
Has Our Curriculum Become Math-Phobic?
(an American Perspective)

Charles Kelemen (cfk@cs.swarthmore.edu), Allen Tucker (allen@bowdoin.edu),
Peter Henderson (phenders@butler.edu), Kim Bruce (kim@cs.williams.edu),

Owen Astrachan (ola@cs.duke.edu)

Abstract

We are concerned about a view in undergraduate computer
science education, especially in the early courses, that it’s
okay to be math-phobic and still prepare oneself to become
a computer scientist. Our view is the contrary: that any
serious study of computer science requires students to
achieve mathematical maturity (especially in discrete
mathematics) early in their undergraduate studies, thus
becoming well-prepared to integrate mathematical ideas,
notations, and methodologies throughout their study of
computer science. A major curricular implication of this
theme is that the prerequisite expectations and conceptual
level of the first discrete mathematics course should be the
same as it is for the first calculus course – secondary school
pre-calculus and trigonometry. Ultimately, calculus, linear
algebra, and statistics are also essential for computer
science majors, but none should occur earlier than discrete
mathematics. This paper explains our concerns and
outlines our response as a series of examples and
recommendations for future action.

1 The spread of math phobia

Much anecdotal evidence suggests that computer science
undergraduate majors are largely averse to the use of
mathematical notations, principles, and methods in their
day-to-day computer science coursework. The extent to
which this view is encouraged by computer science faculty
may also be surprisingly high [Henderson 99]. Although
some faculty may believe that computer science does not
require a heavy investment in mathematics or mathematical
ideas, theirs is probably not a prevailing belief among a
majority of computer science educators (e.g., see [8]).

This leaves the uncomfortable feeling that, as computer
science educators, we are not teaching what we profess to
be at the heart of our discipline. Starting with the first
course, the ubiquitous CS1 course, the great majority of
instructors teach this course as “the programming course,”
–––––––––––––––––––––––––––––––––––––
Copyright © 2001 by the Association for Computing Machinery, Inc. This
paper appeared in ITiCSE 2000.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications
Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

most recently migrating toward object-oriented, interactive
programming. While there are some exceptions, this
course usually develops in students an understanding that
computer science is about hacking code and solving
problems by long hours of trial and error in the computer
lab. The notion that computer science (including
programming) has mathematical, experimental (scientific),
and design principles and notations and themes running
through it is usually not evident in these courses.

Second, while most CS major programs require a
collection of mathematics courses, starting with calculus
and then discrete math, they seldom find ways to
convincingly integrate these mathematical topics within
their own core courses. Oddly, calculus usually appears as
a prerequisite for discrete mathematics, although its topics
do not appear until much later in the CS curriculum. The
argument that calculus should precede discrete mathematics
is only justified on grounds that it provides the
“mathematical maturity” needed to begin a discrete math
course. Thus, the path of prerequisites to the data structures
and algorithms courses, where discrete mathematics topics
ought to be heavily used, is unnecessarily long.

Third, students who take the data structures and algorithms
courses encounter a superficial level of rigor and integration
for such mathematical concepts as induction, proof, and
logic. In many cases, these concepts are not even included.
At best, these mathematical topics play a minor role in
comparison to the heavy levels of programming and trial-
and-error debugging that these courses typically require. A
cursory examination of the current popular data structures
and algorithms texts reinforces this observation.

Finally, and not insignificantly, the course “theory of
computation,” which includes the mathematical principles
underlying formal languages, automata, and Turing
computability, is left as an elective (or not even offered) in
increasing numbers of undergraduate programs. Since the
theory course’s topics are also not well integrated into the
core of the undergraduate curriculum, we conclude that that
core is fairly barren of mathematical content at most
colleges and universities. The Liberal Arts Model
Curriculum [11,16] is an exception to this conclusion.

2 Stopping the spread

To determine the mathematical needs of disciplines that are
related to mathematics, the Committee on Undergraduate
Preparation in Mathematics (CUPM) of the Mathematical
Association of America is sponsoring workshops to help

inform a revision of its curriculum recommendations for
undergraduate mathematics [6].

