Event-Driven Programming Facilitates Learning Standard
Programming Concepts!

Kim B. Bruce Andrea Danyluk, and Thomas Murtagh
Department of Computer Science
Wiilliams College
Williamstown, MA 01267
{kim,andrea,tom}Ocs.williams.edu

Abstract

We have designed a CS 1 course that integrates event-
driven programming from the very start. In [1] we ar-
gued that event-driven programming is simple enough
for CS 1 when introduced with the aid of a library that
we have developed. In this paper we argue that early use
of event-driven programming makes many of the stan-
dard topics of CS 1 much easier for students to learn by
breaking them into smaller, more understandable con-
cepts.

1 Introduction

We recently implemented a major update of our CS
1 course, which is now based on Java (replacing Pas-
cal). With the support of specially designed libraries,
this course takes an objects-first approach, uses truly
object-oriented graphics, incorporates event-driven pro-
gramming techniques from the beginning, and includes
concurrency quite early in the course.

Our provision of library classes that support the use
of object-oriented geometric figures allows students to
write quite interesting programs in an event-driven style
after only a few lectures. Library features support-
ing concurrency are introduced in the fourth week of
classes, at the same time as while loops, enabling inter-
esting examples involving animations. As argued in our
earlier papers [2, 1], the combination of object-oriented
graphics, event-driven programming, and concurrency
provides for a very interesting and pedagogically sound
introduction to programming.

Research partially supported by NSF CCLI grant DUE-
0088895.

In this paper we argue that the use of an event-driven
programming style from the beginning also allows in-
structors to provide more effective introduction to stan-
dard CS 1 material such as loops, parameters, and class
definitions.

2 Introducing Event-driven Programming Early

In [2] and [1], we describe the library we created to
support our approach and how it can be used to teach
event-driven programming early in CS 1. There are
several reasons for introducing event-driven program-
ming early. First, modern programs in wide distribu-
tion tend to use graphic user interfaces and react to
user-generated events, and students need to learn how
to program in this style [3, 7, 9]. Another reason is that
the use of GUI interfaces and event-driven programming
is highly motivating for students, especially when com-
pared with traditional programming involving line by
line text input and output [4, 5].

While many observers agree on these benefits for event-
driven programming, there are concerns that event-
driven programming is too difficult for novices [8, 6].
This argument has considerable validity if students are
forced to use the very general tools developed for pro-
fessional programmers. For example, event-driven pro-
gramming with GUI components in standard Java re-
quires programmers to

1. Create and initialize the GUI component (e.g., create
a choice button and add the choices to it).

2. Add the component to a container object.

3. Ensure that the listener class implements the appro-
priate listener interface.

4. Add an object from the listener class as a listener to
the component.

To accomplish this clearly requires more knowledge than
students can be expected to have early in an introduc-
tory course. To enable novices to program in this style,

our library contains a WindowController class that cre-
ates a specialized Canvas and inserts it into the center of
an Applet. This WindowController class implements
the MouselListener and MouseMotionListener inter-
faces and contains stub methods corresponding to all
of the event-handling methods promised by those inter-
faces.

Our students are told that their event-handling classes
should extend the WindowController class and are told
the names and signatures of methods that should be
written in order to handle the appropriate mouse events.
An additional benefit gained from this is that the meth-
ods written by students are naturally short, eliminating
the necessity of nagging students to break programs into
smaller pieces.

The following is a simple program that draws a series
of small framed squares on the canvas when the mouse
is dragged.

public class Squares extends WindowController
{
public void onMouseDrag(Location mouseLoc)
{
new FramedRect(mouseLoc, 4, 4, canvas);
}
}

Readers are encouraged to compare the complexity of
this program with a standard Java program producing
the same effect.

3 Event-driven Programming as Facilitator

In this section we argue that the use of an event-driven
approach from the beginning allows instructors to pro-
vide a more effective introduction to standard CS 1 ma-
terials. In particular, we discuss the following topics:

e classes,
e parameters, and

e loops,

and show how an event-driven approach makes these
concepts easier to learn.

3.1 Classes

Many instructors would like to use an objects-first ap-
proach in CS 1, but run into several roadblocks. In
order to write classes, students need to be able to write
instance variable declarations and method definitions.
Method definitions include the use of parameters as
well as the statements inside of method bodies. This
may lead one to believe that students need to spend

six weeks or more learning basic programming concepts
before they are ready to write their first classes.

The event-driven programming style that we introduce
results in students learning how to use methods and
instance variables in a very restricted context in the
first week of the course. Students are given the method
names and parameters for each of the event-handling
methods. They need only write the appropriate method
bodies, which tend to be quite simple (see the example
above).

Students use instance variables to “remember” informa-
tion that must be retained between method invocations.
These are quite easy for students to use, and quite in-
teresting programs can be written without any use of
loops. As an example, consider the following program
that allows a user to draw in a window by dragging the
mouse:

public class Scribble extends WindowController
{
// remembers location from which to draw
private Location oldPoint;

public void onMousePress(Location point) {
oldPoint = point;
}

public void onMouseDrag(Location point) {
new Line(oldPoint, point, canvas);
oldPoint = point;
}
}

Note how little students need to know to write this sim-
ple program that has fairly sophisticated behavior.

