I encourage you to collaborate. Please record your collaborations below.

Except for the problems in Section 7, you should use equational reasoning rather than CBN or CBV reduction.

Unless the problem says otherwise, feel free to use any definition from class or in the lecture notes, like true and succ.

Each problem is worth one point, except problems marked with a (C) are “challenge” problems worth no points—go ahead and test your mettle, but these are longer or harder than anything I’d put on an exam.

Please turn in your work as a printout of this sheet, not on separate paper. If you would rather typeset your work, I can give you the LaTeX... but you’ll learn more by writing it by hand.

Collaborators: ________________________________
1 Substitution

1.1 Changing names
Substitute y for x in $\lambda z. x$, i.e., compute $(\lambda z. x)[y/x]$.

1.2 Accept no substitutes
Substitute y for x in $\lambda z. z$, i.e., compute $(\lambda z. z)[y/x]$.

1.3 Identity crisis
Substitute $\lambda y. y$ for x in $\lambda x. x$, i.e., compute $(\lambda x. x)[\lambda y. y/x]$.

1.4 Don’t get carried away
Substitute $\lambda x. x \ x$ for x in $\lambda x. x \ x$, i.e., compute $(\lambda x. x \ x)[\lambda x. x \ x/x]$.
2 Alpha renaming and beta reduction

2.1 Explicit content

Use $=\beta$ to reduce $(\lambda x \; y. \; x) \; (\lambda y. \; y) \; (\lambda x. \; x)$ as much as possible. Use $=\alpha$ to avoid potential name conflicts.

Perform the same reduction without using $=\alpha$.

2.2 I come from a land down under

Reduce $\lambda x. \; (\lambda y. \; y) \; x$ as much as possible.

2.3 You can count on me

Reduce $(\lambda s \; z. \; s \; (s \; z)) \; (\lambda x. \; i \; x) \; n$ as much as possible.
3 Booleans

3.1 Ask not what not can do for you, but what you can do for not

Write not (a/k/a negation, ¬, !) on Church booleans without using anything other than lambdas, variables, and applications.

Write not a different way, using existing definitions.

3.2 Either/or

Write xor (a/k/a exclusive-or, ⊕, ^) on Church booleans without using anything other than lambdas, variables, and applications.

Write xor a different way, using existing definitions.
3.3 Any boolean you like

Write a function corresponding to the predicate \(P(x, y, z) = (x \land y) \lor (\neg x \land z) \lor (\neg x \land \neg y \land \neg z) \).

3.4 Choices, choices

Write a function of two arguments that (a) returns its first argument if its second argument is \texttt{true} and (b) returns \(\lambda x. x \) otherwise.
4 Church numerals

4.1 Don’t be a □
Write a function that takes in a Church numeral n and squares it, returning n^2.

4.2 Polynomial want a cracker?
Write a function that takes in Church numerals x, y, and z and returns the value of $y^3 + 3x^2z^2 + 2z + 5$.

4.3 With great power comes great responsibility
Write exponentiation, i.e., a function that takes as arguments two Church numerals m and n and returns m^n.
4.4 Toe the line

Write a function that takes in a slope m, a y-intercept b, and a Church pair of numbers x and y; return true if $y = mx + b$ and false otherwise.

4.5 Binomial, save later (C)

Write a function `binomial` that takes Church numerals x, y, and n and computes $(x + y)^n$ according to the Binomial Theorem:

$$(x + y)^n = \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^j$$

You can assume you have `choose` from Problem 5.2. Don’t use the Y combinator.
5 Recursion

5.1 Why ask Y?

Write the Fibonacci function.

5.2 I choose you, Pikachu!

Write a function choose that takes Church numerals m and n and computes $\left(\frac{m}{n}\right)$. You’ll need division, but you can do this problem without having solved Problem 5.3—just assume you have divide.

It was super effective!
Write a function divides that checks divisibility, i.e., it takes two Church numerals \(m \) and \(n \) and returns true if \(m \) divides \(n \) and false otherwise.
5.4 Go ahead and be negative (C)

Church numerals represent the natural numbers \((\mathbb{N} = \{0, 1, \ldots\})\). Use Church numerals, ingenuity, and elbow grease to represent the integers \((\mathbb{Z} = \{0, 1, -1, 2, -2, \ldots\})\). Define \texttt{zzero, zsucc, ziszero, zpred, zplus, zminus, ztimes, and zequal}.
6 Lists

Let’s define lists as follows:

\[
\begin{align*}
\text{nil} & \equiv \lambda n. n \\
\text{cons} & \equiv \lambda h. \lambda t. c. c h t \\
\text{null} & \equiv \lambda l. l \\
\text{true} & \equiv (\lambda h. \lambda t. \text{false}) \\
\text{head} & \equiv \lambda l. l \Omega (\lambda h. h) \\
\text{tail} & \equiv \lambda l. l \Omega (\lambda h. \text{false}) \\
\text{foldr} & \equiv Y (\lambda \text{foldrRec}. \lambda f. b. \lambda l. (\lambda h. f b (\text{foldrRec} f b t)))
\end{align*}
\]

6.1 A one, a two, a one two three four

Write down the list \([1, 2, 3, 4]\), i.e., the list containing the Church numerals one, two, three, and four in that order. Use \text{nil} and \text{cons}.

Write down the same list “directly”: don’t use anything but lambdas, variables, applications, and the Church numerals.

6.2 Two heads are better than one

Write down a function that returns the second element of a list. Your function should diverge if the list is too short.
6.3 One-by-one
Write \textit{map} without using \textit{foldr}.

Write \textit{map} using \textit{foldr}.

6.4 To the left, to the left
Write \textit{foldl}.
6.5 I prefer French press

Write filter without using foldr.

Write filter using foldr.

6.6 Line ’em up

Write a function that takes a number n and produces the list $[1, 2, 3, \ldots, n]$. Return the empty list if n is zero.
6.7 Panning for gold (C)

Write a function that takes a number \(n \) and returns a list of all primes less than or equal to \(n \). You'll need the \texttt{divides} predicate from Problem 5.3 in addition to the list functions we've just defined. Good luck!
7 You say CBN, I say CBV—let’s call the whole thing off

7.1 Stop right there

How many steps does it take \((\lambda x \ y. \ y) \ (\text{succ} \ \text{zero}) \ (\text{succ} \ \text{one})\) to reduce to a value using call-by-name? Show your work.

How many steps does it take \((\lambda x \ y. \ y) \ (\text{succ} \ \text{zero}) \ (\text{succ} \ \text{one})\) to reduce to a value using call-by-value? Show your work.

7.2 One of these things is not like the other

Write a term that diverges in CBV but not in CBN.

7.3 Common ground

Write a term that diverges in both CBV and CBN. Don’t just write \(\Omega\): the term should take at least three steps in either evaluation scheme before looping.
7.4 CBV Church booleans (C)

In CBV evaluation, we evaluate all of a function’s arguments before β-reducing. Define a version of the Church booleans (true, false, and, or, and not) and some syntactic sugar for if expressions that work in CBV evaluation. For example, the syntactic sugar for let expressions is \(\text{let } x = e_1 \text{ in } e_2 \equiv (\lambda x. e_2) e_1 \).
7.5 Loop the loop (C)

In CBV, $\Omega = (\lambda x. x\ x)\ (\lambda x. x\ x)$ reduces to itself in one step. Write a term that reduces to itself in two steps.

Write a term that reduces to itself in three steps.

Given a number $n > 1$, what would a term that reduces to itself in n steps look like?

Does your term also work for CBN? If not, write one that does.