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In 1986, guidelines for a computer science major degree program offered in
the context of the liberal arts were developed by the Liberal Arts Computer
Science Consortium (LACS) [Gibbs and Tucker 1986]. In 1996 the same group
offered a revised curriculum reflecting advances in the discipline, the accom-
panying technology, and teaching pedagogy [Walker and Schneider 1996]. In
each case, the LACS models represented, at least in part, a response to the
recommendations of the ACM/IEEE-CS [1979, 1991]. Continuing change in the
discipline, technology, and pedagogy coupled with the appearance of Comput-
ing Curriculum 2001 [2001] have led to the 2007 Model Curriculum described
here.

This report begins by considering just what computer science is and what
goals are appropriate for the study of computer science in the landscape of
the liberal arts. A curricular model for this setting follows, updating the 1996
revision. As in previous LACS curricula, [Gibbs and Tucker 1986] and [Walker
and Schneider 1996], the model is practical; that is, students can schedule
it, it can be taught with a relatively small size faculty, and it contributes to
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2 •     Liberal Arts Computer Science Consortium

the foundation of an excellent liberal arts education. Finally, this 2007 Model
Curriculum is compared with the recommendations of CC2001 [2001].

1. THE DISCIPLINE OF COMPUTER SCIENCE

Refining the definition given in 1986 [Gibbs and Tucker 1986], computer science
is the study of algorithms and data structures: their creation, analysis, and
realization. In particular, computer science is the study of algorithms and data
structures with respect to their

(1) formal properties,
(2) linguistic realizations,
(3) hardware realizations, and
(4) applications.

The curriculum for a program in computer science as described here follows
from a specific ordering of emphasis among these four components. The formal
properties (1) of algorithms and data structures are emphasized over specific
languages (2), machines (3), and applications (4).

This definition has held up well even though the discipline of computer sci-
ence has evolved substantially. Further refinements might add problem solving
to algorithms and data structures, a consideration of social and ethical impli-
cations, and the study of what is and what is not possible in the context of
algorithmic problem solving. However, even with these refinements, computer
science, particularly in a liberal arts setting, emphasizes principles and tech-
niques over operational and syntactic details that change rapidly.

2. THE LIBERAL ARTS LANDSCAPE

Liberal arts programs in computer science generally emphasize multiple per-
spectives of problem solving (from computer science and other disciplines), the-
oretical results and their applications, breadth of study, and skills in communi-
cation. In addition to the material content of computer science, the algorithmic
approach is a very general and powerful method of organizing, synthesizing,
and analyzing information. Three general-purpose capabilities that are among
those fundamental to a liberal arts education are the ability to organize and syn-
thesize ideas, the ability to reason in a logical manner and solve problems, and
the ability to communicate ideas to others. The design, expression, and analysis
of algorithms and data structures utilizes and contributes significantly to the
development of all three capabilities.

Rather than consider undergraduate programs as professional degrees, lib-
eral arts programs embrace the premise that graduates working in areas re-
lated to their majors will find that their careers develop in unexpected ways—
often involving new areas of knowledge and application. Further, many are
likely to change professions multiple times over their working lives. Liberal
arts programs de-emphasize specific technical details, with the understanding
that the half-life of such technical knowledge is now estimated at only about
2.5 years [Wulf 2000]. This environment leads to a balance of courses perhaps
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quite different from other types of programs. A typical liberal arts curriculum
in computer science consists of:

—Computer science courses: about 30%
—Mathematics courses: about 10%
—Other science courses: 5–10 %
—Non-science (e.g., humanities, social science) courses: 50–55%

Overall, a computer science program in a liberal arts setting typically re-
quires about 40% of a student’s undergraduate program (including math). While
this balance places limits on the number of computer science courses (e.g.,
only 8–12 required 4-credit courses for the major), core topics can be covered
well, and students have considerable contact with non-science courses that
promote breadth, communication, teamwork, and multiple perspectives. Com-
puting courses themselves often integrate views of mathematics, science, and
engineering (as described in CC1991 [1991]). Together, such breadth integrates
in a fundamental way several qualities that have emerged as essential for com-
puting professionals: effectiveness of writing and speaking, group interaction,
and understanding client perspectives.

3. COMPUTER SCIENCE PROGRAMS IN THE LIBERAL ARTS

This perspective on the discipline and the educational environment leads to the
following goals for an undergraduate program in computer science taught in a
liberal arts setting.

—To enable understanding the capabilities, limitations, and ramifications
(technical, ethical, and social) of computing, the state of the art, and cur-
rent research and development in computer science and related areas;

—To develop an ability to understand and analyze end user needs, master the
techniques of creating and applying algorithms and data structures, and an-
alyze their viability, correctness, and efficiency utilizing analytical methods
and appropriate theoretical results;

—To become effective at working individually and in teams, building on the
work of others, and to be able to communicate technical information with
both experts and non-experts;

—To prepare for adapting to changes in hardware and/or software technologies,
and new and changing application areas through a firm grasp of fundamental
principles and to develop an appreciation of the need for life-long learning;

—To appreciate both the demands and range of opportunities of the computing
profession and provide for and encourage creative contribution to the art.

In particular, students in the type of program described here should:

—Understand multiple views of problem solving (e.g., 2 or 3 of imperative,
object-oriented, functional);

—Have experience applying theoretical results to solving practical problems;
—Be able to apply critical thinking and problem solving skills across

disciplines;

ACM Journal on Educational Resources in Computing, Vol. 7, No. 2, Article 2, Publication date: June 2007.



4 •    Liberal Arts Computer Science Consortium

—Have experience with at least one large, team-based project or research
project;

—Understand non-scientific perspectives and have sufficient background to be
able to communicate effectively with people with those perspectives.

—Recognize the importance of social and ethical issues in computing.

4. OVERVIEW OF THE 2007 MODEL CURRICULUM

As in previous versions of the Model Curriculum, our goal has been to design
a rigorous program requiring no more than 9 courses in computer science ac-
companied by 3 courses in mathematics. This 12-course package represents
about the right size for a degree program within the liberal arts. The curricu-
lum must reflect current disciplinary content, appropriate liberal arts themes,
modern pedagogy, and realistic staffing levels.

The 2007 Model Curriculum springs from three major motivations:

(1) Changes in emphasis between Computing Curricula 1991 and Computing
Curricula 2001;

(2) A renewed commitment to the inclusion of multiple paradigms for problem
solving within the curriculum; and

(3) The need to update content details from the previous 1996 Revised Model
Curriculum [Walker and Schneider 1996].

The new curriculum has a structure not unlike that of previous versions—
that is, three basic courses in computer science followed by a set of 4 courses
capturing what is the essence or core of the discipline, followed by 3 electives
made up of advanced courses for depth and applications courses for breadth,
accompanied or followed by a culminating project or thesis. As before, the cur-
riculum requires 3 courses in mathematical foundations.

The most obvious change in this 2007 Model Curriculum is the introduction
of a new course in software development. We see a need for a more disciplined
approach to software development particularly in light of the glaring inade-
quacies of today’s software products. Covering basic algorithms, the syntax and
semantics of a programming language, algorithmic efficiency, and basic data
structures leaves little time for anything else. This problem was recognized by
the CC2001 committee, which stated in its report [2001]:

Although the philosophy and structure of introductory courses have
varied widely over the years, one aspect of the CS curriculum
has remained surprisingly constant: the length of the introductory
sequence. . . We believe the time is right to question this two-course
assumption. The number and complexity of topics that entering stu-
dents must understand have increased substantially, just as the
problems we ask them to solve and the tools they must use have
become more sophisticated.