By the time our students are ready to design their
own classes in the third week of our course, they are
already familiar with writing classes (which extend
WindowController), declaring instance variables, writ-
ing the bodies of simple methods, and using formal pa-
rameters. The new topics at that point involve writing
constructors and determining names and parameters for
the methods in the new class. Even these are natural
extensions of concepts they have seen. For example,
they used a begin method for the same purpose as a
constructor in extensions of WindowController.

Our first examples of writing classes involve graphic im-
ages that behave similarly to the graphic objects in the
library. For example, we design a T-shirt class that
generates T-shirts that can be moved on the screen.
Thus, even the method names, such as move, are sim-
ilar to those they have seen before, except that rather
than only using the method names in sending messages
to objects from pre-defined classes, students write the
method declarations and bodies.

Moreover, the methods that students write are simi-
lar to the event-driven methods they have been writing
in that they are executed on demand. The Java ap-
plications written early in many CS 1 courses consist
of a static main method which is executed to comple-
tion (perhaps invoking other methods). Thus there is
a strong notion of a predetermined execution path. By
contrast, the event-driven methods are called only when
an action occurs. When they finish, the system waits
for another event. The methods in normal classes, like
the T-shirt class above, are also called by an external
action, this time by another object sending a message;
upon completion the object remains in existence, wait-
ing for another message.

By starting with event-driven programming, we make
it easy for students to make the transition from writing
simple methods in a class with event-driven methods to
the more general situation of a class with methods that
may be called in an undetermined order.

3.2 Parameters

One of the most difficult aspects for students to under-
stand, when learning to write methods or procedures,
is the use of parameters and the correspondence be-
tween actual and formal parameters. In typical intro-
ductory courses students encounter this correspondence
for the first time when moving from monolithic main
procedures/methods to writing helper methods which
abstract away some of the complexity.

With an event-driven approach, students never write
monolithic procedures or methods. Instead they begin
by writing small method bodies which respond to vari-
ous user actions. While the first examples presented can
ignore parameters, students are soon shown how to use
the formal parameters in the method declarations. In
the Squares class above, for example, our students learn
that they can use the formal parameter, mouseLoc, to
specify where the new squares should be drawn. They
are simply told that when the method is invoked, the
value of mouseLoc will be the location of the mouse. In
particular, the students don’t yet need to confront the
notion of the correspondence between formal and actual
parameters.

At the same time, our students gain experience creating
and using objects generated from the graphics library.
Thus they invoke both constructors and methods, some
with multiple parameters. In this case, they supply the
actual parameters, but, because they do not see the
method bodies, they still do not have to face the is-
sues of the correspondence between formal and actual
parameters.

When students begin to define classes, this prior expe-
rience with both actual and formal parameters, though

each separate from the other, provides the background
to help students better understand the notions of
formal-actual parameter correspondence. When defin-
ing a T-shirt class, for example, students see methods
similar to those they have used with the geometric ob-
jects, and can see how the actual parameters provided
with message sends end up corresponding with the for-
mal parameters used inside the method bodies.

Most introductory courses using an object-oriented ap-
proach do have students sending messages to objects
from predefined classes early on, gaining experience
with using actual parameters, but experience with for-
mal parameters is usually postponed until several weeks
later when students write methods for the first time.
Our event-driven approach has students writing meth-
ods and using formal parameters from the first week of
classes. Yet they do not have to face issues of formal-
actual correspondence until a few weeks later.

While there are other topics involving the use of param-
eters that must be addressed (e.g. the use of parameters
versus instance variables), we can draw more heavily
on the students’ prior experiences to help them under-
stand the formal-actual parameter correspondence be-
cause they have seen each separately.

3.3 Loops

One of the most interesting aspects of using event-
driven programming is that one can write programs
with repetitive behavior without involving loops. The
class Squares above is a good example in that dragging
the mouse around on the screen results in repetitively
drawing squares.

One can take advantage of this behavior to help students
learn to program loops. For example, the following pro-
gram draws a new blade of grass each time a user clicks
the mouse:

public class Grass extends WindowController

{

// constants omitted

// x-coord of next blade of grass
private double bladePos;

public void begin() {
// draw solid ground and sun
new FilledRect(0,GROUND_LINE,
SCREENWIDTH,SCREENHEIGHT-GROUND_LINE,
canvas) ;
new FilledOval (SUN_INSET,SUN_INSET,
SUN_SIZE,SUN_SIZE,
canvas) .setColor(Color.yellow);
bladePos = 0;
}

public void onMouseClick(Location point) {
// grow grass with each mouse click
if (bladePos < SCREENWIDTH) {
new Line(bladePos,GRASS_TOP,
bladePos,GROUND_LINE,
canvas) .setColor(Color.green) ;
bladePos = bladePos + GRASS_SPACING;
}
}
}

If the students have already seen conditional state-
ments, this program is simple to understand. Each click
of the mouse creates a new blade of grass a bit to the
right of the last as long as bladePos is not off the right
side of the screen.

