ means that the composite statement C is well-typed in
the initial environment Σ , yielding additional bindings Σ ′.
Part of the Type System for Imp: Σ `C : Σ ′

(IMP SEQ)
Σ `C1 : Σ ′ Σ ,Σ ′ `C2 : Σ ′′

Σ `C1;C2 : (Σ ′,Σ ′′)

(IMP NIL)
Σ ` �

Σ ` nil : ε

(IMP ASSIGN)
Σ ` E : b l /∈ dom(Σ)

Σ ` l← E : ε, l:b

(IMP OBSERVE)
Σ ` l : b

Σ ` observeb l : ε

(IMP IF)
Σ ` l : bool Σ `C1 : Σ ′1 Σ `C2 : Σ ′2 {Σ ′i}= {Σi,Σ

′}
Σ ` if l thenΣ1 C1 elseΣ2 C2 : Σ ′

4.2 Translating from Fun to Imp

The translation from Fun to Imp is a mostly routine compilation of functional code to
imperative code. The main point of interest is that Imp locations only hold values of
base type, while Fun variables may hold tuples. We rely on patterns p and layouts ρ to
track the Imp locations corresponding to Fun environments. The technical report has
the detailed definition of the following notations.
Notations for the Translation from Fun to Imp:

p ::= l | () | (p, p) pattern: group of Imp locations to represent Fun value
ρ ::= (xi 7→ pi)i∈1..n layout: finite map from Fun variables to patterns
Σ ` p : t in environment Σ , pattern p represents Fun value of type t
Σ ` ρ : Γ in environment Σ , layout ρ represents environment Γ

ρ `M⇒C, p given ρ , expression M translates to C and pattern p



4.3 Factor Graphs

A factor graph [18] represents a joint probability distribution of a set of random vari-
ables as a collection of multiplicative factors. Factor graphs are an effective means of
stating conditional independence properties between variables, and enable efficient al-
gebraic inference techniques [27, 38] as well as sampling techniques [15, Chapter 12].
We use factor graphs with gates [26] for modelling if-then-else clauses; gates introduce
second-order edges in the graph.

Factor Graphs:

G ::= new x : b in {e1, . . . ,em} Graph
x,y,z, . . . Nodes (random variables)
e ::= Edge

Equal(x,y) equality (x = y)
Constantc(x) constant (x = c)
Binop⊗(x,y,z) binary operator (x = y⊗ z)
SampleD(x,y1, . . . ,yn) sampling (x∼ D(y1, . . . ,yn))
Gate(x,G1,G2) gate (if x then G1 else G2)

In a graph new x : b in {e1, . . . ,em}, the variables xi are bound; graphs are identified up to
consistent renaming of bound variables. We write {e1, . . . ,em} for new ε in {e1, . . . ,em}.
We write fv(G) for the variables occurring free in G. Here is an example factor graph
GE. (The corresponding Fun source code is listed in the technical report.)

Factor Graph for Epidemiology Example:

GE = {Constant0.01(pd),SampleB(has disease, pd),
Gate(has disease,

new pp : real in {Constant0.8(pp),SampleB(positive result, pp)},
new pn : real in {Constant0.096(pn),SampleB(positive result, pn)}),

Constanttrue(positive result)}

A factor graph typically denotes a probability distribution. The probability (density) of
an assignment of values to variables is equal to the product of all the factors, averaged
over all assignments to local variables. Here, we give a slightly more general semantics
of factor graphs as measure transformers; the input measure corresponds to a prior
factor over all variables that it mentions. Below, we use the Iverson brackets, where [p]
is 1 when p is true and 0 otherwise. We let δ (x = y) , δ0(x− y) when x,y denote real
numbers, and [x = y] otherwise.

Semantics of Factor Graphs: J[[G]]Σ
′

Σ
∈ S〈Σ〉 S〈Σ ,Σ ′〉

J[[G]]Σ
′

Σ
µ A,

∫
A (J[[G]] s) d(µ×λ )(s)

J[[new x : b in {e}]] s,
∫

V∗ibi
∏ j(J[[e j]] (s,x))dλ (x)

J[[Equal(l, l′)]] s, δ (lookup l s = lookup l′ s)
J[[Constantc(l)]] s, δ (lookup l s = c)
J[[Binop⊗(l,w1,w2)]] s, δ (lookup l s = lookup w1 s⊗lookup w2 s)



J[[SampleD(l,v1, . . . ,vn)]] s, µD(lookup v1 s,...,lookup vn s)(lookup l s)
J[[Gate(v,G1,G2)]] s, (J[[G1]] s)[lookup v s](J[[G2]] s)[¬lookup v s]

4.4 Factor Graph Semantics for Imp

An Imp statement has a straightforward semantics as a factor graph. Here, observation
is defined by the value of the variable being the constant 0b.

