
Teaching Discrete Mathematics
to Early Undergraduates

with Software Foundations
Michael Greenberg

Pomona College
michael.greenberg@pomona.edu

Joseph C. Osborn
Pomona College

joseph.osborn@pomona.edu

1 Introduction
We will present our early experiences teaching first- and
second-year computer science students in Coq, adapting Log-
ical Foundations (the first volume of Software Foundations [2];
henceforth, LF and SF).1 Our presentation’s goals are: to offer
evidence that such a course is pedagogically sound; to high-
light the pedagogical approach taken to teaching Coq and
informal proof simultaneously; to document successes and
failures, both pedagogically and in Coq’s technical ecosys-
tem; and to seek feedback on pedagogy and course design.

2 CS052 + CS055 ≃ CS054
In Spring 2018, the first author taught an experimental sec-
tion of a new course, CS054 “Discrete Mathematics and Func-
tional Programming”, at Pomona College.2 The new course
replaced two existing courses: a conventional tour of ele-
mentary discrete mathematics (CS055) and a second course
in computer science touring a variety of programming lan-
guages, with a focus on recursion and functional program-
ming (CS052). The primary post-conditions of CS054 are that
students ought to be able to:

1. prove theorems by induction;
2. translate between English and propositions;
3. apply basic graph-theoretic terminology; and,
4. program with inductively defined datatypes.

At a minimum: proofs ought to cover the naturals for number
theoretic and combinatorial properties; propositions ought to
include first-order logic with sets and inductive propositions;
inductive datatypes ought to include lists and binary trees.

2.1 New material
Our course covers three new areas compared to the existing
pair of courses: combinatorics; a theory of sets and count-
ability; and graph theory. Each posed unique challenges.
Combinatorics and Coq are a fairly natural fit, and oth-

ers have studied how to use Coq for introductory combina-
torics [1]. Haven and Chlipala’s approach is too complex
(and powerful) for our elementary setting, so we opted to
1The first author will give the talk.
2http://www.cs.pomona.edu/~michael/courses/csci054s18/

CoqPL’19, January 19, 2018, Cascais/Lisbon, Portugal
2019.

roll our own, simpler definitions of factorial and combina-
torial choice. The combinatorial work culminated in two
challenging proofs: first, relating the factorial function to
permutations of lists; second, proving part of the Binomial
Theorem in Coq, adapting the proof to paper, followed by
applying the Binomial Theorem on concrete examples.
Set theory in Coq is thornier, with several options for

representing sets. We opted for an axiomatic presentation,
with students proving set equalities before moving on to
countability, which we represented using the usual defini-
tions of injectivity and surjectivity. The most challenging
proofs here were (a) finding countability witnesses (explicitly
and constructively!) and (b) proving that |X | < |P(X)| and
|N| < |N→ 2| in Coq and that |N| < |R| on paper.
Finally, graphs are non-inductive and commensurately

awkward in Coq. We had low expectations surrounding
graphs—students needed to be able to correctly use graph
nomenclature (nodes, edges, directed/undirected, paths, etc.)
and prove simple properties (e.g,

∑
v ∈V deg(v) = 2|E |).

2.2 Context: Pomona College
Our students have a variety of backgrounds: some come
from elite private high schools and have had courses on
proof already; others went to less effective high schools
and are mathematical novices.3 Given our students’ wide
range of experience, it’s critical that students have multiple
points of entry to the material. Some students will have thin
background not just for mathematics and programming, but
for computing in general. We cannot take for granted that
students understand ideas like “files and directories in the
filesystem” or “the shell”.

3 Pedagogy and Content
3.1 Pedagogy in Principle: Formal⇌ Informal
The pedagogical idea of the course is to interleave formal
work in Coq and informal work on the board and on paper.
This approach is well supported by educational research [3]:
we interleave different presentations of the material; Coq is
an oracular tutor for self study and self testing; Coq’s Check
and SF’s quizzes encourage explanatory questioning.
317% of Pomona College’s students “are in the first generation of their
family to attend a four-year college.” https://www.pomona.edu/admissions/
why-pomona/diversity-pomona.

