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Abstract. Manifest contracts track precise properties by refining types
with predicates—e.g., {z:Int | z > 0} denotes the positive integers.
Contracts and polymorphism make a natural combination: programmers
can give strong contracts to abstract types, precisely stating pre- and
post-conditions while hiding implementation details—for example, an
abstract type of stacks might specify that the pop operation has in-
put type {z:a Stack | not (empty z)}. We formalize this combination by
defining Fy, a polymorphic calculus with manifest contracts, and estab-
lishing fundamental properties including type soundness and relational
parametricity. Our development relies on a significant technical improve-
ment over earlier presentations of contracts: instead of introducing a
denotational model to break a problematic circularity between typing,
subtyping, and evaluation, we develop the metatheory of contracts in a
completely syntactic fashion, omitting subtyping from the core system
and recovering it post facto as a derived property.
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1 Introduction

Software contracts allow programmers to state precise properties—e.g., that a
function takes a non-empty list to a positive integer—as concrete predicates
written in the same language as the rest of the program; these predicates can
be checked dynamically as the program executes or, more ambitiously, verified
statically with the assistance of a theorem prover. Findler and Felleisen [5] in-
troduced “higher-order contracts” for functional languages; these can take one
of two forms: predicate contracts like {z:Int | z > 0}, which denotes the positive
numbers, and function contracts like z:Int — {y:Int | y > =z}, which denotes
functions over the integers that return numbers larger than their inputs.
Greenberg, Pierce, and Weirich [7] contrast two different approaches to con-
tracts: in the manifest approach, contracts are types—the type system itself
makes contracts ‘manifest’; in the latent approach, contracts and types live in
different worlds (indeed, there may be no types at all, as in PLT Racket’s contract
system [1]). These two presentations lead to different ways of checking contracts.
Latent systems run contracts with checks: for example, ({z:Int | z > 0})! n
checks that n > 0. If the check succeeds, then the entire expression will just
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return n. If it fails, then the entire program will “blame” the label [, raising an
uncatchable exception f}/, pronounced “blame [”. Manifest systems use casts,
(Int = {z:Int | > 0})! to convert values from one type to another (the left-
hand side is the source type and the right-hand side is the target type). For
predicate contracts, a cast will behave just like a check on the target type: ap-
plied to n, the cast either returns n or raises /. Checks and casts differ when it
comes to function contracts. A function check ((T; — T)! v) v will reduce to
(To)t (v ({T1)! v")), giving v the argument checked at the domain contract and
checking that the result satisfies the codomain contract. A function cast ({171 —
T, = To1 — T22>l ’U) v’ will reduce to <T12 = T22>l (’U (<T21 = T11>l 1)/)),
wrapping the argument v’ in a (contravariant) cast between the domain types
and wrapping the result of the application in a (covariant) cast between the
codomain types. The differences between checks and casts are discussed at length
in [7]. Both presentations have their pros and cons: latent contracts are simpler to
design and extend, while manifest contracts make a clearer connection between
the static constraints captured by types and the dynamic checks performed by
casts. In this work, we consider the manifest approach and endeavor to tame its
principal drawback: the complexity of its metatheory. We summarize the issues
here, comparing our work to previous approaches more thoroughly in Section 6.

Subtyping is the main source of complexity in the most expressive mani-
fest calculi—those which have dependent functions and allow arbitrary terms
in refinements [7,10]. These calculi have subtyping for two reasons. First, sub-
typing helps preserve types when evaluating casts with predicate contracts: if
(Int = {z:Int | z > 0})! n —* n, then we need to type n at {z:Int | z > 0}. Sub-
typing gives it to us, allowing n to be typed at any predicate contract it satisfies.
Second, subtyping can show the equivalence of types with different but related
term substitutions. Consider the standard dependent-function application rule:

Fl_eli(.Z'ZTl%Tg) I'Fe: Ty
't ey ey: Tolea/x)

If e — e, how do Talea/z] and Th[es/x] relate? (An important question when
proving preservation!) Subtyping shows that these types are really the same:
the first type parallel reduces to the second, and it can be shown that parallel
reduction between types implies mutual subtyping—that is, equivalence.

Subtyping brings its own challenges, though. A naive treatment of subtyp-
ing introduces a circularity in the definition of the type system. Existing sys-
tems break this circularity by defining judgements in a careful order: first the
evaluation relation and the corresponding parallel reduction relation; then a de-
notational semantics based on the evaluation relation and subtyping based on
the denotational semantics; and finally the syntactic type system. Making this
carefully sequenced series of definitions hold together requires a long series of
tedious lemmas relating evaluation and parallel reduction. The upshot is that
existing manifest calculi have taken considerable effort to construct.

We propose here a simpler approach to manifest calculi that greatly sim-
plifies their definition and metatheory. Rather than using subtyping, we define
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a type conversion relation based on parallel reduction. This avoids the original
circularity without resorting to denotational semantics. Indeed, we can use this
type conversion to give a completely syntactic account of type soundness—with
just a few easy lemmas relating evaluation and parallel reduction. Moreover,
eliminating subtyping doesn’t fundamentally weaken our approach, since we can
define a subtyping relation and prove its soundness post facto.

We bring this new technique to bear on Fy, a manifest calculus with paramet-
ric polymorphism. Researchers have already studied the dynamic enforcement
of parametric polymorphism in languages that mix (conventional, un-refined)
static and dynamic typing (see Section 6); here we study the static enforcement
of parametric polymorphism in languages that go beyond conventional static
types by adding refinement types and dependent function contracts. Concretely,
we offer four main contributions:

1. We devise a simpler approach to manifest contract calculi and apply it to
Fy, proving type soundness using straightforward syntactic methods [18].

2. We offer the first operational semantics for general refinements, where re-
finements can apply to any type—mnot just base types.

3. We prove that Fy is relationally parametric—establishing that contract
checking does not interfere with this desirable property.