Factor Graph Semantics of Imp: G = G[[C]]

G[[nil]],∅
G[[C1;C2]], G[[C1]]∪G[[C2]]

G[[l← c]], {Constantc(l)}
G[[l← l′]], {Equal(l, l′)}
G[[l← l1 ⊗ l2]], {Binop⊗(l, l1, l2)}
G[[l s←− D(l1, . . . , ln)]], {SampleD(l, l1, . . . , ln)}
G[[observeb l]], {Constant0b(l)}
G[[if l thenΣ1 C1 elseΣ2 C2]], {Gate(l,new Σ1 in G[[C1]],new Σ2 in G[[C2]])}

The following theorem asserts that the semantics of Fun coincides with the semantics
of Imp for compatible measures, which are defined as follows. If T : t u is a measure
transformer composed from the combinators of Section 3 and µ ∈ M t, we say that T
is compatible with µ if every application of observe f to some µ ′ in the evaluation
of T (µ) satisfies either that f is discrete or that µ has a continuous density on some
ε-neighbourhood of f−1(0.0).

The statement of the theorem needs some additional notation. If Σ ` p : t and s ∈
S〈Σ〉, we write p s for the reconstruction of an element of T[[t]] by looking up the
locations of p in the state s. We define as follows operations lift and restrict to
translate between states consisting of Fun variables (S〈Γ 〉) and states consisting of Imp
locations (S〈Σ〉), where flatten takes a mapping from patterns to values to a mapping
from locations to base values.

lift ρ , λ s.flatten{ρ(x) 7→ V[[x]] s | x ∈ dom(ρ)}
restrict ρ , λ s.{x 7→ V[[ρ(x)]] s | x ∈ dom(ρ)}

Theorem 2. If Γ `M : t and Σ ` ρ : Γ and ρ `M⇒C, p and measure µ ∈ M〈S〈Γ 〉〉
is compatible with A[[M]] then there exists Σ ′ such that Σ `C : Σ ′ and:
A[[M]] µ = (pure (lift ρ) >>> J[[G[[C]]]]Σ

′
Σ

>>> pure (λ s. (restrict ρ s, p s))) µ .

Proof. Via a direct measure transformer semantics for Imp. The proof is by induction
on the typing judgments Γ `M : t and Σ `C : Σ ′. ut

5 Implementation Experience

We implemented a compiler from Fun to Imp in F#. We wrote two backends for Imp: an
exact inference algorithm based on a direct implementation of measure transformers for



discrete measures, and an approximating inference algorithm for continuous measures,
using Infer.NET [25]. Translating Imp to Infer.NET is relatively straightforward, and
amounts to a syntax-directed series of calls to Infer.NET’s object-oriented API.

We have statistics on a few of the examples we have implemented. The lines of
code number includes F# code that loads and processes data from disk before load-
ing it into Infer.NET. The times are based on an average of three runs. All of the runs
are on a four-core machine with 4GB of RAM. The Naive Bayes program is the naive
Bayesian classifier of the earlier examples. The Mixture model is another clustering/-
classification model. TrueSkill is a tournament ranking model, and adPredictor is a
simplified version of a model to predict the likelihood that a display advertisment will
be clicked. In the two long-running examples, time is spent mostly loading and process-
ing data from disk and running inference in Infer.NET. TrueSkill spends the majority of
its time (64%) in Infer.NET, performing inference. AdPredictor spends most of the time
in pre-processing (58%), and only 40% in inference. The time spent in our compiler is
negligible, never more than a few hundred milliseconds.

Summary of our Basic Test Suite:

LOC Observations Variables Time
Naive Bayes 28 9 3 <1s

Mixture 33 3 3 <1s
TrueSkill 68 15,664 84 6s

adPredictor 78 300,752 299,594 3m30s

In summary, our implementation strategy allowed us to build an effective prototype
quickly and easily: the entire compiler is only 2079 lines of F#; the Infer.NET backend
is 600 lines; the discrete backend is 252 lines. Our implementation, however, is only
a prototype, and has limitations. On the one hand, Infer.NET supports a limited set
of operations on specific combinations of probabilistic and deterministic arguments.
Our discrete backend, on the other hand, is limited to small models using only finite
measures.