The first of these workshops addressed the mathematics
needs of computer science and physics programs. In
computer science, the workshop concluded that students
“should be comfortable with abstract thinking, basic
mathematical notation and its meaning. They should be
able to generalize from examples and create examples of
generalizations. In order to estimate the complexity of
algorithms, they should have a feeling for functions that
represent different rates of growth (e.g., logarithmic,
polynomial, exponential). In order to reason effectively
about the complexity and correctness of algorithms, they
should have some facility with formal proofs, especially
induction proofs. The same kind of clear and careful
thinking and expression needed for a coherent mathematical
argument is needed for the design and effective
implementation of a computer program” [7]. This
conclusion resonates with others’ expressions of concern
about the effective development and integration of the
mathematical dimensions of computer science (e.g., [13]).

This workshop reaffirmed that computer science students
should be able to model “real-world” problems precisely
using mathematics and represent situations using structures
such as arrays, linked lists, trees, finite graphs, and
matrices. They should be able to design and analyze
algorithms that transform these structures (e.g., [4]),
understand the nature of a mathematical model, and relate
mathematical models to real problem domains (e.g., [17,
18]). General problem solving strategies such as divide-
and-conquer and backtracking are also essential.

This means that the first three courses for computer science
majors – CS1, data structures, and computer organization –
should integrate mathematical ideas and notations so that
students become comfortable with them and see how they
complement the main themes of computer science.
Minimally, the following topics should be integrated into
these first three courses: logical reasoning (propositions,
DeMorgan’s laws, including negation with quantifiers),
functions, relations (equivalence relations and partitions),
function and set notation (f: A −> B; A × B; A ∩ B) ,
mathematical induction (structural, strong and weak),
combinatorics, finite probability, asymptotic notation (e.g.,

O(n
2
), O(2

n
)), recurrence/difference equations, graphs and

trees, and number systems. Examples below examples
illustrate the integration of these topics into these courses.

Propositional logic and number systems A computer
science student typically encounters the following code in a
program in the CS1 course:

if ((i > n) && (a[i] != x)) do thing1
else do thing2

After some analysis, the student discovers that thing1 is
not necessary, requiring that the condition of the if
statement be negated and do thing2 be retained as the only

alternative. The idea that negating this condition is an
application of DeMorgan’s law in logic should be helpful,
allowing an avoidance of trial-and-error debugging to
implement this change. While this situation occurs often
in the early CS courses, many students have difficulty
negating a compound logical expression such as this one.

Computer architecture is usually taught in the first two
years of a computer science major. Decimal, binary, and
hexadecimal number systems are used extensively. The use
of logic expressions and their circuits to model the design
of adders, multiplexors, and decoders are essential elements
of this course. Fluency with logic is thus an important
mathematical skill in this course.

Beyond these two examples, extended discussions of the
centrality of logic in the computer science curriculum is
provided in [15, 12].

Growth of functions During the analysis of nested loops,

the sum Σk

n

=1k often occurs. The fact that this sum is

equivalent to n(n+1)/2, and that as n grows this sum is
different from the function n itself is important. The sum

Σk

n

=11/k occurs often, as does its approximation ln n.

Finally, the idea that O(ln n) = O(log2 n) is also central.

Use of recurrence, induction, and finite probabability
One of the best sorting algorithms is quicksort, which can
be implemented as shown below.

//Pre: 0 <= first <= last
//Post: a[first..last] is in ascending order
void quicksort(IntArr a, int first, int last)
{ int pivotind; // pivot index
 int partdiv; // partition division point
 if (first < last) // something’s here to sort
 { pivotind = (first+last)/2; // pivot element
 partdiv = partition(a,first,last,pivotind);
 quicksort(a, first, partdiv-1); // sort left
 quicksort(a, partdiv+1, last); // and right
 }
}

Here, partition is a function that returns the index
partdiv and rearranges the elements of the array a so that:

a[first..partdiv-1] <= a[partdiv] < a[partdiv+1..last]

In a separate argument, one can use a loop invariant to
prove the (omitted) partition algorithm. Strong
induction is used to prove quicksort correct. Attempting
to prove an incorrectly formulated algorithm can sometimes
be as effective as other debugging methods.

It can be shown that partition takes no more than n
comparisons to partition an array of n elements. Using this
fact and assuming that partition divides the array into
equal portions, we get the recurrence T(n) <= 2T(n/2) + n

for quicksort, where T(n) represents the number of
comparisons to sort an array of n elements. If the initial
ordering of the array is such that partition divides the array
into parts containing 0 and n-1 elements, then the
recurrence for quicksort is T(n) < T(n-1) + n. The first
case yields O(n log n) complexity, while the second yields

O(n2). An ability to derive and solve these recurrences is a
key mathematical skill for computer science majors.

