
Haskell Monads
CSC 131

Kim Bruce

Monads
The ontological essence of a monad is its irreducible
simplicity. Unlike atoms, monads possess no material or
spatial character. They also differ from atoms by their
complete mutual independence, so that interactions
among monads are only apparent. Instead, by virtue of
the principle of pre-established harmony, each monad
follows a preprogrammed set of "instructions"
peculiar to itself, so that a monad "knows" what to
do at each moment.
-wikipedia

http://en.wikipedia.org/wiki/Ontology

Monads
In category theory, a branch of mathematics, a monad, or
triple is an (endo-)functor, together with two natural
transformations. Monads are used in the theory of pairs
of adjoint functors, and they generalize closure operators
on partially ordered sets to arbitrary categories.
-wikipedia

http://en.wikipedia.org/wiki/Category_theory
http://en.wikipedia.org/wiki/Functor
http://en.wikipedia.org/wiki/Natural_transformation
http://en.wikipedia.org/wiki/Adjoint_functors
http://en.wikipedia.org/wiki/Closure_operator
http://en.wikipedia.org/wiki/Partially_ordered_set

Defining Monads

• class Monad m where 
 (>>=) :: m a → (a → m b) → m b 
 return :: a → m a 
 
>>= allows a kind of composition of wrapped values or
computations -- called bind
- return wraps an unwrapped value.

part of Standard Prelude

Maybe Monad
-instance Monad Maybe where  
 (>>=) Nothing f = Nothing  
 (>>=) (Just x) f = f x  
 return x = Just x  

- >>= preserves “Nothing”,

- >>= unwraps argument to compute w/ a Just’ed value

- Second arg of >>= is function applied to unwrapped
value

- Abbreviate compu >>= \x ! exp as  
 do x <- compu  
 exp

Tuesday Example

• Expression
- getPFN name rooms phones = 

 do rm <- getDormFor name rooms 
 num <- getPhoneForRoom rm phones 
 return num

- abbreviates

- getPFN name rooms phones = 
 getDormFor name rooms >>= 
 (\rm -> getPhoneForRoom rm phones) 

Monads

• Provide operations to compose wrapped values

• Operations obey laws:
- return x >>= f == f x left identity

- c >>= return == c right identity

- c >>= (\x -> f x >>= g) == (c >>= f) >>= g 
 associativity

In “do” notation

• Left identity: 
 

• Right identity:

• Associativity: 
 
 

do { x' <- return x;
 f x'
 }

≡ do { f x }

do { x <- m;
 return x ≡ do { m }
 }

do { y <- do { x <- m;
 f x
 } ≡
 g y
}

do { x <- m; 
 do { y <- f x;
 g y
 }
}

Application of Laws

• Program:

• is equivalent to:

skip_and_get = do
 unused <- getLine
 line <- getLine
 return line

skip_and_get = do
 unused <- getLine
 getLine

by right identity

See http://www.haskell.org/haskellwiki/Monad_laws for more info

http://www.haskell.org/haskellwiki/Monad_laws

Other Monad Examples
• Error handling M(a) = a ∪ {error}

- Add a special “error value” to a type

- Define bind operator “>>=” to propagate error

• Information-flow tracking M(a) = a × Labels
- Add information flow label to each value

- Define bind to check and propagate labels

• State M(a) = a × States
- Computation produces value and new state

- Define bind to make output state of first go to input
state of second

Big Idea

• Write code as though computing on a, but
actually run it on M a.
- That’s what we did with Maybe monad!

- Can think of monad as representing a suspended or
pending computation.

- Difference between having a cake and having a recipe
for a cake.

Beauty

• Functional programming is beautiful:
- Concise and powerful abstractions

• higher-order functions, algebraic data types, parametric
polymorphism, principled overloading, ...

- Close correspondence with mathematics

• Semantics of a code function is the mathematical function

• Equational reasoning: if x = y, then f x = f y

- Independence of order-of-evaluation

• Confluence, aka Church-Rosser

Confluence means ...

e1 * e2

e1’ * e2 e1 * e2’

result

•

The compiler can
choose the best

sequential or parallel
evaluation order!

... and the Beast

• But to be useful as well as beautiful, a language
must manage the “Awkward Squad”:
- Input/Output

- Imperative update

- Error recovery (eg, timeout, divide by zero, etc.)

- Foreign-language interfaces

- Concurrency control

•The whole point of a running a program is to interact
with the external environment and affect it

The Direct Approach
• Just add imperative constructs “the usual way”
- I/O via “functions” with side effects:

• putChar ‘x’ + putChar ‘y’

- Imperative operations via assignable reference cells:

• z = ref 0; z := z + 1; ...

- Error recovery via exceptions

- Foreign language procedures mapped to “functions”

- Concurrency via operating system threads

• Can work if language determines eval order
Examples: ML, OCAML, Scheme/Racket

What if Lazy?

• Order of evaluation deliberately undefined.

• Example:
- ls = [putChar ‘x’, putChar ‘y’]

- if only use (length ls), then nothing printed!!

Fundamental Question

• Can you add imperative features with changing
the meaning of pure Haskell expressions?
- Even though laziness and side-effects are

incompatible!!

History

• Big embarrassment to lazy functional
programming community
- ML, Scheme/LISP/Racket didn’t care about being

purely functional

• Alternatives:
- Streams

- Continuations

• pure functions passed to IO routines to process input

- Pass state of world as parameter

• Hard to make single-threaded

Haskell 1.0 adopted, essentially lazy lists

Monads to Rescue!