To address this issue, the 2007 Model Curriculum includes a software devel-
opment course that builds on the introductory sequence. This course provides
the additional time needed to properly cover such topics as inheritance, software
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design, design patterns, unit testing and test coverage, design by contract, and
APIs (data collections, networking, GUIs, event-handling).

To make room for this new course, the core course entitled Foundations of
Computing in the 1996 Model Curriculum [Walker and Schneider 1996] was
eliminated. Two thirds of the material (automata and computability) has been
moved to a new foundations of computing course (FC2) entitled Theoretical
Foundations of Computer Science, and the material on grammars moved to the
Programming Languages course. So the loss of theory is more apparent than
real.

The other big change results from the desire to introduce multiple problem-
solving paradigms. Different paradigms, such as object-oriented and functional,
provide distinctive ways of thinking about and solving problems. Students who
experience multiple approaches and appreciate their tradeoffs understand the
value of applying alternative problem-solving models when confronting com-
plex, real-world applications. Two approaches that integrate object-oriented
and functional programming are presented in detail in Appendices A and B.
If desired, functional programming could be replaced by another sufficiently
different paradigm, such as logic programming.

In the objects-first approach (Appendix A), a traditional CS1 and CS2 se-
quence (courses CS1A and CS2A) is accompanied by FC1A, Discrete Structures
and Functional Programming, that includes an introduction to functional pro-
gramming (as the title suggests) and a traditional set of topics from discrete
mathematics. Functional programming applications are specifically selected
for their relevance to the discipline of computing to exemplify selected topics
in discrete mathematics and enrich the connections between mathematics and
computer science.

Recognizing the constraint that in many liberal arts colleges the discrete
mathematics course is taught by the Mathematics Department and that math-
ematics faculty may be unwilling to teach functional programming even with
assistance from their computer science colleagues, a second approach is pre-
sented in Appendix B. This functional-first approach introduces the discipline
of computer science and programming via a functional language and some as-
sociated mathematical topics in CS1B followed by a CS2B course covering an
object-oriented language coupled with data structures. Such an introductory
sequence has been used at many schools with great success. The functional-
first CS1B/2B would be coupled with a traditional discrete mathematics course
(FC1B) [Walker and Schneider 1996].

For the most part, the objects-first and functional-first approaches cover sim-
ilar mathematical content, although the sequencing of the topics varies. In ad-
dition, the 2007 Model Curriculum includes a mathematical elective, chosen in
collaboration between a student and advisor, that allows each student to gain
deeper background in a mathematical subject related to the student’s interests.

The number of computer science core courses remains at four. Three are re-
vised versions of courses familiar from previous versions of the Model Curricu-
lum: Principles of Algorithm Analysis, Principles of Programming Languages,
and Principles of Computer Organization. The fourth, Principles of Software
Development, has been added in recognition of the explosion in the size and

ACM Journal on Educational Resources in Computing, Vol. 7, No. 2, Article 2, Publication date: June 2007.



6 •    Liberal Arts Computer Science Consortium

CS1

CS2 FC1
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Elective

Fig. 1. Overview of the model curriculum.

complexity of object-oriented languages and in object-oriented design and im-
plementation. This course addresses the need for effective and correct software
development, not just the object-oriented paradigm. The course explicates ad-
vanced concepts in software design, modern software development techniques,
and APIs.

To this computer science core is added a second foundations of computing
course (FC2) entitled Theoretical Foundations of Computer Science. This course
is similar to the 1996 course entitled Foundations of Computing [Walker and
Schneider 1996], covering automata and computability, with the addition of top-
ics from number theory and probability and elementary statistics. The course
could be a prerequisite for such advanced electives as compiler construction.

As before, a concentration in computer science entails taking three advanced
electives. Completion of the core ideally precedes advanced electives in the
discipline. Finally, the program includes a capstone experience that can range
from a significant individual or group software development project to research
leading to a senior thesis.

Figure 1 summarizes the structure of this 2007 Model Curriculum. In the
figure we do not distinguish between the two approaches to the introductory
sequences. A solid line in the figure indicates a prerequisite. Course FC1 could
have CS1 either as a prerequisite or a co-requisite, which we indicated by using
a dotted line. Note that the capstone (research) experience may be integrated
into an elective or met by an additional course.

5. RECURRING THEMES AND ISSUES

Courses in this 2007 Model Curriculum progress from basic introductory level
courses through an intermediate core to advanced electives and undergradu-
ate projects and research. The study of relevant mathematical tools and ideas
are integrated with the central issues of computer science, particularly at the
introductory and core levels.

Some considerations common to many courses in the curriculum include the
following.
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Table I. Topic Hours for the Introductory Courses

Objects-First Functional-First
Topic CS1A CS2A FC1A Total CS1B CS2B FC1B Total Diff.
History, social, ethical issues 5 5 3 2 5 0
Program execution 1 1 1 1 0
Control constructs 4 4 3 2 5 −1
Variables, types, expressions 4 4 3 2 5 −1
Methods/functions 3 3 2 1 3 0
Higher-order functions 3 3 3 3 0
Anatomy of a class 4 4 3 3 1
Interfaces 2 2 2 2 0
Inheritance 3 3 3 3 0
Alternate paradigm 4 4 1 3 4 0
Tracing, testing, debugging 2 1 3 2 1 3 0
Arrays, lists, strings 6 6 12 7 3 10 2
Informal algorithm analysis 1 1 1 1 0
Exceptions 2 2 2 2 0
Streams, files 2 2 2 2 0
Formal algorithm analysis 3 3 3 3 0
Queues, stacks 3 3 2 2 1
Recursion 2 3 5 4 1 5 0
Trees 6 6 4 2 6 0
Advanced structures 6 6 6 6 0
Graphs 5 4 9 2 7 9 0
Searching, sorting 3 3 3 2 5 −2
Logic and proofs 4 4 4 4 0
Boolean algebra 2 2 2 2 0
Functions 3 3 3 3 0
Sets, relations 4 4 4 4 0
Cardinality, basic probability 7 7 7 7 0
Solving recurrence relations 4 4 4 4 0
Matrices 3 3 3 3 0
Total 39 38 38 115 39 39 37 115 0

Social and Ethical Issues. Many computer science courses, especially the
introductory sequence, ask students to confront the social and ethical issues
facing the field, as well as the technical issues. Social and ethical concerns
should be a theme woven through courses at all levels. The 2007 Model Curricu-
lum recommends that specific social/ethical issues be discussed in connection
with related technical issues, to show students that the two are not separable.
For example, units on testing or proof should discuss the professional’s respon-
sibility to produce correct code; topics such as the Internet or cryptography
will be presented as applications of course concepts, and those presentations
include discussions of the social impact of the applications on areas such as pri-
vacy, accuracy, and security. Tables I and II highlight hours spent on social and
ethical issues in the introductory sequence and in the core course Principles of
Software Development.

Schedule. The 2007 Model Curriculum assumes that a course contains
about 39 hours of classroom time (this can be achieved in a semester model by
meeting for 3 hours per week for 13 weeks, or in a quarter model by meeting for
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Table II. 2007 Model Curriculum Comparison with CC2001

Core Courses Theor. Grand
Comp. Algo- Soft. Prog. Found. Total
Org. rithms Dev. Lang. (FC2) w/Intro. CC2001

DS: Discrete Structures 3 12 49 43
PF: Programming Foundations 3 2 3 39 38
AL: Algs/Complexity-Core∗∗ 18 3 6 43 31
AL: Algs/Complexity-Other∗∗ 15 11 26 0
AR: Architecture & Org. 39 40 36
HC: Human-Comp. Interaction 4 5 8
GV: Graphics & Visual Comp. 0 3
IS: Intelligent Systems 4 10
IM: Information Management 0 10
OS: Operating Systems 3 6 9 18
NC: Net-Centric Computing 7 3 10 15
PL: Programming Lang.-Core∗∗ 23 36 21
PL: Programming Lang.-Other∗∗ 7 11 0
SP: Social, Professional Issues 6 11∗ 16
SE: Software Engineering 14 20 31
CN: Comp. Sci., Num. Methods 0 0

Totals 39 39 39 39 32 303 280
∗, ∗∗See explanatory text on page 13.

