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Decidability and CFL’s

We discovered earlier that all interesting (extensional and non-trivial) problems about
WHILE languages were undecidable, whereas similar problems involving regular
languages were decidable.  In this section we discover that the situation for CFL’s is a bit
more complex, with some problems decidable and others undecidable.

Section 3.6 of L&P shows that the set ACFL = { <G,w> | w in L(G) } is decidable.  That is,
there is there is an algorithm which, given G and w, can determine whether G generates
w.  We will discuss this algorithm on Wednesday if there is sufficient time.

Another decidable problem for cfl’s is ECFL = { G | L(G) =  ∅ }.   A fairly efficient
algorithm is the following:

Mark all terminal symbols of G;
Repeat until no new variables get marked:

Mark variable A if G has a rule A Æ U1…Un where all of the Ui are marked.
If S is not marked than L(G) = ∅, else L(G) ≠ ∅.

[The basic idea is that all marked symbols can generate a string of terminal symbols.
Thus if S is marked then it can generate a string of terminals, and hence L(G) ≠ ∅.]

However, there are a number of problems for cfl’s that are not decidable.  One is given in
Theorem 5.5.2a of the text:  ALLCFL = { G | L(G) =  S*} is not decidable.

As usual we will show that if ALLCFL is decidable then we can solve the halting problem
for Turing machines.  Because we showed last time that WHILE-programs can simulate
Turing machines and vice-versa, we know that the halting problem for Turing machines
is also undecidable.  The idea behind the proof is that, given <M,w>, we can define a
context-free language L that represents the collection of all strings that do not represent
halting computations of M on input w.  Thus M halts on w iff L ≠  S*.

To do this, we need a way to represent all computations of M in S*.  Previously we wrote
configurations in the form (q,LaR).  To avoid writing underlines on characters, we will
now write the same configuration as LqaR.  That is, we write the state just to the left of
the character currently being scanned.  We presume that the language of M does not
include any of the symbols used to represent states or the character #.

We will write a computation as #C1#C2#…#Cn#, where Ci is the configuration just before
the ith step of the computation.

We want to characterize those strings that do not correspond to accepting computations
of M on w.  A string fails to be an accepting computation if

1. It does not start with #sBw# for s the start state of M.
2. It doesn’t end with #Cn# where Cn is a halting configuration (i.e., has state h in H).
3. Some Ci does not properly yield Ci+1 under the rules of M.
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Note that if M does not halt on w then all strings fail to be accepting computations.  Let L
be the set of strings that fail to be accepting computations of M on w.  Then L = S* iff M
does not halt on w.

We claim that L is a cfl.  Rather than describing L with a grammar, we will instead
describe a pda that accepts L.  Because we have an algorithm to convert pda’s to
grammars (Lemma 3.4.2, whose proof was skipped in class), we can construct a cfg, G,
such that determining whether G in ALLCFG would solve the halting problem.  I.e., if G is
the grammar generating the language L, then G in ALLCFG iff M does not halt on w.

Now all we have to do is to construct a pda, PM,w, that accepts L.  The pda begins by non-
deterministically guessing which of the three conditions given above fails.

1. If it guesses the first, then it checks to make sure the input does not start with
#sBw#.  It halts and accepts if it does not start with #sBw#.

2. If it guesses the second, then it non-deterministically guesses where the last
configuration starts and makes sure that it is not a legal final configuration (i.e.,
that it does not have a single state that is a halting state).  If it succeeds then it
halts and accepts.

3. If it guesses the third condition, then it non-deterministically guesses the i such
that Ci |– Ci+1 fails.  When it reads Ci, it copies it onto the stack one character at a
time until it reaches the next #.  It then reads Ci+1, comparing characters looking
either for a mismatch with Ci or for an incorrect transition.  We can detect
incorrect transitions as follows:  If Ci is LaqbR and d(q,b) = (r,d, ¨) then Ci+1
should be LradR, while if d(q,b) = (r,d, Æ) then Ci+1 should be LadrR.  [Of course
we are trying to make sure that either the characters to the left or right don’t
match or the transition is not represented accurately.]

While it is somewhat tedious to write out the details of the pda transitions, they are
straightforward except for one problem that we brushed over above:  When Ci is pushed
onto the stack, it will then be popped off backwards – i.e., from right to left rather than
left to right.  Thus we cannot easily compare Ci with Ci+1!

However, it is easy to overcome this problem by making a slightly different definition of
computation.  We simply write all configurations for even steps backwards!  That is we
write #C1#C2

rev#C3#C4
rev#…#Cn’# where Cn’ is reversed only if n is even.  Now there is

no difficulty in comparing consecutive configurations, though the details will be slightly
different in going from odd to even than going from even to odd.

Theorem 5.5.2:  The following problems are undecidable:
(a) Given a context-free grammar, G, is L(G) = S* ?  (I.e., the set ALLCFL = { G |

L(G) =  S*} is undecidable.)
(b) Given two context-free grammars, G1 and G2, is L(G1) ⊇ L(G2) ? (I.e., the set

SUPCFL = { <G1, G2> | L(G1) ⊇ L(G2)} is undecidable.)
(c) Given two context-free grammars, G1 and G2, is L(G1) = L(G2) ? (I.e., the set

EQCFL = { <G1, G2> | L(G1) = L(G2)} is undecidable.)
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Proof:  Part (a) was proved above.  Show that if (b) is decidable, then (a) would be as
well.  Let G’ be a grammar generating S*.  To determine if, given G, whether L(G) = S*

just ask the algorithm for (b) if L(G) ⊇ L(G’) ?  If so then L(G) = S*.  The same proof
works for part (c).

There are also other important problems involving cfl’s that are undecidable:

Theorem:  The following problems are undecidable:
(a) Given two context-free grammars, G1 and G2, does L(G1) « L(G2) = ∅?  (I.e., the

set EINTCFL = { <G1, G2> | L(G1) « L(G2) = ∅} is undecidable.)
(d) Given a context-free grammar, G, is G ambiguous?  (I.e., the set AMBCFL = { G |

L(G) is ambiguous} is undecidable.)
(b) 

The proofs of both of these parts depends on first proving the Post Correspondence
Problem (see problem 5.5.2) is undecidable, so we will skip the proofs here.


