I encourage you to collaborate. Please record your collaborations below.

Each question is worth one point, except problems marked with a (C) are “challenge” problems—go ahead and test your mettle, but these are longer or harder than anything I’d put on an exam and worth no course credit.

Please turn in your work as a printout of this sheet, not on separate paper. If you would rather typeset your work, I can give you the LATEX... but you’ll learn more by writing it by hand.

Collaborators: ________________________________________________
1 Lambda calculus with booleans

\[
\begin{align*}
t & ::= \text{bool} \mid t_1 \to t_2 \\
e & ::= x \mid e_1 e_2 \mid \lambda x : t \cdot e \mid \text{true} \mid \text{false} \mid \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \\
\Gamma & ::= \cdot \mid \Gamma, x : t
\end{align*}
\]

\[
\frac{\Gamma(x) = t}{\Gamma \vdash x : t} \quad \frac{\Gamma \vdash e_1 : t_1 \to t_2 \quad \Gamma \vdash e_2 : t_3}{\Gamma \vdash e_1 e_2 : t_2} \quad \frac{\Gamma, x : t_1 \vdash e : t_2}{\Gamma \vdash \lambda x : t_1 . e : t_1 \to t_2}
\]

\[
\frac{\Gamma \vdash \text{true} : \text{bool}}{\Gamma \vdash \text{false} : \text{bool}} \quad \frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t \quad \Gamma \vdash e_3 : t}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t}
\]

1.1 Type hunting

For each term \( e \), find a context \( \Gamma \) and type \( t \) that makes that term well typed, i.e., \( \Gamma \vdash e : t \).

1. \( \Gamma \vdash \text{if } x \text{ then } x \text{ else } y : t \) 
   \[\Gamma = \ldots \quad t = \ldots\]

2. \( \Gamma \vdash x \ y : t \) 
   \[\Gamma = \ldots \quad t = \ldots\]

3. \( \Gamma \vdash \lambda x : \text{bool}. \ x : t \) 
   \[\Gamma = \ldots \quad t = \ldots\]

4. \( \Gamma \vdash \lambda x : \text{bool} \to \text{bool}. \ x \ \text{true} : t \) 
   \[\Gamma = \ldots \quad t = \ldots\]

5. \( \Gamma \vdash \lambda x : \text{bool} \to \text{bool}. \ y \ (x \text{ true}) : t \) 
   \[\Gamma = \ldots \quad t = \ldots\]

6. \( \Gamma \vdash \lambda x : t_1 . \text{if } y \text{ then } x \text{ else } y : t \) 
   \[\Gamma = \ldots \quad t = \ldots\]

7. \( \Gamma \vdash \lambda x : t_1 \ y : t_2 \ z : \text{bool}. \text{if } z \text{ then } x \text{ else } y : t \) 
   \[\Gamma = \ldots \quad t = \ldots\]

\[t_1 = \ldots \quad t_2 = \ldots\]
1.2 Term hunting

For each type \( t \), find a closed term \( e \) that has that type, i.e., \( \cdot \vdash e : t \).

1. \( \cdot \vdash e : \text{bool} \rightarrow \text{bool} \)

2. \( \cdot \vdash e : \text{bool} \rightarrow \text{bool} \rightarrow \text{bool} \)

3. \( \cdot \vdash e : (\text{bool} \rightarrow \text{bool}) \rightarrow \text{bool} \)

4. \( \cdot \vdash e : (\text{bool} \rightarrow \text{bool} \rightarrow \text{bool}) \rightarrow \text{bool} \)
1.3 A failed hunt

Explain why there are no $t_1$, $t_2$, and $t_3$ such that \( \vdash (\lambda x : t_1. \ x \ x) \ (\lambda x : t_2. \ x \ x) : t_3. \)

1.4 A type you can count on

How many semantically different closed values are there of type \texttt{bool}? That is, we can write an infinite number of closed programs with type \texttt{bool}, but how many different values can we get out? List them as lambda calculus terms.