1

http://www.cs.pomona.edu/~michael/courses/csci054s18/
https://www.pomona.edu/admissions/why-pomona/diversity-pomona
https://www.pomona.edu/admissions/why-pomona/diversity-pomona

CoqPL’19, January 19, 2018, Cascais/Lisbon, Portugal Michael Greenberg and Joseph C. Osborn

Our pedagogical approach supports our goal of having
more than one way in to the material (Section 2). It can be
difficult to predict what a student’s way in will be, but zig-
zagging between the formal and informal helps in two ways.
The first way is the natural one: some students take better to
more rigid, explicit formulations in Coq, while others prefer
the classic mathematical presentation. The second way is
simply a side-effect of using Coq: we commonly define things
in various ways in Coq to later prove them equivalent.
For example, students define the evenb predicate in Ba-

sics, the first chapter, along with the double function. Later
in Logic, the sixth chapter, students prove that n is even iff
∃k,n = double k . IndProp, the seventh chapter, relates those
definitions to an inductively defined predicate ev. Students
may or may not see evenb as a mathematical definition; they
may or may not see ∃k,n = double k as the standard “multi-
ple of two” definition of evenness even after proofs relating
double and mult; they may or may not see the inductive
ev predicate as making a ‘counting up from a known even
number’ argument. Having this plethora of options—and
writing and reading proofs of their equivalence both on pa-
per and in Coq—helps students apply the phrasings they
understand to the phrasings they do not. While such a mul-
tipronged approach could be taken in a conventional class,
it is particularly at home in Coq.

3.2 Pedagogy in Practice
Class time alternates formal and informal days. Formal days
are mostly lecture from ProofGeneral, using the board to
diagram explanations, elaborate examples, run functional
programs, and answer questions. Informal days are entirely
on the board, with definitions and proofs written in the usual
mathematical way, but mostly mirroring our Coq definitions.
Early in the course, most newmaterial is introduced formally
first, and we often annotate lines in informal proofs with
their corresponding tactics. Later in the course, new material
is introduced informally and little or no reference is made to
Coq concepts. Due to logistical issues, the second run of the
course emphasizes the formal parts and has suffered for it.
There’s no explicit discussion of proof terms at all in the

course. The Curry–Howard correspondence is discussed just
enough to support the application of lemmas to arguments.
While all students understand the concept of tactics like
apply (plus_comm n m), not all necessarily realize that the
arrow type in Set is one and the same as that in Prop.
Assignments in Coq included many informal proofs; ad-

ditionally, we gave students ungraded practice worksheets,
asking questions to structure their understanding (Figure 1).

4 Experience
Overall, we feel the course was effective even in its first
run. The first author drew several questions on the final
from a final for CS055, the old discrete math course; the

Suppose we want to prove that ∀nm, n +m =m + n.
1. What can we do induction on?
2. For each possibility above, list (a) the goal you would

have to prove in the base case, (b) the induction hypoth-
esis you would get, and (c) the goal you would have to
prove in the induction case.

3. Which of these inductions would work to prove the
theorem?

Figure 1. Sample question from a worksheet on induction

old course had 40 students and the new one had 24. Overall
student performance on the two finals was comparable: the
mean score was 82% in the discrete math course and 81% in
the new course.4 Students performed nearly identically on
questions about translating propositions (85% old and 86%
new) and constructing truth tables (99% old and 98% new).
Student performance worsened significantly on a series of
multiple-choice questions about possibly incorrect proofs
(72% old and 53% new; some questions were changed). The
mean score on an easy inductive proof about sums was 90%
in the discrete math course; it was 97% in the new course.
Considering it was the first time the course was taught, we
interpret these ambivalent results in a positive light: the
materials and instruction ought to improve. The multiple-
choice questions were particularly anxiety inducing for the
students in the new course, and we must aim to increase
student confidence.

4.1 New material
Compared to the combination of the two old courses, less ma-
terial is covered. From CS055, the discrete math course, we
eliminated discussions of probability and reduced our expec-
tations around combinatorics and number theory. We have
retained, however, material on countability. From CS052, the
‘CS2’ course offering more background in programming, we
significantly reduced the programming burden and elimi-
nated material on imperative programming (in Python and a
simulated assembly). In exchange, we treat proofs more rig-
orously, verify programs, and cover inductive propositions.