While this program does the job, it is clearly a painful
way to create a field of grass. This provides motivation
for introducing loops to perform the repetitive activity.

More importantly, because the body of the method
onMouseClick is designed to executed repeatedly, we
have already figured out the building blocks of the while
loop. We have determined the need for the variable
bladePos, and how it is to be updated. Moreover, the
if statement has already specified the conditions under
which the body of the loop should no longer be exe-
cuted. (In practice we would probably first introduce
a version of the program without the if and only later
add it. This allows us to separate concerns even more
effectively.)

It is now very simple to rewrite this program with a
while loop. All that is necessary is to move the body
of onMouseClick to the end of the begin method and
then to change the if to a while:

public class Grass2 extends WindowController

{

// constants omitted

// x-coord of next blade of grass
private double bladePos;

public void begin() {
// draw solid ground and sun
new FilledRect(0,GROUND_LINE,
SCREENWIDTH, SCREENHEIGHT-GROUND_LINE,
canvas) ;
new FilledOval(SUN_INSET,SUN_INSET,
SUN_SIZE,SUN_SIZE,
canvas) .setColor (Color.yellow) ;

bladePos = 0;

// grow blades of grass

while (bladePos < SCREENWIDTH) {
new Line(bladePos,GRASS_TOP,
bladePos,GROUND_LINE,
canvas) .setColor (Color.green) ;
bladePos = bladePos + GRASS_SPACING;
}
}
}

Thus we can introduce the idea of loops concretely
through repeated executions of methods driven by sep-
arate events, and then move in a very straightforward
fashion to the syntax of while loops. Notice as well that
in the first version of the program, execution pauses af-
ter each invocation of the onMouseClick method. This
is very similar to running a while loop with a debugger
and a breakpoint at the end of each loop. It allows the
programmer to examine the effect of each execution of
the body rather than looking only at the result after the
loop is completed.

In summary, the use of event-driven programming al-
lows the introduction of the different components of a
loop slowly via a series of examples. One can start just
with executions of the body of the loop by putting it
inside of an event-handling method. This can be tested
with repeated events to ensure correctness of succes-
sive invocations of the loop body. Then one can add a
conditional statement to skip execution when the task
is completed. Finally, converting the conditional to a
while loop (and possibly moving it to a different part
of the program) completes the construction of a loop
whose parts have already been tested.

4 Conclusions

In earlier papers [2, 1] we have argued that a well
designed library can make possible the introduction
of event-driven programming in CS 1. We also dis-
cussed there the advantages of event-driven program-
ming and an object-oriented graphics library in enabling
an objects-first approach to CS 1.

In this paper, we argue that the early introduction of
event-driven programming makes many of the standard
topics of CS 1 much easier for students to learn. We
illustrated this argument with examples involving the
introduction of classes, parameters, and loops.

For the last two years we have been teaching a course
using these ideas and the library we developed for this
purpose. We are currently writing a text based on these
ideas. Our materials are being tested this year by fac-
ulty at other institutions in the United States. We hope
to have an even larger group using the materials in 2002-
2003, with the publication of our text projected for the
fall of 2003.

References

[1]

Bruce, K. B., Danyluk, A., and Murtagh, T. Event-
driven programming can be simple enough for CS 1.
In Proceedings of the 2001 ACM ITiCSE Conference
(2001), pp. 1-4.

Bruce, K. B., Danyluk, A., and Murtagh, T. A li-
brary to support a graphics-based object-first ap-
proach to CS 1. In Proceedings of the 2001 ACM
SIGCSE Symposium (2001), pp. 6-10.

Culwin, F. Object imperatives! In Proceedings of
the 1999 ACM SIGCSE Symposium (1999), pp. 31—
36.

Jimenez-Peris, R., Khuri, S., and Patino-Martinez,
M. Adding breadth to CS 1 and CS 2
courses through visual and interactive programming
projects. In Proc. of the 30th SIGCSE Tech. Symp.
on Computer Science Education (1999), pp. 252—
256.

Mutchler, D., and Laxer, C. Using multimedia
and gui programming in CS 1. In Proc. of the
SIGCSE/SIGCUE Conf. on Integrating Technology
in Computer Science Education (1996), pp. 63-65.

Reges, S. Conservatively radical java. In Proc. ACM
SIGCSE Symposium (2000), pp. 85-89.

Stein, L. A. What we’ve swept under the rug: Radi-
cally rethinking CS 1. Computer Science Education
8, 2 (1998), 118-129.

Wolz, U., and Koffman, E. simplelO: A Java pack-
age for novice interactive and graphics program-
ming. In Proceedings ITiCSE (1999), pp. 139-142.

Woodworth, P., and Dann, W. Integrating console
and event-driven models in CS 1. In Proc. of the
30th SIGCSE Technical Symp. on Computer Science
Education (1999), pp. 132-135.

