
Solver-based Gradual Type Migration

LUNA PHIPPS-COSTIN, University of Massachusetts Amherst, United States
CAROLYN JANE ANDERSON,Wellesley College, United States
MICHAEL GREENBERG, Pomona College, United States
ARJUN GUHA, Northeastern University, United States

Gradually typed languages allow programmers to mix statically and dynamically typed code, enabling them to
incrementally reap the benefits of static typing as they add type annotations to their code. However, this type
migration process is typically a manual effort with limited tool support. This paper examines the problem of
automated type migration: given a dynamic program, infer additional or improved type annotations.

Existing type migration algorithms prioritize different goals, such as maximizing type precision, maintaining
compatibility with unmigrated code, and preserving the semantics of the original program. We argue that the
type migration problem involves fundamental compromises: optimizing for a single goal often comes at the
expense of others. Ideally, a type migration tool would flexibly accommodate a range of user priorities.

We present TypeWhich, a new approach to automated type migration for an extension of the gradually-
typed lambda calculus. Unlike prior work, which relies on custom solvers, TypeWhich produces constraints
that can be solved by an off-the-shelf MaxSMT solver. This allows us to easily express objectives, such as
minimizing the number of necessary syntactic coercions, and constraining the type of the migration to be
compatible with unmigrated code.

We present the first comprehensive evaluation of GTLC typemigration algorithms, and compareTypeWhich
to four other tools from the literature. Our evaluation uses prior benchmarks, and a new set of “challenge
problems”. Moreover, we design a new evaluation methodology that highlights the subtleties of gradual type
migration. In addition, we apply TypeWhich to a suite of benchmarks for Grift, a programming language
based on the GTLC. TypeWhich is able to reconstruct all human-written annotations on all but one program.

1 INTRODUCTION

Gradually typed languages allows programmers to freely mix statically and dynamically typed code.
This enables users to add static types gradually, providing the benefits of static typing without
requiring the entirety of a codebase to be overhauled at once [??]. Over the past decade, gradually
typed dialects of several mainstream languages, such as JavaScript, Python, and Ruby, have become
established in industry. However, the process of migrating an untyped program to use gradual
types has largely remained a labor-intensive manual effort. Just as type inference facilitates static
typing, type migration tools have the potential to make gradual typing easier to use.
However, automating type migration is a challenging problem. Even if we consider a small

language, such as the gradually typed lambda calculus (GTLC) [?], and limit ourselves to modifying
existing type annotations, a single programmay havemany possiblemigrations. Existing approaches
either produce a single migration [?????], or a menu of possible migrations without selection
guidance [??]. How should we choose among the migrations produced by various approaches?
This paper argues that there is a fundamental tension between type migrations that produce

precise or “informative” type annotations, and those that preserve the behavior of the original
program. In fact, in many GTLC programs, making types more precise can introduce new dynamic
errors. Making types more precise can also introduce static and dynamic errors at the (higher-order)
boundary between migrated and unmigrated code, a serious concern when migrating a library or a
fragment of a larger program. A general-purpose type migration tool would allow programmers to
make an informed choice between multiple migrations depending on their context of use.

With these design constraints in mind, we present TypeWhich, a type migration tool that is novel
in two key ways. First, unlike prior systems that rely on custom constraint solvers, TypeWhich
generates constraints for an off-the-shelf MaxSMT solver [?]. This makes it easy to add constraints

1

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

and language features, as we demonstrate by extending the GTLC in several ways and supporting
the Grift gradually typed language [?].
Second, using a general-purpose solver allows TypeWhich to support multiple migrations

with different properties: the user can prioritize migrations with the most informative types, or
migrations that maximize compatibility with unmigrated code, or something in between. We
accomplish this by using the MaxSMT solver in a two-stage process. We first formulate a MaxSMT
problem with an objective function that synthesizes precise types. The inferred program type may
not be compatible with all contexts, but it reveals the (potentially higher-order) interface of the
program. We then formulate new constraints on the type of the program to enforce compatibility,
and use the MaxSMT solver a second time to produce a new solution.
This paper also presents the first comprehensive evaluation of different type migration ap-

proaches. We compare TypeWhich to four other type migration approaches using a two-part
evaluation suite: a set of existing benchmarks by ?, and a new set of “challenge problems” that we
devise. We also design an evaluation methodology that reflects the subtleties of type migration.
Although different approaches to type migration prioritize different goals, TypeWhich performs
well in our evaluation. An advantage of TypeWhich over most existing work is that it does not
reject any untyped programs. Finally, we apply TypeWhich to a suite of Grift programs from ?,
and find that it reproduces all hand-written type annotations except in one case.

Contributions. Our key contributions are as follows:

(1) We characterize the many goals of type migration, illustrate their inherent competition, and
argue that type migration tools should allow users to make informed decisions about their
own priorities (?? and ??).

(2) We present the TypeWhich approach to type migration, which formulates constraints for an
off-the-shelf MaxSMT solver (??). TypeWhich supports the GTLC and additional language
features required to support the Grift gradually typed language (??).

(3) We present a new set of type migration “challenge problems” that illustrate the strengths
and weaknesses of different approaches to type migration (??).

(4) We present a comprehensive comparison of five approaches to type migration (including
ours), using a new evaluation methodology. For this comparison, we implement a unified
framework for running, evaluating, and validating type migration algorithms.

(5) Finally, we contribute re-implementations of the type migration algorithms from ? and ?.
Ours is the first publicly available implementation of ?.

2 WHAT MATTERS FOR TYPE MIGRATION?

When designing a type migration tool, we must consider several important questions:

(1) A key goal of type migration is to improve the precision of type annotations. However, there
are often multiple ways to improve type precision [?] that induce different run-time checks.
For any given type migration system, we must therefore ask the question, Can a user choose

between several alternative migrations?

(2) When the migrated code is only a small portion of a larger system, increasing precision can
introduce type errors at the boundaries between migrated and unmigrated code [?]. Thus we
must ask, Does the migrated code remain compatible with other, unmigrated code?

(3) A type migration tool may also uncover potential run-time errors. However, these errors
may be unreachable, or only occur in certain configurations or on certain platforms. Thus
we must ask, Should a migration turn (potential) run-time errors into static type errors?

2

Solver-based Gradual Type Migration

(4) Finally, safe gradually typed languages introduce checks that enforce type safety at run-time.
Making a type more precise can alter these checks, affecting run-time behavior. Thus we
must ask, Does the migrated program preserve the behavior of the original program?

This section explores these questions with examples from the gradually-typed lambda calculus
(GTLC) with some modest extensions. We write programs in an OCaml-like syntax with explicit
type annotations. The type⋆ is the unknown type (also known as the dynamic type or the any type),
which is compatible with all types. Under the hood, converting to and from the ⋆ type introduces
coercions [?]; these coercions can fail at run-time with a dynamic type error.

1 let A (x : ⋆) =
2 let _ = x + 10 in
3 x ()

Fig. 1. Reachable error.

Type migration can introduce new static errors. ?? shows a function that
uses its⋆-typed argument first as a number and then as a function. Since
⋆ is compatible with all types, the function is well-typed, but guaranteed
to produce a dynamic type error when applied. In this case, it seems
harmless for a type migration tool to turn this dynamic type error into
a static type error.

1 let B (x : ⋆) =
2 if false then
3 let _ = x + 10 in
4 x ()
5 else
6 x ()

Fig. 2. Unreachable error.

However, it is also possible for the crashing expression to be unreach-
able. ?? wraps the same dynamic error in the unused branch of a con-
ditional. In this case, improving the type annotation would lead to a
spurious error: the migrated program would fail even though the orig-
inal ran without error. Although this example is contrived, programs in
untyped languages often have code whose reachability is environment-
dependent (e.g., JavaScript web programs that support multiple browsers,
Python programs that can be run in Python 2 and 3). The flexibility of gradual typing is particularly
valuable in these cases, but reasoning about safety and precision in tandem is subtle.

1 int -> int int
2

3

let C (f : ⋆) (x : ⋆) =
4 if x > 0 then
5 1 + f x
6 else
7 42

Fig. 3. Context restriction.

Type migration can restrict the context of a program. There are many
cases where it is impractical to migrate an entire program at once. For
example, the programmer may not be able to modify the source code
of a library; they may be migrating a library that is used by others; or
it may just be unacceptable to change every file in a large software
project. In these situations, the type migration question is even trickier.

?? shows a higher-order function C that calculates 1 + f (x) when x
is greater than zero. We could migrate C to require f to be an integer
function, which precisely captures how C uses f . However, this migra-
tion makes some valid calls to C ill-typed. For example, C 0 0 evaluates to 42 before migration, but
is ill-typed after migration.

1 int -> int
2

3 let D (f : ⋆) =
4 f 100 + 10;

5 f int -> int
6

7 let id : ⋆ = D(fun (x: ⋆) . x)

Fig. 4. Context restriction.

?? illustrates another subtle interaction between type-
migrated code and its context. The function D receives f and
expects it to be a function over numbers. Unlike the previous
example, D always calls f , so it may appear safe to annotate
f with the type int -> int. However, D also returns f back to
its caller, so this migration changes the return type of D from
⋆ to int -> int,. For example, when f is the identity function,
D(f) returns the identity function before migration, but after
migration D(f) is restricted to only work on ints.
To summarize, there is a fundamental trade-off between

making types precise in migrated code, and maintaining com-
patibility with unmigrated code.

3

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

Base types
B B int | bool

Types and contexts
S, T B B Base type

| S → T Function type
| ⋆ Unknown type

ΓB · | Γ, x : T
Constants

b B true | false Boolean literal
nB · · · Integer literal
c B b | n

Expressions
e B x Identifier
| c Literal
| fun(x : T).e Function
| e1 e2 Application
| e1 × e2 Multiplication

Type Consistency T ∼ T

⋆ ∼ T T ∼ ⋆ T ∼ T B ∼ B

S1 ∼ S2 T1 ∼ T2
S1 → T1 ∼ S2 → T2

Typing Literals ty : c → B

ty(n) = int ty(b) = bool

Typing Γ ⊢ e : T

Γ(x) = T

Γ ⊢ x : T Γ ⊢ c : ty(c)

Γ, x : S ⊢ e : T

Γ ⊢ fun(x : S).e : S → T

Γ ⊢ e1 : ⋆ Γ ⊢ e2 : T

Γ ⊢ e1 e2 : ⋆

Γ ⊢ e1 : S → T Γ ⊢ e2 : S ′ S ∼ S ′

Γ ⊢ e1 e2 : T

Γ ⊢ e1 : S Γ ⊢ e2 : T S ∼ int T ∼ int

Γ ⊢ e1 × e2 : int

Fig. 6. The Gradually Typed Lambda Calculus (GTLC): surface syntax and typing.

1 let E(id : ⋆) =
2 id 2;

3 id true int
4

5 E(fun (x : ⋆) . x);

Fig. 5. Dynamic type error.

Type migration can introduce new dynamic errors. So far, we have
looked at migrations that introduce static type errors. However,
there is a more insidious problem that can occur: a migration can
introduce new dynamic type errors. ?? shows a program that runs
without error: E receives the identity function and applies it to two
different types. However, since E’s argument has type ⋆, which
is compatible with all types, the program is well-typed even if
we migrate the identity function to require an integer argument.
Gradual typing will wrap the function to dynamically check that it only receives integers. So the
program runs without error before migration, but produces a dynamic type error after migration.
Strictly speaking, although this migration introduces a new dynamic error, its static types are more
precise. When evaluating migrations, it is not enough to consider just the types or interfaces: it is
important to understand which run-time checks will be inserted.

In summary, there are several competing concerns that we must consider when choosing an
approach to type migration. TypeWhich prioritizes preserving the behavior of the original program:
it produces types that do not introduce new static or dynamic errors in the migrated code. However,
this objective leaves the question of context unanswered. Should TypeWhich produce the most
precise type it can? This may make the migrated code incompatible with unmigrated code. So,
should TypeWhich instead produce a type that is compatible with all untyped code? This would
mean discarding a lot of useful information, e.g., the types of function arguments. Or, should
TypeWhich strike a compromise between precision and compatibility? We think the right answer
depends on the context in which the type migration tool is being used. Instead of making an
arbitrary decision, TypeWhich allows the programmer to choose between several migrations that
prioritize different properties.

3 FORMALIZING THE TYPE MIGRATION PROBLEM

We now formally define the type migration problem. We first briefly review the gradually typed
lambda calculus (GTLC) [?], which is a core calculus for mixing typed and untyped code. We then
present several definitions of type migration for the GTLC.