Students should also be able to analyze the expected
performance of quicksort. If all orderings of the initial
array are equally likely, the expected performance is O(n
log n) and the constant hidden in the big-oh is small
enough that quicksort is preferable to other sorting
algorithms whose worst-case performance is O(n log n).
Thus, comfort with finite probability is important in early
computer science courses.

For another example, binary search trees are important data
structures covered in a second computer science course.
They are most easily defined using recursive definitions
and most easily processed using recursive algorithms. For
example, an inorder traversal of a binary search tree is
easily expressed recursively but extremely difficult to code
without using recursion. Many algorithms that analyze the
complexity of binary search trees depend upon the height of
the tree. Mathematical expressions that relate the height of
the tree to the number of nodes in the tree are most easily
proved by induction.

3 Mathematics curricular changes

In order to achieve effective access by computer science
students to mathematical topics, it is clear that the topics
found in discrete mathematics should be learned early;
surely no later than the topics found in the calculus. While
the recent calculus reform efforts to migrate away from
“plug and chug” toward a more problem solving approach
is laudable, this change is less relevant in impact on CS
than would be similar reforms in the discrete mathematics
course. The mathematics community’s inattention to
discrete mathematics reform has forced many computer
science departments to teach these topics themselves.

Thus, we applaud recent experiments in the early
mathematics curriculum that integrate the use of labs,
group work, and peer learning [3, 14]. The use of these
techniques has proven very beneficial in the early computer
science curriculum, and we suspect that their use would be
equally productive in the first discrete mathematics course
(e.g., [9]). In any case, it is essential that mathematical
curricula consistently offer the discrete mathematics course
at least as early as the first calculus course, and without the
encumbrance of calculus as a prerequisite.

4 CS curricular impact

The effective integration of mathematical themes and ideas
into the computer science curriculum itself, though often

promoted, has had an uneven history. For the most part,
official curriculum recommendations from our professional
societies and organizations stress that computer science
majors must take mathematics courses during their
undergraduate careers, though they are not particularly clear
about the primacy of discrete mathematics. To a certain
extent, they also provide points in the computer science
curriculum where mathematical topics occur either as
prerequisites or as integrated subject matter.

For example, the Computing Sciences Accreditation Board
[5] recommends the following for undergraduate computer
science majors: “The curriculum must include at least one-
half year of mathematics. This material must include
discrete mathematics, differential and integral calculus, and
probability and statistics, and may include additional areas
such as linear algebra, numerical analysis, combinatorics,
and differential equations.” Similar recommendations
appear in the ACM/IEEE Curriculum 91 Report [1] and the
Liberal Arts Model Curriculum [16, 11], which are widely
used models for computer science major programs.

The core curriculum in computer science recommended by
the ACM/IEEE Curriculum 91 report has a core set of
knowledge units that span nine major subject areas and
prescribe enough subject matter in these areas to cover
about 7 semester-long courses. Of this, about 1-1/2
courses carry mathematics prerequisites (mostly discrete
mathematics, but also some calculus and linear algebra).
These parts of the computer science curriculum are more
mathematical in nature, and most of them fall within the
“algorithms and data structures” subject area.

The graduate record examination (GRE) in computer
science (ftp://etsis1.ets.org/pub/gre/275516.pdf) weights
25% on theory and 15% on mathematical background. The
theory topics depend heavily on discrete mathematics.
Topics listed under mathematical background include:

A. Discrete Structures (Mathematical Logic; elementary
combinatorics, including graph theory and counting
arguments; discrete mathematics, including number
theory, discrete probability, and recurrence relations);

B. Numerical mathematics (Computer arithmetic,
including number representations, roundoff errors,
overflow, and underflow; classical numerical
algorithms; linear algebra).

In all these models, discrete mathematics topics take
priority over calculus and linear algebra. If these discrete
mathematics topics are not covered in a first- or second-
semester mathematics course they must be introduced in
the computer science courses themselves. These courses
bear titles like "Discrete Structures" or "Computational
Structures." (E.g., see [9, 10].) However, this option can
slow down the development of other computer science
topics and may lead to a more cursory treatment of
mathematics topics than might occur if they were taught in
a mathematics course. Given the current difficulty in
hiring computer science faculty, we suspect that most

departments would welcome a freshman level discrete
mathematics course from the mathematics department.

Mathematics at advanced levels in the computer science
curriculum Many intermediate and advanced CS courses
use mathematical topics that students hopefully master in
their first two years. For example:

• Scientific computing courses use differential, integral,
and multivariate calculus and linear algebra.

