
Why Why are are statically-typed statically-typed OOL's OOL's so so inflexible?inflexible?

Java programs require lots of type casts (as do C++, Object Pascal, etc.).
Why?

The Object class in Java illustrates most of the problems.

public class Object{

protected Object clone(){…}

public boolean equal(Object other){…}

}

Recall not allowed to change signature of methods in extensions.

Also all classes automatically inherit from Object.

public class A implements Cloneable{

protected B b = …;

…

public Object clone(){

A other = super.clone();

other.b = b.clone(); // type error

return other;

}

}

A a1 = new A();

A a2 = a1.clone(); // type error

Both errors would disappear if could change
return types of methods. (OK in C++)

Suppose also want to override equals in A:

public boolean equal(Object other){

if (other instanceof A){

A aother = (A)other;

return (b = aother.b);

else

???

Problems:
• Inconvenient (and slow) to have run-time test

No static check possible.
• What to do in else clause?

If raise exception must declare in method header.

Get similar problems if try to define doubly-linked node as subclass of
linked node.

public void setNext(Node newNext){…}

Want parameter type to be doubly-linked in subclass.

Methods where parameters should be of same type (class) as receiver
called "binary methods".

Source of many typing problems in OOL's.

Still other problems:

public class Circle{

protected Point center;

…

}

If define ColorCircle as extension, might want center to be ColorPoint.

Can't make any of these changes in signature (types) in Java, Object
Pascal, and C++

(aside from return type in C++)

Why are there these restrictions?

Is there any way to overcome them?

Look at the following example:

class A{

D m(C c){…}

void n(){… self.m(someC) …}

}

class B{

D' m(C' c'){…}

}

For which C', D' will B end up being type safe if A is?

Homework asks similar question for instance variables.

GJ: GJ: Adding F-bounded polymorphism to JavaAdding F-bounded polymorphism to Java

Odersky, Wadler, et al (follow up to Pizza)

GJ adds parametric polymorphism w/ syntax like C++'s templates:

public class Stack<Elt> extends Vector<Elt>{

 public Elt push(Elt item){...}

 public Elt pop(){...}

 public Elt peek(){...}

 public boolean empty(){...}

 public int search(Elt o){...}

 }

Stack<Point> myStack = new Stack<Point>();

 Point aPoint = new Point(2,3);

 myStack.push(aPoint);

Can also add constraints to type parameters:

public interface Comparing {

 public boolean equal(Comparing other);

 public boolean greaterThan(Comparing other);

 public boolean lessThan(Comparing other);

}

public class OrderedList<Elt implements Comparing>

 extends ... {

protected Elt[] elts = new Elt[0];

 public void insert(Elt item){…

while (elts[current].greaterThan(item))

 current ++;

…

}

}

public Elt removeFirst(){...}

 public boolean empty(){...}

 public int searchFor(Elt o){...}

}

How to define ordered objects?

public class KeyedObj implements Comparing{

protected int key ;

...;

public int getKey(){…}

public lessThan(Comparing other){

return this.key < other.getKey();}

}

Won't work: other.getKey() not well-typed!

public lessThan(Comparing other){

if (other instanceof Comparing)

return this.key < other.getKey();}

else

?????

Same problem as earlier!

F-bounded polymorphism (1989) can help:

public interface Comparing <Elt>{

boolean lessThan(Elt other);

boolean greaterThan(Elt other);

}

public class OrderedList

 < Elt implements Comparing<Elt> >{

protected Elt [] elts;

 public void insert(Elt newVal){

 while (elts[current].greaterThan(newVal))

 current ++;

…

 }

}

public class KeyedObj

 implements Comparing <KeyedObj>{

 protected int key ;

...;

 public int getKey(){…}

 public lessThan(KeyedObj other){

 return this.key < other.getKey();}

}

Now OrderedList<KeyedObj> is fine!

Generally works well (though confusing at first).
Still one problem -- F-bounded not preserved under subclass:

public class NuKeyedObj extends KeyedObj {

 protected String nuField;

 ...;

 public lessThan(KeyedObj other){

 return this.key < other.getKey() &&

 other.getNuField() ...;}

}

Unfortunately, NuKeyedObj does not implement
Comparing <NuKeyedObj>.

Can't be used with OrderedList!

Other info on GJ:
• Works with existing JVM -- essentially translates to original code

w/Object and casts.
• Authors designed so that existing library classes can be used as

though they were polymorphic.
• Because of translation, cannot get accurate info using Java's reflection

facilities or debugger.
• See GJ web page available through hmwk page.

EiffelEiffel

Designed by Bertrand Meyer in mid-80's

Class-based OOL w/multiple inheritance

Assertions: pre- and post-conditions, loop invariants and variants built
into language.

Supports bounded polymorphism.

Reference semantics like Java, garbage collection, etc.

Information hiding: private, public, or could list classes visible to (like
C++'s friends)

No interfaces or modules.

In subclasses, can redefine or even rename methods.

Can also change type of instance variables, parameters and return types
covariantly.
Seen this can cause type-safety problems!

Introduced "anchor" types:
Can declare type to be "like" another feature:

x: A;
y: like x;

Current is Eiffel's name for self.

Example:

class LINKABLE [G]

feature

 item: G; -- value held

 right: like Current; -- Right neighbor

 putRight (other: like Current) is

 -- Put `other' to right of current cell.

 do

 right := other

 ensure

 chained: right = other

 end;

end -- class LINKABLE

class BILINKABLE [G] inherit

 LINKABLE [G]

 redefine

 putRight

 end

feature -- Access

 left: like Current; -- Left neighbor

 putRight (other: like Current) is

 -- Put `other' to right of current cell.

 do

 right := other;

 if (other /= Void) then

 other.simplePutLeft (Current)

 end

 end;

 putLeft (other: like Current) is

 -- Put `other' to left of current cell.

 do

 left := other;

 if (other /= Void) then

 other.simplePutRight (Current)

 end

 ensure

 chained: left = other

 end;

feature {BILINKABLE}

 simplePutRight (other: like Current) is

 -- set `right' to `other'

 do

 right := other

 end;

 simplePutLeft (other: like Current) is

 -- set `left' to `other'

 do

 left := other

 end;

invariant

 rightSymmetry:

 (right /= Void) implies (right.left = Current);

 leftSymmetry:

 (left /= Void) implies (left.right = Current)

end -- class BILINKABLE

Notice BILINKABLE is subclass of LINKABLE.
Can't do this with Java, C++, etc.
Secret is use of "like Current" as type of instance variables and in types

of methods.

Can define:
class LINKEDLIST[NODE -> LINKABLE] …

Can be instantiated with either
• LINKABLE (and get singly-linked list) or
• BILINKABLE (and get doubly-linked list).

Very expressive w/out F-bounded polymorphism:
deferred class Comparing

feature

lessThan(other: like Current): boolean

is deferred

end

greaterThan(other: like Current): boolean;

end

Unfortunately, use of like Current gives rise to implict covariant change to
types of instance variables and method parameter and return types.

Thus BILINKABLE is not a subtype of LINKABLE.
Though BILINKABLE is internally consistent.