4

Solver-based Gradual Type Migration

Ground types
G B B | fun
Coercions
k BG? Untag
| G ! Tag
| wrap(k1, k2) Wrap function
| k1;k2 Sequence
| idT Identity

Expressions
e B · · · | [k] e Apply coercion
Untagged values
u B c | fun(x : T).e
Values
v Bu | box(G, u)
Evaluation Contexts
E B [] | E e | v E | [k] E
Active Expressions
aeB (fun(x : T).e) v | [k] v
Evaluation ⊢ e ↪→ e

(fun(x : T).e) v ↪→ e[x/v]
[id] v ↪→ v
[G !] (u) ↪→ box(G, u)
[G?] (box(G, u)) ↪→ u
[wrap(k1, k2)] v
↪→ fun(x : ⋆).[k2] (v ([k1] x))
[k1;k2] v ↪→ [k2] ([k1] v)

ae ↪→ e′

E[ae] ↪→ E[e′]

coerce(T , T) = idT
coerce(⋆, b) = b?
coerce(b, ⋆) = b!
coerce(⋆, ⋆→ ⋆) = fun?
coerce(⋆→ ⋆, ⋆) = fun!
coerce(S1 → S2, T1 → T2) = wrap(coerce(T1, S1), coerce(S2, T2))
coerce(⋆, T1 → T2) = fun?;wrap(coerce(⋆, T1, ⋆), coerce(⋆, T2))
coerce(T1 → T2, ⋆) = wrap(coerce(⋆, T1), coerce(T2, ⋆)); fun!
coerce(S, T) = coerce(S, ⋆); coerce(⋆, T)

Coercion Insertion Γ ⊢ e ⇒ e, T

Γ(x) = T

Γ ⊢ x ⇒ x, T Γ ⊢ c ⇒ c, ty(c)

Γ, x : S ⊢ e ⇒ e′, T

Γ ⊢ fun(x : S).e ⇒ fun(x : S).e′, S → T

Γ ⊢ e1 ⇒ e′1, S → T Γ ⊢ e2 ⇒ e′2, S
′

Γ ⊢ e1 e2 ⇒ e′1 ([coerce(S
′, S)] e′2), T

Γ ⊢ e1 ⇒ e′1, T T , T1 → T2 Γ ⊢ e2 ⇒ e′2, S

Γ ⊢ e1 e2 ⇒ ([coerce(T , ⋆→ ⋆)] e′1) ([coerce(S, ⋆)] e
′
2), ⋆

Fig. 7. Coercion insertion and evaluation for the GTLC.

3.1 The Gradually Typed Lambda Calculus

The Gradually Typed Lambda Calculus (GTLC) extends the typed lambda calculus with base types
(integers and booleans) and the unknown type ⋆. ?? shows its syntax and typing rules.

Type checking relies on the type consistency relation, S ∼ T . Type consistency determines
whether an S-typed expression may appear in a T -typed context. Two types are consistent if they
are structurally equal up to any unknown (⋆) types within them; the ⋆-type is consistent with
all types and any expression may appear in a ⋆-typed context. The type consistency relation is
reflexive and symmetric, but not transitive: int and bool are both consistent with ⋆ but not with
each other.
The typing rules for identifiers, literals, and functions are straightforward, but there are two

function application rules: (1) If the expression in function position has type ⋆, then the argument
may have any type, and the result of the application has type ⋆. (2) When the type of the function
expression is an arrow type (S → T), the result has type T . The type of the argument must be
consistent with—but not necessarily equal to—the type of argument the function expects (S ′ ∼ S).

We add a built-in multiplication operator that requires the types of its operands to be consistent
with int (i.e., an operand may have type ⋆). We choose multiplication because the “+” operator is
overloaded in many untyped languages: we add addition in ??, where we discuss overloading.

5

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

Type Precision T ⊑ T

⋆ ⊑ T T ⊑ T

S1 ⊑ S2 T1 ⊑ T2
S1 → T1 ⊑ S2 → T2

Expression Precision e ⊑ e

x ⊑ x c ⊑ c

e1 ⊑ e′1 e2 ⊑ e′2
e1 e2 ⊑ e′1 e

′
2

T ⊑ T ′ e ⊑ e′

fun(x : T).e ⊑ fun(x : T ′).e′

Fig. 8. Type and expression precision.

3.2 Ground Types and Coercion-based Semantics

Programs in the GTLC are not run directly, but are first compiled to an intermediate representation
where static type consistency checks are turned into dynamic checks if necessary. There are
two well-known mechanisms for describing these dynamic checks: casts and coercions. We use
coercions, following ?, as they most closely match the type-tagging and tag-checking operations
used at run-time in dynamic languages.1
The ground types (G in ??) are the types that are dynamically observable, and include all base

types and a ground type fun for all functions. The two basic coercions (k) tag a value with a ground
type (G!) and untag a value after checking that it has a particular ground type (G?). Both of these
operations can fail: an already-tagged value cannot be re-tagged, and untagging succeeds only if
the value has the expected ground type. There are three additional coercions: identity coercions,
which exist only to simplify certain definitions; a sequencing coercion (k1;k2); and a function proxy

wrap that lifts coercions to functions.
To see how the coercion system works, consider a case where we have a ⋆-typed value f that

we want to treat as a function of type int→ int. To do so, we apply f to a coercion as follows:

[fun?;wrap(int!, int?)]f

This coercion first checks that that f is a function (fun?), and then wraps f in a function proxy
that will tag its int argument (since f expects a ⋆ value) and will untag its result (since f returns a
⋆, but we expect an int).

The values of the language (v) include constants, functions, and values tagged with a ground
type. We define tagged values (box(G,u)) so that a tag can only be placed on an untagged value (u).

The coercion insertion rules are analogous to typing, but produce both a type and an equivalent
expression with explicit coercions. They rely on the coerce metafunction that translates a static
consistency check S ∼ T into a corresponding coercion that is dynamically checkable. When two
types are identical, coerce produces the identity coercion, which can be safely removed. The final
case of coerce addresses inconsistencies (S / T). Instead of rejecting programs with inconsistent
checks, we produce a coercion that is doomed to fail. Gradual typing systems sometimes reject
programs that demand casts between incompatible types. However, doing so violates the desired
property that migrations should preserve the behavior of the original program when possible. If
we rejected these programs, a user would need to excise all incompatibilities, whether or not they
are in live code branches, at the onset of migration.

3.3 Type Migration

All formulations of the type migration problem rely on defining type precision, where ⋆ is the least
precise type. The type precision relation (??), written S ⊑ T , is a partial order that holds when S is
less precise thanT (or S andT are identical). We use type precision to define expression precision in
the obvious way: an expression is more precise than its structural equivalent if its type annotations
are more precise according to the type precision relation.

1The two approaches are inter-translatable [??] with full abstraction [?].

6

Solver-based Gradual Type Migration

? define a type migration as an expression that has more precise type annotations, and use this
definition to study the decidability and computational complexity of several problems, such as
finding migrations that cannot be made more precise.

Definition 3.1 (Type Migration). Given ⊢ e : T and ⊢ e ′ : T ′, e ′ is a type migration of e if e ⊑ e ′

and T ⊑ T ′.

However, as we argued in ??, improving type precision is one of several competing goals for type
migration. Another important goal is to preserve the behavior of the original program. To reason
about this, we must reformulate the definition of a type migration to relate the values produced by
the original expression and its migration. We propose the following definition of value-restricted
type migration:

Definition 3.2 (Value-restricted Type Migration). Given ⊢ e : T and ⊢ e ′ : T ′, e ′ is a restricted type
migration of e if:

(1) e ⊑ e ′;
(2) T ⊑ T ′; and
(3) e ↪→∗ v if and only if e ′ ↪→∗ v ′ with v ⊑ v ′.

This definition of typemigration relates the values of the two expressions. However, this definition
is too weak. For one thing, it does not say anything about programs that produce errors or do
not terminate. But there is a more serious problem: it is too permissive for function types. For
example, given the identity function with type ⋆→ ⋆, this definition allows a type migration that
changes its type to int→ int, which will produce a dynamic type error if the function is applied to
non-integers.
To address this issue, the definition of type migration must take into account the contexts in

which the migrated expression is used. We define a well-typed program contextC as a context with
a hole that can be filled with a well-typed open expression to get a well-typed closed expression.

Definition 3.3 (Well-Typed Program Context). A program context C is well typed, written C : (Γ ⊢
S) ⇒ T if for all expressions e where Γ ⊢ e : S we have ⊢ C[e] : T .

We now define a context-restricted type migration as a more precisely-typed expression that is
equivalent to the original expression in all contexts that can be filled with an expression of a given
type S . Note that the type expected by the context (S) must be consistent (but not identical) with
the types of both the original and the migrated expression.

Definition 3.4 (Context-restricted Type Migration). Given ⊢ e : T , ⊢ e ′ : T ′, and a type S where
S ∼ T and S ∼ T ′, e ′ is a context-restricted type migration of e at type S if:

(1) e ⊑ e ′;
(2) T ⊑ T ′; and
(3) For all C : (· ⊢ S) ⇒ U , either a) C[e] ↪→∗ v and C[e ′] ↪→∗ v ′ with v ⊑ v ′; b) both C[e] and

C[e ′] get stuck at a failed coercion; or c) both C[e] and C[e ′] do not terminate.

At the limit, the context’s expected type S could be ⋆, in which case the definition is essentially
equivalent to that of ?, Theorem 3.22. However, this is a very strong requirement that rules out
many informative migrations (??). If the programmer is comfortable making assumptions about
how the rest of the program will interact with the migrated expression, they may choose a more
precise S , and allow a wider range of valid type migrations.

7

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

Types
T B · · ·
| α, β, γ , δ Type metavariables

Coercions
k B · · ·
| coerce(T1, T2) Coercion from T1 to T2

Type Representation
1 (declare-datatypes ()
2 ((Typ (star) (int) (bool)
3 (arr (in Typ) (out Typ)))))

Constraints
ϕ BT1 = T2 Type equality
| w Boolean variable (weight)
| ϕ1 ∧ ϕ2 Conjunction
| ϕ1 ∨ ϕ2 Disjunction
| ¬ϕ Negation

Constraint Metafunctions
ground ∈ T → ϕ
ground(T) = T ∈ B ∨T = ⋆→ ⋆

Fig. 9. The type constraint language, and language extensions for constraint generation.

4 THE TYPEWHICH APPROACH TO TYPE MIGRATION

We now present TypeWhich, an approach to type migration that differs in two ways from previous
work. (1) Instead of relying on a custom constraint solver, TypeWhich produces constraints and an
objective function for the Z3 MaxSMT solver [?]. (2) Instead of producing a single migration, or
several migrations without guidance on which to choose, TypeWhich allows the user to choose
between migrations that prioritize type precision, compatibility with untyped code, or other
properties. Moreover, the TypeWhich migration algorithm handles these different scenarios in a
uniform, type-directed way. This section presents TypeWhich’s type migration algorithm for the
core GTLC. ?? extends TypeWhich with additional language features, including some that have
not been precisely described in prior work.

4.1 The Language of Type Constraints

For the purpose of constraint generation, we make two additions to the GTLC (??):
(1) We extend types with type metavariables (α).
(2) We introduce a new coercion, coerce(S,T), which represents a suspended call to the coerce

metafunction (??). The type arguments to coerce may include type metavariables. After
constraint solving, we substitute any type metavariables with concrete types and use the
coerce metafunction to get a primitive coercion (k).

Both of these are auxiliary and do not appear in the final program.
The constraints (ϕ) that we generate are boolean-sorted formulas for a MaxSMT solver that

supports the theory of algebraic datatypes [?]. In addition to the usual propositional connectives,
our constraints involve equalities between types (T1 = T2), predicates over types (e.g., to check if
a type is an arrow type), and auxiliary boolean variables (w). We use these boolean variables to
define soft constraints that guide the solver towards solutions with fewer non-trivial coercions.

Using Z3’s algebraic datatypes, we define a new sort (Typ) that encodes all types (T) except type
metavariables. Constraint generation defines a Typ-sorted constant for every metavariable that
occurs in a type. For example, we can solve the type constraint α → int = β with the following
commands to the solver:
(declare-const alpha Typ)

(declare-const beta Typ)

(assert (= (arr alpha int) beta))

This example is satisfiable, and the model assigns alpha and beta to metavariable-free types
(represented as Typ). If σ is such a model, we write Subst(σ , β) to mean the metavariable-free type
assigned to β , i.e., the closure of substituting with the model σ . In this example, α is unconstrained,

8

Solver-based Gradual Type Migration

Γ ⊢ e ⇒ e, T , ϕ

Id
ϕ = (α = Γ(x) ∧w) ∨ (α = ⋆ ∧ ¬w) α, w is fresh

Γ ⊢ x ⇒ [coerce(Γ(x), α)]x, α, ϕ
Const

ϕ = (α = ty(c) ∧w) ∨ (α = ⋆ ∧ ¬w) α, w is fresh

Γ ⊢ c ⇒ [coerce(ty(c), α)]c, α, ϕ

Fun

Γ, x : α ⊢ e ⇒ e′, T , ϕ1 β, w fresh
ϕ2 = (β = α → T ∧w) ∨ (β = ⋆ ∧ ground(α → T) ∧ ¬w)

Γ ⊢ fun(x : α).e ⇒ [coerce(α → T , β)]fun(x : α).e′, β, ϕ1 ∧ ϕ2

App

Γ ⊢ e1 ⇒ e′1, T1, ϕ1 Γ ⊢ e2 ⇒ e′2, T2, ϕ2 α , β , γ , w1, and w2 are fresh
ϕ3 = (T1 = α → β ∧w1) ∨ (T1 = α = β = ⋆ ∧ ¬w1) ϕ4 = (T2 = α) ϕ5 = (β = γ ∧w2) ∨ (γ = ⋆ ∧ ¬w2)

Γ ⊢ e1 e2 ⇒ [coerce(β, γ)](([coerce(T1, α → β)]e′1) e
′
2), γ , ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5

Mul

Γ ⊢ e1 ⇒ e′1, T1, ϕ1 Γ ⊢ e2 ⇒ e′2, T2, ϕ2 w1, w2, and w3 are fresh
ϕ3 = (T1 = int ∧w1) ∨ (T1 = ⋆ ∧ ¬w1) ϕ4 = (T2 = int ∧w2) ∨ (T2 = ⋆ ∧ ¬w2)

ϕ5 = (α = int ∧w3) ∨ (α = ⋆ ∧ ¬w3)

Γ ⊢ e1 × e2 ⇒ [coerce(int, α)]([coerce(T1, int)]e′1 × [coerce(T2, int)]e
′
2), α, ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5

Fig. 10. Constraint generation for GTLC

so there are several possible models: σ = {α 7→ int, β 7→ α → int} is one, as is σ ′ = {α 7→ ⋆, . . . }.
We have Subst(σ , β) = int→ int, while Subst(σ ′, β) = ⋆→ int.