4 hours per week for 10 weeks). If a four-credit course meets four times a week or
three hours of lecture plus a laboratory, then classes might meet for significantly
more time in a semester/quarter. If labs are the primary instructional format,
then course material is presented through those lab sessions.

Reinforcement. Core topics (e.g., proofs, algorithm analysis, and recur-
sion) should be applied throughout all courses in the curriculum. This ensures
that students see that key ideas have applications outside the context in which
they are introduced, and allows instructors to reinforce and expand material
on an ongoing basis. In general, the course descriptions indicate the amounts of
time likely to be spent introducing concepts; continuing reinforcement means
that students will in fact spend considerably more time seeing and practicing
those concepts. For example, the outlines for FC1 indicate that logic and proofs
are introduced early in a 4-hour unit, but the expectation is that these topics
will be applied in class and homework consistently throughout the rest of the
semester, as well as in courses such as Algorithms, FC2, and others. From this
perspective, logic and proofs take up 30+ hours of FC1, plus additional hours
elsewhere in the curriculum.

Flexibility. All the course outlines are models to be adapted to local needs.
The ordering of topics within each course provides one reasonable ordering for
that course, but there certainly are other pedagogically sound ways to orga-
nize the course. One factor in determining a sequence of topics may be the set
of motivating examples, labs, and projects instructors choose to use. Another
factor would be whether an instructor prefers to cover topics sequentially in
depth, or apply a spiral approach in which key concepts are introduced early on
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and then revisited in more detail later. Even the boundaries between courses
are somewhat porous, particularly between CS1 and CS2, between CS2 and
Algorithms, and between FC1 and FC2.

The times suggested are approximate, and where possible we have left some
of a course’s nominal 39 hours unused, to allow instructors to supplement ma-
terial according to local needs and interests.

6. INTRODUCTORY COURSES

The recommendations for introductory courses include a sequence (CS1 and
CS2) in programming and data structures, and a course (FC1) in discrete math-
ematics topics related to computer science. The details will vary from institu-
tion to institution, according to program size, desires or pressures to coordinate
majors’ introductory courses in either computer science or mathematics with
general education offerings, etc. This 2007 Model Curriculum outlines two ap-
proaches to the introductory sequence below; others are possible as well.

The need to cover two programming paradigms forces the introductory
courses in the 2007 Model Curriculum out of traditional molds. Difficulties
caused by this break with tradition can be resolved by distributing treatment
of functional programming between the CS and FC sequences. There is a spec-
trum of possible introductory curricula, anchored at one end by a model in
which functional programming is taught solely in the CS courses, and at the
other end by a model in which functional programming is taught in the FC1
course. We describe the first endpoint in Appendix B and the second in A. Many
institutions may in fact position themselves between these two extremes.

The similarity in topics covered is shown in Table I, with only minor differ-
ences in coverage between the two approaches. Hence, in the remainder of the
paper we mostly do not distinguish between the two approaches, referring to
the sequence as CS1, CS2 and FC1. When we need to distinguish between the
two, we will refer to the specific courses, i.e., CS1A, CS2A and FC1A in the
objects-first approach.

6.1 Goals

Regardless of their detailed structure, the introductory courses have the fol-
lowing goals:

—To introduce students to two distinct problem-solving paradigms: functional
programming and object-oriented programming

—To introduce students to the mathematical tools and foundations of computer
science

—To instill in students an appreciation for the interplay of theory and practice
in computer science.

—To make students think about the ethical and social issues of the software
systems they build.

6.2 Mathematics

Computer science relies on mathematical ideas in at least three ways:
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—Mathematical objects (e.g., sets, relations, logic connectives, trees, graphs)
provide the basis for various models in computer science;

—Mathematical reasoning (e.g., assertions, logic, proofs) provides a mechanism
to prove the correctness and security of hardware circuits, algorithms, pro-
grams, and language constructs; and

—Mathematical tools (e.g., recurrence relations, finite probability, statistics)
allow analysis of various algorithms and data structures.

In addition, mathematics is important in many of the subjects that comput-
ing supports, such as physics, engineering, economics, and biology.

A common theme in FC1 is that mathematical and theoretical concepts, ob-
jects, and techniques are inherent in computer science. Thus the introduction
of new ideas and theory is regularly tied to applications. Furthermore, since
courses in discrete structures sometimes have the reputation of being a pot-
pourri of disjoint and irrelevant details, considerable care should be taken to
shape a coherent and theme-oriented course, where applications are shown
for most topics. The addition of lab assignments should be used to show these
connections.

FC1 should minimally have the same mathematics prerequisites as the tra-
ditional first calculus course—that is, proficiency with basic algebra, geometry,
trigonometry, logarithms, and exponential functions. Thus, FC1 assumes that
students will have completed a pre-calculus course either in high school or
college.

It is important that coverage of induction extend well beyond induction over
the integers. In computer science, many (perhaps most) applications of induc-
tion involve induction over structures and substructures. Of course, such items
can be mapped to the integers (usually by taking size or depth into account),
but explicit mention of such mappings typically adds unnecessary complexity to
proofs. Students in FC1 therefore should gain experience with a broad view of
induction–with numerous examples involving induction over structures found
elsewhere in computer science.

6.3 Labs

CS1 and CS2 have laboratory sessions to supplement the lectures/discussions,
and FC1 may have laboratories. Furthermore, projects may be scattered
throughout these courses, with the nature of the projects highlighting instruc-
tor interests and local opportunities for research.

7. CORE COURSES

The 1986 and 1996 Model Curricula [Gibbs and Tucker 1986; Walker and
Schneider 1996] identified a core of four computer science courses for a lib-
eral arts computer science curriculum, building upon the introductory sequence
and covering principles of lasting significance. CC2001 has a similar perspec-
tive that core courses of the curriculum implement the goals of intermediate
courses [2001]:
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The intermediate courses in the curriculum are designed to provide
a solid foundation that serves as a base for more advanced study of
particular topics.

Core courses take the wide ranging themes of CS1 and CS2 and FC1 and
begin to focus them on subareas of the discipline. They build upon the basic
courses and provide the solid foundation for the more advanced studies that
electives represent.

There are five courses in the core: Principles of Computer Organization, Prin-
ciples of Algorithm Analysis, Principles of Software Development, Principles of
Programming Languages, and Theoretical Foundations of Computer Science
(FC2). Descriptions for each of these courses appear in Appendix C.

As it has evolved as a discipline, an increasing part of the core of computer sci-
ence has come to depend upon topics in discrete mathematics. Thus, while these
curricular recommendations continue to specify three required mathematics-
related courses for a liberal arts degree in computer science (just as in the 1996
Model Curriculum [Walker and Schneider 1996]), these recommendations show
a shift in emphasis to include two semesters of courses that contain significant
amounts of discrete mathematics. Specifically, the 2007 Model Curriculum rec-
ommends Theoretical Foundations of Computer Science (FC2), building on FC1
and its discrete mathematics, to study areas of theoretical computer science
and to present further topics of discrete mathematics as it applies to computer
science.

FC2 pays attention to proof techniques throughout, using mathematical the-
ory and rigor to obtain interesting results in computer science. FC2 covers im-
portant foundational material in computer science as well as material that is
relevant for advanced courses, such as compiler construction. Thus, FC2 should
be taken along with the computer science core courses.