4. We define a post facto subtyping relation and prove that “upcasts” from
subtypes to supertypes always succeed in Fyy, i.e., that subtyping is sound.

We begin with some examples in Section 2. We then describe Fy and prove
type soundness in Section 3. We prove parametricity in Section 4 and the upcast
lemma in Section 5. We discuss related work in Section 6 and conclude with
ideas for future work in Section 7.

2 Examples

Like other manifest calculi, Fg checks contracts with casts: the cast (177 = T 2>l
takes a value of type Ty (the source type) and ensures that it behaves (and is
treated) like a Ty (the target type). The [ superscript is a blame label, used to
differentiate between different casts and identify the source of failures. How we
check (Ty = T»)! v depends on the structure of T and T». Checking predicate
contracts with casts is easy: if v satisfies the predicate of the target type, the
entire application goes to v; if not, then the program aborts, “raising” blame,
written f. For example, (Int = {z:Int | 2 > 0})!5 —* 5, since 5 > 0. But
(Int = {x:Int | # > 0})!0 —* M, since 0 ¥ 0. When checking predicate con-
tracts, only the target type matters—the type system guarantees that whatever
value we have is well typed at the source type. Checking function contracts is a
little trickier: what should (Int — Int = {z:Int | z > 0} — {y:Int | y > 5})!v
do? We can’t just open up v and check whether it always returns positives. The
solution is to decompose the cast into its parts:

(Int = Int = {z:Int | z > 0} — {y:Int | y > 5})'v  —
Az:{z:Int | 2 > 0}. ({(Int = {y:Int | y > 5})! (v (({z:Int | > 0} = Int)! 2)))
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Note that the domain cast is contravariant, while the codomain is covariant:
the context will be forced by the type system to provide a positive number, so
we need to cast the input to an appropriate type for v. (In this example, the
contravariant cast ({z:Int | z > 0} = Int)! will always succeed.) After v returns,
we run the covariant codomain cast to ensure that v didn’t misbehave. So:

(Int = Int = {z:Int | z > 0} — {y:Int | y > 5})! (\z:Int. )6 —* 6
(- (Az:Int. 0)6 —*
(- (Az:Int. 0) ((Int = {z:Int | 2 > 0D 0) —* {1/

Note that we omitted the case where a cast function is applied to 0. It is an
important property of our system that 0 doesn’t have type {z:Int | z > 0}!

With these preliminaries out of the way, we can approach our work: a manifest
calculus with polymorphism. The standard polymorphic encodings of existential
and product types transfer over to Fy without a problem. Indeed, our dependent
functions allow us to go one step further and encode even dependent products
such as (z : Int)x{y:« List | length y = z}, which represents lists paired with their
lengths. Let’s look at an example combining contracts and polymorphism—an
abstract datatype of natural numbers.

NAT : Ja. (zero : a) X (succ : (o — «)) X (iszero : (aw — Bool)) x
(pred : {z:a | not (iszeroz)} — «)

(We omit the implementation, a standard Church encoding.) The NAT interface
hides our encoding of the naturals behind an existential type, but it also requires
that pred is only ever applied to terms of type {x:« | not (iszero z)}. Assuming
that iszerov —™* true iff v = zero, we can infer that pred is never given zero
as an argument. Consider the following expression, where I is the interface we
specified for NAT and we omit the term binding for brevity:

unpack NAT : 3a. I as o, in pred ((a = {z:a | not (iszero z)})! zero) :

The application of pred directly to zero would not be well typed, since zero : a. On
the other hand, the cast term is well typed, since we cast zero to the type we need.
Naturally, this cast will ultimately raise {}{, because not (iszero zero) —* false.

The example so far imposes constraints only on the use of the abstract
datatype, in particular on the use of pred. To have constraints imposed also
on the implementation of the abstract data type, consider the extension of the
interface with a subtraction operation, sub, and a “less than or equal” predicate,
leq. We now have the interface:

I'=1x(leq:a— a— Bool) x (sub: (z:a — {y:a | leqyz} — {z:a | leqz 2}))

The sub function requires that its second argument isn’t greater than the first,
and it promises to return a result that isn’t greater than the first argument.

We get contracts in interfaces by putting casts in the implementations. For
example, the contracts on pred and sub are imposed when we “pack up” NAT;
we write nat for the implementation type:

pack (nat, (zero, succ, iszero, pred, leq, sub)) as Ja. I’
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Types and contexts

Tu:=B|la|zTh — T2 |Va.T | {z:T | e}

=0 |Iz:T| I«

Terms

ex==z|k|op(er, ...,en) | Az:T. e| Aace|e1ex| e T |
(Ty= To)' |l | ({2:T | er}, e2,0)’

ve=k | u:T. e| Aa.e | (T1 = To)!

ru=o |

Ex=[le|ull[[]T]{z:T|e}[],0)" [op(vr,....vier,[], €is1, s n)
Fig. 1. Syntax for Fy

where:

pred = (nat — nat = {z:nat | not (iszeroz)} — nat)’ pred’
sub = (nat — nat — nat = z:nat — {ymat | leqyz} — {z:mnat | leq z z})! sub’

That is, the existential type dictates that we must pack up cast versions of our
implementations, pred’ and sub’. Note, however, that the cast on pred” will never
actually check anything at runtime: if we unfold the domain contract contravari-
antly, we see that ({z:nat | not (iszeroz)} = nat) is a no-op. Instead, clients of
NAT can only call pred with terms that are typed at {z:nat | not (iszero z)}, i.e.,
by checking that values are nonzero with a cast into pred’s input type. The story
is the same for the contract on sub’s second argument—the contravariant cast
won’t actually check anything. The codomain contract on sub, however, could
fail if sub’ mis-implemented subtraction.

