
Polymorphic Contracts

João Filipe Belo1, Michael Greenberg1,
Atsushi Igarashi2, and Benjamin C. Pierce1

1 University of Pennsylvania
2 Kyoto University

Abstract. Manifest contracts track precise properties by refining types
with predicates—e.g., {x :Int | x > 0} denotes the positive integers.
Contracts and polymorphism make a natural combination: programmers
can give strong contracts to abstract types, precisely stating pre- and
post-conditions while hiding implementation details—for example, an
abstract type of stacks might specify that the pop operation has in-
put type {x :α Stack | not (empty x)}. We formalize this combination by
defining FH, a polymorphic calculus with manifest contracts, and estab-
lishing fundamental properties including type soundness and relational
parametricity. Our development relies on a significant technical improve-
ment over earlier presentations of contracts: instead of introducing a
denotational model to break a problematic circularity between typing,
subtyping, and evaluation, we develop the metatheory of contracts in a
completely syntactic fashion, omitting subtyping from the core system
and recovering it post facto as a derived property.

Keywords: contracts, refinement types, preconditions, postconditions,
dynamic checking, parametric polymorphism, abstract datatypes, syn-
tactic proof, logical relations, subtyping.

1 Introduction

Software contracts allow programmers to state precise properties—e.g., that a
function takes a non-empty list to a positive integer—as concrete predicates
written in the same language as the rest of the program; these predicates can
be checked dynamically as the program executes or, more ambitiously, verified
statically with the assistance of a theorem prover. Findler and Felleisen [5] in-
troduced “higher-order contracts” for functional languages; these can take one
of two forms: predicate contracts like {x :Int | x > 0}, which denotes the positive
numbers, and function contracts like x :Int → {y:Int | y ≥ x}, which denotes
functions over the integers that return numbers larger than their inputs.

Greenberg, Pierce, and Weirich [7] contrast two different approaches to con-
tracts: in the manifest approach, contracts are types—the type system itself
makes contracts ‘manifest’; in the latent approach, contracts and types live in
different worlds (indeed, there may be no types at all, as in PLT Racket’s contract
system [1]). These two presentations lead to different ways of checking contracts.
Latent systems run contracts with checks: for example, 〈{x :Int | x > 0}〉l n

G. Barthe (Ed.): ESOP 2011, LNCS 6602, pp. 18–37, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Polymorphic Contracts 19

checks that n > 0. If the check succeeds, then the entire expression will just
return n. If it fails, then the entire program will “blame” the label l , raising an
uncatchable exception ⇑l , pronounced “blame l”. Manifest systems use casts,
〈Int ⇒ {x :Int | x > 0}〉l to convert values from one type to another (the left-
hand side is the source type and the right-hand side is the target type). For
predicate contracts, a cast will behave just like a check on the target type: ap-
plied to n, the cast either returns n or raises ⇑l . Checks and casts differ when it
comes to function contracts. A function check (〈T1 → T2〉l v) v ′ will reduce to
〈T2〉l (v (〈T1〉l v ′)), giving v the argument checked at the domain contract and
checking that the result satisfies the codomain contract. A function cast (〈T11 →
T12 ⇒ T21 → T22〉l v) v ′ will reduce to 〈T12 ⇒ T22〉l (v (〈T21 ⇒ T11〉l v ′)),
wrapping the argument v ′ in a (contravariant) cast between the domain types
and wrapping the result of the application in a (covariant) cast between the
codomain types. The differences between checks and casts are discussed at length
in [7]. Both presentations have their pros and cons: latent contracts are simpler to
design and extend, while manifest contracts make a clearer connection between
the static constraints captured by types and the dynamic checks performed by
casts. In this work, we consider the manifest approach and endeavor to tame its
principal drawback: the complexity of its metatheory. We summarize the issues
here, comparing our work to previous approaches more thoroughly in Section 6.

Subtyping is the main source of complexity in the most expressive mani-
fest calculi—those which have dependent functions and allow arbitrary terms
in refinements [7,10]. These calculi have subtyping for two reasons. First, sub-
typing helps preserve types when evaluating casts with predicate contracts: if
〈Int ⇒ {x :Int | x > 0}〉l n −→∗ n, then we need to type n at {x :Int | x > 0}. Sub-
typing gives it to us, allowing n to be typed at any predicate contract it satisfies.
Second, subtyping can show the equivalence of types with different but related
term substitutions. Consider the standard dependent-function application rule:

Γ � e1 : (x :T1 → T2) Γ � e2 : T1

Γ � e1 e2 : T2[e2/x]

If e2 −→ e ′
2, how do T2[e2/x] and T2[e ′

2/x] relate? (An important question when
proving preservation!) Subtyping shows that these types are really the same:
the first type parallel reduces to the second, and it can be shown that parallel
reduction between types implies mutual subtyping—that is, equivalence.

Subtyping brings its own challenges, though. A näıve treatment of subtyping
introduces a circularity in the definition of the type system. Existing systems
break this circularity by defining judgements in a careful order: first the eval-
uation relation and the corresponding parallel reduction relation; then a deno-
tational semantics based on the evaluation relation and subtyping based on the
denotational semantics; and finally the syntactic type system. Making this care-
fully sequenced series of definitions hold together requires a long series of tedious
lemmas relating evaluation and parallel reduction. The upshot is that existing
manifest calculi have taken considerable effort to construct.

We propose here a simpler approach to manifest calculi that greatly simplifies
their definition and metatheory. Rather than using subtyping, we define a type

20 J.F. Belo et al.

conversion relation based on parallel reduction. This avoids the original circu-
larity without resorting to denotational semantics. Indeed, we can use this type
conversion to give a completely syntactic account of type soundness—with just a
few easy lemmas relating evaluation and parallel reduction. Moreover, eliminat-
ing subtyping doesn’t fundamentally weaken our approach, since we can define
a subtyping relation and prove its soundness post facto.

We bring this new technique to bear on FH, a manifest calculus with paramet-
ric polymorphism. Researchers have already studied the dynamic enforcement
of parametric polymorphism in languages that mix (conventional, un-refined)
static and dynamic typing (see Section 6); here we study the static enforcement
of parametric polymorphism in languages that go beyond conventional static
types by adding refinement types and dependent function contracts. Concretely,
we offer four main contributions:

1. We devise a simpler approach to manifest contract calculi and apply it to
FH, proving type soundness using straightforward syntactic methods [19].

2. We offer the first operational semantics for general refinements, where re-
finements can apply to any type—not just base types.

3. We prove that FH is relationally parametric—establishing that contract
checking does not interfere with this desirable property.

4. We define a post facto subtyping relation and prove that “upcasts” from
subtypes to supertypes always succeed in FH, i.e., that subtyping is sound.

We begin with some examples in Section 2. We then describe FH and prove
type soundness in Section 3. We prove parametricity in Section 4 and the upcast
lemma in Section 5. We discuss related work in Section 6 and conclude with
ideas for future work in Section 7.

