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The POSIX shell is an interactive DSL for concurrency
Anonymous Author(s)

1 Introduction
The POSIX shell is the de facto standard for interacting with
computer systems, ranging from personal laptops to clus-
ters of many powerful servers [IEEE and The Open Group
2016]. Few languages rival the shell for power, but it has
inspired more mockery and revulsion [Garfinkel et al. 1994]
than academic attention [D’Antoni et al. 2016; Jeannerod
et al. 2017a,b; Mazurak and Zdancewic 2007]. The shell is
not taken seriously as a programming language, but it is in
fact an extremely powerful DSL for concurrency with strong
support for interactivity. In my talk, I will present prelimi-
nary work on formalizing the POSIX shell standard. What
makes the POSIX shell so good at interactivity [Greenberg
2018] and managing concurrency [Greenberg 2017]? How
can we help novices and more experienced users understand
the POSIX shell? I will demonstrate a stepper that makes the
shell’s obscure semantics observable.

2 The shell is a DSL for interactivity
While the shell is used to power complex systems (e.g., De-
bian maintainer scripts [Jeannerod et al. 2017b]), it also sees
widespread use as an interactive console—the expert’s con-
trol hatch. On many systems, there are management tasks
that can only be done via the shell. But even when GUI op-
tions exist, many users prefer the shell. What makes the shell
so good for interactivity?
I believe there are two aspects of the shell’s design that

support interactivity: like many other DSLs, the POSIX shell
offers extremely concise syntax for common commands (e.g.,
mv *.c src/); and many of the commonly used shell com-
mands are variadic. For example, the mv command above has
a flexible interface, of the form mv file1 ... filen tgt,
where tgt must be a directory if n > 1 but need not be if
n = 1. The mv command’s interface is directly supported by
the shell’s expansion semantics. In the shell, commands and
their arguments are treated ‘stringily’: at runtime, a process
called expansion translates strings containing control codes
(like the * in the command above, or variables like $PATH) to
possibly many arguments. The expansion of *.c, for exam-
ple, will search the current working directory for files that
match (i.e., end in .c), generating and alphabetically sorting
an argument for each such file.

Greenberg [2018] has already argued that expansion sup-
ports POSIX shell interactivity. For more information on
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expansion, see either Section 2 of that paper or the POSIX
standard [IEEE and The Open Group 2016].

3 The shell is a DSL for concurrency
The POSIX shell succinctly and powerfully manages the
flow of information between concurrent processes. It has
many primitives for managing file descriptors (>, <&, etc.),
setting up pipes between processes (|, command substitution,
etc.), and controlling concurrent jobs (&, wait, etc.). Each
command in the shell runs in a separate memory space, using
the filesystem as shared memory. To see how simple it is to
work with concurrency in the shell, contrast the following
two snippets that run LDA [Blei et al. 2003] to generate topic
models for moderately large datasets [Greenberg et al. 2015]:

for k in ${KS}; do

lda est 1/50 ${k} \

settings.txt ${ABS} \

seeded ${DIR}/lda${k}

done

echo "DONE"

(a) Sequential

for k in ${KS}; do

lda est 1/50 ${k} \

settings.txt ${ABS} \

seeded ${DIR}/lda${k} &

done

wait

echo "DONE"

(b) Concurrent and parallel

In the sequential version (a), we run lda for each value of
the parameter k sequentially. When each LDA process com-
pletes some hours or days later, it will return control to shell,
which will continue the for loop. When the for loop termi-
nates, we announce our completion (echo). Each run of lda
is independent—we can speed things up by building models
concurrently. The concurrent version (b) makes only two
changes. First, we run lda in the ‘background’ (by adding &
to the command). Commands run in the background return
control to the shell immediately: the for loop will spawn all
of the lda processes in the same order—but without waiting.
We then use the built-in wait utility to have the shell wait
for all of its background processes to terminate. In concur-
rency terminology, we’ve just used fork/join parallelism: the
& is a “fork” and wait is a “join”. The speedup from build-
ing the models in parallel and concurrently on a multicore
machine are appreciable—nearly linear. Beyond the speedup,
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(a) Entering a program to step

(b) Results of stepping, highlighting field separators

Figure 1. The POSIX shell stepper in action

parallelizing the sequential code is simple—the Levenshtein
distance between the two snippets is 7.

4 A stepper for the shell
I have built a web-based stepper that uses a mechanized
semantics of the POSIX shell to visualize the various stages
of expansion and evaluation (Figure 1). The implementation
uses type classes to abstract over operating system features:
the stepper uses a symbolic implementation of OS features; a
concrete implementation makes real system calls and yields
a working shell with identical logic to the symbolic one.

Even experienced shell users can be confused by the POSIX
shell’s semantics, particularly by field splitting, a late step in
expansion that breaks apart the result of earlier stages into
a command’s arguments. Mazurak and Zdancewic [2007]’s

analysis focused on finding errors where field splitting pro-
duces too many or too few fields. Greenberg [2018] gives an
example showing that “field splitting can be controlled at
use sites but not at definition sites” (Section 2). Here is an-
other example of field splitting’s trickiness: suppose we are
in a directory with two files, a and b and we want to move
these files to another directory, ../other_dir. In typing out
the command mv * ../other_dir, our finger slips and we
hit enter before we type the target directory, running the
command mv *. What happens? An intuitive mental model
of the shell might expect an error: after all, *means “all files”
and we never specified a destination. Without a destination,
mv doesn’t know what to do, and should produce an error.
Unfortunately, that’s not what happens. In fact, the shell ex-
pands * to the two files present, a and b, in that order. Field
splitting produces two arguments to mv: first a and then b.
That is, we run mv a b, overwriting b irrevocably with the
contents of a.

My stepper will allow both novices and experienced shell
users to observe and understand the shell’s behavior. I con-
jecture it will be a useful teaching tool. I plan to demonstrate
the tool at the workship and hope to receive feedback.
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