Lecture I: Propositional Logic

CSCI 55 Spring, 2017

Kim Bruce subbing for Michael Greenberg

Syllabus at http://www.cs.pomona.edu/classes/cs055/

Logic

- "... the systematic study of the form of arguments."
- In particular the study of valid arguments.
 - How can you tell?
- Many logics of different expressiveness
 - Propositional logic
 - Predicate logic

Propositional Logic

• Letters p, q, r, etc. represent propositions

- Today is Wednesday.
- This class is horrible.
- If I stay in this class, then I'll learn a lot.
- Where is Michael Greenberg today?
- Do your homework regularly!

(De)Composing Propositions

- Build more complicated propositions from simpler ones.
 - Mary is here and the sky is blue.
 - Mary is not here.
 - Mary is here or her plane was delayed.
 - If the sky is blue then I will not carry an umbrella.

Represent Symbolically

 Let p, q represent propositions then use logical connectives ¬, ∧, ∨, → as follows to build up new formulas as follows:

•	р∧q	and

- ¬p not
- pvq or (inclusive or)
- $p \rightarrow q$ implies or if ... then ...
- $p \Leftrightarrow q$ *iff*

Boolean Values

- Often convenient to use abbreviations for true and false:
 - true = \top
 - false = \perp
 - Can use in formulas: $p \rightarrow \bot$

English to Propositional Logic

- p = Mary is here, q = The sky is blue, r = I will carry an umbrella, s = Mary's plane was delayed
- New propositions are: • In Java:
 - p && q • p/q
 - ¬p
 - pvs
 - $q \rightarrow (\neg r)$

- !p
- p || s
- !q || !r

Disambiguating Propositional Logic

- Use parentheses to make clear how to apply logical connectives.
 - $q \rightarrow (\neg r)$
 - ¬(p^q)
- Precedence of operators: \neg , \land , \lor , \rightarrow , \leftrightarrow
 - So ¬p^q is really (¬p)^q
 - $p \land q \rightarrow \neg r \text{ is } (p \land q) \rightarrow (\neg r)$
 - Better to parenthesize if any confusion

Translation Issues

- $p \rightarrow q$ can be expressed as
 - "if p then q"
 - "if p, q"
 - "q, if p"
 - "p implies q"

- "p, only if q"
- "q, when p"
- q is a necessary condition for p
- p is a sufficient condition for q
- q follows from p
- p ↔ q can be expressed as
 - p iff q
 - p is a necessary and sufficient condition for q

More Complicated

• Try these:

- p unless q The student will fail unless he studies
- if p then q, and conversely

Semantics via Truth Tables

- Propositions can be true or false.
- Analyze according using "compositional" semantics
 - Meaning of whole follows from meaning of parts.

Meaning of $p \land q$

- Depends on meaning of each of p and q.
 - If p, q both true then $p \land q$ is true, otherwise false.
 - Doesn't depend on content of p, q, just truth value
 - What about $p \vee q$ and $\neg p$?
 - What about $p \leftrightarrow q$?
 - $p \rightarrow q$ harder ...

One row for each combination of values of p and q

Why only two rows? How many rows if n proposition letters?

Material implication: No notion of causality. Only worry about when it fails.

P	Z.	$\neg P$	P∧Q.	PvQ.	<i>P→</i> Q	<i>P⇔</i> Q
Т	Т	Ť	Т	Т	Т	Т
Т	1	Т	T	Т	T	T
<u> </u>	Т	Т	T	Т	Т	Т
<u> </u>	1	Т	T	T	Т	Т

Each row corresponds to different valuation

Classification of Formulas

- A formula φ is *valid*, or a *tautology*, if for all assignments to proposition letters, φ is true.
- A formula φ is *unsatisfiable*, or a *contradiction*, if for all assignments to proposition letters, φ is false.
- A formula φ is *contingent* if for some assignments to proposition letters φ is true, and others make it false.

Examples

- Tautologies:
 - p v (¬p)
 - $p \rightarrow (q \rightarrow p)$
 - $\neg(p \land q) \Leftrightarrow (\neg p \lor \neg q)$
 - $\neg(p \lor q) \Leftrightarrow (\neg p \land \neg q)$
- Contradiction:
 - p ^ ¬p

Logical Equivalence

- Two formulas φ and τ are *logically equivalent* iff for all assignments to proposition letters, φ and τ have the same truth values.
 - Write it as $\phi = \tau$
 - How can we tell?
 - Equivalently ϕ and τ are logically equivalent iff $\phi \leftrightarrow \tau$ is a tautology.

Example

• Example $\neg p \rightarrow q \equiv p \lor q$

Р	Q.	$\neg P$	$\neg P \rightarrow Q$	PvQ.
T	T	Ţ	Т	Т
T		Т	Т	Т
L	T	Т	Т	Т
		Т	1	

How would you show $(\neg p \rightarrow q) \leftrightarrow (p \lor q)$ is a tautology?

DeMorgan's Laws

• Equivalences using negation

•
$$\neg (p \land q) \equiv (\neg p \lor \neg q)$$

•
$$\neg(p \lor q) \equiv (\neg p \land \neg q)$$

- $\neg(p \rightarrow q) \equiv (\neg q \rightarrow \neg p)$
- Others:
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
- See Table 6-8 in text for more

Logical Implication

• How could you define that?

LaTeX

- Text formatting system designed by Donald Knuth & added to by Leslie Lamport.
 - Not WYSIWYG!!
 - But lovely output.
- Need to learn for CS classes including 55, 81, 140, and for senior project/thesis.
 - Useful outside of CS as well

Benefits of LaTeX

- Takes care of tricky aspects of technical prose (if you don't fight it!).
 - Automatic numbering
 - Automatic handling of citations
 - Lots of macros for common formatting
 - You can write your own!

Good News!

- Mainly fill in template with your answers.
- Learn most of what you need from raw LaTeX of assignment sheet.
- See syllabus for details
 - http://www.cs.pomona.edu/classes/cso55/latex.html

Translation

- Iran will supply arms to Syria only if Syria helps Hezbollah.
- Only if Jenna passes the exam will Jenna get her license.
- Bill will take geology just in case it fulfills the science requirement.