2 Examples

Like other manifest calculi, FH checks contracts with casts: the cast 〈T1 ⇒ T2〉l
takes a value of type T1 (the source type) and ensures that it behaves (and is
treated) like a T2 (the target type). The l superscript is a blame label, used to
differentiate between different casts and identify the source of failures. How we
check 〈T1 ⇒ T2〉l v depends on the structure of T1 and T2. Checking predicate
contracts with casts is easy: if v satisfies the predicate of the target type, the
entire application goes to v ; if not, then the program aborts, “raising” blame,
written ⇑l . For example, 〈Int ⇒ {x :Int | x > 0}〉l 5 −→∗ 5, since 5 > 0. But
〈Int ⇒ {x :Int | x > 0}〉l 0 −→∗ ⇑l , since 0 	> 0. When checking predicate con-
tracts, only the target type matters—the type system guarantees that whatever
value we have is well typed at the source type. Checking function contracts is a
little trickier: what should 〈Int → Int ⇒ {x :Int | x > 0} → {y:Int | y > 5}〉l v
do? We can’t just open up v and check whether it always returns positives. The
solution is to decompose the cast into its parts:

〈Int → Int ⇒ {x :Int | x > 0} → {y:Int | y > 5}〉l v −→
λx :{x :Int | x > 0}. (〈Int ⇒ {y:Int | y > 5}〉l (v (〈{x :Int | x > 0} ⇒ Int〉l x)))

Polymorphic Contracts 21

Note that the domain cast is contravariant, while the codomain is covariant:
the context will be forced by the type system to provide a positive number, so
we need to cast the input to an appropriate type for v . (In this example, the
contravariant cast 〈{x :Int | x > 0} ⇒ Int〉l will always succeed.) After v returns,
we run the covariant codomain cast to ensure that v didn’t misbehave. So:

〈Int → Int ⇒ {x :Int | x > 0} → {y:Int | y > 5}〉l (λx :Int. x) 6 −→∗ 6
〈· · · 〉l (λx :Int. 0) 6 −→∗ ⇑l

〈· · · 〉l (λx :Int. 0) (〈Int ⇒ {x :Int | x > 0}〉l′ 0) −→∗ ⇑l ′

Note that we omitted the case where a cast function is applied to 0. It is an
important property of our system that 0 doesn’t have type {x :Int | x > 0}!

With these preliminaries out of the way, we can approach our work: a manifest
calculus with polymorphism. The standard polymorphic encodings of existential
and product types transfer over to FH without a problem. Indeed, our dependent
functions allow us to go one step further and encode even dependent products
such as (x : Int)×{y:α List | length y = x}, which represents lists paired with their
lengths. Let’s look at an example combining contracts and polymorphism—an
abstract datatype of natural numbers.

NAT : ∃α. (zero : α) × (succ : (α → α)) × (iszero : (α → Bool)) ×
(pred : {x :α | not (iszero x)} → α)

(We omit the implementation, a standard Church encoding.) The NAT interface
hides our encoding of the naturals behind an existential type, but it also requires
that pred is only ever applied to terms of type {x :α | not (iszero x)}. Assuming
that iszero v −→∗ true iff v = zero, we can infer that pred is never given zero
as an argument. Consider the following expression, where I is the interface we
specified for NAT and we omit the term binding for brevity:

unpack NAT : ∃α. I as α, in pred (〈α ⇒ {x :α | not (iszero x)}〉l zero) : α

The application of pred directly to zero would not be well typed, since zero : α. On
the other hand, the cast term is well typed, since we cast zero to the type we need.
Naturally, this cast will ultimately raise ⇑l , because not (iszero zero) −→∗ false.

The example so far imposes constraints only on the use of the abstract
datatype, in particular on the use of pred. To have constraints imposed also
on the implementation of the abstract data type, consider the extension of the
interface with a subtraction operation, sub, and a “less than or equal” predicate,
leq. We now have the interface:

I ′ = I × (leq : α → α → Bool) × (sub : (x :α → {y:α | leq y x} → {z :α | leq z x}))
The sub function requires that its second argument isn’t greater than the first,
and it promises to return a result that isn’t greater than the first argument.

We get contracts in interfaces by putting casts in the implementations. For
example, the contracts on pred and sub are imposed when we “pack up” NAT;
we write nat for the implementation type:

pack 〈nat, (zero, succ, iszero, pred, leq, sub)〉 as ∃α. I ′

22 J.F. Belo et al.

Types and contexts
T ::= B | α | x :T1 → T2 | ∀α.T | {x :T | e}
Γ ::= ∅ | Γ, x :T | Γ, α

Terms
e ::= x | k | op (e1, ... , en) | λx :T . e | Λα.e | e1 e2 | e T |

〈T1 ⇒ T2〉l | ⇑l | 〈{x :T | e1}, e2, v〉l
v ::= k | λx :T . e | Λα.e | 〈T1 ⇒ T2〉l
r ::= v | ⇑l
E ::= [] e2 | v1 [] | []T | 〈{x :T | e}, [] , v〉l | op(v1, ..., vi−1 , [] , ei+1, ..., en)

Fig. 1. Syntax for FH

where:

pred = 〈nat → nat ⇒ {x :nat | not (iszero x)} → nat〉l pred′

sub = 〈nat → nat → nat ⇒ x :nat → {y:nat | leq y x} → {z :nat | leq z x}〉l sub′

That is, the existential type dictates that we must pack up cast versions of our
implementations, pred′ and sub′. Note, however, that the cast on pred′ will never
actually check anything at runtime: if we unfold the domain contract contravari-
antly, we see that 〈{x :nat | not (iszero x)} ⇒ nat〉l is a no-op. Instead, clients of
NAT can only call pred with terms that are typed at {x :nat | not (iszero x)}, i.e.,
by checking that values are nonzero with a cast into pred’s input type. The story
is the same for the contract on sub’s second argument—the contravariant cast
won’t actually check anything. The codomain contract on sub, however, could
fail if sub′ mis-implemented subtraction.

We can sum up the situation for contracts in interfaces as follows: the positive
parts of the interface type are checked and can raise blame—these parts are the
responsibility of the implementation; the negative parts of the interface type
are not checked by the implementation—clients must check these themselves be-
fore calling functions from the ADT. Distributing obligations in this way recalls
Findler and Felleisen’s seminal idea of client and server blame [5].

3 Defining FH

The syntax of FH is given in Figure 1. For unrefined types we have: base types B ,
which must include Bool; type variables α; dependent function types x :T1 → T2

where x is bound in T2; and universal types ∀α.T , where α is bound in T . Aside
from dependency in function types, these are just the types of the standard
polymorphic lambda calculus. As usual, we write T1 → T2 for x :T1 → T2 when
x does not appear free in T2. We also have predicate contracts, or refinement
types, written {x :T | e}. Conceptually, {x :T | e} denotes values v of type T for
which e[v/x] reduces to true. For each B , we fix a set KB of the constants in that
type; we require our typing rules for constants and our typing and evaluation
rules for operations to respect this set. We also require that KBool = {true, false}.