Finally, for succinctness, we define ground(T), which produces a constraint that is satisfiable
when T is a ground type. At the moment, the only ground types are base types and dynamic
function types (⋆→ ⋆). ?? extends the language with additional types and augments the definition
of ground.

4.2 Generating Type Constraints

We now present constraint generation for the GTLC. To simplify the presentation, we assume that
all bound variables have type ⋆. Constraint generation is a two-step process:
(1) We replace every ⋆ annotation in the input program with a fresh metavariable. The solution

to the constraints maps these metavariables to types, which may be more precise than ⋆.
(2) We generate constraints by applying deterministic, syntax-directed inference rules.
Since the first step is straightforward, we focus on constraint generation. The constraint gen-

eration rules are of the form Γ ⊢ e ⇒ e ′,T ,ϕ: the inputs are the type environment (Γ) and the
expression (e), and the outputs are as follows:
(1) An output expression (e ′) that is equivalent to the input expression, but with explicit coercions.
(2) A type (T), which is the type of the expression, and may include metavariables.
(3) A constraint (ϕ) with type-sorted and boolean-sorted free variables.

When formulating constraint generation, there are several requirements to keep in mind. First, the
constraint ϕ may be satisfiable in several ways. We will eventually use soft constraints to choose
among solutions, but we design the constraint generation process so that all models of ϕ correspond

to valid migrations. Second, as argued in ??, we do not want to reject any programs. We therefore
set up constraint generation so that we do not introduce new static errors. Our final goal is to favor

informative types. We do this via soft constraints that penalize the number of non-trivial, syntactic
coercions. Note that this is not the same as minimizing the number of coercions performed during
evaluation, which is a harder problem that we leave for future work (but see ?).

Constraint Generation Rules. Constraint generation is syntax directed (??). As a general principle,
we allow all expressions to be coerced to ⋆: this enables us to migrate all programs, even though

9

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

it may generate coercions that are doomed to fail if they are ever run. This property is critical to
ensure that models exist for all programs (Theorem ??).2
Following this principle, the rule for identifiers (Id) introduces a coercion that is either the

identity coercion (when α is T , the type of the identifier in the environment), or a coercion to ⋆
(when α is ⋆). At a later step (??), we produce a soft constraint favoringw over ¬w , which guides
the solver towards solutions that avoid the non-trivial coercions when possible.
Similarly, the rule for constants (Const) generates two new variables: α and a fresh weight

variablew . The rule constrains the type α to either be the type of the constant, or the⋆ type (i.e, to
avoid rejecting true × 1). In the former case, we constrainw to be true, and in the latter, to false.

The rule for functions (Fun) assumes that the argument is annotated with a unique metavariable
(α) and recurs into the function body, which produces some type T . The rule gives the function the
type β (a fresh metavariable), and constrains it to be the type of the function (α → T) or the⋆ type.
In the latter case, we also constrain the type of the function to be the ground type (⋆→ ⋆). We use
a weightw to prefer the former case without rejecting expressions like 1 × (fun(x : ⋆).x).
The rule for function applications (App) produces a constraint that is a conjunction of five

clauses: ϕ1 and ϕ2 are the constraints that arise when recurring into the two sub-expressions of the
application; ϕ3 constraints the type of the function; ϕ4 constrains the type of the argument; and ϕ5
constrains the type of the result. Together, ϕ3 and ϕ4 capture the two ways in which applications
can be typed in the GTLC: the function may be of type⋆, in which case it is coerced to the function
ground type, ⋆→ ⋆ andw is false, or the function already has a function type, andw1 is true. In
either case, the argument type is constrained to be the function input type α . The final constraint
allows the result type, β , to be coerced to ⋆;w2 is true only if this is a non-trivial coercion.

The rule for multiplication (Mul) produces a five-part conjunction: ϕ1 and ϕ2 are the constraints
produced by its operands; ϕ3 and ϕ4 constrain each operand to either be int or ⋆ and use weights
to prefer the former; and ϕ5 constrains the type of the result to either be int or ⋆, with a weight
that prefers for the former; again, this is necessary to avoid rejecting programs.

Example 1: Types for the Identity Function. Consider the following program, which applies the
identity function to 42 and true, and has the least precise type annotations:3

(fun(id : ⋆).(fun(n : ⋆).id true)(id 42)) (fun(x : ⋆).x)

First, consider how we might manually migrate the program. One approach is to change the type
of x to int (underlined below), and leave the other annotations unchanged:

(fun(id : ⋆).(fun(n : ⋆).id true) (id 42)) (fun(x : int).x)

It is important to note that this program is well-typed and has a more precise type than the original.
However, it produces a run-time type error on id true , whereas the original program does not.
Fortunately, constraint generation rules out this migration: the outermost application coerces the
argument type to ⋆. However, the argument type (int→ int) is not a ground type, which App also
requires. Thus our constraint generation algorithm rules out this migration.

The following type migration, also constructed manually, is the most precise migration that does
not introduce a run-time error (changes to the original program are underlined):

(fun(id : ⋆→ ⋆).(fun(n : int).id true) (id 42)) (fun(x : ⋆).x)

2We have also implemented a version of TypeWhich that uses an alternative constraint generation rule for identifiers
that enforces rigid types together with a modified version of the function application rule that can coerce the function
argument. This leads to a loss of type precision, but produces type annotations that are more robust to code-refactoring.
Both approaches are sound and safe at the generated types (??).
3This is a variation of the example in ??.

10

Solver-based Gradual Type Migration

1: ▷ The only annotations in e are ⋆
2: function PreciseMigrate(e)
3: e1 ← IntroduceMetavars(e) ▷ Replace every ⋆ with a fresh α s
4: · ⊢ e ⇒ e′, T1, ϕ ▷ Generate constraints and objectives
5: for α ∈ ϕ do ▷ The set of type metavariables in ϕ
6: (declare-const α Typ)

7: for w ∈ ϕ do ▷ The set of weight variables in ϕ
8: (declare-const w Bool)
9: (assert-soft w 1)

10: (check-sat ϕ)
11: σ ← (get-model) ▷ Model mapping type metavariables to types
12: return Subst(σ , e′) ▷ Migrated program without explicit coercions

Fig. 11. Precise Type Migration.

However, concluding that n has type int requires reasoning about the flow of values through the
identity function. Our constraint generation rules can’t find this solution. Instead, the most precise
type allowed by our constraints gives id the type ⋆→ ⋆ and leaves n and x at type ⋆:

(fun(id : ⋆→ ⋆).(fun(n : ⋆).id true) (id 42)) (fun(x : ⋆).x)

This example illustrates an important principle that we follow in constraint generation: if we
generate a new coercion around an expression e to type ⋆, then we must also constrain the type of
e to be a ground type. As we grow the language with more types, the set of ground types will grow.
When this happens, we update the definition of the ground predicate, but the rest of constraint
generation remains unchanged.
The following theorem establishes that all models that satisfy our constraint generation rules

produce well-typed expressions.

Theorem 4.1 (Type Migration Soundness). If Γ ⊢ e ⇒ e ′,T ,ϕ and σ is a model for ϕ, then
Subst(σ , Γ) ⊢ Subst(σ , e ′) : Subst(σ ,T).

Proof. By induction on the coercion insertion judgment (see ?? for more details). □

4.3 Solving Constraints for Precise Type Migration

Our formulation of constraint generation produces a constraint (ϕ) that may have multiple models,
all of which encode valid type migrations of varying precision. Our goal in this section is to find as
precise a migration as possible. To do this, we rely on the MaxSMT solver’s ability to define soft
constraints. The solver prefers solutions that obey these constraints, but can violate them when
necessary to produce a model.
Our constraint generation rules adhere to the following recipe: every rule that introduces a

coercion also introduces a fresh boolean variable (w) that is true when the coercion is trivial
(coerce(T ,T)) and false otherwise. The Fun rule introduces one boolean variable, while the App
rule introduces two, since it may introduce two non-trivial coercions.
We use the algorithm sketched in ??. For each boolean variable, we produce a soft constraint

asserting thatw should hold (the corresponding coercion should be trivial if possible). Given these
soft constraints, we check that the formula ϕ is satisfiable and get a model (σ) that assigns type
metavariables to types. We then substitute metavariables with concrete types accordingly.

Example 2: A migration that is too precise. Consider the following program as an input to our
algorithm:

F1 ≜ fun(f : ⋆).fun(д : ⋆).(f 1) × (д f)

11

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

The algorithm produces the following migration, which has the most precise types possible:

F2 ≜ fun(f : int→ int).fun(д : (int→ int) → int).(f 1) × (д f)

But is the most precise type really the best type? The answer depends on how the original function
was used. For example, in the following program F2 is not substitutable for F1:

Before (produces zero) After (static type error)
F1 (fun(x : ⋆).0) (fun(k : bool→ ⋆).k true) F2 (fun(x : ⋆).0) (fun(k : bool→ ⋆).k true)

The left-hand side type-checks and evaluates to 0, while the right-hand side has a static type error:
the bool type in the (unmigrated) context is inconsistent with the migrated type int.
We might reason that it is acceptable to generate this static error. But there is a second, more

serious problem: in a gradually typed language, it is possible to turn static type errors into run-time
type errors. Consider the following variation where the annotation on k in the unmigrated version
is less precise:

Before (produces zero) After (dynamic type error)
F1 (fun(x : ⋆).0) (fun(k : ⋆).k true) F2 (fun(x : ⋆).0) (fun(k : ⋆).k true)

Both programs above are well-typed. However, the static error from the previous example is now
a dynamic error. As we argued in ??, making types more precise in a portion of a program can
introduce run-time errors at the (higher-order) boundary between migrated and unmigrated code.

Perhaps we can address this problem by producing a different migration of F1:

F3 ≜ fun(f : ⋆→ int).fun(д : (⋆→ int) → int).(f 1) × (д f)

This migration is less precise than F2: although f and д must still be functions, they are not required
to consume integers. It is therefore equivalent to F1 in our unmigrated context.

Before (produces zero) After (also produces zero)
F1 (fun(x : ⋆).0) (fun(k : ⋆).k true) F3 (fun(x : ⋆).0) (fun(k : ⋆).k true)

Unfortunately, there are other contexts that lead to errors in F3 that do not occur with F1. For
instance, the following program produces an error with F3 but not F1.

F3 (fun(x : ⋆).x) (fun(id : ⋆).(fun(b : ⋆).0) (id true))

We can address this problem with a migration with even lower precision:

F4 ≜ fun(f : ⋆→ ⋆).fun(д : (⋆→ ⋆) → int).(f 1) × (д f)

This expression does not produce the same error as the previous example, and is compatible with
all our examples. However, we have lost a lot of information about how F1 uses its arguments. To
summarize, we have seen a series of migrations for F1 in decreasing order of precision:

F1 ⊑ F4 ⊑ F3 ⊑ F2

Our algorithm produces F2, but the other, less precise migrations are compatible with more contexts.
So, which migration is best? The answer depends on the context of use for the program. If the
programmer is generating documentation, they may prefer the more precise migration. On the
other hand, if they are adding types to a library and cannot make assumptions about the function’s
caller, they may desire the migration that is compatible with more contexts.

12

Solver-based Gradual Type Migration

1: ▷ The only annotations in e are ⋆
2: function Migrate(Weaken, e)
3: e1 ← IntroduceMetavars(e) ▷ Replace ⋆s with fresh α s
4: · ⊢ e1 ⇒ e′, T1, ϕ
5: for α ∈ ϕ do ▷ The type metavariables in ϕ
6: (declare-const α Typ)

7: for w ∈ ϕ do ▷ The weight variables in ϕ
8: (declare-const w Bool)
9: (assert-soft w 1)

10: (check-sat ϕ)
11: σ ← (get-model)
12: T2 ← Subst(σ , T1) ▷ The most precise type
13: ϕ′ ←Weaken(T2, T1)
14: (check-sat ϕ ∧ ϕ′)
15: σ ′ ← (get-model)
16: return Subst(σ ′, e′)

T1 = ⋆ [?]