• Transforms are used in speech understanding and
synthesis algorithms.

• Computer graphics courses use linear algebra, 3-
dimensional calculus, and topics from in geometry.

• Wavelets, groups, and rings are used in compression
and encryption algorithms.

• Operating systems and networking courses use
probability and statistical methods.

• Theory of computation uses induction proofs. Proof by
contradiction is also important here.

Often the first two computer science courses for majors are
also required for majors from mathematics, the natural
sciences, economics, social sciences, and other fields that
require a deeper mastery of computer science fundamentals.
For these students, a first semester discrete mathematics
course would seem also to be of value. Moreover, these
two courses should themselves have sufficient coverage of
mathematical ideas that nonmajors’ needs are well-served.

5 Conclusions

A joint IEEE/ACM Task Force on the “Year 2001 Model
Curricula for Computing” [2] has been formed. Its charter
is “to review the 1991 curricula and develop a revised and
enhanced version for the Year 2001 that addresses
developments in computing technologies in the past decade
and will sustain through the next decade.” We hope that
this curriculum planning effort will interact effectively with
the ongoing CUPM curriculum effort in mathematics [7] so
that the interrelationships between mathematics and
computer science can be more effectively expressed in their
respective curriculum recommendations. This is an
opportune moment in the history of computer science and
mathematics curriculum development.

References

[1] Tucker, A., et al. "A Summary of the ACM/IEEE-CS
Joint Task Force Report 'Computing Curricula 1991'".
Communications of the ACM, June 1991. pp. 69-84. For
the full report, including mathematics requirements for CS,
see http://www.acm.org/education/curr91/homepage.html.

[2] “Year 2001 Model Curricula for Computing”
http://computer.org/education/cc2001/index.htm.

[3] Calculus: The Dynamics of Change, MAA Notes 39,
Mathematical Association of America, 1996.

[4] Thomas H. Cormen, Charles E. Leiserson, and Ronald
L. Rivest. Introduction to Algorithms, MIT Press,
Cambridge, Massachusetts, 1990, pp. 64-72.

[5] Computing Sciences Accreditation Board, Revised
CSAC Evaluative Criteria, http://www.csab.org.

[6] Committee on the Undergraduate Program in
Mathematics, The Undergraduate Major in the
Mathematical Sciences. Washington, D.C.: Mathematical
Association of America, 1991.

[7] Charles F. Kelemen (ed.), Owen Astrachan, Doug
Baldwin, Kim Bruce, Peter Henderson, Dale Skrien, Allen
Tucker, and Charles Van Loan, Computer Science Report
to the CUPM Curriculum Foundations Workshop in
Physics and Computer Science, Bowdoin College, October
28-31, 1999.

[8] Denning, P. et al., Computing as a Discipline,
Communications of the ACM, April 1987.

[9] Susanna Epp. Discrete Mathematics with Applications,
2nd Edition, PWS Publishing, Boston, Massachusetts,
1995.

[10] Judith L. Gersting. Mathematical Structures for
Computer Science, Fourth Edition, W.H. Freeman, 1999.

[11] Gibbs, N. and A. Tucker. "A Model Curriculum for a
Liberal Arts Degree in Computer Science",
Communications of the ACM, Mar. 1986. pp. 202-210.

[12] Gries, D. "The Need for Education in Useful Formal
Logic", IEEE Computer, April 1996, pp. 29-30.

[13] Henderson, P.B., "Problem Solving, Discrete
Mathematics and Computer Science," DIMACS Series on
Discrete Mathematics and Theoretical Computer Science,
Vol. 36, American Mathematical Society, 1997.

[14] Deborah Hughes-Hallett et al., Calculus, John Wiley
and Sons, 1999.

[15]. J.P. Myers. "The Central Role of Mathematical Logic
in Computer Science", ACM SIGCSE Bulletin. 22(1), pp
22-26, 1990.

[16]. Walker, H. and G. M. Schneider. "A Revised Model
Curriculum for a Liberal Arts Degree in Computer
Science", Communications of the ACM, Dec. 1996. pp.
85-95.

[17]. Wolz, U. and E. Conjura. "Integrating Mathematics
and Programming into a Three Tiered Model for Computer
Science", ACM SIGCSE Bulletin. 26(1), pp 223-227,
1994

[18] Woodcock, J. and M. Loomes. Software Engineering
Mathematics, Addison-Wesley, 1988.