In the syntax of terms, the first line is standard for a call-by-value polymor-
phic language: variables, constants, several monomorphic first-order operations

Polymorphic Contracts 23

op (i.e., destructors of one or more base-type arguments), term and type ab-
stractions, and term and type applications. The second line offers the standard
constructs of a manifest contract calculus [6,7,10], with a few alterations, dis-
cussed below.

Casts are the distinguishing feature of manifest contract calculi. When applied
to a value of type T1, the cast 〈T1 ⇒ T2〉l ensures that its argument behaves—
and is treated—like a value of type T2. When a cast detects a problem, it raises
blame, a label-indexed uncatchable exception written ⇑l . The label l allows us
to trace blame back to a specific cast. (While our labels here are drawn from an
arbitrary set, in practice l will refer to a source-code location.) Finally, we use
active checks 〈{x :T | e1}, e2, v〉l to support a small-step semantics for checking
casts into refinement types. In an active check, {x :T | e1} is the refinement
being checked, e2 is the current state of checking, and v is the value being
checked. The type in the first position of an active check isn’t necessary for
the operational semantics, but we keep it around as a technical aid to type
soundness. If checking succeeds, the check will return v ; if checking fails, the
check will blame its label, raising ⇑l . Active checks and blame are not intended
to occur in source programs—they are runtime devices. (In a real programming
language based on this calculus, casts will probably not appear explicitly either,
but will be inserted by an elaboration phase. The details of this process are
beyond the scope of the present work.)

The values in FH are constants, term and type abstractions, and casts. We also
define results, which are either values or blame. (Type soundness—a consequence
of Theorems 2 and 3 below—will show that evaluation produces a result, but
not necessarily a value.) In some earlier work [7,8], casts between function types
applied to values were themselves considered values. We make the other choice
here: excluding applications from the possible syntactic forms of values simplifies
our inversion lemmas.

There are two notable features relative to existing manifest calculi: first,
any type (even a refinement type) can be refined, not just base types (as in
[6,7,8,10,12]); second, the third part of the active check form 〈{x :T | e1}, e2, v〉l
can be any value, not just a constant. Both of these changes are motivated by the
introduction of polymorphism. In particular, to support refinement of type vari-
ables we must allow refinements of all types, since any type can be substituted
in for a variable.

Operational Semantics

The call-by-value operational semantics in Figure 2 are given as a small-step rela-
tion, split into two sub-relations: one for reductions (�) and one for congruence
and blame lifting (−→).

The latter relation is standard. The E Reduce rule lifts � reductions into
−→; the E Compat rule turns −→ into a congruence over our evaluation con-
texts; and the E Blame rule lifts blame, treating it as an uncatchable exception.
The reduction relation � is more interesting. There are four different kinds of

24 J.F. Belo et al.

Reduction rules e1 � e2

op (v1, ... , vn) � [[op]] (v1, ... , vn) E Op

(λx :T1. e12) v2 � e12[v2/x] E Beta

(Λα.e)T � e[T/α] E TBeta

〈T ⇒ T 〉l v � v E Refl

〈x :T11 → T12 ⇒ x :T21 → T22〉l v � E Fun

λx :T21. (〈T12[〈T21 ⇒ T11〉l x/x] ⇒ T22〉l (v (〈T21 ⇒ T11〉l x)))
when x :T11 → T12 	= x :T21 → T22

〈∀α.T1 ⇒ ∀α.T2〉l v � Λα.(〈T1 ⇒ T2〉l (v α)) E Forall

when ∀α.T1 	= ∀α.T2

〈{x :T1 | e} ⇒ T2〉l v � 〈T1 ⇒ T2〉l v E Forget

when T2 	= {x :T1 | e} and T2 	= {y :{x :T1 | e} | e2}
〈T1 ⇒ {x :T2 | e}〉l v � 〈T2 ⇒ {x :T2 | e}〉l (〈T1 ⇒ T2〉l v) E PreCheck

when T1 	= T2 and T1 	= {x :T ′ | e ′}
〈T ⇒ {x :T | e}〉l v � 〈{x :T | e}, e[v/x], v〉l E Check

〈{x :T | e}, true, v〉l � v E OK

〈{x :T | e}, false, v〉l � ⇑l E Fail

Evaluation rules e1 −→ e2

e1 � e2

e1 −→ e2
E Reduce

e1 −→ e2

E [e1] −→ E [e2]
E Compat

E [⇑l] −→ ⇑l
E Blame

Fig. 2. Operational semantics

reductions: the standard lambda calculus reductions, structural cast reductions,
cast staging reductions, and checking reductions.

The E Beta, and E TBeta rules should need no explanation—these are the
standard call-by-value polymorphic lambda calculus reductions. The E Op rule
uses a denotation function [[−]] to give meaning to our first-order operations.

The E Refl, E Fun, and E Forall rules are structural cast reductions.
E Refl eliminates a cast from a type to itself; intuitively, such a cast should
always succeed anyway. (We discuss this rule more in Section 4.) When a cast
between function types is applied to a value v , the E Fun rule produces a new
lambda, wrapping v with a contravariant cast on the domain and covariant cast
on the codomain. The extra substitution in the left-hand side of the codomain
cast may seem suspicious, but in fact the rule must be this way in order for type
preservation to hold (see [7] for an explanation). The E Forall rule is similar
to E Fun, generating a type abstraction with the necessary covariant cast. Side
conditions on E Forall and E Fun ensure that these rules apply only when
E Refl doesn’t.

The E Forget, E PreCheck, and E Check rules are cast-staging
reductions, breaking a complex cast down to a series of simpler casts and checks.
All of these rules require that the left- and right-hand sides of the cast be

Polymorphic Contracts 25

different—if they are the same, then E Refl applies. The E Forget rule strips
a layer of refinement off the left-hand side; in addition to requiring that the left-
and right-hand sides are different, the preconditions require that the right-hand
side isn’t a refinement of the left-hand side. The E PreCheck rule breaks a cast
into two parts: one that checks exactly one level of refinement and another that
checks the remaining parts. We only apply this rule when the two sides of the
cast are different and when the left-hand side isn’t a refinement. The E Check

rule applies when the right-hand side refines the left-hand side; it takes the cast
value and checks that it satisfies the right-hand side. (We don’t have to check
the left-hand side, since that’s the type we’re casting from.)