We can sum up the situation for contracts in interfaces as follows: the posi-
tive parts of the interface type are checked and can raise blame—these parts are
the responsibility of the implementation; the negative parts of the interface type
are not checked by the implementation—clients must check these themselves be-
fore calling functions from the ADT. Distributing obligations in this way recalls
Findler and Felleisen’s seminal idea of client and server blame [5].

3 Defining Fy

The syntax of Fy is given in Figure 1. For unrefined types we have: base types B,
which must include Bool; type variables a; dependent function types z: Ty — T»
where z is bound in T5; and universal types Va. T, where « is bound in T'. Aside
from dependency in function types, these are just the types of the standard
polymorphic lambda calculus. As usual, we write 77 — T3 for z:T7 — T when
x does not appear free in T5. We also have predicate contracts, or refinement
types, written {z:T | e}. Conceptually, {z:T | e} denotes values v of type T for
which e[v/z] reduces to true. For each B, we fix a set Cp of the constants in that
type; we require our typing rules for constants and our typing and evaluation
rules for operations to respect this set. We also require that Kgoo = {true, false}.

In the syntax of terms, the first line is standard for a call-by-value polymor-
phic language: variables, constants, several monomorphic first-order operations



6 Belo, Greenberg, Igarashi, and Pierce

op (i.e.7 destructors of one or more base-type arguments), term and type ab-
stractions, and term and type applications. The second line offers the standard
constructs of a manifest contract calculus [6,7,10], with a few alterations, dis-
cussed below.

Casts are the distinguishing feature of manifest contract calculi. When ap-
plied to a value of type Tj, the cast (T} = Tb)! ensures that its argument
behaves—and is treated—Ilike a value of type To. When a cast detects a prob-
lem, it raises blame, a label-indexed uncatchable exception written f}{. The label
[ allows us to trace blame back to a specific cast. (While our labels here are
drawn from an arbitrary set, in practice ! will refer to a source-code location.)
Finally, we use active checks ({z:T | e}, ea, v)! to support a small-step seman-
tics for checking casts into refinement types. In an active check, {z:T | e;} is the
refinement being checked, e; is the current state of checking, and v is the value
being checked. The type in the first position of an active check isn’t necessary
for the operational semantics, but we keep it around as a technical aid to type
soundness. If checking succeeds, the check will return v; if checking fails, the
check will blame its label, raising f}{. Active checks and blame are not intended
to occur in source programs—they are runtime devices. (In a real programming
language based on this calculus, casts will probably not appear explicitly either,
but will be inserted by an elaboration phase. The details of this process are
beyond the scope of the present work.)

The values in Fy are constants, term and type abstractions, and casts. We
also define results, which are either values or blame. (Type soundness—a conse-
quence of Theorems 2 and 3 below—will show that evaluation produces a result,
but not necessarily a value.) In some earlier work [7, 8], casts between function
types applied to values were themselves considered values. We make the other
choice here: excluding applications from the possible syntactic forms of values
simplifies our inversion lemmas.

There are two notable features relative to existing manifest calculi: first, any
type (even a refinement type) can be refined, not just base types (as in [6—
8,10,12]); second, the third part of the active check form ({z:T | e1}, ez, v)"
can be any value, not just a constant. Both of these changes are motivated
by the introduction of polymorphism. In particular, to support refinement of
type variables we must allow refinements of all types, since any type can be
substituted in for a variable.

Operational semantics

The call-by-value operational semantics in Figure 2 are given as a small-step rela-
tion, split into two sub-relations: one for reductions (~) and one for congruence
and blame lifting (—).

The latter relation is standard. The E_REDUCE rule lifts ~» reductions into
—; the E_COMPAT rule turns — into a congruence over our evaluation con-
texts; and the E_BLAME rule lifts blame, treating it as an uncatchable exception.
The reduction relation ~» is more interesting. There are four different kinds of
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Reduction rules

op (v1, .. s Un) ~ [op] (v1, ..., vn) E_Op

()\x:Tl. 612) v 612[1)2/x] E_BETA

(Ac.e) T ~ e[ T /a] E_TBETA

(T= T) v~ E_REFL

<I:T11 — Tio = x:T1 — T22>l v~ E_FuUN

Az:To1. (<T12[<T21 = T11>lI/I] = T22>l (’U(<T21 = T11>l l‘)))
when IL‘ZT11 — T12 7’é l‘ZTQl — TQQ
(Vo.Tr = VY. To) v ~ Aa.((T1 = To)' (va)) E_FORALL
when Va. Ty # Va. Ts

Hz:T1 | e} = To) v~ (Th = To)l v E_FORGET
when To # {z:T1 | e} and To # {y:{z:T1 | e} | e2}

(T = {x:To | e}) v~ (To= {2:To | e})' ((T1 = T2)'v) E_PRECHECK
when Ty # To and Ty # {x:T" | €'}

(T = {z:T | e v~ ({z:T| e}, e[v/z], v)" E_CHECK
({z:T | e}, true, v)! ~ v E_OK
({z:T | e}, false, v)! ~~ 1 E_FAIL
Evaluation rules [e1 — e ]
4% ERepuc @ e E_Cowmpa E_Bra
——— EREDUCE —————— E_CoMPAT —————— E_BLAME
e — e U Ela] — Ele) EM — 1

Fig. 2. Operational semantics

reductions: the standard lambda calculus reductions, structural cast reductions,
cast staging reductions, and checking reductions.

The E_BETA, and E_TBETA rules should need no explanation—these are the
standard call-by-value polymorphic lambda calculus reductions. The E_OP rule
uses a denotation function [—] to give meaning to our first-order operations.

The E_REFL, E_FUN, and E_FORALL rules are structural cast reductions.
E_REFL eliminates a cast from a type to itself; intuitively, such a cast should
always succeed anyway. (We discuss this rule more in Section 4.) When a cast
between function types is applied to a value v, the E_FUN rule produces a new
lambda, wrapping v with a contravariant cast on the domain and covariant cast
on the codomain. The extra substitution in the left-hand side of the codomain
cast may seem suspicious, but in fact the rule must be this way in order for type
preservation to hold (see [7] for an explanation). The E_FORALL rule is similar
to E_FUN, generating a type abstraction with the necessary covariant cast. Side
conditions on E_FORALL and E_FUN ensure that these rules apply only when
E_REFL doesn’t.