How many semantically different values are there of type \texttt{bool}→\texttt{bool}? There are infinitely many syntactically different values of type \texttt{bool}→\texttt{bool}, but many of them behave the same. How many different behaviors can a value typed at \texttt{bool}→\texttt{bool} exhibit? List them as (typed) lambda calculus terms.
1.5 We make our own rules, here

Suppose we extended our grammar with forms $e_1 \land e_2$ (conjunction, read “$e_1$ and $e_2$”), $e_1 \lor e_2$ (disjunction, read “$e_1$ or $e_2$”), and $\neg e$ (negation, read “not $e$”).

Write typing rules for these forms.
1.6 Conditional love (C)

Suppose we extend our grammar with a multi-branch conditional, of the form:

\[
\text{cond } \{ e_{11} \Rightarrow e_{12}; e_{21} \Rightarrow e_{22}; \ldots ; \_ \Rightarrow e_d \}
\]

Here are small-step evaluation rules for it:

\[
e_{11} \rightarrow e'_{11}
\]

\[
\text{cond } \{ e_{11} \Rightarrow e_{12}; e_{21} \Rightarrow e_{22}; \ldots ; \_ \Rightarrow e_d \} \rightarrow \text{cond } \{ e'_{11} \Rightarrow e_{12}; e_{21} \Rightarrow e_{22}; \ldots ; \_ \Rightarrow e_d \}
\]

\[
\text{cond } \{ \text{true} \Rightarrow e_{12}; e_{21} \Rightarrow e_{22}; \ldots ; \_ \Rightarrow e_d \} \rightarrow e_{12}
\]

\[
\text{cond } \{ \text{false} \Rightarrow e_{12}; e_{21} \Rightarrow e_{22}; \ldots ; \_ \Rightarrow e_d \} \rightarrow \text{cond } \{ e_{21} \Rightarrow e_{22}; \ldots ; \_ \Rightarrow e_d \}
\]

\[
\text{cond } \{ \_ \Rightarrow e_d \} \rightarrow e_d
\]

In English, a multi-branch conditional evaluates each of its branches \( e_{i1} \Rightarrow e_{i2} \) in turn; if \( e_{i1} \) yields \text{true}, then it executes \( e_{i2} \); otherwise, it keeps checking other branches. If none of the branches match, it runs the default branch \( e_d \).

Write a typing rule for \text{cond}.
2 Tuples

2.1 Two’s company

Write the typing rules for a lambda calculus extended with pair types \( (t_1, t_2) \), pairs \( (e_1, e_2) \) and projections \( \text{fst } e \) and \( \text{snd } e \).
2.2 The trouble with triples

Write the typing rules for a lambda calculus extended with *triples*, i.e., the type \((t_1, t_2, t_3)\) and the terms \((e_1, e_2, e_3)\), first \(e\), second \(e\), and third \(e\).

2.3 It’s a twofer (C)

Devise a syntactic sugar for encoding triples in terms of pairs. That is, write down four pieces of syntactic sugar that take the triple type and expression syntax of Problem 2.2 to a program in the pair syntax of Problem 2.1. Make sure you syntactic sugar: (a) has the right behavior; and (b) preserves types appropriately, i.e., if \((e_1, e_2, e_3)\) is well typed per your rules in Problem 2.2, its encoding should be well typed per your rules in Problem 2.1.
2.4  No limits (C)

Write typing rules for tuples of arbitrary length, i.e., types \((t_1, \ldots, t_n)\), tuples \((e_1, \ldots, e_n)\), and projections \(\pi_i e\) which get the \(i\)th element of a tuple. Be sure to allow \(n\) to be 0.
3 Other extensions