Before explaining how these rules interact in general, we offer a few examples.
First, here is a reduction using E Check, E Compat, E Op, and E OK:

〈Int ⇒ {x :Int | x ≥ 0}〉l 5 −→ 〈{x :Int | x ≥ 0}, 5 ≥ 0, 5〉l
−→ 〈{x :Int | x ≥ 0}, true, 5〉l −→ 5

A failed check will work the same way until the last reduction, which will use
E Fail rather than E OK:

〈Int ⇒ {x :Int | x ≥ 0}〉l (−1) −→ 〈{x :Int | x ≥ 0},−1 ≥ 0,−1〉l
−→ 〈{x :Int | x ≥ 0}, false,−1〉l −→ ⇑l

Notice that the blame label comes from the cast that failed. Here is a similar re-
duction that needs some staging, using E Forget followed by the first reduction
we gave:

〈{x :Int | x = 5} ⇒ {x :Int | x ≥ 0}〉l 5 −→ 〈Int ⇒ {x :Int | x ≥ 0}〉l 5
−→ 〈{x :Int | x ≥ 0}, 5 ≥ 0, 5〉l −→∗ 5

There are two cases where we need to use E PreCheck. First, when multiple
refinements are involved:

〈Int ⇒ {x :{y:Int | y ≥ 0} | x = 5}〉l 5 −→
〈{y:Int | y ≥ 0} ⇒ {x :{y:Int | y ≥ 0} | x = 5}〉l (〈Int ⇒ {y:Int | y ≥ 0}〉l 5) −→∗

〈{y:Int | y ≥ 0} ⇒ {x :{y:Int | y ≥ 0} | x = 5}〉l 5 −→
〈{x :{y:Int | y ≥ 0} | x = 5}, 5 = 5, 5〉l −→∗

5

Second, when casting a function or universal type into a refinement of a different
function or universal type.

〈Bool → {x :Bool | x} ⇒ {f :Bool → Bool | f true = f false}〉l v −→
〈Bool → Bool ⇒ {f :Bool → Bool | f true = f false}〉l

(〈Bool → {x :Bool | x} ⇒ Bool → Bool〉l v)

E Refl is necessary for simple cases, like 〈Int ⇒ Int〉l 5 −→ 5. Hopefully, such
a silly cast would never be written, but it could arise as a result of E Fun or
E Forall. (We also need E Refl in our proof of parametricity; see Section 4.)

26 J.F. Belo et al.

Cast evaluation follows a regular schema:

Refl | (Forget
∗ (Refl | (PreCheck

∗ (Refl | Fun | Forall)? Check
∗)))

Let’s consider the cast 〈T1 ⇒ T2〉l v . To simplify the following discussion, we
define unref(T) as T without any outer refinements (though refinements on,
e.g., the domain of a function would be unaffected); we write unrefn(T) when
we remove only the n outermost refinements:

unref(T) =

{
unref(T ′) if T = {x :T ′ | e}
T otherwise

First, if T1 = T2, we can apply E Refl and be done with it. If that doesn’t work,
we’ll reduce by E Forget until the left-hand side doesn’t have any refinements.
(N.B. we may not have to make any of these reductions.) Either all of the
refinements will be stripped away from the source type, or E Refl eventually
applies and the entire cast disappears. Assuming E Refl doesn’t apply, we
now have 〈unref(T1) ⇒ T2〉l v . Next, we apply E PreCheck until the cast is
completely decomposed into one-step casts, once for each refinement in T2:

〈unref1(T2) ⇒ T2〉l (〈unref2(T2) ⇒ unref1(T2)〉l
(... (〈unref(T1) ⇒ unref(T2)〉l v) ...))

As our next step, we apply whichever structural cast rule applies to 〈unref(T1) ⇒
unref(T2)〉l v , one of E Refl, E Fun, or E Forall. Now all that remains are
some number of refinement checks, which can be dispatched by the E Check

rule (and other rules, of course, during the predicate checks themselves).

Static Typing

The type system comprises three mutually recursive judgments: context well
formedness, type well formedness, and term well typing. The rules for contexts
and types are unsurprising. The rules for terms are mostly standard. First, the
T App rule is dependent, to account for dependent function types. The T Cast

rule is standard for manifest calculi, allowing casts between compatibly struc-
tured well formed types. Compatibility of type structures is defined in Figure 4;
in short, compatible types erase to identical simple type skeletons. Note that we
assign casts a non-dependent function type. The T Op rule uses the ty function
to assign (possibly dependent) monomorphic first-order types to our operations;
we require that ty(op) and [[op]] agree.

Some of the typing rules—T Check, T Blame, T Exact, T Forget, and
T Conv—are “runtime only”. We don’t expect to use these rules to type check
source programs, but we need them to guarantee preservation. Note that the
conclusions of these rules use a context Γ , but their premises don’t use Γ at
all. Even though runtime terms and their typing rules should only ever occur in
an empty context, the T App rule substitutes terms into types—so a runtime
term could end up under a binder. We therefore allow the runtime typing rules

Polymorphic Contracts 27

Context well formedness
 Γ

 ∅ WF Empty

 Γ Γ
 T

 Γ, x :T
WF ExtendVar

 Γ

 Γ, α
WF ExtendTVar

Type well formedness Γ
 T

 Γ

Γ
 B
WF Base

 Γ α ∈ Γ

Γ
 α
WF TVar

Γ, α
 T

Γ
 ∀α.T
WF Forall

Γ
 T1 Γ, x :T1
 T2

Γ
 x :T1 → T2
WF Fun

Γ
 T Γ, x :T
 e : Bool

Γ
 {x :T | e} WF Refine

Term typing Γ
 e : T

 Γ x :T ∈ Γ

Γ
 x : T
T Var

 Γ

Γ
 k : ty (k)
T Const

∅
 T
 Γ

Γ
 ⇑l : T
T Blame

Γ, x :T1
 e12 : T2

Γ
 λx :T1. e12 : x :T1 → T2
T Abs

Γ
 e1 : (x :T1 → T2) Γ
 e2 : T1

Γ
 e1 e2 : T2[e2/x]
T App

 Γ ty(op) = x1 : T1 → ... → xn : Tn → T
Γ
 ei [e1/x1, ..., ei−1 /xi−1] : Ti [e1/x1, ..., ei−1 /xi−1]