The E_FORGET, E_.PRECHECK, and E_CHECK rules are cast-staging reduc-
tions, breaking a complex cast down to a series of simpler casts and checks. All
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of these rules require that the left- and right-hand sides of the cast be different—
if they are the same, then E_REFL applies. The E_FORGET rule strips a layer
of refinement off the left-hand side; in addition to requiring that the left- and
right-hand sides are different, the preconditions require that the right-hand side
isn’t a refinement of the left-hand side. The E_PRECHECK rule breaks a cast
into two parts: one that checks exactly one level of refinement and another that
checks the remaining parts. We only apply this rule when the two sides of the
cast are different and when the left-hand side isn’t a refinement. The E_CHECK
rule applies when the right-hand side refines the left-hand side; it takes the cast
value and checks that it satisfies the right-hand side. (We don’t have to check
the left-hand side, since that’s the type we’re casting from.)

Before explaining how these rules interact in general, we offer a few examples.
First, here is a reduction using E_CHECK, E_CompPAT, E_OP, and E_OK:

(Int = {z:Int | z > 0})!5 — ({z:Int | z > 0},5 > 0, 5)"
— ({z:Int | z > 0}, true,5)! — 5

A failed check will work the same way until the last reduction, which will use
E_FaIL rather than E_OK:

(Int = {z:Int | z > 0})! (1) — {a:Int | z >0}, -1 > 0, —1)!
— ({x:Int | z > 0}, false, —1)! — 1

Notice that the blame label comes from the cast that failed. Here is a similar re-
duction that needs some staging, using E_FORGET followed by the first reduction
we gave:

{z:nt | 2 =5} = {z:Int | z > 0})!'5 — (Int = {z:Int | z > 0})!5
— ({x:Int | 2 >0},5>0,5)! —*5

There are two cases where we need to use E_PRECHECK. First, when multiple
refinements are involved:

(Int = {z:{y:Int | y >0} | z =5})!5 —

Hy:Int | y > 0} = {z:{y:Int | y > 0} | 2 =5})! ((Int = {y:Int | y > 0})!5) —*
Hy:Int | y >0} = {z:{y:Int | y > 0} | z =5})!5 —

Hz{y:Int |y >0} | 2 =5},5=5,5) —

5

*

Second, when casting a function or universal type into a refinement of a different
function or universal type.

(Bool — {z:Bool | z} = {f:Bool — Bool | f true = f false})! v —
(Bool — Bool = {f:Bool — Bool | f true = f false})!
({(Bool — {z:Bool | z} = Bool — Bool)! v)

E_REFL is necessary for simple cases, like (Int = Int)!5 — 5. Hopefully, such
a silly cast would never be written, but it could arise as a result of E_FUN or
E_FORALL. (We also need E_REFL in our proof of parametricity; see Section 4.)
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Cast evaluation follows a regular schema:
REFL | (FORGET* (REFL | (PRECHECK* (REFL | FUN | FORALL)? CHECK™)))

Let’s consider the cast (T} = Ty)'v. To simplify the following discussion, we
define unref(7T') as T without any outer refinements (though refinements on,
e.g., the domain of a function would be unaffected); we write unref, (7') when
we remove only the n outermost refinements:

unref(T) = {unref(T’) it T :.{mrT’ | e}
T otherwise

First, if Ty = T, we can apply E_REFL and be done with it. If that doesn’t work,
we’ll reduce by E_FORGET until the left-hand side doesn’t have any refinements.
(N.B. we may not have to make any of these reductions.) Either all of the
refinements will be stripped away from the source type, or E_REFL eventually
applies and the entire cast disappears. Assuming E_REFL doesn’t apply, we
now have (unref(7T;) = T5)! v. Next, we apply E_PRECHECK until the cast is
completely decomposed into one-step casts, once for each refinement in T5:

(unrefl(TQ) = T2>l((unref2(T2) = unrefl(T2)>l
(... ((unref(Ty) = unref(Ty))! v) ...))

As our next step, we apply whichever structural cast rule applies to (unref(77) =
unref(7T3))! v, one of E_REFL, E_LFUN, or E_FORALL. Now all that remains are
some number of refinement checks, which can be dispatched by the E_CHECK
rule (and other rules, of course, during the predicate checks themselves).

Static typing

The type system comprises three mutually recursive judgments: context well
formedness, type well formedness, and term well typing. The rules for contexts
and types are unsurprising. The rules for terms are mostly standard. First, the
T_APP rule is dependent, to account for dependent function types. The T_CAST
rule is standard for manifest calculi, allowing casts between compatibly struc-
tured well formed types. Compatibility of type structures is defined in Figure 4;
in short, compatible types erase to identical simple type skeletons. Note that we
assign casts a non-dependent function type. The T_OP rule uses the ty function
to assign (possibly dependent) monomorphic first-order types to our operations;
we require that ty(op) and [op] agree.

