
CS131: Higher-order functions
Due at the beginning of class on Thursday, September 14th

Name:

CAS ID (e.g., abc01234@pomona.edu):

I encourage you to collaborate. Please record your
collaborations below.

Most solutions using higher-order functions be written
in a single-line. Some solutions may take as many as
four or five lines, but any more and you’re off the scent.

Feel free to use Prelude definitions that help... but
don’t make the question trivial.

Each question is worth one point.

Please turn in your work as a printout of this sheet,
not on separate paper. If you would rather typeset
your work, I can give you the LATEX... but you’ll learn
more by writing it by hand.

Collaborators:



1 Maps

1.1 Say hello!

The function sayHello takes a list of names and produces a list of greetings, as in:

> sayHello []

[]

> sayHello ["Yuji","Emiliano","Helen"]

["Hello, Yuji!","Hello, Emiliano!","Hello, Helen!"]

Write the type of sayHello.

Write two implementations of sayHello: one using natural recursion and one using map.

1.2 Make it a double

The function doubleAll takes a list of arithmetic expressions (as in HW02) and produces another list of
arithmetic expressions that will evaluate to double the value. For example:

> doubleAll [Num 3,Neg (Num 5)]

[Times (Num 2) (Num 3),Times (Num 2) (Neg (Num 5))]

Write the type of doubleAll.

Write two implementations of doubleAll: one using natural recursion and one using map.



2 Filters

2.1 United we stand

The function indivisible takes a number and a list of numbers, returning those numbers in the list that
are indivisible by the first input:

> indivisible 5 [1..10]

[1,2,3,4,6,7,8,9]

> indivisible 2 [1..10]

[1,3,5,7,9]

There are many different types we can assign to indivisible; write a type that will allow at least the above
examples to work.

Write two implementations of indivisible: one using natural recursion and one using filter.

2.2 A rock and a hard place

The function between takes a lower and upper bound and a list, returning those elements of the list that
are between (inclusive) the two bounds.

> between 5 7 [1..10]

[5,6,7]

> between ’g’ ’l’ [’a’..’z’]

"ghijkl"

Write the type of between.

Write two implementations of between: one using natural recursion and one using filter.



3 Folds

Many functions in the Prelude reference Foldable t; for the purposes of this homework, please just use
lists.

3.1 Long story short

The length function computes the length of a list, returning an Int. Write three versions of length: one
using natural recursion, one using foldr, and one using foldl.

3.2 It’s so nice we’ll say it twice

The function stutter takes a list and returns a list with each item appearing twice:

> stutter []

[]

> stutter [1..4]

[1,1,2,2,3,3,4,4]

Write two versions of stutter: one using natural recursion, one using foldr.



3.3 You’ve got this down backwards and forwards

Write reverse four ways: using natural recursion, using accumulating recursion, using foldr, and using
foldl.



3.4 Two great tastes that taste great together

Write two implementations of concatMap :: (a -> [b]) -> [a] -> [b]: one using natural recursion
and one using foldr. Make sure you pass over the list only once.

3.5 Two great tastes that taste weird together

Just as concatMap f behaves like concat . map f (but passes over the list only once), the function
reverseMap f behaves like reverse . map f (but passes over the list only once). Write two implemen-
tations of reverseMap :: (a -> b) -> [a] -> [b]: one using natural recursion and one using foldl.



3.6 Better keep ’em separated

In Data.List, the function intercalate :: [a] -> [[a]] -> [a] is useful for text processing, as in:

> intercalate ", " ["A one","a two","a one two three"]

"A one, a two, a one two three"

Write two implementations of intercalate: one using natural recursion and one using foldr.

4 Composing higher-order functions

In these questions, you can’t define your function directly in terms of a higher-order function. You might
have to use more than one higher-order function to get the answer, or you might have to pre- or post-process
your data.

4.1 Saying it twice, again

Write a version of stutter (Problem 3.2) that uses map and concat.

4.2 Conjunction junction

Write a version of the Prelude function all :: (a->Bool) -> [a] -> Bool using map, filter, and
length.



4.3 Ducks in a row

Write a function isSorted that determines whether a list is sorted ascending:

> isSorted [1..10]

True

> isSorted [’a’..’z’]

True

> isSorted "algebra"

False

> isSorted "sty"

True

Use foldl (and whatever else is handy). Your solution should be O(n) and pass over the list only once.

4.4 Mean means average

Write a function mean that computes the arithmetic mean of a list of numbers. There are many ways to
write this function... so say which type yours has. Your function should be O(n) and pass over the list only
once.

Write mean two ways: using natural recursion and using either foldr or foldl.



4.5 A change of key

The function transpose “pivots” a list of lists, as in:

> transpose [[1,2,3],[4,5,6]]

[[1,4],[2,5],[3,6]]

> transpose [[1..5],[10],[],[20..30]]

[[1,10,20],[2,21],[3,22],[4,23],[5,24],[25],[26],[27],[28],[29],[30]]

Write transpose. Make it as concise and clear as possible, using higher-order functions (and other Prelude
functions) as necessary. Remember: the most powerful tool isn’t always the right one for the job.



4.6 Taking attendance

Write three versions of elem :: Eq a => a -> [a] -> Bool: one using natural recursion, one using a
fold of your choice, and one using a combination of map, filter.

4.7 Delete your account

Write two versions of delete :: Eq a => a -> [a] -> [a]: one using natural recursion, one using
foldr. Unlike the delete in the Prelude, your function should delete all occurrences of its first input
in the list given as the second input.



4.8 A man, a plan, a canal: Haskell

Write a function palindrome :: Eq a => [a] -> Bool that determines whether a given list is a palin-
drome, i.e., the same backwards and forwards.

Quarter-point bonus: write a palindrome in English.



4.9 The heart of the matter

The function nub de-duplicates a list, as in:

> nub [1..10]

[1,2,3,4,5,6,7,8,9,10]

> nub ([1..10] ++ [20,22..30] ++ [1..10])

[1,2,3,4,5,6,7,8,9,10,20,22,24,26,28,30]

> nub ([20,22..30] ++ [1..10] ++ [41,43..49] ++ [1..10])

[20,22,24,26,28,30,1,2,3,4,5,6,7,8,9,10,41,43,45,47,49]

Write three versions of nub: one using natural recursion, one using foldr, and one using foldl. You may
use any function from the Prelude except for reverse—you can solve this without reversing the list in any
way.