In Spring 2018, we only lightly adapted SF: we edited prose
to suit students who are less mature as programmers and as
mathematicians; we added definitions and practice problems,
particularly for sums. We haven’t significantly amended the
course for Fall 2018. The course follows the flow of LF: Ba-
sics, Induction, Lists, Poly, Tactics, Logic, and IndProp. We
concluded with Sort (from Appel’s Verified Functional Algo-
rithms volume of SF) and new material on combinatorics, set
theory/countability, and graphs.

4These numbers are whole-class aggregates in order to support de-
identification in compliance with FERPA.

2

Undergraduate Discrete Mathematics with Software Foundations CoqPL’19, January 19, 2018, Cascais/Lisbon, Portugal

Inductive graph : list X -> list (X * X) -> Type :=
| g_empty : graph [] []
| g_vertex :

forall (V : list X) (E : list (X * X))
(g : graph V E) (v : X),

~ In v V -> graph (v::V) E
| g_arc :

forall (V : list X) (E : list (X * X))
(g : graph V E) (src tgt : X),

In src V -> In tgt V ->
~ In (src,tgt) E -> graph V ((src,tgt)::E).

Figure 2. An inductive definition for directed graphs, fol-
lowing graph-basics

The material on combinatorics was effective but needs to
be revised to be simpler. The unit on combinatorics came di-
rectly after material on sorting, so we tried to have students
relate a function permutations : list α → list (list α))
that computed all permutations of a list and the standard-
library inductive proposition Permutation : list α →

list α → Prop that identifies lists that are permutations
of each other. Proving that the function generates propo-
sitional permutations was not too difficult—though most
students couldn’t get their heads out of the weeds and see
the structure of the proof. Proving that those lists related by
the proposition are all found by the function was substan-
tially more challenging—a talented team of three TAs came
close, but couldn’t finish the proof. We left it as a challenge
problem that only one or two students even attempted. The
combinatorial proofs involving the Binomial Theorem were
too hard. Students had trouble relating conventional sum
notation with the higher-order Coq function implementing
them. We showed students two ways to work with sums:
one by building and then summing lists and one using a
higher-order function that takes indices and returns sum-
mands. Unifying our treatment and spending time early on
relating the formal and informal notations will reduce some
of the difficulty.
The work on sets was far too challenging for the time al-

lotted. There are two possible independent courses of action:
a computational model of sets (e.g., sorted lists), and more
time. Adding a computational interpretation would surely
improve student understanding, at the cost of not applying
as well to the material on countability. Splitting the sets ma-
terial into two parts would probably work better: a unit on
computational sets where we prove the axioms that we then
use to study countability of axiomatic sets.
Finally, we ended up doing graphs entirely informally—

students received a paper assignment of questions about
drawing graphs and various graph properties. The decision
was mostly due to student fatigue after the work on sets.
We had prepared material for an inductive notion of graphs,

adapted from graph-basics5 (Figure 2). Such an inductive
notion greatly simplifies working with graphs. For example,
it’s a straightforward exerise to prove Euler’s handshaking
lemma showing that

∑
v ∈V deg(v) = 2|E | when both sides

of the equation are functions over the graph itself. It’s very
much not straightforward when written over the vertex and
edge lists: the proof requires a complex arithmetic lemma
relating the sum over the graph and the sum of a map over
the vertex list.

4.2 Keeping it simple
Both the tools and the material posed challenges for students.

Students had no problem installing Coq (we used 8.6), but
CoqIDE—which we advocated for students without prior
Emacs experience—was difficult for them to use. CoqIDE
crashes were a common source of woe, but things got particu-
larly difficult with the second assignment, which depends on
the first. CoqIDE’s conventions for compilation do not work
well with the SF single-directory convention. Later on, ma-
terial on set theory used Unicode characters, which CoqIDE
silently mangles while saving to disk. The VS Code plugin
for Coq is still too immature, and ProofGeneral’s embedding
in Emacs presents a serious hurdle. The second author has
found that presenting students with a pre-configured Emacs
lessens the editor burden and greatly simplifies compilation;
conventionalizing Emacs’s interface with cua-mode would
make it still easier.6

Gallina is a picayune language, and it’s unsurprising that
students struggled with some aspects of it. In this case, how-
ever, the varying backgrounds and general lack of program-
ming experience was in part an asset: students didn’t have
expectations like “real programming languages use curly
braces” and didn’t take things like commutativity of addition
and multiplication for granted. Students were quite willing
to accept Coq’s notions of equality and understood that, e.g.,
n + 1 = 1 + n is true but not obvious.