• Value of type (IO a) is an action
- that may perform some input/output

- and deliver result of type a

I/O
- main :: IO() -- “IO action”

- main = putStrLn “Hello World!”

- where putStrLn:: String → IO()

- getLine :: IO String -- “IO action” returning string

• Want echo = putStrLn getLine
- Types don’t match

- Need >> = for IO monad!!

- echo = do str <- getLine 
 putStrLn str

See monad.hs

Glued together with >>=

Connecting Actions

getLine

putStrLn

IO String

String

IO StringIO String

IO ()

Combining IO Operations

• If don’t need result of first, even easier:

- Remember that f >> g means run f, ignore result and
run g.

- putStrLn “Hello” >> putStrLn “world”

Executing program in Haskell

• Put main program in function main in myFile.hs

- e.g. main = putStrLn “Hello world!”

- main must have type IO()

• Compile it: ghc myFile.hs

• Run it: ./myFile

Combining IO

• main = putStrLn "Please enter a number: " >>
(readLn >>= (\n -> putStrLn (show (n+1))))

• main = do
 putStrLn "Please enter a number: "

 n <- readLn

 putStrLn (show (n+1))))

More IO
ask :: String -> String -> IO()
ask prompt ansPrefix =
 do putStr (prompt++" ")
 response <- getLine
 putStrLn (ansPrefix ++ " " ++ response)

getInteger :: IO Integer
getInteger = do putStr "Enter an integer: "
 line <- getLine
 return (read line)
 -- converts string to Integer then to IO Integer

IO & Ref Transparency

• Main program is IO action w/type IO()

• Perform IO in IO actions & call pure functions
from inside there

• Can never escape from IO! Unlike Maybe.
- No constructors for IO, so can’t pattern match to escape!!!

• IO impure in that successive calls of getLine
return different values.

Using IO in Haskell

• Can build language at IO monad level:

ifIO :: IO Bool -> IO a -> IO a -> IO a
ifIO b tv fv = do { bv <- b;
 if bv then tv else fv}

whileIO :: IO Bool -> IO() -> IO()
whileIO b m = ifIO b
 (do {m; whileIO b m})
 (return())

Parsing Monad
Claim need parser to be monad to parse 4 78 19 3 44 3 1 7 5 2 3 2
 into [[78 19 3 44] [1 7 5] [3 2]]

sequence :: Monad m => [m a] -> m [a]
sequence [] = return []
sequence (ma:mas) =
 ma >>= \a ->
 sequence mas >>= \as ->
 return (a:as)

Imagine m a = Maybe a. Then
sequence [(Just 5), (Just 3), (Just 6)]
 => Just [5, 3, 6]

sequence [(Just 5), (Just 3), Nothing, (Just 6)]
 => Nothing

How to write using do?

Parsing Tough Languages

sequence :: Monad m => [m a] -> m [a]
sequence [] = return []
sequence (ma:mas) = do
 a <- ma
 as <- sequence mas
 return (a:as)

Parsing Tough Languages

replicateM :: Monad m => Int -> m a -> m [a]
replicateM n m = sequence (replicate n m)

replicateM 4 (Just 7) => Just [7,7,7,7]

Parsing Tough Languages

And now we are finally in a position to write the parser we wanted to write:
it is simply

parseFile :: Parser [[Int]]
parseFile = many parseLine

parseLine :: Parser [Int]
parseLine = parseInt >>= \i -> replicateM i parseInt

Monad allows access to result of first parse to use in the next one.

Stateful computations

• Random number generator:
- nextRand seed = (value, newSeed)

• Mirror stateful computation
- Carry state around as parameter, perhaps as list of

pairs of (locn,value)

- Painful to have to thread state everywhere

• Perhaps monad can hide it

State Monad

• data State s a = State(s → (a,s))
- Values are of form State f, where f provides one step of

computation from state s, returning value-state pair (a,s’)

- define runState:: State s a → s → (a,s) by 
runState (State f) s = f s

- provides a step of threaded computation returning an a.

- evalState (State f) s = first (f s)

• Just provides answer, ignoring new state

- execState (State f) s = second (f s) -- gives just new state

State Monad

• data State s a = State(s → (a,s))

• Define >>=, return
- return av = State(\s → (av,s))

• value is always av, doesn’t affect state

- c >>= f = State(\s → let (a, s’) = runState c s 
 in runState (f a) s’)

• Given s, calculates state value pair (a,s’) from running c on s.  
Then runs (f a) on new state s’, providing value,state pair

State Monad

• Inside Monad State class have defs:
- get :: State s s

- get = State (\s → (s,s))

- returns current state as value

- put :: s → State s ()

- put s = State(_ → ((),s))

- replace current state w/ new one

Using randoms
type LCGState = Word32
lcg :: LCGState -> (Integer, LCGState)
lcg s0 = (output, s1) where ... s0 ..

getRandom :: State LCGState Integer
getRandom = get >>= \s0 -> let (x,s1) = lcg s0
 in put s1 >> return x

-- do something with randoms
addTwoRandoms = do a <- getRandom
 b <- getRandom
 return (a+b)

See Monad.hs for full code

State Monad instance!

Actually Computing ...

Start up with initial state

*Main> runState addTwoRandoms 109573
 (85805, 2066785931)
*Main> evalState addTwoRandoms 109573
 85805