This represents an expansion of the minimum recommendations expressed
in CC2001 [2001]. FC1 covers much of knowledge units DS1 through DS6 from
CC2001 [2001], while highlighting applications that require proof, logic, and
counting. FC2 completes coverage of these topics and provides solid coverage
of other foundations for theoretical computer science. While the courses de-
scribed here represent a revision of the 2-semester sequence described by Ped-
agogy Focus Group 2 [Pedagogy Focus Group 2 2001], they should not be con-
sidered as presenting material at a slower pace than the one-semester course
described in CC2001 [2001]. Rather, these courses cover substantially more
material and that material is covered in greater depth than the one-semester
course of CC2001 [2001].

8. ELECTIVES AND RESEARCH

8.1 Electives

While the basic and core courses emphasize the central and enduring themes
of the discipline, electives provide the opportunity for the student to tailor the
educational program both to prepare for the capstone experience and to address
goals for after the baccalaureate degree. To this end, each program will need
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to offer a sufficient variety of courses to meet students’ goals and needs. Some
courses may be offered every other year. Selection of elective courses to offer
reflects, at least in part, the experience and interests of the faculty. A partial
list of possibilities follows:

Artificial Intelligence Database Systems Security
Bioinformatics Distributed Systems Simulation and
Compiler Construction Graphics Modeling
Computational Natural Language Software Engineering

Complexity Processing Vision
Computational Science Network Systems
Computer Architecture Operating Systems

The 2007 Model Curriculum recommends a third mathematics-related
course to support a computer science degree. This additional course should
be selected by the student in consultation with a faculty advisor to provide
additional mathematical background for later work in computer science.

8.2 The Capstone (Research) Experience

The capstone experience can take several forms. At one end is the required
senior thesis or senior project structured much like a master’s thesis or project
and given credit equivalent to one or more courses. At the other end is a require-
ment that the student complete a project-based course or one of a set of courses
designated as having a significant project component. In either case, the goal is
to require that the student participate in the identification of a problem, develop
a project proposal outlining an approach to the problem’s solution, implement
the proposed solution, and test or evaluate the result. Since any substantive
project should seek to address a real problem, students should devote at least
five hours within their development of the project to the potential social impact
and ethical implications of this work. The student should document the project
in a thesis or report style, as appropriate. The project should represent the cul-
mination of the undergraduate experience in computer science and, as such,
should draw upon and extend the basic principles mastered in the student’s
course work.

9. COMPARISON OF 2007 MODEL CURRICULUM WITH CC2001

Computing Curricula 2001 reflects a change in perspective from Computing
Curricula 1991, including a significant decrease in coverage of some subject
areas, an expansion of other areas, and the addition of new areas. Although such
adjustments may fit some types of schools, the reduction in hours from CC1991
to CC2001 in the areas of algorithms and complexity, theory of computation,
and programming languages is inconsistent with the liberal arts perspective.
Also, while CC2001 recommends only one course in discrete structures and
theory, many liberal arts CS faculty now believe that students require at least
two semesters to appropriately master this material. Altogether, the change in
emphasis in CC2001 raises important questions regarding the content covered
in a liberal arts curriculum.
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Important issues regarding problem-solving paradigms were raised regu-
larly in discussions with members of the Pedagogy Focus Groups and the Task
Force for CC2001. Many group members and Task Force members agreed that
the introduction of a new paradigm is valuable, but requires a non-trivial time
commitment. Multiple paradigms expand students’ thinking and perspectives,
but students cannot become comfortable with new views of problem solving
with the allocation of only 4 or 8 hours in a course. For some on the CC2001
Task Force, this led to the conclusion that multiple paradigms could not be cov-
ered within acceptable time constraints, and multiple paradigms are not part
of the CC2001 core.

Many faculty at liberal arts colleges, however, reach a different conclusion.
A liberal arts perspective embraces different views of problem solving, so inclu-
sion of this material at an early stage is an important part of the 2007 Model
Curriculum. This means that students should become comfortable with mul-
tiple problem-solving paradigms within the first year or two. The next section
identifies ways to achieve this objective.

Of course, when a new curriculum includes multiple views of problem solv-
ing and also acknowledges modern topics such as are reflected in CC2001, old
packaging of topics cannot work. With liberal arts programs restricted to about
9 computer science courses and 3 mathematics courses, new ideas must re-
place some previous content. This 2007 Model Curriculum acknowledges these
constraints by making appropriate choices for a liberal arts setting.

Table II compares the overall 2007 Model Curriculum with CC2001. In the
case of the former, this table shows the knowledge units for the introductory
sequence and core courses. The starred (**) knowledge units indicate that the
developers of this 2007 Model Curriculum have a different perspective from
the CC2001 Task Force regarding what material is core for a liberal arts com-
puter science program. In particular, this 2007 Curriculum includes signifi-
cantly more coverage of algorithms and programming languages than CC2001,
both in CC2001’s core and non-core areas.

Beyond the core, the 2007 Model Curriculum expects that at least one elective
or a senior project/thesis course will include a research or development project.
Topics covered in the electives and project/research activities supplement these
totals. In particular, this 2007 Model Curriculum recommends that the project
devote 5 hours to the consideration of the social and ethical implications of the
project. With this addition (at the star (*) in Table II), these recommendations
provide comparable emphasis in this important area.

Comparing various subject areas, the liberal arts perspective shows clearly in
the 2007 Model Curriculum. The 2007 Model Curriculum has significantly more
emphasis than CC2001 in the areas of algorithms and complexity (with classes
P and NP), theory of computation (including automata and computability), and
programming languages (including grammars). The 2007 Model Curriculum
correspondingly has significantly less emphasis in the areas of intelligent sys-
tems, information management, operating systems, and software engineering.
Including the project, the 2007 Model Curriculum has about the same level of
coverage as CC2001 in the areas of programming foundations, and social and
ethical issues. Both the 2007 Model Curriculum and CC2001 have electives that
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Table III. Typical Four-Year Student Schedule

Fall Spring
First Year CS1 CS2

FC1
Second Year Core 1 Core 2

FC2 Coordinated Math Course
Third Year Core 3 Elective 1

Core 4
Fourth Year Elective 2 Elective 3

(project) (project)

Table IV. Typical Three-Year Student Schedule

Fall Spring
First Year
Second Year CS1 CS2

FC1 Coordinated Math Course
Third Year Core 1 Core 2

FC2 Core 3
Fourth Year Elective 1 Elective 2

Core 4 Elective 3 (project)

provide additional hours in areas of particular interest to individual faculty and
students.

10. IMPLEMENTATION DETAILS

There are 12 required courses for a computer science major following this model
curriculum: 3 introductory courses, 5 core courses, 3 elective courses, and a sup-
porting math course. The following discussion shows that the model curriculum
can be completed by students within a normal four-year program and can be
implemented with the limited number of faculty members in departments at
many liberal arts colleges.

The sample program shown in Table III demonstrates how students can
complete the required courses within the normal four-year college period. The
project is listed in parentheses in each semester of the senior year, but may be
taken with any elective.

At liberal arts colleges, however, many students may not begin as computer
science majors but switch into the field from other disciplines during their first
or second year. Table IV indicates that it is possible for students to start the
program in their second year and still finish in a normal four-year time span.

Staffing of the proposed model curriculum is possible under modest assump-
tions. CS1 and CS2 are offered every semester. All four core courses are taught
once each year. FC1 may be taught by the mathematics department, but FC2 is
offered by the computer science department once each year. FC1 and 2 can be
taught by computer science faculty or co-taught by mathematics and computer
science faculty, depending on local institutional preferences and constraints
(hence we name them FC [Foundations of Computing], rather than CS or MA).
The traditional discrete mathematics course that FC1 is designed to replace is
now taught by mathematics faculty in about half of all colleges and universities
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Table V. A Possible Staffing Schedule

Annual Sections Course Comments
2 CS1 1 section per semester
2 CS2 1 section per semester
1 FC2 1 section per year
4 Core Courses 2 per semester
4 Elective Courses 2 per semester

0-1 Project Some faculty may receive
teaching credit

Total 13-14

and by computer science faculty in the other half. The traditional theory of
computation course, which FC2 is designed to replace, is now taught mainly
by computer science faculty, although it can be taken for mathematics major
credit at many institutions. Finally, four electives are offered each year, two per
semester.