Γ
 op (e1, ... , en) : T [e1/x1, ..., en/xn]
T Op

Γ, α
 e : T

Γ
 Λα.e : ∀α.T
T TAbs

Γ
 e1 : ∀α.T Γ
 T2

Γ
 e1 T2 : T [T2/α]
T TApp

Γ
 T1 Γ
 T2 T1 ‖ T2

Γ
 〈T1 ⇒ T2〉l : T1 → T2
T Cast

 Γ ∅
 {x :T | e1} ∅
 v : T ∅
 e2 : Bool e1[v/x] −→∗ e2

Γ
 〈{x :T | e1}, e2, v〉l : {x :T | e1} T Check

 Γ ∅
 e : T ∅
 T ′ T ≡ T ′

Γ
 e : T ′ T Conv

∅
 v : {x :T | e}
 Γ

Γ
 v : T
T Forget

 Γ ∅
 v : T ∅
 {x :T | e} e[v/x] −→∗ true

Γ
 v : {x :T | e} T Exact

Fig. 3. Typing rules

28 J.F. Belo et al.

Type compatibility T1 ‖ T2

T ‖ T
C Refl

T1 ‖ T2

{x :T1 | e} ‖ T2
C RefineL

T1 ‖ T2

T1 ‖ {x :T2 | e} C RefineR

T11 ‖ T21 T12 ‖ T22

x :T11 → T12 ‖ x :T21 → T22
C Fun

T1 ‖ T2

∀α.T1 ‖ ∀α.T2
C Forall

Fig. 4. Type compatibility

to apply in any well formed context, so long as the terms they type check are
closed. The T Blame rule allows us to give any type to blame—this is necessary
for preservation. The T Check rule types an active check, 〈{x :T | e1}, e2, v〉l .
Such a term arises when a term like 〈T ⇒ {x :T | e1}〉l v reduces by E Check.
The premises of the rule are all intuitive except for e1[v/x] −→∗ e2, which is
necessary to avoid nonsensical terms like 〈{x :T | x ≥ 0}, true,−1〉l , where the
wrong predicate gets checked. The T Exact rule allows us to retype a closed
value of type T at {x :T | e} if e[v/x] −→∗ true. This typing rule guarantees type
preservation for E OK: 〈{x :T | e1}, true, v〉l −→ v . If the active check was well
typed, then we know that e1[v/x] −→∗ true, so T Exact applies. Finally, the
T Conv rule allows us to retype expressions at convertible types: if ∅ � e : T and
T ≡ T ′, then ∅ � e : T ′ (or in any well formed context Γ). We define ≡ as the
symmetric, transitive closure of call-by-value respecting parallel reduction, which
we write �. The T Conv rule is necessary to prove preservation in the case
where e1 e2 −→ e1 e ′

2. Why? The first term is typed at T2[e2/x] (by T App), but
reapplying T App types the second term at T2[e ′

2/x]. Conveniently, T2[e2/x] �
T2[e ′

2/x], so the two are convertible if we take parallel reduction as our type
conversion. Naturally, we have to take the transitive closure so we can string
together conversion derivations. We take the symmetric closure, since it is easier
for us to work with an equivalence. In previous work, subtyping is used instead
of the ≡ relation; one of our contributions is the insight that subtyping—with
its accompanying metatheoretical complications—is not an essential component
of manifest calculi.

We define type compatibility and a few metatheoretically useful operators in
Figure 4.

Lemma 1 (Canonical forms). If ∅ � v : T, then:

1. If unref(T) = B then v = k ∈ KB for some v
2. If unref(T) = x :T1 → T2 then v is

(a) λx :T ′
1. e12 and T ′

1 ≡ T1 for some x ,T ′
1 and e12, or

(b) 〈T ′
1 ⇒ T ′

2〉l and T ′
1 ≡ T1 and T ′

2 ≡ T2 for some T ′
1,T

′
2, and l

3. If unref(T) = ∀α.T ′ then v is Λα.v ′ for some v ′.

Theorem 2 (Progress). If ∅ � e : T, then either e −→ e ′ or e is a result.

Theorem 3 (Preservation). If ∅ � e : T and e −→ e ′, then ∅ � e ′ : T.

Polymorphic Contracts 29

Closed terms r1 ∼ r2 : T ; θ; δ and e1 � e2 : T ; θ; δ

k ∼ k : B ; θ; δ ⇐⇒ k ∈ KB

v1 ∼ v2 : α; θ; δ ⇐⇒ ∃RT1T2, α �→ R,T1,T2 ∈ θ ∧ v1 R v2

v1 ∼ v2 : (x :T1 → T2); θ; δ ⇐⇒ ∀v ′
1 ∼ v ′

2 : T1; θ; δ, v1 v ′
1 � v2 v ′

2 : T2; θ; δ[v
′
1, v

′
2/x]

v1 ∼ v2 : ∀α.T ; θ; δ ⇐⇒ ∀RT1T2, v1 T1 � v2 T2 : T ; θ[α �→ R,T1,T2]; δ
v1 ∼ v2 : {x :T | e}; θ; δ ⇐⇒ v1 ∼ v2 : T ; θ; δ ∧

θ1(δ1(e))[v1/x] −→∗ true ∧ θ2(δ2(e))[v2/x] −→∗ true
⇑l ∼ ⇑l : T ; θ; δ

e1 � e2 : T ; θ; δ ⇐⇒ ∃r1r2, e1 −→∗ r1 ∧ e2 −→∗ r2 ∧ r1 ∼ r2 : T ; θ; δ

Types T1 � T2 : ∗; θ; δ
B � B : ∗; θ; δ
α � α : ∗; θ; δ

x :T11 → T12 � x :T21 → T22 : ∗; θ; δ ⇐⇒ T11 � T21 : ∗; θ; δ ∧
∀v1 ∼ v2 : T11; θ; δ,

T12 � T22 : ∗; θ; δ[v1, v2/x]
∀α.T1 � ∀α.T2 : ∗; θ; δ ⇐⇒ ∀RT ′

1T
′
2, T1 � T2 : ∗; θ[α �→ R,T ′

1,T
′
2]; δ

{x :T1 | e1} � {x :T2 | e2} : ∗; θ; δ ⇐⇒ T1 � T2 : ∗; θ; δ ∧
∀v1 ∼ v2 : T1; θ; δ, θ1(δ1(e1))[v1/x] � θ2(δ2(e2))[v2/x] : Bool; θ; δ

Open terms and types Γ
 θ; δ and Γ
 e1 � e2 : T and Γ
 T1 � T2 : ∗
Γ
 θ; δ ⇐⇒ ∀x :T ∈ Γ, θ1(δ1(x)) � θ2(δ2(x)) : T ; θ; δ ∧

∀α ∈ Γ,∃RT1T2, α �→ R,T1,T2 ∈ θ
Γ
 e1 � e2 : T ⇐⇒ ∀Γ
 θ; δ, θ1(δ1(e1)) � θ2(δ2(e2)) : T ; θ; δ
Γ
 T1 � T2 : ∗ ⇐⇒ ∀Γ
 θ; δ, T1 � T2 : ∗; θ; δ

Fig. 5. The logical relation for parametricity

Requiring standard weakening, substitution, and inversion lemmas, the syntactic
proof of type soundness is straightforward. It is easy to restrict FH to a simply
typed calculus with a similar type soundness proof.

4 Parametricity

We prove relational parametricity for two reasons: (1) it gives us powerful rea-
soning techniques such as free theorems [17], and (2) it indicates that contracts
don’t interfere with type abstraction. Our proof is standard: we define a (syn-
tactic) logical relation where each type is interpreted as a relation on terms and
the relation at type variables is given as a parameter. In the next section, we
will define a subtype relation and show that an upcast—a cast whose source
type is a subtype of the target type—is logically related to the identity function.
Since our logical relation is an adequate congruence, it is contained in contextual
equivalence. Therefore, upcasts are contextually equivalent to the identity and
can be eliminated without changing the meaning of a program.

We begin by defining two relations: r1 ∼ r2 : T ; θ; δ relates closed results,
defined by induction on types; e1 � e2 : T ; θ; δ relates closed expressions which

30 J.F. Belo et al.

evaluate results in the first relation. The definitions are shown in Figure 5.1 Both
relations have three indices: a type T , a substitution θ for type variables, and a
substitution δ for term variables. A type substitution θ, which gives the inter-
pretation of free type variables in T , maps a type variable to a triple (R,T1,T2)
comprising a binary relation R on terms and two closed types T1 and T2. We
require that R be closed under parallel reduction (the � relation). A term sub-
stitution δ maps from variables to pairs of closed values. We write θi (i = 1, 2)
for a substitution that maps a type variable α to Ti where θ(α) = (R,T1,T2).
We denote projections δi similarly.

