
Lecture 1: Haskell
CSC 131

Spring, 2017

Kim Bruce (for Michael Greenberg)

Overview

• Most fundamental tool for programmers

- Understand what happens at run-time

- Understand how choice of language affects
programmers

• Prof. Greenberg will go in more depth on
return.

Partners

• Homework will be done in (randomly chosen)
pairs.

- Watch piazza for pairings for first homework!

Haskell

According to Larry Wall
(designer of PERL):  

… a language by geniuses
for geniuses

He’s wrong — at least about the latter part
though you might agree when we talk about monads

Haskell 98

• Purely functional (unlike ML and Racket)

• Functions are first-class values

• Statically scoped

• Strong, static typing via type inference (like ML)
- Type-safe

• Parametric polymorphism

• Type classes

Haskell (cont)

• Rich type system including support for ADT’s

• Non-strict (lazy) evaluation

• Imperative features emulated using monads.

• Garbage collection

• Compiled or interpreted.

• Named after Haskell Curry -- early contributor
to lambda calculus and combinatory logic

Read Haskell Tutorials

• https://www.haskell.org/documentation

• I like “Learn you a Haskell for greater good”

• O’Reilly text: “Real World Haskell” free on-line

• Print Haskell cheat sheet

• Use “The Haskell platform”, available at
- http://www.haskell.org/

Using GHC

• to enter interactive mode type: ghci
- :load myfile.hs -- :l also works

- after changes type :reload myfile.hs

- Control-d to exit

- :set +t -- prints more type info when interactive

- “it” is result of expression

Built-in data types
• Unit has only ()

• Bool: True, False with not, &&, ||

• Int: 5, -5, with +, -, *, ^, =, /=, <, >, >=, ...
- div, mod defined as prefix operators (`div` infix)

- Int fixed size (usually 64 bits)

- Integer gives unbounded size

• Float, Double: 3.17, 2.4e17 w/ +, -, *, /, =, <, >, >=,
<=, sin, cos, log, exp, sqrt, sin, atan.

More Basic Types

• Char: ‘n’

• String = [Char], not really primitive
- "hello"++" there", length

- No substring, but `isInfixOf` for all lists

- Also ‘isPrefixOf`, `isSuffixOf ’

• Type classes (later) provide relations between
classes.

Prefix op w/out ``!

import Data.List

list of Char

Interactive Programming
with ghci

• Type expressions and run-time will evaluate

• Define abbreviations with “let”
- let double n = n + n

- let seven = 7

• “let” not necessary at top level in programs
loaded from files

Working with Files

• Examples (demo):

- mean:: Int -> Int -> Int

- fact: Int -> Int

- fib: Int -> Int (several ways)

System will infer types, but get much better error messages
if you put them in!

Lists

• Lists
- [2,3,4,9,12]: [Integer]

- [] -- empty list

- [m..n] shorthand for [m, m+1, …, n]

- fst:rest pattern matching any non-empty list

- Must be homogenous

- Built-in functions: length, ++, :, map, rev

• also head, tail, but normally avoid w/pattern matching!

Polymorphic Types

• [1,2,3]:: [Integer]

• [“abc”, “def”]:: [[Char]], ...

• []:: [a]

• map:: (a → b) → ([a] → [b])

• Use :t exp to get type of exp

Pattern Matching

• Decompose lists:
- [1,2,3] = 1:(2:(3:[]))

• Define functions by cases using pattern
matching:

prod [] = 1  
prod (fst:rest) = fst * (prod rest)

Pattern Matching

• Desugared through case expressions:
- head' :: [a] -> a  

head' [] = error "No head for empty lists!"  
head' (x:_) = x

• equivalent to
- head' xs = case xs of  

 [] -> error "No head for empty lists!"  
 (x:_) -> x  

Exercises

• Exercise: Write

• sum nums = sum of elts of lst

• filterIt nums cond = sublist of elts of nums satisfying cond

• there is a built-in filter:(a->Bool) -> [a] -> [a]

Type constructors

• Tuples
- (17,”abc”, True) : (Integer , [Char] , Bool)

- fst, snd defined only on pairs

• Records exist as well

More Pattern Matching

• (x,y) = (5 `div` 2, 5 `mod` 2)

• hd:tl = [1,2,3]

• hd:_ = [4,5,6]
- “_” is wildcard.

Static Typing

• Strongly typed via type inference
- head:: [a] → a 

 tail:: [a] → [a]

- last [x] = x 
last (hd:tail) = last tail

• System deduces most general type, [a] -> a
- Look at algorithm later 

Static Scoping

• What is the answer?
- let x = 3
- let g y = x + y- g 2- let x = 6
- g 2

• What is the answer in original LISP?
- (define x 3)
- (define (g y) (+ x y))- (g 2)- (define x 6)
- (g 2)

Static Scoping

• What is the answer?
- let x = 3- let g y = x + y
- g 2- let x = 6- g 2

{
 const x = 3
 {
 g(y) = x + y
 {
 print (g 2)
 const x = 6

 {
 print (g 2)
 }
 }
 }
}

• What is the answer in original LISP?
- (define x 3)- (define (g y) (+ x y))- (g 2)
- (define x 6)- (g 2)

Local Declarations
roots (a,b,c) =
 let -- indenting is significant
 disc = sqrt(b*b-4.0*a*c)
 in
 ((-b + disc)/(2.0*a),(-b - disc)/(2.0*a))

*Main> roots(1,5,6)
(-2.0,-3.0)
or
roots' (a,b,c) = ((-b + disc)/(2.0*a),  
 (-b - disc)/(2.0*a))
 where disc = sqrt(b*b-4.0*a*c)

Anonymous functions

• dble x = x + x

• abbreviates

• dble = \x -> x + x

Defining New Types

• Type abbreviations
- type Point = (Integer, Integer)

- type Pair a = (a,a)

• data definitions
- create new type with constructors as tags.

- generative

• data Color = Red | Green | Blue
See more complex examples later

Type Classes Intro
• Specify an interface:
- class Eq a where  

 (==) :: a -> a -> Bool -- specify ops 
 (/=) :: a -> a -> Bool  
 x == y = not (x /= y) -- optional implementations 
 x /= y = not (x == y)

- data TrafficLight = Red | Yellow | Green  
instance Eq TrafficLight where  
 Red == Red = True  
 Green == Green = True  
 Yellow == Yellow = True  
 _ == _ = False