Some of the typing rules—T_CHECK, T_BLAME, T_ExAcT, T_FORGET, and
T_ConNv—are “runtime only”. We don’t expect to use these rules to type check
source programs, but we need them to guarantee preservation. Note that the
conclusions of these rules use a context I', but their premises don’t use I' at
all. Even though runtime terms and their typing rules should only ever occur in
an empty context, the T_APP rule substitutes terms into types—so a runtime
term could end up under a binder. We therefore allow the runtime typing rules
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Context well formedness

WF_E L et WF_E V. - WF_E TV.
?@ _BEMPTY W _EXTEND VAR }—F,a _BEXTEND AR
Type well formedness
I WF.B I ael WE.TV Iak-T WF.F
T e e A7 et
I'=T, INx:Ti - Ts WF_F I'cT TIz:TF e:Bool WFR
I'tFz:Ti — Ty -HUN I'{z:T | e} -HBFINE
Term typing [’k c: T |
I z:Tel T Va I T.C 07T I T Bra
_ _ _— _CONST _ _BLAME
Trz:T r TR R iy (k) ONS TEM:T
Iz:Ti + . T I'te :(x:Ty — T I'ke: T
yx:Th e To T ABS e1: (x:Th 2) e:T
I'FXe:Ti. en:z:Th — Ts I't e ex: Tolea/x]
I ty(op) =a1 : Th — .. 5 an:Tn =T
I+ ei[el/xl,...,ei,1/xi,1] : Ti[el/zl,...7e¢,1/xi,1} T OP
I'top(er, ...,en): Tler/mn, ..., en/Tn) -
Iake: T T_TA I'ke :VYa.T TI'F Ty T_TA
'+ Aae :Va. T - ABS I'te To: T[T2/q] -LAPP
I'=Ty I'eTy T T:
! 2 || T T_CAsT
't (Thy= 1) :Th— T
I 0+ {z:T Fo: T F es : Bool —*
{z:T e} OFw Ok ez :Bool eifv/z] e onmek
I'-{z:T| e} e,v) :{z:T ]| e}
FD QFe:T OFT T=T T.C OFv:{z:T|e} +TI TF
I'Fe: T SLONV I'tv: T -HORGET

EFT OFov:T OF{z:T|e} e[v/z] —" true
I'tv:{z:T|e}

T_EXACT

Fig. 3. Typing rules
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Type compatibility | 71 || T2

——— C_REFL & C_REFINEL & C_REFINER
T|T - {z:T1 | e} || T2 N Ty || {z:T2 | e} N
Tii || Tor Thz || T2 Ty || T2
C_F ————— C_F
z:T11 — T2 H z:To1 — Too UN Voa. Ty H Va.Ts ORALL

Fig. 4. Type compatibility

to apply in any well formed context, so long as the terms they type check are
closed. The T_BLAME rule allows us to give any type to blame—this is necessary
for preservation. The T_CHECK rule types an active check, ({z:T | e}, e, v)!.
Such a term arises when a term like (T = {z:T | e;})! v reduces by E_CHECK.
The premises of the rule are all intuitive except for ej[v/z] —* e, which is
necessary to avoid nonsensical terms like ({z:T | z > 0}, true, —1)!, where the
wrong predicate gets checked. The T_EXACT rule allows us to retype a closed
value of type T at {z:T | e} if e[v/x] —* true. This typing rule guarantees type
preservation for E_OK: ({z:T | e}, true, v)! — v. If the active check was well
typed, then we know that e;[v/z] —* true, so T_EXACT applies. Finally, the
T_ConNv rule allows us to retype expressions at convertible types: if ) - e : T and
T=1T, thenF e: T (or in any well formed context I'). We define = as the
symmetric, transitive closure of call-by-value respecting parallel reduction, which
we write =. The T_CONV rule is necessary to prove preservation in the case
where e; e2 — € €5. Why? The first term is typed at Ts[ez/z] (by T_APP), but
reapplying T_APP types the second term at Ty[e}/z]. Conveniently, To[es/z] =
Ts[es/x], so the two are convertible if we take parallel reduction as our type
conversion. Naturally, we have to take the transitive closure so we can string
together conversion derivations. We take the symmetric closure, since it is easier
for us to work with an equivalence. In previous work, subtyping is used instead
of the = relation; one of our contributions is the insight that subtyping—with
its accompanying metatheoretical complications—is not an essential component
of manifest calculi.

We define type compatibility and a few metatheoretically useful operators in
Figure 4.

Lemma 1 (Canonical forms). If) - v : T, then:

1. If unref(T) = B then v =k € Kg for some v
2. Ifunref(T) = z: Ty — To then v is

(a) Ax:Ty. e12 and T] = Ty for some z, T and €12, or

(b) (T{ = T3)" and T{ = Ty and Ty = T for some T}, T4, and
3. Ifunref(T) =Va.T' then v is Aa.v” for some v'.

Theorem 2 (Progress). If 0+ e: T, then either e — ¢’ or e is a result.

Theorem 3 (Preservation). If ) -e: T and e — €', then O - ¢’ : T.
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Closed terms ’ ri~re:T;0;0 and e1 ~ ez : T;@;d‘
k~k:B;0;0 < keKp
UlN'UQICY;e;(S < ElRTlTQ, Oél—}]%7 T1,T2 €O Nuv Ruv
v~ (3T — T2);0;8 < Yol ~ vy Th;0;0, vivl >~ va vy Ta;0;6[v1, v3/ 7]
v~ Va.T;0;0 <= YRT\ T2, vi Th = v To: T;0la— R, Th, Ts]; 6
vi~vi{z:T|e};0;0 < vi~uve: T;0;6 A
01(61(e))[v1/z] —™ true A 02(02(e))[v2/x] —* true

M~ T50;0
61262:T;0;(5 <~ dnmr, e — I Nes — AT~ Ty T;0;6
Types | T1 ~ T : *;6; 8
B~ B:x;0;0
a~a:x;6;0
.’Z?ZTH*)T122ZIT21*>T221*;0;6 < T112T212*;9;5/\

V’U1 ~ U T11;9;(5,
Tig >~ T : %;0;6[v1, v2/ 1]
Va.Ti ~Va.Te 1 %;0;8 < VRT{ Ty, Th =~ Ts : %;0la— R, T1, T5];§
{z:Th | e} ~{z:T2| e} : %,0;0 < T1 ~ Ta:%0;5 A
Yoy ~ v Th;0;6, 61(81(e1))[v1/z] =~ 02(d2(e2))[v2/2] : Bool; 8; 6
Opentermsandtypes’Fl—H;éandFl—el262:TandFl— leng*‘
I'60;6 < Va:T €I, 61(61(z)) ~ 02(2(z)) : T;0;6 A
Vaoe INART 1 Te, a— R, T1,To €6
I'tFeg~e: T <— VFF@;& 01(61(81)) 2’02(52(62)) : T;6;5
T ~Ty:%x < VI'F6;0, Th >~ Tz :%;0;0

Fig. 5. The logical relation for parametricity

Requiring standard weakening, substitution, and inversion lemmas, the syntactic
proof of type soundness is straightforward. It is easy to restrict Fy to a simply
typed calculus with a similar type soundness proof.