Overall, this minimal, but reasonable, schedule requires the staffing of 13–14
computer science sections each year. Table V shows that, teaching 4 courses per
year per faculty member, a department of 4 faculty members in a small liberal
arts school can offer a rigorous and high-quality undergraduate program in
computer science.

11. CONCLUSIONS

This 2007 Model Curriculum updates the earlier model curricula [Gibbs and
Tucker 1986; Walker and Schneider 1996] of the Liberal Arts Computer Science
Consortium. Important characteristics of this 2007 curriculum include:

—3 introductory, 5 core, and 3 elective computer science courses;
—a new series of foundations of computing courses, including a 2-semester

sequence combining about 1 1/3 semesters of discrete mathematics with
about 2/3 of a semester of other foundations of computer science;

—a solid introduction to problem solving, through the inclusion of multiple
paradigms within the introductory sequence (inclusive of the first discrete
mathematics course);

—study of core topics in computer organization, algorithm analysis, software
development, and programming languages;

—the inclusion of a significant capstone or research experience, possibly as part
of an upper-level elective; and

—study of the social and ethical issues surrounding computing as an on-going
theme.

In addition to these intellectual strengths, the curriculum fits within the
typical constraints of a liberal arts college. The model curriculum has an ap-
propriate size and shape for a liberal arts setting, students can begin a credible
major during their second year, and all courses can be taught by approximately
four computer science faculty. Altogether, these recommendations build upon
the opportunities and strengths available within a liberal arts environment to
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yield an intellectually sound, high quality, rigorous, and modern program that
also is practical.

APPENDIXES

A. OBJECTS-FIRST INTRODUCTION TO COMPUTER SCIENCE

In this appendix the ordering of topics within each course provides one reason-
able ordering for that course, but there certainly are other pedagogically sound
ways to organize the course.

A.1 CS1A: Introduction to Algorithmic Problem Solving Using
an Object-Oriented Language

This is the relatively traditional introduction to programming. We do believe,
however, that since the integration of data and operations on data is central to
the object-oriented approach, objects should be introduced early in the course.
Furthermore, if the language of instruction is Java, then the use of interfaces
as pure types is another key concept that should not be too long delayed.

A.1.1 Course Outline

—History, ethical and social context of computing (5 hours)
—How programs execute (1 hour)

—Basic von Neumann architecture
—Instructions
—Fetch-decode-execute cycle
—Basics of compiling, loading, and running programs

—Basic programming constructs (8 hours)
—Variables
—Types and classes as sets of operations: basic operations on primitives,

reading class documentation to discover the operations on classes, using
classes from a library

—Objects: constructing objects, methods as definitions of objects’ behaviors,
invoking methods, capturing return values in variables

—Sequential control flow
—Conditionals
—Iteration

—Anatomy of a class (6 hours)
—Formal and actual parameters
—Data available to a method
—Local variables, parameters, and instance variables
—Return values; embedded method calls in complex expressions
—Design and implementation of simple classes

—Interfaces as type abstractions (2 hours)
—Using interfaces as types
—Dynamic binding of messages to methods (i.e., of method calls to method

implementations)
—Creating interfaces and implementing classes
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—Inheritance: extending classes to provide additional or modified be-
havior (3 hours)

—Software development (5 hours)
—Analyzing problem statements, designing for users, software design,

testing
—Basic constructs revisited: a more detailed look at control structures, ex-

ceptions, and other constructs
—Complex Boolean expressions and propositional logic
—Expressions vs. statements; functions vs. procedures (or accessors vs.

modifiers)
—Variations on conditional and iterative constructs
—Shared data: class variables
—Scope
—Concepts of procedural abstraction
—Strings

—Recursion (2 hours) (alternatively, may be introduced with recursive data
structures, either early in CS1 or in CS2)

—Linear and multi-dimensional indexed data structures (6 hours)
—Constructing arrays, accessing elements
—Variations on linear traversals (basic traversal, accumulating results, find-

ing min/max values, linear search)
—Alternatively, could focus on collections and iterators, or on recursive data

structures such as linked lists as the first linear data structure.
—Informal Algorithm Analysis (1 hour)

—Multiple algorithms to solve a problem (e.g., linear and binary search,
sorting algorithms)

—Comparison of appropriateness of algorithms based on
—Performance
—Constraints (e.g., binary search requires sorted data in a random-access

data structure)
—Readability and maintainability

—Total: 39 hours.

A.2 CS2A: Data Structures

Programming at the level of CS1A is a prerequisite for this course.
This course focuses on classic data structures from several perspectives, in-

cluding implementing basic data structures, utilizing standard library classes
as building blocks, and analyzing the appropriateness and performance of var-
ious data structures in different contexts. The ordering of topics in the outline
below assumes that students have been introduced to arrays or vectors before
linked lists, and to iteration before recursion, but, the sequence and timing of
various topics will vary with the instructor. For example, it is quite possible to
cover sets, maps, and hash tables immediately after covering or reviewing linear
indexed data structures. Other topics, such as data structures and algorithm
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analysis and common sorting and searching algorithms, may be spread out over
the course of a semester.

A number of other topics, such as design patterns, graphical user interface
development, and such, may appear in a CS2 course. They are not listed here
because the specific set of topics instructors choose to cover will depend on the
strengths and interests of the faculty, their choice of motivating examples, and
the kinds of projects they wish to assign. Students should, however, have ample
opportunity to continue to expand their software development skills in CS2.

A.2.1 Course Outline

—Abstraction, e.g., Java interfaces, collection classes, and iterators
(3 hours)

—Data structures and algorithm analysis (2 hours)
—Formal and informal time and space analysis
—big-O notation
—Choosing the appropriate data structure or algorithm for a given context

—Linear and 2-Dimensional Data Structures (much of this may be re-
view, depending on what is covered in CS1 (6 hours)
—Linear indexed data structures (arrays, standard library/API classes), vari-

ations on linear traversals
—Linked lists: implementing a linked list and using standard library/API

classes
—Multi-dimensional arrays
—Insertion, deletion, and traversal on indexed and linked linear data

structures
—Iterator and Visitor design patterns

—Queues and Stacks (3 hours)
—Using queues and stacks appropriately in algorithms.
—Implementing queues and stacks; the issues behind linked and non-linked

implementations.
—Recursion (3 hours)

—Recursive algorithms.
—Introduction to, or review of, recursive data structures.

—Trees (6 hours)
—Terminology and algorithms, such as traversals and counting the number

of nodes or leaves.
—Binary search trees
—Other tree-related data structures, such as heaps and priority queues.

—More advanced linear structures (6 hours)
—Dictionaries, Maps
—Sets
—Hash Tables

—Graphs (5 hours)
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—Common algorithms (3 hours)
—Sequential and binary search
—Sorting algorithms, including n log n and n2 algorithms

—Unit Testing (1 hour)
—Total: 38 hours.

A.3 FC1A: Discrete Structures and Functional Programming

Programming (CS1A or other experience) is a co-requisite for this course. While
there are advantages to teaching a functional language to students who are
not already thinking imperatively, there may be disadvantages to teaching a
functional language to a group of students with disparate backgrounds, some
of whom are already comfortable with programming, while others are not.