P (T1 → T2, ϕT , b) ≜ P (T1, (arr-in ϕT), ¬b) ∧

P (T2, (arr-out ϕT), b)
P (B, ϕT , true) ≜ true
P (B, ϕT , false) ≜ ϕT = ⋆

P (⋆, ϕT , b) ≜ true
Weaken(T , ϕT) ≜ P (T , ϕT , true)

Fig. 12. The Type Migration Algorithm.

4.4 Choosing Alternative Migrations

Although the algorithm presented above produces the most precise migration that the TypeWhich
constraints encode, we can also use TypeWhich to infer alternative migrations that prioritize other
properties, such as contextual compatibility.

At first glance, it seems straightforward to weaken the more precise type inferred in the preceding
section. Suppose the algorithm produces a migration e with typeT , and we want a less precise type
S (S ⊑ T). It seems that we could simply wrap e in a coercion: [coerce(T , S)]e . Unfortunately, this
purported solution is no different from the adversarial contexts presented above. The expression
has the desired weaker type S , but gradual typing ensures that it behaves the same as the stronger
type T at run-time, including producing the same run-time errors! Instead, we need to alter the
type annotations that are internal to e .

Weakening Migrations. TypeWhich employs a two-step approach to type migration. We first
generate constraints and calculate the most precise type possible, as described earlier (lines ??–??
of ??; identical to ??). We then identify all base types in negative position (following ?), and add
new constraints that force them to be ⋆ to ensure contextual compatibility. We apply a function
Weaken to the output of the first-pass constraint generation (T1, which has metavariables) to add
these additional constraints.

Once we have the weakening constraint, we must update the type annotations in the migrated
program and calculate the new weaker type. To do so, we run the solver once more with the
added constraint (line ??). This produces a new model (line ??), which we use to substitute type
metavariables and produce a fully annotated program.
It is worth reflecting on why a two-stage procedure is necessary. The first stage produces the

most precise type that we can. We want to discover a type skeleton that is as precise as possible;
without this stage, we might miss some of the structure, e.g., by failing to predict arrow types. The
second stage is necessary in order to propagate the constraints on the program’s type back through
the migrated program, which may involve arbitrary changes to internal type annotations.

Critically, the new set of constraints ϕ ′ must not impose unnecessary conditions on the type of
the program. For example, suppose the original program e has a precise type int→ int. Since this
type only allows the context to provide int-arguments to e , we might conclude that a better type
for e is ⋆→ int. But this may be impossible: for instance, if e is the identity function, its argument

13

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

Ground types Base Types
G B · · · | ref B B · · · | unit
Constants Types
b B · · · | unit T B · · · | refT
Expressions
e B · · ·
| ref e Create cell
| !e Read cell
| e1Be2 Write cell

Constraint Metafunctions
ground ∈ T → ϕ
ground(T) = T ∈ B ∨T = ⋆→ ⋆ ∨T = ref⋆

Type Representation
1 (declare-datatypes ()
2 ((Typ (star) (int) (bool)
3 (ref (to Typ))
4 (arr (in Typ) (out Typ)))))

If

Γ ⊢ e1 ⇒ e′1, T1, ϕ1 Γ ⊢ e2 ⇒ e′2, T2, ϕ2 Γ ⊢ e3 ⇒ e′3, T3, ϕ3 w1, w2, α are fresh
ϕ4 = ((T1 = bool ∧w1) ∨ (T1 = ⋆ ∧ ¬w1)) ∧ ((T2 = T3 = α ∧w2) ∨ (α = ⋆ ∧ ground(T2) ∧ ground(T3) ∧ ¬w2))

Γ ⊢ if e1 then e2 else e3 ⇒ if [coerce(T1, bool)]e′1 then [coerce(T2, α)]e
′
2 else [coerce(T3, α)]e

′
3, α, ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4

Add

Γ ⊢ e1 ⇒ T1, e′1ϕ1 Γ ⊢ e2 ⇒ T2, e′2, ϕ2 w, α are fresh
ϕ3 = ((α = int ∨ α = str) ∧ α = T1 = T2 ∧w) ∨ (α = ⋆ ∧ ground(T1) ∧ ground(T2) ∧ ¬w)

Γ ⊢ e1 + e2 ⇒ ([coerce(T1, α)]e′1) + ([coerce(T2, α)]e
′
2), α, ϕ1 ∧ ϕ2 ∧ ϕ3

Ref

Γ ⊢ e ⇒ T , e′, ϕ1 α and w are fresh
ϕ2 = (α = refT ∧w) ∨ (α = ⋆ ∧ ground(refT) ∧ ¬w)

Γ ⊢ ref e ⇒ [coerce(refT , ref α)]ref e′, α, ϕ1 ∧ ϕ2

Deref
Γ ⊢ e ⇒ T , e′, ϕ1 α, w are fresh ϕ2 = (T = ref α ∧w) ∨ (T = α = ⋆ ∧ ¬w)

Γ ⊢!e ⇒!([coerce(T , ref α)]e′), α, ϕ1 ∧ ϕ2

SetRef

Γ ⊢ e1 ⇒ T1, e′1, ϕ1 Γ ⊢ e2 ⇒ T2, e′2, ϕ2 α and w are fresh
ϕ3 = (T1 = ref α ∧T2 = α ∧w) ∨ (α = ⋆ ∧ ground(T1) ∧ ground(T2) ∧ ¬w)

Γ ⊢ e1Be2 ⇒ ([coerce(T1, ref α)]e′1)B[coerce(T2, α)]e
′
2, Unit, ϕ1 ∧ ϕ2 ∧ ϕ3

Fig. 13. Extensions to the GTLC.

and result types must be the same. On the other hand, if the body of e is a multiplication, then
making the input type⋆ does not affect the output type: it can remain int. By adding the constraint
and re-solving, TypeWhich is able to distinguish between these two scenarios.
We note that there are several possible variations forWeaken. When migrating higher-order

functions, it is useful to use a definition that turns base-typed inputs in negative position to ⋆,
but preserves arrow types in the input. An alternative is to turn all input types to ⋆ to maximize
compatibility, similar to ?. Our implementation of TypeWhich supports both of these and could be
easily extended to other variations as well.

Our two-stage approach to contextual safety highlights the key trade-off between precision and
safety in typemigration. Our first-pass discovers the most precise types that we can; our second-pass
sacrifices some of this precision to provide compatibility with a wider range of contexts.

Theorem 4.2 (Type Migration Completeness). Every well scoped dynamic program e has a
migration, i.e., there exists e ′, T , and ϕ such · ⊢ e ⇒ e ′,T ,ϕ such that ϕ is satisfiable in some model σ .

Proof. We prove that a fully dynamic model σ exists (??) and then show that such models are
stable under weakening, i.e., they are still satisfiable (?? and ??). □

5 LANGUAGE EXTENSIONS

We now extend the GTLC and TypeWhich to support several common language features. These
new features affect our constraint generation rules, but they do not change the migration algorithm.

14

Solver-based Gradual Type Migration

Conditionals. Retrofitted type checkers for untyped languages employ a variety of techniques to
give precise types to conditional expressions (??). The GTLC-based languages (e.g., ?) use a simpler
approach: (1) the type of the test must be consistent with bool, and (2) the type of the expression is
the least upper bound of the types of either branch.

The If rule in ?? shows constraint generation for conditionals. The generated constraint (ϕ4) has
two conjunctions that 1) constrain the type of the condition to bool or⋆, and 2) constrain the types
of each branch to be identical types or distinct ground types (in which case, both are coerced to the
unknown type).

Overloaded Operators. Many languages have overloaded built-in operators: for instance, the “+”
operator is frequently used for addition and string concatenation. To support this, the run-time
system has three operators available: (1) primitive addition, (2) primitive string concatenation, and
(3) a complex operation whose behavior depends on the run-time types of its arguments. Type
migration can reveal the type at which an overloaded operator is used, which can help programmers
understand their code and improve run-time performance. The constraint generation rule for “+”
in ?? introduces a boolean-sorted variable (w) that is true when the operands both have type int or
str; when the variable is false, the constraint requires the two arguments to have type ⋆. Thus, it
favors solutions that do not employ ⋆when possible.

Mutable Data Structures. TypeWhich supports ML-style mutable references and mutable vectors.
There are several ways to add mutable references to the GTLC [???]. However, all approaches share
the following property: in untyped code, where all mutable cells contain ⋆-typed values, the only
reason that reading or writing fails is when the expression in reference position is not a reference.
In constraint generation, we are careful to avoid solutions that may introduce other kinds of errors.

The least precise reference type is a reference to the unknown type (ref⋆), so we add this to the
set of ground types (??). In the constraint generation rule for writes, we require that either (1) the
type of value written is exactly the referenced type, or (2) both the reference and the value written
are ground types. The restriction to ground types is necessary because, as in the function case,
once a reference is coerced to ⋆, we have no way to recover its original type; allowing non-ground
types to be coerced to ⋆ can introduce run-time errors. TypeWhich also supports mutable vectors
implemented along the same lines.

Other language features. The implementation of TypeWhich supports a variety of other language
features, including tuples, let, and a fix construct. Many of these are necessary to support the
Grift programming language, which we use in our evaluation. Constraint generation rules for these
extensions can be found in ??.

6 EVALUATION

This section presents the first comprehensive comparison of several type migration algorithms from
the literature (along with TypeWhich). We compare five type migration tools on a two-part suite of
22 programs: the benchmarks from ? and a new suite of “challenge programs” that we have designed
to illustrate the strengths and weaknesses of various approaches. We also evaluate TypeWhich
using the Grift benchmarks from ?, to show that TypeWhich can reconstruct hand-written type
annotations in Grift.

To facilitate high-level understanding of the results, we first discuss summary metrics for evalu-
ating automated type migration tools.

15

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

6.1 How Should Type Migration Tools Be Evaluated?

As we have argued in ??, the type migration problem involves inherent trade-offs between different
goals. For this reason, we avoid choosing a single evaluation metric, since this would favor one
goal of type migration above the others. For instance, using the total number of type annotations
improved is a good metric for type precision, but reporting only precision would obscure the fact
that not all type refinements are alike: some change the behavior of the original program, while
others preserve its semantics. We have also illustrated how type precision can come at the expense
of compatibility with unmigrated code. This sacrifice may sometimes be warranted, but when a
function is migrated, it should remain usable with at least some arguments. This seems like a trivial
point, but consider the following migration:

Original Program Migrated Program
fun(f : ⋆).fun(x : ⋆). f xx fun(f : int→ bool→ ⋆).fun(x : ⋆). f xx

The migrated program has precise types that cannot be made more precise. However, the type of f
requires x to be both an integer and a boolean, and thus renders the function unusable.

We propose a multi-stage evaluation process for automated type migration tools. For each tool,
(1) we start with the full suite of programs and ask, How many programs does the tool reject with

static errors? (2) We take the remaining programs and ask, How many migrated programs crash

with a new dynamic type error? (3) We take the remaining programs and ask, How many migrated

programs are functions that are rendered unusable? (4) We take the remaining programs and ask two
final questions: (a) How many migrated programs are functions with types that are incompatible with

some untyped contexts? and (b) How many type annotations, counted across all remaining programs,

are not improved by migration?

Note that the denominator (potentially) decreases at each stage: if a tool fails to migrate a
program, then it is impossible to assess whether the migrated program crashes with a dynamic
error. Moreover, we do not want to give a system credit for increasing the precision of a type if the
refinement triggers a new dynamic error (i.e., it was an unsafe migration).

6.2 Type Migration Systems

We evaluate the performance of the following tools:

(1) TypeWhich: our tool, which we run in two modes: (a) to produce the most precise migra-
tion that we can (TypeWhich-P), and (b) to produce a migration that is compatible with
unmigrated code (TypeWhich-C).

(2) Gtubi: gradual typing with unification-based inference [?] is the earliest work on gradual type
migration. It does not introduce coercions that may fail.

(3) InsAndOuts: our implementation of the algorithm in ?. The algorithm is designed to not
introduce coercions that may fail, and to produce a migration that is compatible with arbitrary
unmigrated code.

(4) MaxMigrate: ? presents algorithms for several migration problems. We use the maximal

migration tool, which produces a migration that cannot be made more precise. The tool
searches for migrations by building types up to some depth (we use depth five as in the
paper). A single program may have several maximal migrations; we take the first migration
produced by the tool. We halt with no output if no migration is found.

(5) MGT: our implementation of the algorithm in ? for migrating untyped or partially typed
programs. We start from untyped code (all functions annotated with ⋆). We take the first
migration produced by the tool.

16

Solver-based Gradual Type Migration

Name Expression
FArg-Mismatch (fun(f : ⋆).f true) (fun(x : ⋆).x + 1)
Rank2-Poly-Id (fun(i : ⋆).(fun(a : ⋆).(i true)) (i 5)) (fun(x : ⋆).x)
Unreachable-Err (fun(b : ⋆).b (fun(c : ⋆).5 5) (fun(d : ⋆).0)) (fun(t : ⋆).fun(f : ⋆).f)
F-In-F-Out* (fun(f : ⋆).(fun(y : ⋆).f) (f 5)) (fun(x : ⋆).10 + x)
Order3-Fun* fun(f : ⋆).fun(x : ⋆).x (f x)
Order3-IntFun* fun(f : ⋆).fun(д : ⋆).f д ((д 10) + 1)
Double-F* fun(f : ⋆).f (f true)

Outflows* (fun(x : ⋆).x 5 + x) 5
Precision-Relation* (fun(f : ⋆).f true + (fun(д : ⋆).д 5) f) (fun(x : ⋆).5)
If-Tag fun(tag : ⋆).fun(x : ⋆).if tag then x + 1 else if x then 1 else 0

Fig. 14. Our Type Migration Challenge.