4 Parametricity

We prove relational parametricity for two reasons: (1) it gives us powerful rea-
soning techniques such as free theorems [16], and (2) it indicates that contracts
don’t interfere with type abstraction. Our proof is standard: we define a (syn-
tactic) logical relation where each type is interpreted as a relation on terms and
the relation at type variables is given as a parameter. In the next section, we
will define a subtype relation and show that an upcast—a cast whose source
type is a subtype of the target type—is logically related to the identity function.
Since our logical relation is an adequate congruence, it is contained in contextual
equivalence. Therefore, upcasts are contextually equivalent to the identity and
can be eliminated without changing the meaning of a program.

We begin by defining two relations: r ~ 15 : T;8;§ relates closed results,
defined by induction on types; e; ~ ey : T;0; 6 relates closed expressions which
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evaluate results in the first relation. The definitions are shown in Figure 5.1 Both
relations have three indices: a type T, a substitution 6 for type variables, and a
substitution § for term variables. A type substitution 8, which gives the inter-
pretation of free type variables in T, maps a type variable to a triple (R, Ty, T2)
comprising a binary relation R on terms and two closed types 77 and T,. We
require that R be closed under parallel reduction (the = relation). A term sub-
stitution § maps from variables to pairs of closed values. We write 0; (i = 1,2)
for a substitution that maps a type variable a to T; where 0(«) = (R, Ty, T2).
We denote projections §; similarly.

With these definitions out of the way, the term relation is mostly straightfor-
ward. First, 1] is related to itself at every type. A base type B gives the identity
relation on K g, the set of constants of type B. A type variable « simply uses the
relation assumed in the substitution 6. Related functions map related arguments
to related results. Type abstractions are related when their bodies are paramet-
ric in the interpretation of the type variable. Finally, two values are related at a
refinement type when they are related at the underlying type and both satisfy
the predicate; here, the predicate e gets closed by applying the substitutions.
The ~ relation on results is extended to the relation ~ on closed terms in a
straightforward manner: terms are related if and only if they both terminate at
related results. We extend the relation to open terms, written I'F e; >~ ey : T,
relating open terms that are related when closed by any “I’-respecting” pair of
substitutions 6 and 0 (written I" - 6; 6, also defined in Figure 5).

To show that a (well-typed) cast is logically related to itself, we also need
a relation on types Ty ~ T5 : %;0;d; we define this relation in Figure 5. We
use the logical relation on terms to handle the arguments of function types
and refinement types. Note that 77 and T, are not necessarily closed; terms
in refinement types, which should be related at Bool, are closed by applying
substitutions. In the function/refinement type cases, the relation on a smaller
type is universally quantified over logically related values. There are two choices
of the type at which they should be related (for example, the second line of
the function type case could change Ti; to Ta1), but it does not really matter
which to choose since they are related types. Here, we have chosen the type
from the left-hand side; in our proof, we justify this choice by proving a “type
exchange” lemma that lets us replace a type index Tp in the term relation by
Ty when Ty ~ T : x. Finally, we lift our type relation to open terms: we
write I' = T ~ Ty : % when two types are equivalent for any I'-respecting
substitutions.

It is worth discussing a few points peculiar to our formulation. First, we allow
any relation on terms closed under parallel reduction to be used in ; terms
related at T need not be well typed at T'. The standard formulation of a logical
relation is well typed throughout, requiring that the relation R in every triple be
well typed, only relating values of type T; to values of type T» (e.g., [14]). We
have two motivations for leaving our relations untyped. First, functions of type

1 To save space, we write {1 ~ {1 : T; 0; § separately instead of manually adding such
a clause for each type.
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z:Ty — T> must map related values (v; ~ vo : Ty) to related results...but at
what type? While To[v1/z] and Ts[va/z] are related in our type logical relation,
terms that are well typed at one type won’t necessarily be well typed at the
other. Second, we prove in Section 5 that upcasts have no effect: if T; <: Ty,
then (Ty = To)! ~ Az:Ty. z: Ty — Ty. That is, we want a cast (T} = Ty)!,
of type T1 — 715, to be related to the identity Az:T;. z, of type Ty — T;: the
cast and the identity won’t (in general) have the same type. We therefore don’t
demand that two expressions related at T be well typed at T, and we allow
any relation to be chosen as R, so long as it is closed under parallel reduction.
Another peculiarity is in our treatment of substitutions and type indices. Just
as the interpretation of free type variables in the logical relation’s type index are
kept in a substitution 6, we keep d as a substitution for the free term variables
that can appear in type indices. Keeping this substitution separate avoids a
problem in defining the logical relation at function types. Consider a function
type z:T1 — T5: our logical relation says that values v; and vy are related at
this type when they take related values to related results, i.e. if v] ~ v} : T;6; 0,
then we should be able to find vy v; ~ vy v5. The question here is which type
index we should use. If we keep our type indices closed (with respect to term
variables), we cannot use T on its own—we have to choose a binding for z!
Knowles and Flanagan [10] deal with this problem by introducing the “wedge
product” operator, which merges two types—one with v substituted for z and
the other with v} for z—into one. Instead of substituting eagerly, we put both
bindings in § and apply them when needed—the refinement type case. We think
our formulation is more uniform with regard to free term/type variables, since
eager substitution is a non-starter for type variables, anyway.
As we developed our proof, we found that the E_REFL rule

(T=T) v~

is not just a convenient way to skip decomposition of a trivial cast into smaller
trivial casts (when T is a polymorphic or dependent function type); E_REFL is,
in fact, crucial to obtaining parametricity in our syntactic setting. For example,
by parametricity, we expect every value of type Ya.ao — « to behave the same as
the polymorphic identity function. One of the values of this type is Aa.{a = a)’.
Without E_REFL, however, applying this type abstraction to a compound type,
say Bool — Bool, and a function f of type Bool — Bool would return, by E_FUN,
a value that is syntactically different from f, breaking parametricity!?> With
E_REFL, (T = T)! returns the input immediately, regardless of T, just as
the identity function. So, this rule is a technical necessity, ensuring that casts
containing type variables behave parametrically. (Naturally, the evaluation of
well-typed programs never encounters casts with uninstantiated type variables.)