3.1 List of demands

Suppose we have integers (type int) in the lambda calculus. Add lists of integers to the simply typed lambda calculus, i.e., a type intlist and terms nil, cons e1 e2, and case e1 of \{nil ⇒ e2; cons x1 x2 ⇒ e3\}. Here are evaluation rules for case:

\[
e_1 \rightarrow e'_1
\]

\[
\text{case } e_1 \text{ of } \{\text{nil ⇒ } e_2; \text{cons } x \ y \Rightarrow e_3\} \rightarrow \text{case } e'_1 \text{ of } \{\text{nil ⇒ } e_2; \text{cons } x \ y \Rightarrow e_3\}
\]

\[
\text{case } \text{nil } \text{of} \ \{\text{nil ⇒ } e_2; \text{cons } x \ y \Rightarrow e_3\} \rightarrow e_2
\]

\[
\text{case } (\text{cons } e_1 \ e_2) \text{ of } \{\text{nil ⇒ } e_2; \text{cons } x_1 \ x_2 \Rightarrow e_3\} \rightarrow e_3[e_1/x_1][e_2/x_2]
\]

Write typing rules for nil, cons e1 e2, and case e1 of \{nil ⇒ e2; cons x1 x2 ⇒ e3\}.

This problem’s title was inspired by the inimitable Saul Williams (see https://www.youtube.com/watch?v=zDMtaIcrfQ0).
3.2 Sum more than others

Add the Haskell Either datatype to the simply typed lambda calculus. That is, extend the simply typed lambda calculus with so-called sum types $t_1 + t_2$ and terms $\text{left}_{t_2} e$, $\text{right}_{t_1} e$, and a pattern matching form like $\text{case } e_1 \text{ of } \{ \text{left}_{t_2} x_1 \Rightarrow e_2; \text{right}_{t_1} x_2 \Rightarrow e_3 \}$. 

What happens if we get rid of the type indices on left and right?

Fun fact: pairs are also called product types, and are sometimes written $t_1 \times t_2$ or $t_1 * t_2$ to emphasize this fact. The sum/product analogies are why datatypes are sometimes called algebraic datatypes.
3.3 Get your fix

In HW07, we introduced recursion by adding let rec. We could have instead added recursive functions directly. Suppose we extend the simply typed lambda calculus with an expression form \( \text{fix } f(x : t_1) : t_2 = e \)

Here \( f \) is the name of the function, \( x \) is its argument and \( t_1 \) is the argument’s type, \( t_2 \) is the return type, and \( e \) is the body. It evaluates as follows:

\[
(fix f(x : t_1) : t_2 = e) \xrightarrow{v} e[v/x][fix f(x : t_1) : t_2 = e/f]
\]

For example,

\[
(fix fact(n : int) : int = if n = 0 then 1 else n \ast fact(n - 1)) \xrightarrow{*} 120
\]

Write a typing rule for fix.
3.4 That’s an order (C)

Suppose we have a simply typed lambda calculus with \( x = e_1 \) in \( e_2 \). Let \( e_1; e_2 \) be syntactic sugar for let \( x = e_1 \) in \( e_2 \), i.e., it runs \( e_1 \), throws away the result, and then runs \( e_2 \).

Let’s extend the simply typed lambda calculus with state, i.e., a type \( \text{ref } t \) and terms \( \text{new } e \) (which allocates a new reference with \( e \) as its initial value), \( \text{read } e_1 \) (which looks up the current value of the reference in \( e_1 \)), and \( \text{write } e_1 e_2 \) (which sets the reference in \( e_1 \) to have a new value in \( e_2 \)). For example, we have:

\[
\begin{align*}
\text{let } x = \text{new } \text{true} \text{ in } \text{read } x & \rightarrow^* \text{true} \\
\text{let } x = \text{new } \text{true} \text{ in } \text{write } x \text{ false} & \rightarrow^* () \\
\text{let } x = \text{new } \text{true} \text{ in } \text{write } x (\neg (\text{read } x)) ; \text{ read } x & \rightarrow^* \text{false}
\end{align*}
\]

Write typing rules for \( \text{new} \), \( \text{read} \), and \( \text{write} \). Don’t allow “strong updates”, which change the type of a variable. That is, \( \text{let } x = \text{new } \text{true} \text{ in } \text{write } x (\lambda x: \text{bool}. x) \) should be ill typed. You can assume that there is a rule saying \( \Gamma \vdash () : () \).

Write small-step reduction rules for these features. Note that you’ll need to add something to the step relation to keep track of the values of each reference. (How did we handle mutation for the While language?) You might need another page.