6.3 Gradual Type Migration Benchmarks

Our benchmark suite consists of two parts: a suite of benchmarks from ?, and a new suite of
challenge programs designed to illustrate the strengths and weaknesses of different approaches to
type migration.

Our proposed challenge suite is presented in ??. We describe the ten programs below. Although
TypeWhich supports several extensions to the GTLC (??), we largely avoid their use in the challenge
suite for compatibility with as many approaches as possible.
(1) FArg-Mismatch: crashes at run-time, because the functional argument f expects an integer,

but is applied to a boolean.
(2) Rank2-Poly-Id (based on ??): defines the identity function and applies it to a number and a

boolean. It uses a Church encoding of let-binding and sequencing that would require rank-2
polymorphism in an ML dialect.

(3) Unreachable-Err (based on ??): has a crashing expression similar to FArg-Mismatch, but
it is unreachable. The example encodes a conditional as a Church boolean.

(4) F-In-F-Out: defines a local function f that escapes.
(5) Order3-Fun: a higher-order function that receives two functions f and x . Moreover, the

body calculates f x , so f must be a higher-order function itself.
(6) Order3-IntFun: similar to Order3-Fun, but the program uses operations that force several

types to be int.
(7) Double-F: calculates f (f true). The inner application suggests that f ’s argument must be

bool. However, that would rule out fun(x : ⋆).0 as a possible value for f .
(8) Outflows: defines a function that uses its argument as two different types. However, the

function receives an integer.
(9) Precision-Relation: names a function f that must receive ⋆, since f is applied twice to

two different types. However, the second application re-binds f to д, thus д may have a more
precise type.

(10) If-Tag: receives a boolean and uses its value to determine the type of x . Conditionals are not
in the core GTLC and not supported by all the tools that we consider. However, it is essential
to think through conditionals, since they induce a type constraint between both branches,
and a Church encoding incurs a significant loss of precision.

Some of these programs (marked with an asterisk in ??) can be given types using Hindley-Milner
type inference via translation into OCaml or Haskell. Doing so reveals important differences
between conventional static types and the GTLC. For example, the most general type of Order3-
Fun is a type scheme with two type variables. The GTLC does not support polymorphism, so a type

17

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

1 + true rejected

(fun(id : ⋆).id 1) (fun(x : bool).x) crashes

(fun(f : int→ bool→ ⋆).fun(x : ⋆).f xx is unusable

(fun(x : int).x is restricted

Tool Rejected
Total Programs

New Dynamic Errors
Remaining Programs

Unusable Functions
Remaining Programs

Restricted Functions
Remaining Programs

Not Improved
Total ⋆

Gtubi 14 / 22 0 / 8 0 / 8 1 / 8 4 / 17
InsAndOuts 2 / 22 0 / 20 0 / 20 0 / 20 24 / 42
MGT 0 / 22 0 / 22 0 / 22 3 / 22 29 / 58
MaxMigrate 5 / 22 3 / 17 3 / 14 3 / 11 6 / 18
TypeWhich-C 0 / 22 0 / 22 0 / 22 0 / 22 39 / 58
TypeWhich-P 0 / 22 0 / 22 0 / 22 4 / 22 25 / 58

Fig. 15. Summary of Type Migration Results. Above each column, we show an example of the kind of migrated

program we count in that column.

migration must use ⋆ rather than the more precise type. In contrast, the type of f in Double-F is
bool→ bool. However, f can have other types in the GTLC.

6.4 Evaluation Results

The results of our evaluation illustrate the various strengths and weaknesses of different approaches
to automated type migration. Before diving into the details of the complete results, we present a
bird’s-eye view using the evaluation scheme proposed in ??.

?? summarizes each tool’s performance on the full benchmark suite. We include results from
running TypeWhich in two different modes: TypeWhich-P prioritizes precision, while TypeWhich-
C prioritizes contextual compatibility. By design, TypeWhich does not produce static or dynamic
errors. When it is configured for type precision (TypeWhich-P), it does restrict the inputs of four
functions. However, even in this mode, the remaining 18 programs remain compatible with all callers.
On the other hand, when it is configured to prioritize contextual compatibility (TypeWhich-C), no
programs are restricted, but fewer types are improved.

All other tools reject some programs. Gtubi rejects several programs statically and restricts the
behavior of some functions. However, it does not introduce any dynamic errors. MaxMigrate
rejects a few programs: some do not have maximal migrations, on others it cannot find a migration
within its search space, and one of our programs uses a conditional, which is unsupported. In
addition, the tool introduces run-time errors in some programs, and makes some functions unusable.
MGT statically rejects some programs and restricts some functions, but it does not introduce
run-time errors. InsAndOuts rejects two programs.4 On the remaining programs, it produces
migrations that are compatible with arbitrary unmigrated code as intended. In fact, when we
prioritize compatibility with unmigrated code, InsAndOuts outperforms all other approaches.

The right-most column of the table reports the number of type annotations that are not improved,
and this must be interpreted very carefully. The point of gradual typing is that ⋆ serves as an
“escape hatch” for programs that cannot be given more precise types. Our suite includes programs
that must have some ⋆s, so every tool will have to leave some ⋆s unchanged. We naturally want
a tool to improve as many types as possible, so we may prefer a tool that has the fewest number
of unimproved types. However, notice that the denominator varies considerably. For example,
TypeWhich-P cannot improve about half the annotations, but it does not introduce any errors. In

4These are two programs from the ? benchmarks. From correspondence with the authors of ?, our implementation seems
faithful to the presentation in the paper, and the original implementation for Adobe ActionScript is no longer accessible.

18

Solver-based Gradual Type Migration

contrast, the oldest tool—Gtubi–only leaves a small fraction of annotations unimproved, but it
statically rejects the majority of programs.

6.4.1 Challenge Set Results. We now examine performance on the challenge set in more detail. ??
shows the migrated challenge programs produced by these tools. We present and discuss results
produced by running TypeWhich to prioritize precision (TypeWhich-P); results from TypeWhich-
C can be found in the appendix.
Examining the detailed output on the challenge set programs reveals interesting differences in

the migrations inferred by the various type migration tools, reflecting their differing priorities.

(1) FArg-Mismatch: InsAndOuts and MaxMigrate produce the most precise and informative
result: they show that x is a boolean next to x + 100, which helps locate the error in the
program.

(2) Rank2-Poly-Id: InsAndOuts and TypeWhich produce the best result that does not introduce
a run-time error.MaxMigrate produces the most precise static type, but has a dynamic type
error.

(3) Unreachable-Err: TypeWhich, MGT, and InsAndOuts are the only tools that produce
a result. The erroneous and unreachable portion gets the type ⋆ in TypeWhich; whereas
InsAndOuts produces a type variable. The rest of the program has informative types.

(4) F-In-F-Out:MGT, Gtubi, and TypeWhich produce the most precise result.MaxMigrate
produces an alternative, equally precise type, but introduces a dynamic type error.

(5) Order3-Fun: Gtubi produces the best result. Its result has type variables, thus is a type
scheme. However, in a larger context, these variables would unify with concrete GTLC types.
TypeWhich produces a needless int annotation that restricts the program. MaxMigrate
produces int→ int as the type of f , which is maximal, but introduces a subtle problem: (f x)
requires x to be an integer, but x (f x) requires x to be a function.

(6) Order3-IntFun: the results are similar to Order3-Fun, with Gtubi again doing the best.
However, since the program forces certain types to be int, TypeWhich andMGT now produce
the same result.

(7) Double-F: MaxMigrate produces the best result. The most informative annotation on f
that is compatible with all contexts is ⋆→ ⋆; no tool produces this type.

(8) Outflows: InsAndOuts produces the best result. This program requires x to have two
different types and thus crashes. Because the function receives an integer for x , ? gives x the
type int. The other tools are not capable of reasoning in this manner. In a modification of
this example where x is used with different types in each branch of a conditional, all tools
would likely produce similar results.

(9) Precision-Relation: InsAndOuts produces the most precise type that does not introduce a
run-time type inconsistency. TypeWhich does not give д the most precise type;MGT does
not improve the type of f ; and MaxMigrate finds a maximal migration that constraints f ’s
argument to bool.

(10) If-Tag: Gtubi and MaxMigrate do not support conditionals. TypeWhich-P and MGT
produce an unusual result that restricts the type of the argument x to bool and turns the
x + 1 into ([int?]x) + 1. If we were migrating a larger program that had this function as
a sub-expression, and this function were actually applied to different x arguments with
different types, it would be ⋆.

6.4.2 ? Benchmarks. ? compare their maximal migration tool to the type migration tool in ?.
We extend the comparison to include TypeWhich, Gtubi, and InsAndOuts. The complete results
are in ??, and we include all of these benchmarks in our summary (??).

19

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

FArg-Mismatch
MGT (fun f : ⋆.f true)(fun x : int.x + 100)
MaxMigrate identical to InsAndOuts
InsAndOuts (fun f : bool→ int.f true)(fun x : bool.x + 100)
TypeWhich-P (fun f : ⋆→ int.f true)(fun x : ⋆.x + 100)
Gtubi constraint solving error

Rank2-Poly-Id
MGT no improvement
MaxMigrate (fun i : ⋆→ ⋆.(fun a : int.i true)(i5))(fun x : bool.x)
InsAndOuts identical to TypeWhich
TypeWhich-P (fun i : ⋆→ ⋆.(fun a : ⋆.i true)(i 5))(fun x : ⋆.x)
Gtubi constraint solving error

Unreachable-Err
MGT less precise than TypeWhich-P
MaxMigrate No maximal migration
InsAndOuts (fun b : (α → α) → (⋆→ int) → ⋆→ int.b(fun c : ⋆.5 5)(fun d : ⋆.0))

(fun t : α → α .fun f : ⋆→ int.f)
TypeWhich-P (fun b : (int→ ⋆) → (int→ int) → int→ int.b(fun c : int.

([int!]5) 5)(fun d : int.0))(fun t : int→ ⋆.fun f : int→ int.f)
Gtubi constraint solving error

F-In-F-Out
MGT identical to TypeWhich
MaxMigrate (fun f : int→ ⋆.(fun y : bool.f)(f 5))(fun x : int.10 + x)
InsAndOuts (fun f : ⋆→ int.(fun y : int.f)(f 5))(fun x : ⋆.10 + x)
TypeWhich-P (fun f : int→ int.(fun y : int.f)(f 5))(fun x : int.10 + x)
Gtubi identical to TypeWhich

Order3-Fun
MGT fun f : (⋆→ ⋆) → ⋆.fun x : ⋆→ ⋆.x (f x)
MaxMigrate funf : int→ int.funx : ⋆.x (f x)
InsAndOuts no improvement
TypeWhich-P fun f : (⋆→ int) → ⋆.fun x : ⋆→ int.x (f x)
Gtubi fun f : (α → β) → α .fun x : α → β .x (f x)

Order3-IntFun
MGT identical to TypeWhich
MaxMigrate funf : int→ int→ int.fun д : ⋆.f д(д10 + 1)
InsAndOuts no improvement
TypeWhich-P fun f : (int→ int) → int→ ⋆.fun д : int→ int.f д(д10 + 1)
Gtubi fun f : (int→ int) → int→ α .fun д : int→ int.f д(д10 + 1)

Double-F
MGT identical to TypeWhich
MaxMigrate fun f : ⋆→ int.f (f True)
InsAndOuts no improvement
TypeWhich-P fun f : bool→ bool.f (f true)
Gtubi identical to TypeWhich

Outflows
MGT no improvement
MaxMigrate (funx : ⋆.x 5 + x) 5
InsAndOuts (funx : int.x 5 + x) 5
TypeWhich-P identical to MaxMigrate
Gtubi constraint solving error

Precision-Relation
MGT (funf : ⋆.(f true) + ((funд : int→ ⋆.д 5)f))(funx : ⋆.5)
MaxMigrate (fun f : bool→ int.(f true) + ((fun д : ⋆→ int.д5)f))(fun x : bool.5)
InsAndOuts (fun f : ⋆→ int.(f true) + ((fun д : int→ int.д5)f))(fun x : ⋆.5)
TypeWhich-P (fun f : ⋆→ int.(f true) + ((fun д : ⋆→ int.д5)f))(fun x : ⋆.5)
Gtubi constraint solving error

If-Tag
MGT Identical to TypeWhich-P
MaxMigrate conditionals unsupported
InsAndOuts funtag : ⋆.funx : ⋆.iftagthenx + 1elseif x then 1 else 0
TypeWhich-P fun tag : bool.fun x : bool.if tag then ([int!]x) + 1 else if x then 1 else 0
Gtubi conditionals unsupported

Fig. 16. Migrations of the challenge set with TypeWhich in precise mode.