We have relational parametricity—every well-typed term (under I") is related
to itself for any I'-respecting substitutions.

2 Intuitively, we expect the returned value should behave the same as the input,
though. Moreover, the subtyping we define is reflexive, so the upcast lemma we
prove applies, as well—though, of course, we used E_REFL to prove it!
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I'ET) < Ty
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Fig. 6. Subtyping, implication, and closing substitutions

Theorem 4 (Parametricity).

1. IfI'te:Tthenl'Fe~e: T, and
2. If'-T then ' T ~ T : x.

The proof is mostly standard, although—Ilike the proof of semantic type sound-
ness in Greenberg, Pierce, and Weirich [7]—it requires a separate reflexivity
lemma for casts, as mentioned above. We make one small disclaimer: we have
not completed the standard but tedious proof showing that parallel reduction
implies cotermination at similar values, i.e., if e; = ey and e —* 1y, then
ea —™ 1o such that r = 1y, and vice versa. We expect that our existing Coq
proof of this fact for a similar operational semantics (from [7]) will adapt read-
ily. Note that our proof of type soundness in Section 3 relies on much simpler
properties of parallel reduction, which we have proved.

5 Subtyping and Upcast Elimination

Knowles and Flanagan [10] define a subtyping relation for their manifest calculus,
Ah, as a primitive notion of the system. Furthermore, they prove that upcast
elimination is sound: if T} <: Ty, then (T} = T,)! is equivalent to the identity
function. Upcast elimination is, at heart, an optimization: since the cast can
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never fail, there is no point in running it. We define a subtyping relation for Fy
and prove that upcast elimination is sound. To be clear, the type system of Fy
doesn’t have subtyping or a subsumption rule at all; we simply show that upcasts
are logically related—and therefore contextually equivalent—to the identity.

We define subtyping in Figure 6. Our subtyping rules are similar to those in
Am. The first three rules are standard. The rule for dependent function types is
mostly usual: contravariant on argument types and covariant on return types.
Here, we need to be careful about the type of z. Return types Ti5 and Tao
should be compared under the assumption that z has Ts1, which is a subtype
of the other argument type Ti; [4]. However, z in Tis has a different type, i.e.,
T11, so we need to insert a cast to keep the subtyping relation well typed—Fy
doesn’t have subsumption!

Our rule for subtyping of refinements differs substantially from Ag’s, mostly
because Fy allows refinements of arbitrary types, while Ay only refines base
types. The S_REFINE rule essentially says T; is a subtype of Ts if (1) Ty with-
out the (outermost) refinements is a subtype of T» without the (outermost)
refinements, and (2) for any v of type unref(77), if casts(Ty) v reduces to a
value, so does casts(Ty) (unref(7T;) = unref(7%))! v, for any I. The intuition
behind the second condition is that, for 77 to be a subtype of T, the predicates
in T1 (combined by conjunction) should be stronger than those in T5. Recall
that casts(T') is defined in Figure 6 as the composition of casts necessary to cast
from unref(T') to T'. So, if application of casts(T') to a value of unref(7T) does
not raise blame, then the value can be typed at T by repeated use of T _EXACT.

If the implication in S_REFINE holds for a value v of type unref(7T;), then
either: (1) v did not pass the checks in casts(T7), so this value is not in T7; or
(2) v passed the checks in casts(T;) and (unref(7T;) = unref(T3))! v passed all
of the checks in casts(7T2). So, if (1) or (2) hold for all values of type unref(Ty),
then it means that all values of type T; can be safely treated as if they had type
Ts, i.e., Ty a subtype of Ts.

Finally, we need a source of closing substitutions to compare the evaluation
of the two casts. We use the closing substitutions from the logical relation at T
as the source of “values of type T7. (Arbitrarily, we take the values and types
from the left.) There is a similar situation in the manifest calculi of Knowles
and Flanagan [10] and Greenberg, Pierce, and Weirich [7]. They both define a
denotational semantics for use in their refinement subtyping rule—but they need
to do so, in order to avoid a circularity. We have no such issues, and make the
decision because it is expedient.

We formulate our implication judgment in terms of cotermination at values
rather than cotermination at true (as in [7, 10]) because we have to contend with
multiple layers of refinement in types—using cotermination at values reduces the
amount of predicate bookkeeping we have to do.

Having defined subtyping, we are able to show that upcast elimination is
sound.

Lemma 5 (Upcast lemma). If ' Ty <: Ty and I' - Ty and I' b T, then
'+ <T1 = T2>l ~ A p:T1. x: Ty — Ts.
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6 Related Work

We discuss the related work in two parts. We first distinguish our work from the
untyped contract systems that enforce parametric polymorphism dynamically,
rather than statically as Fy does; we then discuss how Fy differs from existing
manifest contract calculi in greater detail.

Dynamically checked polymorphism

The Fy type system enforces parametricity with type abstractions and type vari-
ables, while refinements are dynamically checked. Another line of work omits re-
finements, seeking instead to dynamically enforce parametricity—typically with
some form of sealing (& la Pierce and Sumii [13]).