With these definitions out of the way, the term relation is mostly straightfor-
ward. First, ⇑l is related to itself at every type. A base type B gives the identity
relation on KB , the set of constants of type B . A type variable α simply uses the
relation assumed in the substitution θ. Related functions map related arguments
to related results. Type abstractions are related when their bodies are paramet-
ric in the interpretation of the type variable. Finally, two values are related at a
refinement type when they are related at the underlying type and both satisfy
the predicate; here, the predicate e gets closed by applying the substitutions.
The ∼ relation on results is extended to the relation � on closed terms in a
straightforward manner: terms are related if and only if they both terminate at
related results. We extend the relation to open terms, written Γ � e1 � e2 : T ,
relating open terms that are related when closed by any “Γ -respecting” pair of
substitutions θ and δ (written Γ � θ; δ, also defined in Figure 5).

To show that a (well-typed) cast is logically related to itself, we also need
a relation on types T1 � T2 : ∗; θ; δ; we define this relation in Figure 5. We
use the logical relation on terms to handle the arguments of function types
and refinement types. Note that T1 and T2 are not necessarily closed; terms
in refinement types, which should be related at Bool, are closed by applying
substitutions. In the function/refinement type cases, the relation on a smaller
type is universally quantified over logically related values. There are two choices
of the type at which they should be related (for example, the second line of
the function type case could change T11 to T21), but it does not really matter
which to choose since they are related types. Here, we have chosen the type
from the left-hand side; in our proof, we justify this choice by proving a “type
exchange” lemma that lets us replace a type index T1 in the term relation by
T2 when T1 � T2 : ∗. Finally, we lift our type relation to open terms: we
write Γ � T1 � T2 : ∗ when two types are equivalent for any Γ -respecting
substitutions.

It is worth discussing a few points peculiar to our formulation. First, we allow
any relation on terms closed under parallel reduction to be used in θ; terms
related at T need not be well typed at T . The standard formulation of a logical
relation is well typed throughout, requiring that the relation R in every triple be
well typed, only relating values of type T1 to values of type T2 (e.g., [14]). We
have two motivations for leaving our relations untyped. First, functions of type

1 To save space, we write ⇑l ∼ ⇑l : T ; θ; δ separately instead of manually adding such
a clause for each type.

Polymorphic Contracts 31

x :T1 → T2 must map related values (v1 ∼ v2 : T1) to related results...but at
what type? While T2[v1/x] and T2[v2/x] are related in our type logical relation,
terms that are well typed at one type won’t necessarily be well typed at the
other. Second, we prove in Section 5 that upcasts have no effect: if T1 <: T2,
then 〈T1 ⇒ T2〉l ∼ λx :T1. x : T1 → T2. That is, we want a cast 〈T1 ⇒ T2〉l ,
of type T1 → T2, to be related to the identity λx :T1. x , of type T1 → T1: the
cast and the identity won’t (in general) have the same type. We therefore don’t
demand that two expressions related at T be well typed at T , and we allow
any relation to be chosen as R, so long as it is closed under parallel reduction.
Another peculiarity is in our treatment of substitutions and type indices. Just
as the interpretation of free type variables in the logical relation’s type index are
kept in a substitution θ, we keep δ as a substitution for the free term variables
that can appear in type indices. Keeping this substitution separate avoids a
problem in defining the logical relation at function types. Consider a function
type x :T1 → T2: our logical relation says that values v1 and v2 are related at
this type when they take related values to related results, i.e. if v ′

1 ∼ v ′
2 : T1; θ; δ,

then we should be able to find v1 v ′
1 � v2 v ′

2. The question here is which type
index we should use. If we keep our type indices closed (with respect to term
variables), we cannot use T2 on its own—we have to choose a binding for x !
Knowles and Flanagan [10] deal with this problem by introducing the “wedge
product” operator, which merges two types—one with v ′

1 substituted for x and
the other with v ′

2 for x—into one. Instead of substituting eagerly, we put both
bindings in δ and apply them when needed—the refinement type case. We think
our formulation is more uniform with regard to free term/type variables, since
eager substitution is a non-starter for type variables, anyway.

As we developed our proof, we found that the E Refl rule

〈T ⇒ T 〉l v � v

is not just a convenient way to skip decomposition of a trivial cast into smaller
trivial casts (when T is a polymorphic or dependent function type); E Refl is,
in fact, crucial to obtaining parametricity in our syntactic setting. For example,
by parametricity, we expect every value of type ∀α.α → α to behave the same as
the polymorphic identity function. One of the values of this type is Λα.〈α ⇒ α〉l .
Without E Refl, however, applying this type abstraction to a compound type,
say Bool → Bool, and a function f of type Bool → Bool would return, by E Fun,
a value that is syntactically different from f , breaking parametricity!2 With
E Refl, 〈T ⇒ T 〉l returns the input immediately, regardless of T , just as
the identity function. So, this rule is a technical necessity, ensuring that casts
containing type variables behave parametrically. (Naturally, the evaluation of
well-typed programs never encounters casts with uninstantiated type variables.)

We have relational parametricity—every well-typed term (under Γ) is related
to itself for any Γ -respecting substitutions.
2 Intuitively, we expect the returned value should behave the same as the input,

though. Moreover, the subtyping we define is reflexive, so the upcast lemma we
prove applies, as well—though, of course, we used E Refl to prove it!

32 J.F. Belo et al.

Γ
 T1 <: T2

Γ
 B <: B
S Base

Γ
 α <: α
S TVar

Γ, α
 T1 <: T2

Γ
 ∀α.T1 <: ∀α.T2
S Forall

Γ
 T21 <: T11 Γ, x :T21
 T12[〈T21 ⇒ T11〉l x/x] <: T22

Γ
 x :T11 → T12 <: x :T21 → T22
S Fun

casts(T) =

{
〈T ′ ⇒ {x :T ′ | e}〉l ◦ casts(T ′) if T = {x :T ′ | e}
λx :T . x otherwise

Γ
 unref(T1) <: unref(T2)

Γ, x : unref(T1)
 casts(T1) x ⊃ casts(T2) (〈unref(T1) ⇒ unref(T2)〉l x)

Γ
 T1 <: T2
S Refine

Γ
 e1 ⊃ e2

∀Γ
 θ; δ. (∃v . θ1(δ1(e1)) −→∗ v) implies (∃v . θ1(δ1(e2)) −→∗ v)

Γ
 e1 ⊃ e2
Imp

Fig. 6. Subtyping, implication, and closing substitutions

Theorem 4 (Parametricity)

1. If Γ � e : T then Γ � e � e : T, and
2. If Γ � T then Γ � T � T : ∗.

The proof is mostly standard, although—like the proof of semantic type sound-
ness in Greenberg, Pierce, and Weirich [7]—it requires a separate reflexivity
lemma for casts, as mentioned above. We make one small disclaimer: we have
not completed the standard but tedious proof showing that parallel reduction
implies cotermination at similar values, i.e., if e1 � e2 and e1 −→∗ r1, then
e2 −→∗ r2 such that r1 � r2, and vice versa. We expect that our existing Coq
proof of this fact for a similar operational semantics (from [7]) will adapt read-
ily. Note that our proof of type soundness in Section 3 relies on much simpler
properties of parallel reduction, which we have proved.