20

Solver-based Gradual Type Migration

6.4.3 Summary. Our type migration challenge suite is designed to highlight the strengths and
weaknesses of different algorithms. As discussed in ??, the competing goals of the type migration
problem lead to a range of compromises; we do not claim that any one approach is best, since each
approach reflects a different weighting of priorities. Because our challenge programs are synthetic,
it would be possible to build a large set of programs that favor one tool at the expense of others.
Our goal has been instead to curate a small set that illustrates a variety of weaknesses in every tool.
In addition, our challenge programs are unlikely to be representative of real-world type migration
problems. A more thorough evaluation would require scaling type migration tools to a widely-used
language with a corpus of third-party code, which is beyond the scope of this paper.

6.5 Grift Performance Benchmarks

? present a benchmark suite to evaluate the performance of Grift programs (running time and
space efficiency). Grift extends the GTLC with floating-point numbers, characters, loops, recursive
functions, tuples, mutable references, vectors, and several primitive operators. Each benchmark has
two versions: an untyped version and a fully-typed, hand-annotated version. We use TypeWhich
(in precise mode) to migrate every untyped benchmark, and compare the result to the human type
annotations. TypeWhich supports all Grift features except equirecursive types. However, because
Grift’s equirecursive types do not introduce new expression forms, TypeWhich can still be run on
all programs: it just fails to improve annotations that require them.

TypeWhich performs as follows on the Grift benchmarks:

• On 9 of 11 benchmarks, TypeWhich produces exactly the same type annotations as the
hand-typed version.
• N-body defines a number of unused functions over vectors. Since they are under-constrained,
TypeWhich makes some arbitrary choices. On the reachable portion of the benchmark, we
produce exactly the same type annotations as the hand-typed version.
• Sieve defines a stream library, and the hand-typed version gives streams an equirecursive
type. TypeWhich improves some types, but it cannot improve the annotations on the stream
library. TypeWhich infers ⋆ rather than the Tuple Int Dyn migration shown below:

(define (stream-rest [st : (Tuple Int Dyn)])
: (Tuple Int Dyn)
((tuple-proj st 1)))

The projection from the stream has type⋆, but the function expects to return a tuple. However,
our constraints will only insert a coercion from ⋆ to a more precise type at an elimination
form, so TypeWhich will not produce this migration.

6.6 Implementation and Performance

The TypeWhich tool is open-source and written in approximately 12,000 lines of Rust. This code
includes our new migration algorithm, implementation of the migration algorithm from ? and
?, and a unified evaluation framework that supports all the third-party tools that we use in our
evaluation. The evaluation framework is designed to automatically validate the evaluation results
we report. For example, to report that a migrated function is not compatible with all untyped
contexts, our framework requires an example of a context that distinguishes between the migrated
and original program, and runs both programs in the given context to verify that they differ. The
framework also ensures that migrated programs are well-typed and structurally identical to the
original program.

21

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

We perform all our experiments on on a virtual machine with 4 CPUs and 8 GB RAM, running
on an AMD EPYC 7282 processor. The full suite consists of 892 LOC and 33 programs. TypeWhich
produces migrations for our entire suite of benchmarks in under three seconds.

7 RELATEDWORK

There is a growing body of work on automating gradual type migration and related issues. Our
work is most closely related to the four algorithms we evaluate in ??. ? substitutes metavariables
that appear in type annotations with concrete types, using a variation on unification. ? builds a type
inference system for ActionScript. Their system ensures that inference never fails and produces
types that are compatible with all untyped contexts. ? uses variational typing to heuristically tame
the exponential search space of types [?]. ? present decidability results for several type migration
problems, including finding maximally precise migrations.

The aforementioned work relies on custom constraint solving algorithms. A key contribution of
this paper is that sets up gradual type migration for an off-the-shelf MaxSMT solver, which makes it
easier to build a type migration tool. In addition, we present a comprehensive evaluation comparing
all five approaches. As part of this effort, we have produced new, open-source implementations of
the algorithms presented in ? and ?.
? introduces the theory of coercions that we use; ? present an efficient compiler from Scheme to

ML that inserts coercions when necessary. This work also uses a custom constraint solver and a
complex graph algorithm. The latter defines a polymorphic safety criterion, which is related to our
notion of a context-restricted type migration (Definition ??).

? extend ?’s work to infer principal types. Since we focus on monomorphic types, we do not
directly compare against their algorithm. ? build on ?’s work, discussing the coherence issues what
we point out in ??: types induce run-time checks that can affect program behavior. However, while
we migrate all programs, ? use dynamic type inference to discover type inconsistencies and report
them as run-time errors. ? propose another account of gradual type inference that supports many
features (let-polymorphism, recursion, and set-theoretic types). They do not consider run-time
safety. Finally, ? extend their previous work [?] with a cost model for selecting migrations. Like us,
they discuss trade-offs in type migration, although they focus on type precision and performance,
rather than semantics preservation.

?, ?, ?, and ? are examples of retrofitted type checkers for untyped languages that feature flow-
sensitivity. These tools require programmers to manually migrate their code, while we focus on
automatic type migration. However, they go beyond our work by considering flow-sensitivity.

? present type inference for a representative fragment of JavaScript. However, the approach is
not designed for gradual typing, where portions of the program may be untyped. Similarly, ? infer
types for JavaScript programs with the goal of compiling them to run efficiently on low-powered
devices; their approach is not gradual by design and deliberately rejects certain programs.

? formulate a MaxSMT problem to localize OCaml type errors. We also use MaxSMT and encode
types in a similar manner. However, both the form of our constraints and the role of the MaxSMT
solver are very different. In error localization, the MaxSMT problem helps isolate type errors from
well-typed portions of the program. In our work, the entire program must be well-typed. Moreover,
our constraints allow several typings, and we use soft constraints to guide the MaxSMT solver
towards solutions with fewer coercions.
Soft Scheme [?] infers types for Scheme programs. However, its type system is significantly

different from the GTLC, which hinders comparisons to contemporary type migration tools for
the GTLC. ?, p. 41’s discussion of how Soft Scheme’s sophistication can lead to un-intuitive types
inspired work on set-based analysis of Scheme programs: ? map program points to sets of abstract
values, rather than types.

22

Solver-based Gradual Type Migration

Alternative approaches to type migration and type inference consider sources of evidence beyond
the program to bemigrated. This includes work that applies supervised machine learning techniques
to generate type annotations, such as ????. Other lines of work use run-time profiling to guide type
inference [???], or use programmer-supplied heuristics to guide type inference [??].

8 CONCLUSION

We present TypeWhich, a new approach to type migration for the GTLC that is more flexible than
previous approaches in two key ways. First, we formulate constraints for an off-the-shelf MaxSMT
solver rather than building a custom constraint solver, which makes it easier to extend TypeWhich.
We demonstrate this flexibility by adding support for several language features beyond the core
GTLC. Second, TypeWhich can produce alternative migrations that prioritize different goals, such
as type precision and compatibility with unmigrated code. This makes TypeWhich a more flexible
approach, suitable for migration in multiple contexts.
Our paper also contributes to the evaluation of type migration tools. We define a multi-stage

evaluation process that takes into account multiple goals of type migration. We present a “type
migration challenge set”: a benchmark suite designed to illustrate the strengths and weaknesses of
various type migration algorithms. We evaluate TypeWhich alongside four existing type migration
systems. Toward this end, we contribute open-source implementations of two existing algorithms
from the literature, which we incorporate into a unified framework for automated type migration
evaluation. We hope these evaluation metrics, new benchmarks, and benchmarking framework
will aid future work by illuminating the differences between the many approaches to gradual type
migration.

23

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

A CONSTRAINT GENERATION FOR ADDITIONAL EXPRESSIONS

Seqence
Γ ⊢ e1 ⇒ T1, ϕ1 Γ ⊢ e2 ⇒ T2, ϕ2

Γ ⊢ e1; e2 ⇒ e′1; e
′
2, T2, ϕ1 ∧ ϕ2

Let
Γ ⊢ e1 ⇒ T1, ϕ1 Γ, x : T1 ⊢ e2 ⇒ T2, ϕ2

Γ ⊢ let x = e1 in e2 ⇒ let x = e′1 in e
′
2, T2, ϕ1 ∧ ϕ2

Fix

Γ ⊢ e ⇒ T1, ϕ1 w and α are fresh
ϕ2 = (T1 = α ∧w) ∨ (T1 = ⋆ ∧ α = ⋆→ ⋆ ∧ ¬w)

Γ ⊢ fix f : α .e ⇒ fix f : α .[coerce(T1, α)]e′, α, ϕ1 ∧ ϕ2

Pair

Γ ⊢ e1 ⇒ T1, ϕ1 Γ ⊢ e2 ⇒ T2, ϕ2 α and w are fresh
ϕ3 = (α = pair (T1, T2) ∧w) ∨ (α = ⋆ ∧ ground(pair (T1, T2)) ∧ ¬w)

Γ ⊢ pair (e1, e2) ⇒ [coerce(pair (T1, T2), α)]pair (e′1, e
′
2), α, ϕ1 ∧ ϕ2 ∧ ϕ3

First

Γ ⊢ e ⇒ T , ϕ1 α , β , and w are fresh
ϕ2 = ((T = pair (α, β) ∧w) ∨ (T = α = ⋆ ∧ ¬w))

Γ ⊢ first(e) ⇒ first([coerce(T , pair (α, β))]e′), α, ϕ1 ∧ ϕ2

Second

Γ ⊢ e ⇒ T , ϕ1 α , β , and w are fresh
ϕ2 = ((T = pair (α, β) ∧w) ∨ (T = β = ⋆ ∧ ¬w))

Γ ⊢ second(e) ⇒ second([coerce(T , pair (α, β))]e′), β, ϕ1 ∧ ϕ2

Vector

Γ ⊢ e1 ⇒ T1, ϕ1 Γ ⊢ e2 ⇒ T2, ϕ2 α , w1, and w2 are fresh
ϕ3 = (α = vec (T1) ∧w1) ∨ (α = ⋆ ∧ дround (vector(T1) ∧ ¬w1)

ϕ4 = (T2 = int ∧w2) ∨ (T2 = ⋆ ∧ ¬w2)

Γ ⊢ vec (e1, e2) ⇒ [coerce(vec (T1), α)]vec (e′1, [coerce(T2, int)]e
′
2), α, ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4

VecGet

Γ ⊢ e1 ⇒ T1, ϕ1 Γ ⊢ e2 ⇒ T2, ϕ2 α , w1 and w2 are fresh
ϕ3 = (T2 = int ∧w1) ∨ (T2 = ⋆ ∧ ¬w1) ϕ4 = (T1 = α = ⋆ ∧ ¬w2) ∨ (T1 = vector(α) ∧w2)

Γ ⊢ VecGet(e1, e2) ⇒ VecGet([coerce(T1, vector(α))]e′1, [coerce(T2, int)]e
′
2), α, ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4

VecSet

Γ ⊢ e1 ⇒ T1, ϕ1 Γ ⊢ e2 ⇒ T2, ϕ2 Γ ⊢ e3 ⇒ T3, ϕ3 α , w1 and w2 are fresh
ϕ4 = (T2 = int ∧w1) ∨ (T2 = ⋆ ∧ ¬w1)

ϕ5 = (T1 = vector(α) ∧T2 = α ∧w2) ∨ (α = ⋆ ∧ ground(T1) ∧ ground(T2) ∧ ¬w2)

Γ ⊢ VecSet(e1, e2, e3) ⇒ VecSet([coerce(T1, vector(α))]e′1, [coerce(T2, α)]e
′
2), [coerce(T3, int)]e

′
3),

vector(α), ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5

Length

Γ ⊢ e1 ⇒ T1, ϕ1 Γ ⊢ e2 ⇒ T2, ϕ2 α , w1 and w2 are fresh
ϕ3 = (T2 = int ∧w1) ∨ (T2 = ⋆ ∧ ¬w1) ϕ4 = (T1 = vector(α) ∧w2) ∨ (α = ⋆ ∧ ¬w2)

Γ ⊢ Length(e1, e2) ⇒ Length([coerce(T1, vector(α))]e′1, [coerce(T2, int)]e
′
2), int, ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4)

24

Solver-based Gradual Type Migration

B TYPING THE LANGUAGEWITH EXPLICIT COERCIONS

The rules below define type-checking for the intermediate language of GTLC, where all coercions
are explicit.

Γ ⊢ e : T

T-Id
Γ(x) = T

Γ ⊢ x : T
T-Const

Γ ⊢ c : ty(c)

T-Fun
Γ,x : S ⊢ e : T

Γ ⊢ fun(x : S).e : S → T
T-App

Γ ⊢ e1 : T1 → T2 Γ ⊢ e2 : T1
Γ ⊢ e1e2 : T2

T-Mul
Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 × e2 : int
T-Coerce

⊢ k : T1 → T2 Γ ⊢ e : T1
Γ ⊢ [k]e : T2

⊢ k : T

TC-Tag-Fun
⊢ fun! : (⋆→ ⋆) → ⋆

TC-Chk-Fun
⊢ fun? : ⋆→ (⋆→ ⋆)

TC-Tag-Int
⊢ int? : ⋆→ int

TC-Chk-Int
⊢ int! : int→ ⋆

TC-Seq
⊢ k1 : T1 → T2 ⊢ k2 : T2 → T3

⊢ k1;k2 : T1 → T3
TC-Id

⊢ idT : T → T

TC-Wrap
⊢ k1 : T1 → S1 ⊢ k2 : S2 → T2

⊢ wrap(k1,k2) : (S1 → S2) → (T1 → T2)

25

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

C SOUNDNESS OF FOUND MODELS

Here we prove that if coercion insertion has a satisfiable model, it induces a well typed coercion
term.

