Lecture 1: Haskell

¢

(BSC 131
Spring, 2017

Kim Bruce (for Michael Greenberg)

Overview

e Most fundamental tool for programmers

- Understand what happens at run-time

- Understand how choice of language affects
programmers

e Prof. Greenberg will go in more depth on
return.

Partners

e Homework will be done in (randomly chosen)
pairs.

- Watch piazza for pairings for first homework!

Haskell

According to Larry Wall
(designer of PERL):
... a language by geniuses

for geniuses

He’s wrong — at least about the latter part
though you might agree when we talk about monads

Haskell 98

 Purely functional (unlike ML and Racket)
e Functions are first-class values
e Statically scoped

e Strong, static typing via type inference (/zke ML)
- Type-safe

e Parametric polymorphism

* Type classes

Haskell (cont)

e Rich type system including support for ADT’s
e Non-strict (lazy) evaluation

e Imperative features emulated using monads.

e Garbage collection

e Compiled or interpreted.

e Named after Haskell Curry -- early contributor
to lambda calculus and combinatory logic

Read Haskell Tutorials

* https://www.haskell.org/documentation

e | like “Learn you a Haskell for greater good”
e O’Reilly text: “Real World Haskell” free on-line
e Print Haskell cheat sheet

e Use “The Haskell platform”, available at

- http://wwwhaskell.org/

Using GHC

* to enter interactive mode type: ghci
- :load myfile.hs - :l also works
- after changes type :reload myfile.hs
- Control-d to exit
- :set +t - prints more type info when interactive

- “it” is result of expression

Built-in data types

e Unit has only ()
e Bool: True, False with not, &&, |l

® T ge oo i Ritmmminia b N = i = 1
- div, mod defined as prefix operators (div" 7nfix)
- Int fixed size (usually 64 bits)
- Integer gives unbounded size

e Float, Double: 3.17, 2.4e17 W/ +, -, *, /, =, <, >, >=,
<=, sin, cos, log, exp, sqrt, sin, atan.

More Basic Types

list of Char

e Char: ‘n’ /

o String = {Charl, not really primitive

- "hello"++" there", length/Preﬁx op w/out !

- No substring, but “isInfixOf" for all lists
- Also ‘isPrefixOf", “isSuthixOf’ tmport Data.List

e Type classes (later) provide relations between
classes.

Interactive Programming

with ghci

* Type expressions and run-time will evaluate

e Define abbreviations with “let”
- let doublen=n +n

- let seven = 7

* “let” not necessary at top level in programs

loaded from files

Working with Files

o Examples (demo):
- mean:: Int -> Int -> Int
- fact: Int -> Int
- fib: Int > Int Geveral ways)

System will infer types, but get much better error messages
tf you put them in!

Lists

e [ists
- {2,3,4,9,12}: [Integer]
- [I - empty list

- [m..n} shorthand for {m, m+1, ..., n}

- fst:rest pattern matching any non-empty list
- Must be homogenous

- Built-in functions: length, ++, :; map, rev

e also head, tail, but normally avoid w/pattern matching!

Polymorphic Types

e [1,2,3}: {Integer]

o [“abc”, “def”}:: {[Charll, ...
o {L:{a}

e map: (a—b) — (fal — {bD

o Use :texp togettypeof exp

Pattern Matching

* Decompose lists:
- {1,2,31 = 1:(2:3:{D)
* Define functions by cases using pattern
matching:

prod [] = 1
prod (fst:rest)

fst * (prod rest)

Pattern Matching

* Desugared through case expressions:

- head' :: {al -> a
head' {1 = error "No head for empty lists!"
head' (x:1) =x

* equivalent to

- head' xs = case xs of

[} -> error "No head for empty lists!"
(xel) i

Exercises

e Exercise: Write

e sum nums = sum of elts of Ist

e filterlt nums cond = sublist of elts of nums satisfying cond

o there is a built-in filter:(a->Bool) > [al > {af

IType constructors

e Tuples
- (17,”abc”, True) : (Integer , {Char} , Bool)

- fst, snd defined only on pairs

e Records exist as well

More Pattern Matching

e (x,y)=(5 div’ 2,5 'mod’ 2)
e hd:tl = {1,2,31
* hd:_ =14,5,61

- “ ”1s wildcard.

Static Typing

e Strongly typed via type inference

- head:: [a] = a
tail:: {a} — {al

- last [x} =x
last (hd:tail) = last tail

e System deduces most general type, [al -> a

- Look at algorithm later

Static Scoping

e What is the answer?

- let x = 3
let gy =x +y

let x = 6

1= AA—=1=21
Q
N

e What is the answer in original LISP?

- (define x 3)

gdeflne (g v) (+ X Vy))
(

(

define x 6)
g 2)

Static Scoping

const x = 3
{
e What is the answer? {g<y> =x+y
- let x = 3 print (g 2)
- let gy = X + Y const X = 6
miic 2 {
- let x = 6 print (g 2)
T (eIt }

}
}
}

e What is the answer in original LISP?

(define x 3)
(define (g y) (+ x Yy))

(g 2)
(define x 6)

(g 2)

I.ocal Declarations

roots (a,b,c) =
let -- iIndenting is significant
disc = sqgrt(b*b-4.0*a*c)
in
((-b + disc)/(2.0%*a),(-b - disc)/(2.0%*a))

*Main> roots(1,5,6)
(-2.0,-3.0)
or
roots' (a,b,c) = ((-b + disc)/(2.0%*a),
(-b - disc)/(2.0%*a))
where disc = sqrt(b*b-4.0*a*c)

Anonymous functions

® dble X=X+X
o gbbreviates

e dble=\x>x+x

Defining New Types

* Type abbreviations
- type Point = (Integer, Integer)
- type Pair a = (a,a)

e data definitions
- create new type with constructors as tags.

- generative

e data Color = Red | Green | Blue

See more complex examples later

Type Classes Intro

* Specity an interface:

~ class Eq a where
(==) :a->a > Bool - specify ops
(/=) :: a > a > Bool
x ==y =not (x/=y) - optional implementations
X /=y = not (x == y)

- data TrafficLight = Red | Yellow | Green
instance Eq TrafficLight where
Red == Red = True
Green == Green = True
Yellow == Yellow = True
S=hii il se