5 Subtyping and Upcast Elimination

Knowles and Flanagan [10] define a subtyping relation for their manifest calculus,
λH, as a primitive notion of the system. Furthermore, they prove that upcast
elimination is sound: if T1 <: T2, then 〈T1 ⇒ T2〉l is equivalent to the identity
function. Upcast elimination is, at heart, an optimization: since the cast can
never fail, there is no point in running it. We define a subtyping relation for FH

Polymorphic Contracts 33

and prove that upcast elimination is sound. To be clear, the type system of FH

doesn’t have subtyping or a subsumption rule at all; we simply show that upcasts
are logically related—and therefore contextually equivalent—to the identity.

We define subtyping in Figure 6. Our subtyping rules are similar to those in
λH. The first three rules are standard. The rule for dependent function types is
mostly usual: contravariant on argument types and covariant on return types.
Here, we need to be careful about the type of x . Return types T12 and T22

should be compared under the assumption that x has T21, which is a subtype
of the other argument type T11 [4]. However, x in T12 has a different type, i.e.,
T11, so we need to insert a cast to keep the subtyping relation well typed—FH

doesn’t have subsumption!
Our rule for subtyping of refinements differs substantially from λH’s, mostly

because FH allows refinements of arbitrary types, while λH only refines base
types. The S Refine rule essentially says T1 is a subtype of T2 if (1) T1 with-
out the (outermost) refinements is a subtype of T2 without the (outermost)
refinements, and (2) for any v of type unref(T1), if casts(T1) v reduces to a
value, so does casts(T2) 〈unref(T1) ⇒ unref(T2)〉l v , for any l . The intuition
behind the second condition is that, for T1 to be a subtype of T2, the predicates
in T1 (combined by conjunction) should be stronger than those in T2. Recall
that casts(T) is defined in Figure 6 as the composition of casts necessary to cast
from unref(T) to T . So, if application of casts(T) to a value of unref(T) does
not raise blame, then the value can be typed at T by repeated use of T Exact.

If the implication in S Refine holds for a value v of type unref(T1), then
either: (1) v did not pass the checks in casts(T1), so this value is not in T1; or
(2) v passed the checks in casts(T1) and 〈unref(T1) ⇒ unref(T2)〉l v passed all
of the checks in casts(T2). So, if (1) or (2) hold for all values of type unref(T1),
then it means that all values of type T1 can be safely treated as if they had type
T2, i.e., T1 a subtype of T2.

Finally, we need a source of closing substitutions to compare the evaluation
of the two casts. We use the closing substitutions from the logical relation at T
as the source of “values of type T”. (Arbitrarily, we take the values and types
from the left.) There is a similar situation in the manifest calculi of Knowles
and Flanagan [10] and Greenberg, Pierce, and Weirich [7]. They both define a
denotational semantics for use in their refinement subtyping rule—but they need
to do so, in order to avoid a circularity. We have no such issues, and make the
decision because it is expedient.

We formulate our implication judgment in terms of cotermination at values
rather than cotermination at true (as in [7,10]) because we have to contend with
multiple layers of refinement in types—using cotermination at values reduces the
amount of predicate bookkeeping we have to do.

Having defined subtyping, we are able to show that upcast elimination is
sound.

Lemma 5 (Upcast lemma). If Γ � T1 <: T2 and Γ � T1 and Γ � T2, then
Γ � 〈T1 ⇒ T2〉l � λx :T1. x : T1 → T2.

34 J.F. Belo et al.

6 Related Work

We discuss the related work in two parts. We first distinguish our work from the
untyped contract systems that enforce parametric polymorphism dynamically,
rather than statically as FH does; we then discuss how FH differs from existing
manifest contract calculi in greater detail.

Dynamically Checked Polymorphism

The FH type system enforces parametricity with type abstractions and type vari-
ables, while refinements are dynamically checked. Another line of work omits re-
finements, seeking instead to dynamically enforce parametricity—typically with
some form of sealing (à la Pierce and Sumii [13]).

Guha et al. [9] define contracts with polymorphic signatures, maintaining ab-
straction with sealed “coffers”; they do not prove parametricity. Matthews and
Ahmed [11] prove parametricity for a polymorphic multi-language system with
a similar policy. Ahmed et al. [2] prove parametricity for a gradual typing [15]
calculus which enforces polymorphism with a set of global runtime seals. Strick-
land et al. add support for dynamically checked variable-arity polymorphism to
Typed Racket [16]. Ahmed et al. [3] define a polymorphic calculus for gradual
typing, using local syntactic “barriers” instead of global seals. We believe that
it is possible to combine FH with the barrier calculus of Ahmed et al., yielding
a polymorphic blame calculus [18]. We leave this to future work.

Manifest Systems

Wadler and Findler [18] gave a simple syntactic account of a calculus combining
refinement types and gradual types [15]; they, like us, define subtyping post facto,
proving theorems similar to the upcast lemma. They do not, however, support
dependent function types. Gronski and Flanagan [8] compares non-dependent
latent and manifest contract calculi.

Four existing manifest calculi have dependent function types (such as
[6,7,10,12]) use subtyping and theorem provers as part of the definition of the
type system. All four of these calculi have complicated metatheory. Ou et al. [12]
restrict refinements and arguments of dependent functions to a conservative ap-
proximation of pure terms; they also place strong requirements on their prover.
Knowles and Flanagan [10] as well as Greenberg, Pierce, and Weirich [7] use
denotational semantics to give a firm foundation to Flanagan’s earlier work [6].
We consider three systems in more detail: Knowles and Flanagan’s λH (KF) [10];
Greenberg, Pierce, and Weirich’s λH (GPW) [7]; and FH. The rest of this sub-
section addresses the differences between KF, GPW, and FH.

In Section 1, we discussed in general terms some of the complexity that KF
and GPW encountered. What made KF and GPW so complicated? Both systems

Polymorphic Contracts 35

share the same two impediments in the preservation proof: preservation after
active checks and after congruence steps in the argument position of applications.
KF and GPW resolve both of these with subtyping, using a rule like the following
for refinements:3

∀Γ, x :{x :B | true} � σ. σ(e1) −→∗ true implies σ(e2) −→∗ true

Γ � {x :B | e1} <: {x :B | e2}
Subtyping and the requirement that constants be assigned most specific types,
—i.e., if e[k/x] −→∗ true for k ∈ KB then ∅ � ty (k) <: {x :B | e}—are used
to show preservation of active checks. The two systems use subtyping to relate
substituted types in different ways. KF use full beta reduction, showing that
subtyping is closed under reduction. GPW use call-by-value reduction, showing
that subtyping is closed under parallel reduction. Once these two difficulties are
resolved, both preservation proofs are standard, given appropriate subtyping
inversion lemmas.