A.3.1 Themes

—Functional programming
—Functions and their properties
—Proof techniques and their applications
—Counting techniques and finite probability
—Introduction to graphs
—Matrices

A.3.2 Applications

—Tree properties
—Resource allocation graphs and deadlock detection
—Traveling Salesperson Problem
—Properties of powers of adjacency matrices

A.3.3 Course Outline

—Functional programming (7 hours)
—Functional paradigm
—Higher-order functions
—Inductively defined data structures

—Introduction to Logic and Proofs (these techniques should be used regu-
larly in what follows) (4 hours)
—Direct proofs
—Proof by contradiction
—Mathematical induction, with explicit coverage of structural induction

(e.g., on trees and subtrees) for both recursive definitions and proofs
—Logical operations and DeMorgan’s laws (2 hours)

—Logical operations
—DeMorgan’s laws for the AND and OR connectives and for universal and

existential quantifiers
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—Possible application:
—Digital circuit design

—Functions (3 hours)
—Properties, composition
—Possible applications:

—Symbolic manipulation in a symbolic algebra package
—Reduction, associativity of composition

—Sets and Relations (4 hours)
—Venn diagrams, complements, Cartesian products, power sets
—Reflexivity, symmetry, transitivity, equivalence relations
—Possible applications:

—Connection with relational databases
—Common operations (joins, selection)
—Basics of types and type inference

—Cardinality, counting, and finite probability (7 hours)
—Pigeonhole principle
—Combinations and permutations
—Finite probability
—Expected value
—Binomial coefficients
—Possible applications—often using induction proofs

—Size of power sets
—Calculating odds of getting certain card hands and of winning lotteries

and dice games
—Recurrence relations (4 hours)

—big-O notation and “big-Theta”
—Basic formulas and solutions
—The Master Theorem for divide-and-conquer algorithms
—Possible applications

—Tree properties (e.g., height, number of leaves)
—Analysis of divide-and-conquer algorithms

—Graphs (4 hours)
—Directed and undirected, weighted and unweighted
—Cycles and connectivity, with algorithms to determine these properties
—Basic algorithms and proof techniques
—Traversals (depth-first and breadth-first)
—Possible applications

—Resource allocation graphs and deadlock detection
—Internet routing

—Matrices (3 hours)
—Basic properties
—Possible applications

—Adjacency matrices and their powers (include careful proofs)
—Total: 38 hours
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B. FUNCTIONAL-FIRST INTRODUCTION TO COMPUTER SCIENCE

In this appendix the ordering of topics within each course provides one reason-
able ordering for that course, but there certainly are other pedagogically sound
ways to organize the course.

B.1 CS1B: Introduction to Computing with a Functional Language

This course introduces functional problem solving together with some impera-
tive problem solving. The course has at least four major goals:

—To provide a general introduction to the fundamental ideas of computer sci-
ence: algorithms, data structures, and abstraction,

—To present problem-solving from a functional programming perspective,
—To introduce computer programming (algorithm design, documentation, cod-

ing, testing, and debugging) in a high-level [functional] programming lan-
guage, and

—To illustrate important application areas of computing, such as computer
simulation, structure of expert systems, and the use of the World Wide Web.

The last section of the course provides a transition to object-oriented problem
solving and CS2 by considering objects as higher-order functions.

While the material on sorting and streams could be omitted to give more
time to other areas or to explore other topics, it is helpful to combine the earlier
ideas somehow in an interesting application before going on. As a variation, the
material in these sections can be done much earlier, with some of the Web ap-
plications being done as early as the second week. In this variant, applications
related to the World Wide Web serve as a motivation and running example for
much of what follows.

B.1.1 Course Outline

—Getting started (3 hours)
—Views of problem solving
—History and social context of computing
—Symbols, lists, functions, function definitions
—Read-execute-print cycle

—Function composition and the basics of recursion (4 hours)
—Conditional evaluation
—Parameters
—Recursion with lists

—Numbers and recursion with numbers (3 hours)
—Recursive functions on and returning numbers
—Reasoning about procedures with pre-conditions and post-conditions

—Data storage with lists (4 hours)
—Lists of lists
—Pairs
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—Association lists
—Deep recursion

—Procedures, evaluation efficiency, and encapsulation (3 hours)
—Local binding
—Tail recursion
—Procedural abstraction
—Tracing code
—Testing
—Debugging

—Additional data types and operations (3 hours)
—Numbers
—Characters
—Strings
—Functions related to the above

—Higher-order procedures (3 hours)
—Procedures as values
—Patterns involving procedures

—Data structures and side effects (3 hours)
—Vectors (i.e., the idea of an aggregate data structure with O (1) access, basic

accessor operations)
—Iteration (i.e., the idea of repeating actions in this case, over a data

structure)
—Binary search (linear search is already familiar from the discussion of lists)

—Basic order analysis (3 hours)
—big-O notation
—Standard complexity classes
—Straightforward analysis of familiar algorithms (list algorithms, linear

search, binary search)
—Sorting and algorithmic analysis (3 hours)

—At least one quadratic-time sort (e.g., insertion sort) and one n log n sort
(e.g., merge sort)

—Asymptotic analysis of upper and average complexity bounds
—Empirical measurements of performance

—Streams (3 hours)
—Input, output, files: interfaces among user-based data, long-term storage,

and programs. Application: Web pages, and CGI scripts
—Objects as higher-order functions (4 hours)

—Assignment
—Encapsulation
—Method naming
—Stacks
—Queues
—Standard stack/queue operations

—Total: 39 hours.
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B.2 CS2B: Object-Oriented Data Structures

Programming at the level of CS1B is a prerequisite for this course.
This second course in the introductory sequence has four goals:

—To build on previous knowledge to study the design, analysis, and verification
of algorithms

—To present problem-solving from an object-oriented programming
perspective

—To study standard abstract data types (ADTs), such as stacks, queues, lists,
trees, priority queues, heaps, and hash tables, and

—To apply object-oriented principles to solve some interesting applications.

In the functional-first/multi-language model, the first part of CS 2B marks a
significant transition in ways of approaching problem solving. While students
typically find this transition takes effort, the long-term effect is to expand their
perspectives. Time introducing a second language here in CS 2B is balanced by
the ability to move more quickly later (e.g., in a programming languages course
if that would otherwise be where students encounter their second language).

Perspectives and approaches regarding object-oriented design form a unify-
ing theme throughout much of the course.

The ADTs in the latter part of this course should be treated as opportunities
to apply and practice the elements of object-oriented programming and algo-
rithm analysis presented in the first part. This will unify the material, add
coherence, and reinforce the fundamental concepts of design and analysis.

Variations of this course could highlight such areas as Web-based applica-
tions, GUIs, threads, sockets, or file handling.

B.2.1 Course Outline

—Transition of languages and syntax. Change of perspective from
classes and objects as higher-level procedures to classes and objects
in a standard object-oriented language (6 hours)
—Classes
—Objects
—Methods
—Comparisons of identical programs in both functional and object-oriented

languages.
—Language basics (3 hours)

—Conditionals
—Loops
—Testing
—Debugging

—Additional elements of programming in an object-oriented language
(6 hours)
—Object-oriented design
—Libraries
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—Inheritance
—Polymorphism

—Examples with arrays and more algorithms (3 hours)
—Searching
—Sorting

—Analysis of standard recursive algorithms (3 hours)
—Recurrence relations (basic formulas and solutions)
—The Master Theorem for divide-and-conquer algorithms
—Analysis of divide and conquer algorithms (this analysis is to be used with

the ADTs that follow)
—Exception Handling (3 hours)

—Throwing exceptions
—Catching exceptions
—Implications for algorithmic development and efficiency

—Lists in an Object-Oriented Language (6 hours)
—Unordered and ordered lists using array and pointer implementations

—Some Standard ADTs (6 hours)
—Priority queues
—Heaps (with heap sort as application)
—Dictionaries
—Hash tables

—Tree and Graph ADTs (3 hours)
—Recursive definition
—Insertion
—Deletion
—Search
—Traversal
—Efficiencies of the above algorithms

—Total: 39 hours.