6 Related Work

To the best of our knowledge, this paper introduces the first rigorous measure-theoretic
semantics shown to be in agreement with a factor graph semantics for a probabilistic
language with observation and sampling from continuous distributions. Hence, we lay
a firm foundation for inference on probabilistic programs via modern message-passing
algorithms on factor graphs.

Formal Semantics of Probabilistic Languages There is a long history of formal seman-
tics for probabilistic languages with sampling primitives, often combined with recursive
computation. One of the first semantics is for Probabilistic LCF [35], which augments
the core functional language LCF with weighted binary choice, for discrete distribu-
tions. Kozen [17] develops a probabilistic semantics for while-programs augmented
with random assignment. He develops two provably equivalent semantics; one more op-
erational, and the other a denotational semantics using partially ordered Banach spaces.



Imp is simpler than Kozen’s language, as Imp has no unbounded while-statements, so
the semantics of Imp need not deal with non-termination. On the other hand, observa-
tions are not present in Kozen’s language.

Jones and Plotkin [13] investigate the probability monad, and apply it to languages
with discrete probabilistic choice. Ramsey and Pfeffer [33] give a stochastic λ -calculus
with a measure-theoretic semantics in the probability monad, and provide an embed-
ding within Haskell; they do not consider observations. We can generalize the seman-
tics of observe to this setting as filtering in the probability monad (yielding what we
may call a sub-probability monad), as long as the events that are being observed are
discrete or have non-zero probability. However, zero-probability observations of real
variables do not translate easily to the probability monad, as the following example
shows. Let N be an expression returning a continuous distribution, for example, sample
(Gaussian(0.0,1.0)), and let f x = observe x. The probability monad semantics of the
program let x = N in f x of the stochastic λ -calculus is [[N]]�= λy.[[f x]]{x 7→ y}, which
yields the measure µ(A) =

∫
R(M[[[[f x]]{x 7→ y}]])(A) dM[N](y). Here the probabil-

ity (M[[[[f x]]{x 7→ y}]])(A) is zero except when y = 0, where it is some real number.
Since the N-measure of y = 0 is zero, the whole integral is zero for all A (in particu-
lar µ(R) = 0), whereas the intended semantics is that x is constrained to be zero with
probability 1 (so in particular µ(R) = 1).

The probabilistic concurrent constraint programming language pcc of Gupta, Ja-
gadeesan, and Panangaden [10] is also intended for describing probability distributions
using independent sampling and constraints. Our use of observations corresponds to
constraints on random variables in pcc. In the finite case, pcc also relies on a sampling
semantics with observation (constraints) denoting filtering. To admit continuous distri-
butions, pcc adds general fixpoints and defines the semantics of a program as the limit
of finite unrollings of its fixpoints, if defined. This can lead to surprising results, for
example, that the distribution resulting from observing that two uniform distributions
are equal may not itself be uniform. In contrast, our goal is an efficient implementation
via factor graphs, which led us to work directly with standard distributions and to have
a semantics of observation that is independent of the program text.

McIver and Morgan [23] develop a theory of abstraction and refinement for proba-
bilistic while programs, based on weakest preconditions. They reject a subdistribution
transformer semantics in order to admit demonic nondeterminism in the language.

We conjecture that Fun and Imp could in principle be conferred semantics within a
probabilistic language supporting general recursion, by encoding observations by plac-
ing the whole program within a conditional sampling loop, and by encoding Gaussian
and other continuous distributions as repeated sampling using recursive functions. Still,
our choices in formulating the semantics of Fun and Imp were to include some distribu-
tions as primitive, and to exclude recursion; compared to encodings within probabilistic
languages with recursion, these choices have these advantages: (1) our measure trans-
former semantics relies on relatively elementary measure theory, with no need to ex-
press non-termination or to compute limits when defining the model; (2) our semantics
is compositional rather than relying on a global sampling loop; and (3) our semantics
has a direct implementation via message-passing algorithms on factor graphs, with ef-
ficient implementations of primitive distributions.



Probabilistic Languages for Machine Learning Koller et al. [16] pioneered the idea
of representing a probability distribution using first-order functional programs with
discrete random choice, and proposed an inference algorithm for Bayesian networks
and stochastic context-free grammars. Observations happen outside their language, by
returning the distributions P [A∧B] ,P [A∧¬B] ,P [¬A] which can be used to compute
P [B | A].