So much for subtyping. Why do KF and GPW need denotational semantics?
Spelled out pedantically, the subtyping rule above has the following premise:

∀σ. Γ, x :{x :B | true} � σ implies (σ(e1) −→∗ true implies σ(e2) −→∗ true)

That is, the well formedness of the closing substitution σ is in a negative po-
sition. Where do closing substitutions come from? We cannot use the typing
judgment itself, as this would be ill-defined: term typing requires subtyping via
subsumption; subtyping requires closing substitutions in a negative position via
the refinement case; but closing substitutions require typing. We need another
source of values: hence, denotational semantics. Both KF and GPW define syn-
tactic term models of types to use as a source of values for closing substitutions,
though the specifics differ.

After adding subtyping and denotational semantics, both KF and GPW are
well defined and have syntactic proofs of type soundness. But in the process
of proving syntactic type soundness, both languages proved semantic soundness
theorems:

Γ � e : T implies ∀Γ � σ, σ(e) ∈ [[σ(T)]]

This theorem suffices for soundness of the language... so why bother with a
syntactic proof? In light of this, GPW only proves semantic soundness. The
situation in KF and GPW is unsatisfying: the syntactic proof of type soundness
motivated subtyping, which motivated denotational semantics, which obviated
the need for syntactic proof. Beyond this, the proofs are hard to scale: adding
in polymorphism or state is a non-trivial task, since we must—before defining
the type system!—construct an appropriate denotational semantics, which itself
depends on our evaluation relation.

FH solves the problem by avoiding subtyping—which is what forced the pres-
ence of closing substitutions and denotational semantics in the first place. The
3 Readers familiar with the systems will recognize that we’ve folded the implication

judgment into the relevant subtyping rule.

36 J.F. Belo et al.

first issue in preservation—that of preserving refinement types after checks have
finished—was resolved in KF and GPW with subtyping. We instead resolve it
with a runtime rule that allows us to type values with any refinement they
satisfy:

� Γ ∅ � v : T ∅ � {x :T | e} e[v/x] −→∗ true

Γ � v : {x :T | e} T Exact

Adding this rule eliminates one use of subtyping as well as the “most-specific
type” restriction. If we “bit the bullet” and allowed non-empty contexts in
T Exact, then we would need to apply a closing substitution to e[v/x] be-
fore checking if it reduces to true. But the circularity in subtyping alluded to in
Section 1 was caused by closing substitutions; we must avoid them! The second
issue in preservation—that of conversion between T2[e2/x] and T2[e ′

2/x]—can
be resolved in a similar fashion. We define another runtime rule that allows us
to convert types:

� Γ ∅ � e : T ∅ � T ′ T ≡ T ′

Γ � e : T ′ T Conv

The conversion we use, ≡, is defined as the symmetric, transitive closure of
CBV-respecting parallel reduction. This is only as much equivalence as we need:
if e2 −→ e ′

2, then T2[e2/x] ≡ T2[e ′
2/x]. These two rules suffice to keep subtyping

out of FH, which in turn avoids denotational semantics.

7 Future Work

We presented a simpler approach to manifest contract calculi, which we applied
to construct FH, a parametrically polymorphic manifest contract calculus. We
hope to extend FH with barriers for dynamically checked polymorphism [3], and
with general recursion and state. (Though we acknowledge that state is a difficult
open problem.) We also hope that FH’s operational semantics and (relatively)
simple type system will help developers implement contracts.

Acknowledgments

Stephanie Weirich provided many insights throughout. Jianzhou Zhao’s help
with parametricity was invaluable; and a conversation about parametricity with
Amal Ahmed and Stephanie Weirich was particularly illuminating. This work
was supported in part by the National Science Foundation under grant 0915671,
Contracts for Precise Types, in part by the JSPS Grant-in-Aid for Young Scien-
tists (A) No. 21680002, and in part by the Portuguese Foundation for Science
and Technology, POPH - QREN, under grant SFRH / BPD / 46065 / 2008.

Polymorphic Contracts 37

References

1. PLT Racket Contracts,
http://pre.plt-scheme.org/docs/html/guide/contracts.html

2. Ahmed, A., Findler, R.B., Matthews, J., Wadler, P.: Blame for all. In: Workshop
on Script-to-Program Evolution, STOP (2009)

3. Ahmed, A., Findler, R.B., Siek, J., Wadler, P.: Blame for all. In: Principles of
Programming Languages, POPL (2011)

4. Aspinall, D., Compagnoni, A.: Subtyping dependent types. Theor. Comput.
Sci. 266(1-2), 273–309 (2001)

5. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: International
Conference on Functional Programming (ICFP), pp. 48–59 (2002)

6. Flanagan, C.: Hybrid type checking. In: POPL, pp. 245–256 (2006)
7. Greenberg, M., Pierce, B.C., Weirich, S.: Contracts made manifest. In: Principles

of Programming Languages, POPL 2010 (2010)
8. Gronski, J., Flanagan, C.: Unifying hybrid types and contracts. In: Trends in Func-

tional Programming, TFP (2007)
9. Guha, A., Matthews, J., Findler, R.B., Krishnamurthi, S.: Relationally-parametric

polymorphic contracts. In: DLS, pp. 29–40 (2007)
10. Knowles, K., Flanagan, C.: Hybrid type checking (2010) (to appear in TOPLAS)
11. Matthews, J., Ahmed, A.: Parametric polymorphism through run-time sealing or,

theorems for low, low prices! In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960,
pp. 16–31. Springer, Heidelberg (2008)

12. Ou, X., Tan, G., Mandelbaum, Y., Walker, D.: Dynamic typing with dependent
types. In: IFIP TCS, pp. 437–450 (2004)

13. Pierce, B., Sumii, E.: Relating cryptography and polymorphism (July 2000)
14. Pitts, A.M.: Typed operational reasoning. In: Pierce, B.C. (ed.) Advanced Topics

in Types and Programming Languages, ch. 7, pp. 245–289. MIT Press, Cambridge
(2005)

15. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and
Functional Programming Workshop (September 2006)

16. Strickland, T.S., Tobin-Hochstadt, S., Felleisen, M.: Practical variable-arity poly-
morphism. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 32–46.
Springer, Heidelberg (2009)

17. Wadler, P.: Theorems for free! In: Proceedings of ACM Conference on Functional
Programming and Computer Architecture (FPCA 1989), pp. 347–359, London, UK
(September 1989)

18. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Castagna, G.
(ed.) ESOP 2009. LNCS, vol. 5502, pp. 1–16. Springer, Heidelberg (2009)

19. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115, 38–94 (1992)

http://pre.plt-scheme.org/docs/html/guide/contracts.html

	Polymorphic Contracts
	Introduction
	Examples
	Defining FH
	Parametricity
	Subtyping and Upcast Elimination
	Related Work
	Future Work
	References