Lemma C.1 (Coercions are well typed). ⊢ coerce(S,T) : S → T using the definition of coerce

from Figure ??.

Proof. By induction on the sum of the sizes of the two coercions, with cases drawn from the
function. Let ⋆ have size 1 and int have size 2.

(S = T) We have ⊢ idS : S → T by TC-Id.
(S = ⋆, T = int) We have ⊢ int? : ⋆→ int by TC-Chk-Int.
(S = int, T = ⋆) We have ⊢ int! : int→ ⋆ by TC-Tag-Int.
(S = ⋆, T = ⋆→ ⋆) We have ⊢ fun? : ⋆→ (⋆→ ⋆) by TC-Chk-Fun.
(S = ⋆→ ⋆, T = ⋆) We have ⊢ fun! : (⋆→ ⋆) → ⋆ by TC-Tag-Fun.
(S = S1 → S2, T = T1 → T2) By the IH on T1 and S1, we have ⊢ coerce(T1, S1) : T1 → S1; by the
IH on S2 and T2, we have ⊢ coerce(S2,T2) : S2 → T2. By TC-Wrap on these coercions, we have
⊢ wrap(coerce(T1, S1), coerce(S2,T2)) : (S1 → S2) → (T1 → T2).
(S = ⋆, T = T1 → T2) By TC-Chk-Fun, we have ⊢ fun? : ⋆ → (⋆ → ⋆). By the IH on T1 and
⋆ (which are smaller in total than our original function type and ⋆), we know ⊢ coerce(T1,⋆) :
T1 → ⋆. Similarly, the IH on ⋆ and T2, we know ⊢ coerce(⋆,T2) : ⋆→ T2. By TC-Wrap, we have
⊢ wrap(coerce(T1,⋆), coerce(⋆,T2) : (⋆→ ⋆) → (T1 → T2). Finally, by TC-Seq, we can combine
our first coercion with this to have ⊢ fun?;wrap(coerce(T1,⋆), coerce(⋆,T2)) : ⋆→ (T1 → T2).
(S = T1 → T2, T = ⋆) By the IH on ⋆ and T1 (which are smaller in total than our original function
type and ⋆), we have ⊢ coerce(⋆,T1) : ⋆ → T1. Similarly, by the IH on T2 and ⋆, we have ⊢
coerce(T2,]tdyn) : T2 → ⋆. By TC-Wrap, we have ⊢ wrap(coerce(⋆,T1), coerce(T2,⋆)) : (T1 →
T2) → (⋆ → ⋆). By TC-Tag-Fun, we have ⊢ fun! : (⋆ → ⋆) → ⋆. Finally, we tie everything
together with TC-Seq: ⊢ wrap(coerce(⋆,T1), coerce(T2,⋆)); fun! : (T1 → T2) → ⋆.
(otherwise) If none of the other cases apply, we generate a coercion through ⋆; such a coercion is
doomed to fail. It is nevertheless well typed. First, observe that neither S nor T can be ⋆, since one
of the cases above would have adhered. So we can use the IH on S and ⋆ or ⋆ and T , since every
other type is larger than ⋆.

By the IH on S and ⋆, we have ⊢ coerce(S,⋆) : S → ⋆. Similarly, by the IH on ⋆ and T , we have
⊢ coerce(⋆,T) : ⋆→ T . By TC-Seq, we have ⊢ coerce(S,⋆); coerce(⋆,T) : S → T . □

To keep things relatively neat notationally, we write σ (X) to mean applying Subst(σ ,−) to every
indeterminate part of the structure X , where X might be a context Γ, expression e , or type T .

Theorem C.2 (Models produce well typed terms (??)). If Γ ⊢ e ⇒ e ′,T ,ϕ and σ is a model for

ϕ, then σ (Γ) ⊢ σ (e ′) : σ (T).

Proof. By induction on the coercion insertion judgment.

(Id) By T-Id.
(Const) By T-Const, T-Coerce, and Lemma ??.
(Fun) Since σ is a model of ϕ1 ∧ ϕ2, it is also a model for ϕ1. So by the IH on e , we have σ (Γ),x :
σ (α) ⊢ e : σ (T). By Lemma ??, we know that ⊢ coerce(σ (T),σ (β)) : σ (T) → σ (β). By T-Coerce,
we have σ (Γ),x : σ (α) ⊢ [coerce(σ (T),σ (β))]e : σ (β). Finally, by T-Fun, we have σ (Γ) ⊢ fun(x :
σ (α)).[coerce(σ (T),σ (β))]e : σ (α → β). The outer coercion is typed by T-Coerce and Lemma ??.

26

Solver-based Gradual Type Migration

(App) Since σ is a model of ϕ1 ∧ · · · ∧ϕ3 ∧ϕ4 ∧ϕ5, it is also a model for each ϕi . By the IHs, we have:
σ (Γ) ⊢ σ (e1) : σ (T1) and σ (Γ) ⊢ σ (e2) : σ (T2).

By Lemma ??, we know that:
⊢ coerce(σ (T1),σ (α → β)) : σ (T1) → σ (α → β)

and ⊢ coerce(σ (β),σ (γ)) : σ (β) → σ (γ). We know that σ (T2) = σ (α) byϕ4, so by applying T-Coerce
on the function and T-App, we have:

σ (Γ) ⊢ ([coerce(σ (T1),σ (α → β))]σ (e1)) σ (e2)) : σ (β)
We account for the outer coercion with T-Coerce and Lemma ??.
(Mul) Since σ is a model for ϕ1 ∧ ϕ2, it is also a model for ϕ1 and ϕ2. By the IHs, we have:

σ (Γ) ⊢ σ (e1) : σ (T1) and σ (Γ) ⊢ σ (e2) : σ (T2).
By Lemma ??, we have:

⊢ coerce(σ (T1), int) : σ (T1) → int and ⊢ coerce(σ (T2), int) : σ (T2) → int

By applying T-Coerce twice and T-Mul, we have:
σ (Γ) ⊢ ([coerce(σ (T1), int)]σ (e1)) × ([coerce(σ (T2), int)]σ (e2)) : int

The outer coercion is typed by T-Coerce and Lemma ??. □

27

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

D EXISTENCE OF MODELS

We show that models always exist for well scoped programs.
First, we borrow the “well scoped” relation from ?. We then show that a fully dynamic model

always exists for such well scoped programs, and that it is stable under weakening. Let V be a set
of variables. We say a term e is well scoped if ∅ ⊢ e ok.

V ⊢ e ok

WS-Id
x ∈ V

V ⊢ x ok

WS-Const
V ⊢ c ok

WS-Fun
V ∪ {x} ⊢ e ok

V ⊢ fun(x : S).e ok
WS-App

V ⊢ e1 ok V ⊢ e2 ok

V ⊢ e1e2 ok

WS-Mul
V ⊢ e1 ok V ⊢ e2 ok

V ⊢ e1 × e2 ok

Let dynctx(V) be defined as the context that maps every variable in V to ⋆:

dynctx(∅) = ·

dynctx(Γ,x : T) = dynctx(Γ),x : ⋆

Theorem D.1 (Well scoped terms have dynamic models). If V ⊢ e ok, then there exist e ′, T ,
and ϕ such that for all dynamic models σ :

(1) dynctx(V) ⊢ e ⇒ e ′,T ,ϕ,
(2) ϕ is satisfiable in σ , and
(3) Subst(σ ,T) = ⋆.

Proof. By induction on the derivation of V ⊢ e ok. We must take the right disjunct of every
constraint except for two: the outer coercion on variables and applications could safely take either
disjunct.

(WS-Id) We have x ∈ V , so x : ⋆ ∈ dynctx(V). By Id; whether we pick the left or right disjunct, we
have α = ⋆ = dynctx(V)(x) (and so we will always find Subst(σ ,α) = ⋆) and ϕ is satisfiable in all
dynamic models.
(WS-Const) We have T = ty(c) and ϕ = true by Const. Pick α = ⋆; we have ϕ = true. The former
is just ⋆ under Subst.
(WS-Fun) We know that V ∪ {x} ⊢ e ok; by the IH, we have dynctx(V),x : ⋆ ⊢ e ⇒ e ′,T ,ϕ1 such
that ϕ1 is satisfiable. Since α = ⋆ and Subst(σ ,T) = ⋆, we know that Subst(σ ,α → T) = ⋆→ ⋆,
so we have ground(α → T). Pick β = ⋆. We already know ϕ1 is satisfiable, as is the right disjunct
of ϕ2. We have Subst(σ ,⋆) = ⋆ immediately.
(WS-App) We know that V ⊢ e1 ok and V ⊢ e2 ok. By the IH on e1, we have dynctx(V) ⊢ e1 ⇒
e ′1,T1,ϕ1 such that ϕ1 is satisfiable in dynamic models and Subst(σ ,T1) = ⋆. Similarly, the IH on e2
finds dynctx(V) ⊢ e2 ⇒ e ′2,T1,ϕ1 such that ϕ2 is satisfiable in dynamic models and Subst(σ ,T2) = ⋆.

Since ϕ1 and ϕ2 are both satisfiable in all models where all variables map to ⋆, so is ϕ1 ∧ ϕ2. Pick
α = β = γ = ⋆. We satisfy the right disjunction of ϕ3, and we’ve already established ϕ4 (because T2
will substitute to ⋆, which is exactly equal to α). We could take either disjunction if ϕ5—we already
know β = ⋆, so γ = ⋆ either way. We have Subst(σ ,γ) = ⋆ immediately.

28

Solver-based Gradual Type Migration

(WS-Mul) We know that V ⊢ e1 ok and V ⊢ e2 ok. By the IH on e1, we have dynctx(V) ⊢ e1 ⇒
e ′1,T1,ϕ1 such that ϕ1 is satisfiable in dynamic models and Subst(σ ,T1) = ⋆. Similarly, the IH on e2
finds dynctx(V) ⊢ e2 ⇒ e ′2,T1,ϕ1 such that ϕ2 is satisfiable in dynamic models and Subst(σ ,T1) = ⋆.

Sinceϕ1 andϕ2 are both satisfiable in all models where all variables map to⋆, so isϕ1∧ϕ2. Picking
α = ⋆, we take the right disjuncts of ϕ3, ϕ4, and ϕ5. We have Subst(σ ,α) = ⋆ immediately. □

Lemma D.2 (Dynamic terms are stable under weakening).
If Subst(σ ,T) = ⋆, then Weaken(⋆,T) is satisfiable.

Proof. Immediate: Weaken(⋆,T) = P(⋆,T , true) = true. □

Corollary D.3. If V ⊢ e ok, then it has a satisfiable model that is stable under weakening.

Proof. The term e has a dynamic model (Theorem ??) and dynamic models are stable under
weakening (Lemma ??). □

29

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

E ALL BENCHMARKS

adversarial/01-farg-mismatch.gtlc

Gtubi. : Rejected

InsAndOuts. : Compatible
(fun f:bool -> int. f true) (fun x:bool. x + 100)

MGT. : Compatible
(fun f : any. ((f)) ((true))) ((fun x : int. x + 100))

MaxMigrate. : Compatible
(fun f : bool -> int . f true) (fun x : any . x + 100)

TypeWhich2. : Compatible
(fun f:bool -> int. f true) (fun x:bool. (x : any) + 100)

TypeWhich. : Compatible
(fun f:any -> int. f true) (fun x:any. x + 100)

adversarial/02-rank2-poly-id.gtlc

Gtubi. : Rejected

InsAndOuts. : Compatible
(fun i:any -> any. (fun a:any. i true) (i 5)) (fun x:any. x)

MGT. : Compatible
(fun i : any. (fun a : any. ((i)) ((true))) (((i)) ((5)))) ((fun x : any. x))

MaxMigrate. : Runtime Error
(fun i : any -> any . (fun a : int . i true) (i 5)) (fun x : bool . x)

TypeWhich2. : Compatible
(fun i:any -> any. (fun a:any. i true) (i 5)) (fun x:any. x)

TypeWhich. : Compatible
(fun i:any -> any. (fun a:any. i true) (i 5)) (fun x:any. x)

adversarial/03-unreachable-error.gtlc

Gtubi. : Rejected

InsAndOuts. : Compatible
(fun b:(t4418 -> t4418) -> (any -> int) -> any -> int. b

(fun c . (fun x:int. x x) 5 5) (fun d:any. 0))

(fun t:t4418 -> t4418. fun f:any -> int. f)

30

Solver-based Gradual Type Migration

MGT. : Compatible
(fun b : (any -> any) -> (any -> int) -> any -> int.

b (fun c : any. (((fun x : any. ((x)) x) ((5)))) ((5))) (fun d : any. 0))

(fun t : any -> any. fun f : any -> int. f)

MaxMigrate. : Rejected

TypeWhich2. : Compatible
(fun b:(any -> any) -> (any -> int) -> any -> int. b (fun c:any.