Park et al. [30] propose λ◦, the first probabilistic language with formal semantics
applied to actual machine learning problems involving continuous distributions. The
formal basis is sampling functions, which uniformly supports both discrete and contin-
uous probability distributions, and inference is by Monte Carlo methods. The calculus
λ◦ does not include observations, but enables conditional sampling via fixpoints and
rejection.

Infer.NET [25] is a software library that implements the approximate deterministic
algorithms expectation propagation [27] and variational message passing [38], as well
as Gibbs sampling, a nondeterministic algorithm. Infer.NET models are written in a
probabilistic subset of C#, known as Csoft [37]. Csoft allows observe on zero proba-
bility events, but its semantics has not previously been formalized and it is currently
only implemented as an internal language of Infer.NET. IBAL [32] has observations
and uses a factor graph semantics, but only works with discrete datatypes and thus does
not need advanced probability theory. Moreover, there seems to be no proof that the
factor graph denotation of an IBAL program yields the same distribution as the direct
semantics, an important goal of the present work. HANSEI [14] is a programming li-
brary for OCaml, based on explicit manipulation of discrete probability distributions
as lists, and sampling algorithms based on coroutines. HANSEI uses an explicit fail
statement, which is equivalent to observe false and so cannot be used for conditioning
on zero probability events.

FACTORIE [22] is a Scala library for explicitly constructing factor graphs. Al-
though there are many Bayesian modelling languages, Csoft and IBAL are the only
previous languages implemented by a compilation to factor graphs. Church [9] is a
probabilistic form of the untyped functional language Scheme, equipped with condi-
tional sampling and a mechanism of stochastic memoization. Queries are implemented
using Monte Carlo methods. Blaise [4] supports the compositional construction of so-
phisticated probabilistic models, and decouples the choice of inference algorithm from
the specification of the distribution. WinBUGS [28] is a popular language for explicitly
describing distributions suitable for Monte Carlo analysis.

Other Uses of Probabilistic Languages Probabilistic languages with formal semantics
find application in many areas apart from machine learning, including databases [6],
model checking [19], differential privacy [24, 34], information flow [20], and cryptog-
raphy [1]. A recent monograph on semantics for labelled Markov processes [29] focuses
on bisimulation-based equational reasoning. The syntax and semantics of Imp is mod-
elled on an existing probabilistic language [2] without observations.

Erwig and Kollmansberger [7] describe a library for probabilistic functional pro-
gramming in Haskell. The library is based on the probability monad, and uses a finite
representation suitable for small discrete distributions; the library would not suffice to
provide a semantics for Fun or Imp with their continuous and hybrid distributions.



7 Conclusion

Our direct contribution is a rigorous semantics for a probabilistic programming lan-
guage that also has an equivalent factor graph semantics. We have shown that prob-
abilistic functional programs with iteration over arrays, but without the complexities
of general recursion, are a concise representation for complex probability distributions
arising in machine learning. An implication of our work for the machine learning com-
munity is that probabilistic programs can be written directly within an existing declar-
ative language (Fun—a subset of F#), linked by comprehensions to large datasets, and
compiled down to lower level Bayesian inference engines.

For the programming language community, our new semantics suggests some novel
directions for research. What other primitives are possible—non-generative models,
inspection of distributions, on-line inference on data streams? Can we verify the trans-
formations performed by machine learning compilers such as Infer.NET compiler for
Csoft? Are there type systems for avoiding zero probability exceptions, or to ensure that
we only generate factor graphs that can be handled by our back-end?

Acknowledgements We gratefully acknowledge discussions with Ralf Herbrich, Tom
Minka, and John Winn. Comments from Nikhil Swamy, Dimitrios Vytiniotis, and the
anonymous reviewers were helpful.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). J. Cryptology, 15(2):103–127, 2002.

2. G. Barthe, B. Grégoire, and S. Z. Béguelin. Formal certification of code-based cryptographic
proofs. In POPL, pages 90–101. ACM, 2009.

3. P. Billingsley. Probability and Measure. Wiley, 3rd edition, 1995.
4. K. A. Bonawitz. Composable Probabilistic Inference with Blaise. PhD thesis, MIT, 2008.

Available as Technical Report MIT-CSAIL-TR-2008-044.
5. J. Borgström, A. D. Gordon, M. Greenberg, J. Margetson, and J. Van Gael. Measure trans-

former semantics for Bayesian machine learning. Technical report, Microsoft Research,
2011.