SF is a graduate-level course that assumes background in
programming and discrete math, spending very little time ex-
plaining functional programming or Coq’s evaluation model.
For example, SF takes it more or less for granted that stu-
dents are familiar with Boolean operators—but we can make
no such assumptions. We added some text, but more is surely
necessary. It would be good to rearrange things so that stu-
dents write more code, defining many of the primitives them-
selves. SF occasionally takes this approach already, writing
some definitions in a Module and then later recapitulating
Coq’s definition or adopting it directly. Such an approach
is tricky,: later proofs depend on precise early definitions;
adopting Coq’s definitions directly can lead to SearchAbout
including too many results, which less mature students have
trouble filtering.

5https://github.com/coq-contribs/graph-basics
6https://www.emacswiki.org/emacs/CuaMode

3

https://github.com/coq-contribs/graph-basics
https://www.emacswiki.org/emacs/CuaMode

CoqPL’19, January 19, 2018, Cascais/Lisbon, Portugal Michael Greenberg and Joseph C. Osborn

4.3 What next?
A novice-friendly IDE would improve the experience of the
course; a web-based toolchain would be ideal, with tools
like CollaCoq7, Rhino-Coq8, and PeaCoq9 being a nice start,
though none are quite mature enough for use with first-
and second-year students. It would be a mistake to overrely
on tooling, though. Weaker students already struggled with
“videogaming” proof search, and better toolingmight actually
tempt them more.

The course needs some pedagogical revisions. Even after
completing a first course in computer science, some students
continue to struggle with parsing code; rendering ASTs on
the board using Bootstrap’s10 circle notation may help the
weakest students early on. The material on inductive propo-
sitions is of mixed difficulty, quickly escalating from ev up to
regular expressions. The treatment of inversion will be im-
proved by Prabhakar Ragde’s revisions to use discriminate
and injection instead.

Within our curriculum, the course needsmuchmore hands-
on programming, since the most interesting programs we
write compute list permutations and insertion sort. It’s im-
portant, though, that the course remain thematically intact:
students should write longer programs, but they should also
prove interesting properties about them.

Acknowledgments
The first author owes great thanks to his colleagues for allow-
ing this experiment, particularly to the second author who
is teaching it in Fall 2018. We also thank Benjamin Pierce
and the rest of the Software Foundations authors. CoqPL
reviewers had helpful advice on structuring this abstract.

References
[1] Andrew J. Haven. 2013. Automated Proof Checking in Introductory

Discrete Mathematics Classes. Master’s thesis. MIT. Advised by Adam
Chlipala.

[2] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino,
Marco Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg,
and Brent Yorgey. 2018. Software Foundations. University of Pennsylva-
nia CIS Department. https://softwarefoundations.cis.upenn.edu/

[3] Henry L. Roediger and Mary A. Pyc. 2012. Inexpensive techniques to
improve education: Applying cognitive psychology to enhance educa-
tional practice. Journal of Applied Research in Memory and Cognition 1,
4 (2012), 242 – 248. https://doi.org/10.1016/j.jarmac.2012.09.002

7https://x80.org/collacoq/
8https://x80.org/rhino-coq/
9http://goto.ucsd.edu/peacoq/
10http://www.bootstrapworld.org/

4

https://softwarefoundations.cis.upenn.edu/
https://doi.org/10.1016/j.jarmac.2012.09.002
https://x80.org/collacoq/
 https://x80.org/rhino-coq/
http://www.bootstrapworld.org/

	1 Introduction
	2 CS052 + CS055 CS054
	2.1 New material
	2.2 Context: Pomona College

	3 Pedagogy and Content
	3.1 Pedagogy in Principle: Formal Informal
	3.2 Pedagogy in Practice

	4 Experience
	4.1 New material
	4.2 Keeping it simple
	4.3 What next?

	Acknowledgments
	References