B.3 FC1B: Discrete Structures for Computer Science

Programming at the level of CS1B is a co-requisite for this course.
With several topics from the function-based FC1A now covered in CS1B and

2B, FC1B can focus on mathematical reasoning, objects, counting, probability,
and statistics. While this course has been informed by Draft 5.2 of the CC2001
Pedagogy Focus Group 2 on Supporting Courses [Pedagogy Focus Group 2 2001],
the resulting course is significantly different.

B.3.1 Themes

—Proof techniques and their applications
—Counting techniques
—Introduction to graphs
—Probability and statistics
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B.3.2 Applications

—RSA encryption
—Combinations and permutations
—Elementary probability
—Tree properties
—Resource allocation graphs and deadlock detection

B.3.3 Course Outline

—Introduction to logic and proofs (these techniques should be used regu-
larly in what follows) (4 hours)
—Direct proofs
—Proof by contradiction
—Mathematical induction, with explicit coverage of structural induction

(e.g., on trees and subtrees) for both recursive definitions and proofs
—Boolean Algebra (2 hours)

—The algebra of Boolean values and operations
—Possible application:

—Digital circuit design
—Relations (2 hours)

—Reflexivity
—Symmetry
—Transitivity
—Equivalence relations
—Possible applications:

—Connection with relational databases
—Common operations (joins, selection)

—Sets (3 hours)
—Venn diagrams
—Complements
—Cartesian products
—Power sets
—Possible application:

—Basics of types and type inference
—Number theory (6 hours)

—Factorability
—Properties of primes, including Fermat’s Little Theorem
—Modular arithmetic and different bases
—Possible applications:

—RSA encryption
—Hash functions
—Algorithms for arithmetic operations within a computer (e.g., multipli-

cation)
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—Cardinality and counting (5 hours)
—Pigeonhole principle
—Binomial coefficients
—Possible applications—often using induction proofs:

—Size of power sets
—Combinations
—Permutations

—Elementary probability and statistics (8 hours)
—Basic finite probability
—Independence
—Conditional probability
—Expectation
—Descriptive statistics
—Possible applications:

—Average and worst case analysis
—Calculating odds of getting certain card hands, of winning lotteries, of

rolling dice
—Shape of search trees (without explicit balancing)
—Analysis of hashing algorithms

—Introduction to graphs (7 hours)
—Graph definitions
—Directed and undirected, weighted and unweighted
—Basic algorithms and proof techniques
—Searching, traversals (depth-first and breadth-first)
—Possible application:

—Resource allocation graphs and deadlock detection
—Total: 37 hours

C. CORE COURSE DESCRIPTIONS

In this appendix the ordering of topics within each course provides one reason-
able ordering for that course, but there certainly are other pedagogically sound
ways to organize the course.

C.1 Principles of Algorithm Analysis

The prerequisites for this course are CS2 and FC1.
The course on algorithms is a continuation of the study (begun in CS1 and

CS2) of the basic data structures and algorithms. The approach here is more
formal, both with respect to correctness and with respect to the time and space
resources required for various algorithms and their associated data structures.
The main thrust of the course is algorithm design techniques and the inter-
play between design, analysis, data representation, correctness, and empirical
analysis.

The first part of the course outline includes topics all courses should cover.
This is followed by a selection of topics that could be used to round out a coherent
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and interesting course. More topics are listed than can be used in a one semester
undergraduate course.

C.1.1 Course Outline:

—Algorithm design techniques (8 hours)
—divide and conquer
—greedy
—dynamic programming
—time/space tradeoffs
—sample algorithms using above techniques: e.g., graph algorithms, pattern

matching, and string/text algorithms
—Proofs of algorithm correctness (6 hours)
—Algorithmic analysis (6 hours)

—Basic ideas: clear problem statements and recursive algorithms mean in-
ductive proofs of correctness

—Review big-O, big-Theta, introduce big-Omega, little-oh
—Introduce concepts of worst case, expected case, the relationships of re-

cursive algorithms to recurrence relation to relation solutions, amortized
analysis, empirical methods of analysis

—Algorithmic complexity (6 hours)
—P
—NP
—NP-complete
—NP-hard

—Simple lower bounds (2 hours)
—Reduction proofs (3 hours)

—lower bound
—NP-completeness

—Additional Topics that may be covered could include some subset of the fol-
lowing: (8 hours)
—Graph Algorithms
—Network Flow and Matching
—Matrix Operations-Sequential and Parallel
—Linear Programming
—Number Theory and Cryptography
—Data Compression
—Probabilistic Algorithms
—Advanced Techniques for String Matching
—Fast Fourier Transform
—Geometric Algorithms
—Algorithms in Computational Biology
—Indexing and Search Engines
—More on Parallel Architecture and Algorithms
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—Branch and Bound Algorithms
—Genetic algorithms
—Network Learning Algorithms

—Total: 39 hours.

There are a number of ways a syllabus for Algorithms could be organized.
A bottom-up organization might have students discovering and learning al-
gorithms for various applications and then abstracting from these algorithms
to important algorithm design and analysis techniques. A top-down approach
might present the design techniques first and then illustrate them with appli-
cations to various problems.

C.2 Principles of Computer Organization

The prerequisite for this course is CS2.
Computer organization presents an overview of computer architecture com-

ponents and how those components work together. It provides the student with
exposure to lower level abstractions such as digital logic, machine language,
computer architecture, and data representation. This course focuses the higher
level concepts taught in CS1 and FC1 on a lower level example of computer
hardware.

A list of topics is provided below. Based on the length of the semester
and the desire to include other topics, these numbers may be modified
accordingly.

C.2.1 Course Outline:

—Introductory Material (7 hours)
—Overview of the von Neumann architecture: arithmetic-logic unit, control

unit, memory, buses, and I/O
—The internal representation of information: signed and unsigned integers,

floating point, and non-numeric data
—Performance analysis: throughput vs. response time, performance fac-

tors (clock rate, instructions per cycle, and instruction count), and
benchmarking

—The Instruction Set Architecture (6 hours)
—Instruction set architectures: fetch/decode/execute model of computation,

instruction formats and addressing techniques, instruction sets, machine
and assembly language

—Simple assembly language programming or review of compiled high level
language code

—Digital Logic and Microarchitecture Design (13 hours)
—Introduction to digital logic: combinatorial and sequential building blocks
—A simple, non-pipelined processor organization
—Pipelining and instruction-level parallelism

ACM Journal on Educational Resources in Computing, Vol. 7, No. 2, Article 2, Publication date: June 2007.



A Model Curriculum for a Liberal Arts Degree in Computer Science • 29

—Memory Hierarchies (5 hours)
—Caching, virtual memory, and paging

—Input/Output (3 hours)
—I/O architectures: interrupts, DMA, bus architectures, secondary storage

—Multiprocessors, networking, and clusters (5 hours)
—Interconnection technologies, cache coherence, and protocols

—Total: 39 hours

C.3 Principles of Programming Languages

The prerequisites for this course are CS2 and FC1.
The programming languages course has evolved greatly in the last several

years. Begun in the 1970s as a survey of different languages, this course now
emphasizes principles of language design, programming paradigms, and their
underlying theories. It aims to provide students with the tools to understand
not only how today’s languages are designed, implemented, and used, but also
how tomorrow’s languages might be designed to meet the new challenges of
emerging computer architectures and application domains. The integration of
mathematical principles and ideas throughout this course is important for its
effective implementation.