6. N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt. Commun.
ACM, 52(7):86–94, 2009.

7. M. Erwig and S. Kollmansberger. Functional pearls: Probabilistic functional programming
in Haskell. J. Funct. Program., 16(1):21–34, 2006.

8. D. A. S. Fraser, P. McDunnough, A. Naderi, and A. Plante. On the definition of probability
densities and sufficiency of the likelihood map. J. Probability and Mathematical Statistics,
15:301–310, 1995.

9. N. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum. Church: a
language for generative models. In UAI, pages 220–229. AUAI Press, 2008.

10. V. Gupta, R. Jagadeesan, and P. Panangaden. Stochastic processes as concurrent constraint
programs. In POPL, pages 189–202, 1999.

11. R. Herbrich, T. Minka, and T. Graepel. TrueSkill(TM): A Bayesian skill rating system. In
Advances in Neural Information Processing Systems 20, 2007.

12. E. T. Jaynes. Probability Theory: The Logic of Science, chapter 15.7 The Borel-Kolmogorov
paradox, pages 467–470. CUP, 2003.



13. C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations. In LICS, pages
186–195. IEEE Computer Society, 1989.

14. O. Kiselyov and C. Shan. Monolingual probabilistic programming using generalized corou-
tines. In UAI, 2009.

15. D. Koller and N. Friedman. Probabilistic Graphical Models. The MIT Press, 2009.
16. D. Koller, D. A. McAllester, and A. Pfeffer. Effective Bayesian inference for stochastic

programs. In AAAI/IAAI, pages 740–747, 1997.
17. D. Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328–350, 1981.
18. F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algo-

rithm. IEEE Transactions on Information Theory, 47(2):498–519, 2001.
19. M. Z. Kwiatkowska, G. Norman, and D. Parker. Quantitative analysis with the probabilistic

model checker PRISM. ENTCS, 153(2):5–31, 2006.
20. G. Lowe. Quantifying information flow. In CSFW, pages 18–31. IEEE Computer Society,

2002.
21. D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. CUP, 2003.
22. A. McCallum, K. Schultz, and S. Singh. FACTORIE: Probabilistic programming via imper-

atively defined factor graphs, 2009. Poster at 23rd Annual Conference on Neural Information
Processing Systems (NIPS).

23. A. McIver and C. Morgan. Abstraction, refinement and proof for probabilistic systems.
Monographs in computer science. Springer, 2005.

24. F. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data
analysis. In SIGMOD Conference, pages 19–30. ACM, 2009.

25. T. Minka, J. Winn, J. Guiver, and A. Kannan. Infer.NET 2.3, Nov. 2009. Software available
from http://research.microsoft.com/infernet.

26. T. Minka and J. M. Winn. Gates. In NIPS, pages 1073–1080. MIT Press, 2008.
27. T. P. Minka. Expectation Propagation for approximate Bayesian inference. In UAI, pages

362–369. Morgan Kaufmann, 2001.
28. I. Ntzoufras. Bayesian Modeling Using WinBUGS. Wiley, 2009.
29. P. Panangaden. Labelled Markov processes. Imperial College Press, 2009.
30. S. Park, F. Pfenning, and S. Thrun. A probabilistic language based upon sampling functions.

In POPL, pages 171–182. ACM, 2005.
31. A. Pfeffer. IBAL: A probabilistic rational programming language. In B. Nebel, editor, IJCAI,

pages 733–740. Morgan Kaufmann, 2001.
32. A. Pfeffer. Statistical Relational Learning, chapter The design and implementation of IBAL:

A General-Purpose Probabilistic Language. MIT Press, 2007.
33. N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of probability distribu-

tions. In POPL, pages 154–165, 2002.
34. J. Reed and B. C. Pierce. Distance makes the types grow stronger: A calculus for differential

privacy. In ICFP, pages 157–168, 2010.
35. N. Saheb-Djahromi. Probabilistic LCF. In MFCS, volume 64 of LNCS, pages 442–451.

Springer, 1978.
36. D. Syme, A. Granicz, and A. Cisternino. Expert F#. Apress, 2007.
37. J. Winn and T. Minka. Probabilistic programming with Infer.NET. Machine Learning

Summer School lecture notes, available at http://research.microsoft.com/~minka/
papers/mlss2009/, 2009.

38. J. M. Winn and C. M. Bishop. Variational message passing. Journal of Machine Learning
Research, 6:661–694, 2005.