Guha et al. [9] define contracts with polymorphic signatures, maintaining ab-
straction with sealed “coffers”; they do not prove parametricity. Matthews and
Ahmed [11] prove parametricity for a polymorphic multi-language system with
a similar policy. Ahmed et al. [2] prove parametricity for a gradual typing [15]
calculus which enforces polymorphism with a set of global runtime seals. Ahmed
et al. [3] define a polymorphic calculus for gradual typing, using local syntac-
tic “barriers” instead of global seals. We believe that it is possible to combine
Fp with the barrier calculus of Ahmed et al., yielding a polymorphic blame
calculus [17]. We leave this to future work.

Manifest systems

Wadler and Findler [17] gave a simple syntactic account of a calculus combining
refinement types and gradual types [15]; they, like us, define subtyping post facto,
proving theorems similar to the upcast lemma. They do not, however, support
dependent function types. Gronski and Flanagan [8] compares non-dependent
latent and manifest contract calculi.

Four existing manifest calculi have dependent function types (such as [6,7,
10, 12]) use subtyping and theorem provers as part of the definition of the type
system. All four of these calculi have complicated metatheory. Ou et al. [12]
restrict refinements and arguments of dependent functions to a conservative ap-
proximation of pure terms; they also place strong requirements on their prover.
Knowles and Flanagan [10] as well as Greenberg, Pierce, and Weirich [7] use
denotational semantics to give a firm foundation to Flanagan’s earlier work [6].
We consider three systems in more detail: Knowles and Flanagan’s Ay (KF) [10];
Greenberg, Pierce, and Weirich’s Ay (GPW) [7]; and Fy. The rest of this sub-
section addresses the differences between KF, GPW, and Fy.

In Section 1, we discussed in general terms some of the complexity that KF
and GPW encountered. What made KF and GPW so complicated? Both systems
share the same two impediments in the preservation proof: preservation after
active checks and after congruence steps in the argument position of applications.
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KF and GPW resolve both of these with subtyping, using a rule like the following
for refinements:>
VI, x:{x:B | true} F 0. o(e;) —* trueimplies o(ez) —>* true
I'F{z:B| e} <:{z:B| e}

Subtyping and the requirement that constants be assigned most specific types,
—i.e., if e[k/z] —* true for k € Kp then @ + ty (k) <: {z:B | e}-—are used
to show preservation of active checks. The two systems use subtyping to relate
substituted types in different ways. KF use full beta reduction, showing that
subtyping is closed under reduction. GPW use call-by-value reduction, showing
that subtyping is closed under parallel reduction. Once these two difficulties are
resolved, both preservation proofs are standard, given appropriate subtyping
inversion lemmas.

So much for subtyping. Why do KF and GPW need denotational semantics?
Spelled out pedantically, the subtyping rule above has the following premise:

Vo. I'yz:{x:B | true} - o implies (0(e;) —™ trueimplies o(ey) —* true)

That is, the well formedness of the closing substitution o is in a negative po-
sition. Where do closing substitutions come from? We cannot use the typing
judgment itself, as this would be ill-defined: term typing requires subtyping via
subsumption; subtyping requires closing substitutions in a negative position via
the refinement case; but closing substitutions require typing. We need another
source of values: hence, denotational semantics. Both KF and GPW define syn-
tactic term models of types to use as a source of values for closing substitutions,
though the specifics differ.

After adding subtyping and denotational semantics, both KF and GPW are
well defined and have syntactic proofs of type soundness. But in the process
of proving syntactic type soundness, both languages proved semantic soundness
theorems:

I'te: Timplies VI'F o, o(e) € [o(T)]

This theorem suffices for soundness of the language... so why bother with a
syntactic proof? In light of this, GPW only proves semantic soundness. The
situation in KF and GPW is unsatisfying: the syntactic proof of type soundness
motivated subtyping, which motivated denotational semantics, which obviated
the need for syntactic proof. Beyond this, the proofs are hard to scale: adding
in polymorphism or state is a non-trivial task, since we must—Dbefore defining
the type system!—construct an appropriate denotational semantics, which itself
depends on our evaluation relation.

Fpy solves the problem by avoiding subtyping—which is what forced the pres-
ence of closing substitutions and denotational semantics in the first place. The
first issue in preservation—that of preserving refinement types after checks have
finished—was resolved in KF and GPW with subtyping. We instead resolve it

3 Readers familiar with the systems will recognize that we’ve folded the implication
judgment into the relevant subtyping rule.
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with a runtime rule that allows us to type values with any refinement they
satisfy:

= brov:T OF{z:T | e} elv/x] —* true

T_EXACT
I'tov:{x:T|e}

Adding this rule eliminates one use of subtyping as well as the “most-specific
type” restriction. If we “bit the bullet” and allowed non-empty contexts in
T_ExAcT, then we would need to apply a closing substitution to e[v/z] be-
fore checking if it reduces to true. But the circularity in subtyping alluded to in
Section 1 was caused by closing substitutions; we must avoid them! The second
issue in preservation—that of conversion between Th[ez/z] and T[e;/x]—can
be resolved in a similar fashion. We define another runtime rule that allows us
to convert types:

I Pre:T 0T T=T

TE o T T_Conv

The conversion we use, =, is defined as the symmetric, transitive closure of
CBV-respecting parallel reduction. This is only as much equivalence as we need:
if eo —> €}, then Thlea/x] = To[e)/x]. These two rules suffice to keep subtyping
out of Fy, which in turn avoids denotational semantics.

7 Future Work

We presented a simpler approach to manifest contract calculi, which we applied
to construct Fy, a parametrically polymorphic manifest contract calculus. We
hope to extend Fy with barriers for dynamically checked polymorphism [3], and
with general recursion and state. (Though we acknowledge that state is a difficult
open problem.) We also hope that Fy’s operational semantics and (relatively)
simple type system will help developers implement contracts.
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