C.3.1 Course Outline

—Overview (3 hours)
—language families
—paradigms
—virtual machines
—design principles

—Formal grammars and language analysis (6 hours)
—regular expressions and context free grammars
—recursive descent parsing
—table-driven parsing

—Types (4 hours)
—simple and compound types
—static and dynamic types
—type safety
—inheritance
—subtypes
—polymorphism

—Semantics (2 hours)
—formal semantics (operational or denotational)
—relationship with language design and implementation on abstract ma-

chines
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—Language translation (3 hours)
—simple interpreter of a parse tree
—structure of a compiler and its relation to language design

—Control of execution (3 hours)
—control structures (including iterators)
—functions, exception handling, recursion
—binding and binding time, scope, lifetime

—Declarations and modules (3 hours)
—language support for modularity, information hiding and encapsulation
—static overloading versus overriding
—parameter passing

—Object-oriented languages (3 hours)
—classes and methods
—inheritance
—design and implementation issues

—Run-time storage management (3 hours)
—memory management
—garbage collection
—stack
—heap

—Declarative programming paradigms (3 hours)
—the functional and/or logic programming paradigms
—applications in program specification, theorem proving, and other areas of

artificial intelligence programming.
—Distributed and parallel programming paradigms (6 hours)

—Threads
—Remote procedure calls
—Monitors
—Locks
—Uses in client-server applications and other key domains

—Total: 39 hours

C.4 Principles of Software Development

The prerequisite for this course is CS2.
Regardless of which curriculum model is used in CS1/CS2—objects-first or

functional-first—there is often too much material to complete in the allotted
time frame. The Principles of Software Development course builds on the intro-
ductory sequence, providing additional time to cover programming topics that
should be introduced as early as possible in the computer science curriculum.
Without this course, these concepts may be delayed until junior/senior electives
or omitted entirely.

While the exact list of topics depends on the topics covered in CS1/CS2, the
course could be used to address the following important issues:
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C.4.1 Course Outline

—Advanced concepts in software design and development (14 hours)
—object-oriented design issues–e.g., determining classes, state, and behav-

iors and models of inheritance
—design patterns
—design languages, such as UML
—using APIs

—Verification (8 hours)
—unit testing, systems test
—test coverage
—white-box vs. black-box testing
—design by contract

—Modern software development techniques (17 hours)
—GUIs, event-driven programming, and human-computer interactions

(HCI)
—Threading and multi-threaded code (at the level of an API such as Java

threads)
—The client-server model of networking (at the level of an API such as

java.net)
—Exception handling and fault tolerant computing
—Streams and stream programming
—Elementary concepts in security, authentication, and encryption

—Total: 39 hours.

Many other topics could be included, depending on the interests of the in-
structor and the characteristics of the computer science program. These ad-
ditional topics might include material on recursion, graphics, professional and
ethical issues, and an introduction to elementary topics in relational databases.

This course should not be viewed as software engineering, usually offered as
an advanced elective at the junior/senior level. Principles of Software Develop-
ment is a required core sophomore/junior level course that treats fundamental
concepts in modern software development. Software engineering builds on these
concepts to present more advanced material and work on significantly larger
problems. A software engineering elective might include such topics as: for-
mal requirements and specifications, rapid prototyping, design methodologies,
risk and liability issues, validation and testing strategies, software planning
and estimation, project management including budgeting and staffing, soft-
ware evolution, source code control, and professional practices.

Not only does Principles of Software Development lay the groundwork for a
future course in software engineering, it also contains material that prepares
students for other electives, for example in operating systems, networking, and
cryptography.

C.5 FC2: Theoretical Foundations of Computer Science:

The course FC1 is a prerequisite for this course.
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This course focuses on finite state machines and computability, and covers a
modest amount of number theory and probability and statistics. There is room
to add more material from number theory, finite state machines, statistics, or
computability.

C.5.1 Themes

—Finite state machines
—Use of careful proof techniques in applications
—Computability
—Basic probability & statistics
—Number theory

C.5.2 Application

—RSA encryption
—Algorithmic efficiency
—Limits of computing—Halting Problem, universal computer/language

The detailed course outline for FC2 depends, of course, upon specifics from
FC1. The following outline fits directly with the objects-first approach of
Appendix A. If the functional-first track of Appendix B is followed, then over-
lapping topics in number theory, probability, and statistics would be replaced
by other topics.

C.5.3 Course Outline

—Number Theory (4 hours)
—Factorability
—Properties of primes, including Fermat’s Little Theorem
—Modular arithmetic
—Possible applications:

—RSA encryption
—Hash functions

—Finite state machines (6 hours)
—Regular languages
—DFA
—DFA and NDFA to accept regular expressions

—Computability (14 hours)
—Introduction of one computing model (e.g., a WHILE or functional lan-

guage, RAM model, or Turing machines)
—Introduction of a universal machine/model/interpreter
—Countable and uncountable sets
—Diagonalization and proof by contradiction (e.g., uncountability of reals)
—Undecidability
—Church’s Thesis and other computational models (e.g., from those listed

above)
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—Decidable and semi-decidable sets
—Possible applications:

—# functions on integers is uncountable, # programs is countable
—Halting Problem (proof of unsolvability using initially-introduced com-

puting model)
—Probability & Elementary Statistics (8 hours)

—Independence
—Conditional probability
—Descriptive statistics
—Possible applications:

—Average and worst case analysis
—Shape of search trees (without explicit balancing)
—Analysis of hashing algorithms

—Total: 32 hours.
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Process and Participants

This model curriculum reflects the ongoing discussions of the Liberal Arts Com-
puter Science Consortium (LACS). Initially funded by a grant from the Sloan
Foundation, the group produced a model curriculum in 1986 [Gibbs and Tucker
1986] and a revised model curriculum in 1996 [Walker and Schneider 1996].
Annual summer meetings have resulted in a range of papers and presentations
covering such topics as service courses, formal laboratories, breadth-first exper-
iments in the first two courses, and goals for the first two years of undergraduate
computer science.

The following members of LACS have actively contributed to the 2007
Model Curriculum: Joel Adams, Calvin College; Doug Baldwin, State Univer-
sity of New York at Geneseo; Alyce Brady, Kalamazoo College; Amy Briggs,
Middlebury College; Kim Bruce, Pomona College (formerly at Williams Col-
lege); Robert Cupper, Allegheny College; Scot Drysdale, Dartmouth College;
Max Hailperin, Gustavus Adolphus College; Michael Jipping, Hope College;
Charles Kelemen, Swarthmore College; Andrea Lawrence, Spelman College;
Takis Metaxas, Wellesley College; Robert Noonan, College of William and Mary;
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Rhys Price Jones, the George Washington University (formerly at Rochester In-
stitute of Technology); David Reed, Creighton University; G. Michael Schneider,
Macalaster College; Allen Tucker, Bowdoin College and Henry Walker, Grinnell
College.

The Consortium met at Grinnell College in August 2002 for an intensive
discussion that resulted in an initial version of this Model Curriculum. Another
result of the meeting was the creation of small working groups that continued
working on the draft curriculum during the 2002/03 academic year. The final
outline of the Model Curriculum was developed at the meeting held at Calvin
College in August 2003. An additional working group was created to write
this document. Again, the groups continued their work during the 2003/04
academic year. Detailed wording was discussed at length during a meeting held
at Wellesley College in August 2004, and groups continued the refinement of
wording through the 2004/05 academic year. The group agreed on a completed,
final document at its meeting at the Rochester Institute of Technology in August
2005. Editing refinements have occupied much of 2006.

The final document also benefited from the presentation of the Model Cur-
riculum at several meetings. We want to thank all those who contributed.
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