(fun x:any. x x) 5 5) (fun d:any. 0)) (fun t:any -> any.

fun f:any -> int. f)

TypeWhich. : Compatible
(fun b:(any -> any) -> (any -> int) -> any -> int. b (fun c:any.

(fun x:any. x x) 5 5) (fun d:any. 0)) (fun t:any -> any.

fun f:any -> int. f)

adversarial/04-f-in-f-out.gtlc

Gtubi. : Compatible
((fun f : (int -> int). ((fun y : int. f) (f 5))) (fun x : int. (10 + x)))

InsAndOuts. : Compatible
(fun f:any -> int. (fun y:int. f) (f 5)) (fun x:any. 10 + x)

MGT. : Compatible
(fun f : int -> int. (fun y : int. f) (f 5)) (fun x : int. 10 + x)

MaxMigrate. : Runtime Error
(fun f : int -> any . (fun y : bool . f) (f 5)) (fun x : int . 10 + x)

TypeWhich2. : Compatible
(fun f:any -> int. (fun y:int. f) (f 5)) (fun x:any. 10 + x)

TypeWhich. : Compatible
(fun f:int -> int. (fun y:int. f) (f 5)) (fun x:int. 10 + x)

adversarial/05-order3-fun.gtlc

Gtubi. : Compatible
(fun f : ((beta@1 -> beta@2) -> beta@1). (fun x : (beta@1 -> beta@2). (x (f x))))

InsAndOuts. : Compatible
fun f:any. fun x:any. x (f x)

MGT. : Compatible
fun f : (any -> any) -> any. fun x : any -> any. x (f x)

31

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

MaxMigrate. : Unusable
fun f : int -> int . fun x : any . x (f x)

TypeWhich2. : Compatible
fun f:any. fun x:any. x (f x)

TypeWhich. : Compatible
fun f:(any -> any) -> any. fun x:any -> any. x (f x)

adversarial/06-order3-intfun.gtlc

Gtubi. : Compatible
(fun f : ((int -> int) -> (int -> beta@5)). (fun g : (int -> int). ((f g) ((g 10) + 1))))

InsAndOuts. : Compatible
fun f:any. fun g:any. f g (g 10 + 1)

MGT. : Compatible
fun f : (int -> int) -> int -> any. fun g : int -> int. f g ((g 10) + 1)

MaxMigrate. : Restricted
fun f : int -> int -> int . fun g : any . f g (g 10 + 1)

TypeWhich2. : Compatible
fun f:any. fun g:any. f g (g 10 + 1)

TypeWhich. : Restricted
fun f:(int -> int) -> int -> int. fun g:int -> int. f g (g 10 + 1)

adversarial/07-double-f.gtlc

Gtubi. : Restricted
(fun f : (bool -> bool). (f (f true)))

InsAndOuts. : Compatible
fun f:any. f (f true)

MGT. : Restricted
fun f : bool -> bool. f (f true)

MaxMigrate. : Restricted
fun f : any -> int . f (f true)

TypeWhich2. : Compatible
fun f:any. f (f true)

32

Solver-based Gradual Type Migration

TypeWhich. : Restricted
fun f:bool -> bool. f (f true)

adversarial/08-outflows.gtlc

Gtubi. : Rejected

InsAndOuts. : Compatible
(fun x:int. x 5 + x) 5

MGT. : Compatible
(fun x : any. (((x)) ((5))) + x) ((5))

MaxMigrate. : Compatible
(fun x : any . x 5 + x) 5

TypeWhich2. : Compatible
(fun x:int. (x : any) 5 + x) 5

TypeWhich. : Compatible
(fun x:int. (x : any) 5 + x) 5

adversarial/09-precision-relation.gtlc

Gtubi. : Rejected

InsAndOuts. : Compatible
(fun f:any -> int. f true + (fun g:int -> int. g 5) f) (fun x:any. 5)

MGT. : Compatible
(fun f : any. (((f)) ((true))) + ((fun g : int -> any. g 5) ((f))))

((fun x : any. 5))

MaxMigrate. : Runtime Error
(fun f : bool -> int . f true + (fun g : any -> int . g 5) f) (fun x : bool . 5)

TypeWhich2. : Compatible
(fun f:any -> int. f true + (fun g:any -> int. g 5) f) (fun x:any. 5)

TypeWhich. : Compatible
(fun f:any -> int. f true + (fun g:any -> int. g 5) f) (fun x:any. 5)

adversarial/10-if-tag.gtlc

Gtubi. : Rejected

33

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

InsAndOuts. : Compatible
fun tag:any. fun x:any. if tag then x + 1 else if x then 1 else 0

MGT. : Restricted
fun tag : bool.

fun x : bool. if tag then (((x)) + ((1))) else if x then 1 else 0

MaxMigrate. : Rejected

TypeWhich2. : Compatible
fun tag:any. fun x:any. if tag then x + 1 else if x then 1 else 0

TypeWhich. : Restricted
fun tag:bool. fun x:bool. if tag

then (x : any) + 1

else if x then 1 else 0

migeed/01-apply-add.gtlc

Gtubi. : Rejected

InsAndOuts. : Compatible
fun x:any. x (x + 1)

MGT. : Compatible
fun x : any -> any. x (((x)) + ((1)))

MaxMigrate. : Compatible
fun x : any . x (x + 1)

TypeWhich2. : Compatible
fun x:any. x (x + 1)

TypeWhich. : Compatible
fun x:any -> any. x ((x : any) + 1)

migeed/02-add-applied.gtlc

Gtubi. : Rejected

InsAndOuts. : Compatible
fun x:any. x (x true + 1)

MGT. : Restricted
fun x : bool -> any. x (((x true) + ((1))))

34

Solver-based Gradual Type Migration

MaxMigrate. : Compatible
fun x : any -> int . x (x true + 1)

TypeWhich2. : Compatible
fun x:any. x (x true + 1)

TypeWhich. : Compatible
fun x:any -> int. x (x true + 1)

migeed/03-add-two-applies.gtlc

Gtubi. : Rejected

InsAndOuts. : Compatible
fun x:any. x 4 + x true

MGT. : Compatible
fun x : any. (((x)) ((4))) + (((x)) ((true)))

MaxMigrate. : Compatible
fun x : any -> int . x 4 + x true

TypeWhich2. : Compatible
fun x:any. x 4 + x true

TypeWhich. : Compatible
fun x:any -> int. x 4 + x true

migeed/04-identity-four.gtlc

Gtubi. : Compatible
((fun x : int. x) 4)

InsAndOuts. : Compatible
(fun x:int. x) 4

MGT. : Compatible
(fun x : int. x) 4

MaxMigrate. : Compatible
(fun x : int . x) 4

TypeWhich2. : Compatible
(fun x:int. x) 4

35

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

TypeWhich. : Compatible
(fun x:int. x) 4

migeed/05-succ-id-id.gtlc

Gtubi. : Rejected

InsAndOuts. : Compatible
1 + (fun y:bool. y) ((fun x:bool. x) true)

MGT. : Compatible
1 + ((fun y : int. y) (((fun x : any. x) ((true)))))

MaxMigrate. : Compatible
1 + (fun y : int . y) ((fun x : any . x) true)

TypeWhich2. : Compatible
1 + (fun y:bool. y) ((fun x:bool. x) true)

TypeWhich. : Compatible
1 + (fun y:bool. (y : any)) ((fun x:bool. x) true)

migeed/06-identity.gtlc

Gtubi. : Compatible
(fun x : _t0. x)

InsAndOuts. : Compatible
fun x:any. x

MGT. : Compatible
fun x : any. x

MaxMigrate. : Restricted
fun x : int . x

TypeWhich2. : Compatible
fun x:any. x

TypeWhich. : Restricted
fun x:int. x

migeed/07-apply2.gtlc

Gtubi. : Compatible
(fun x : _t1. (fun y : (_t1 -> (_t1 -> beta@2)). ((y x) x)))

36

Solver-based Gradual Type Migration

InsAndOuts. : Compatible

fun x:any. fun y:any. y x x

MGT. : Compatible

fun x : any. fun y : any -> any -> any. y x x

MaxMigrate. : Unusable

fun x : any . fun y : int -> bool -> int . y x x

TypeWhich2. : Compatible

fun x:any. fun y:any. y x x

TypeWhich. : Compatible

fun x:any. fun y:any -> any -> any. y x x

migeed/08-indirect-apply-self.gtlc

Gtubi. : Rejected

InsAndOuts. : Compatible

fun x:any. (fun y:any. x) x x

MGT. : Compatible

fun x : any. (((fun y : any. x) x)) x

MaxMigrate. : Unusable

fun x : any . (fun y : int . x) x x

TypeWhich2. : Compatible

fun x:any. (fun y:any. x) x x

TypeWhich. : Compatible

fun x:any -> any. (fun y:any -> any. x) x x

migeed/09-the-long-one.gtlc

Gtubi. : Compatible

(fun x : _t3. ((fun f : (_t3 -> int). (((fun xx : (_t3 -> int). (fun y : int. xx)) f) (f x))) (fun z : _t3. 1)))

InsAndOuts. : Compatible

fun x:any. (fun f:any -> int. (fun xx:any -> int. fun y:int. xx) f (f

x)) (fun z:any. 1)

37

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

MGT. : Compatible
fun x : any.

(fun f : any -> int. (fun xx : any -> int. fun y : int. xx) f (f x))

(fun z : any. 1)

MaxMigrate. : Compatible
fun x : int . (fun f : any . (fun xx : int . fun y : int . xx) f (f x)) (fun z : int . 1)

TypeWhich2. : Compatible
fun x:any. (fun f:any -> int. (fun xx:any -> int. fun y:int. xx) f (f

x)) (fun z:any. 1)

TypeWhich. : Compatible
fun x:any. (fun f:any -> int. (fun xx:any -> int. fun y:int. xx) f (f

x)) (fun z:any. 1)

migeed/10-apply-self.gtlc

Gtubi. : Rejected

InsAndOuts. : Compatible
fun x:any. x x

MGT. : Compatible
fun x : any. ((x)) x

MaxMigrate. : Rejected

TypeWhich2. : Compatible
fun x:any. x x

TypeWhich. : Compatible
fun x:any -> any. x x

migeed/11-untypable-in-sys-f.gtlc

Gtubi. : Rejected

InsAndOuts. : Rejected

MGT. : Compatible
(fun x : (any -> any -> any) -> any.

fun y : any -> any -> any.

y (x ((fun x : any. x))) (x (fun b : any. fun c : any. b)))

((fun d : any. ((d)) d))

38

Solver-based Gradual Type Migration

MaxMigrate. : Rejected

TypeWhich2. : Compatible
(fun x:(any -> any) -> any. fun y:any. y (x (fun x:any. x)) (x

(fun b:any. fun c:any. b))) (fun d:any -> any. d d)

TypeWhich. : Compatible
(fun x:(any -> any) -> any. fun y:any -> any -> any. y (x (fun x:any.

x)) (x (fun b:any. fun c:any. b))) (fun d:any -> any. d d)

migeed/12-self-interpreter.gtlc

Gtubi. : Rejected

InsAndOuts. : Rejected

MGT. : Compatible
(fun h : ((any -> any) ->

(any -> any -> any) -> ((any -> any) -> any -> any) -> any) ->

((any -> any) -> (any -> any -> any) -> ((any -> any) -> any -> any) -> any) ->

any.

(fun x : any. h ((((x)) x)))

((fun x : (any -> any) ->

(any -> any -> any) -> ((any -> any) -> any -> any) -> any.

h x x)))

((fun e : any.

fun m : (any -> any) ->

(any -> any -> any) -> ((any -> any) -> any -> any) -> any.

m (fun x : any. x) (fun m : any. fun n : any. ((((e)) m)) (((e)) n))

(fun m : any -> any. fun v : any. ((e)) (m v))))

MaxMigrate. : Rejected

TypeWhich2. : Compatible
(fun h:any -> any -> any. (fun x:any -> any. h (x x)) (fun x:any. h x

x)) (fun e:any. fun m:any. m (fun x:any. x) (fun m:any. fun n:any. e

m (e n)) (fun m:any. fun v:any. e (m v)))

TypeWhich. : Compatible
(fun h:any -> any -> any. (fun x:any -> any. h (x x)) (fun x:any. h x

x)) (fun e:any. fun m:any. m (fun x:any. x) (fun m:any. fun n:any. e

m (e n)) (fun m:any. fun v:any. e (m v)))

39

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha

F GRIFT BENCHMARKS

Name Description
array Adapted from ?
sieve Adapted from ?
n-body Adapted from ?
tak Adapted from ?
ray Adapted from ?
blackscholes Adapted from ?
matmult 400 × 400 matrix multiplication
quicksort Quicksort on worst-case input
quicksort-pairs Quicksort implemented with pairs
fft Adapted from ?
cps Mutually recursive even-odd in continuation-passing style

40

