Why are statically-typed OOL's so inflexible?

Java programs require lots of type casts (as do C++, Object Pascal, etc.).
Why?

The Object class in Java illustrates most of the problems.

public class Object{
protected Cbject clone(){.}
publ i ¢ bool ean equal (Cbject other){.}

Recall not allowed to change signature of methods in extensions.

Also all classes automatically inherit from Object.

public class A inplenents C oneabl e{
protected B b = .

public Qbject clone(){

A ot her = super.clone();
other.b = b.clone(); /'l type error
return other;
}
}
A al = new A();
A a2 = al.clone(); /'l type error

Both errors would disappear if could change
return types of methods. (OK in C++)

Suppose also want to override equals in A:

publ i c bool ean equal (Obj ect other){
i f (other instanceof A){

A aot her = (A)other;
return (b = aother.b);

el se
???

Problems:
Inconvenient (and slow) to have run-time test
No static check possible.

What to do in else clause?
If raise exception must declare in method header.

Get similar problems if try to define doubly-linked node as subclass of
linked node.

public voi d set Next (Node newNext){..}
Want parameter type to be doubly-linked in subclass.

Methods where parameters should be of same type (class) as receiver
called "binary methods".

Source of many typing problems in OOL'’s.

Still other problems:

public class Crclef
protected Point center,;

If define ColorCircle as extension, might want center to be ColorPoint.
Can't make any of these changes in sighature (types) in Java, Object
Pascal, and C++

(aside from return type in C++)

Why are there these restrictions?

Is there any way to overcome them?

Look at the following example:

class A{
DmCc){.}
void n(){... self.n(soneC) .}
}
cl ass Bf
D mC c'){.}
}

For which C*, D" will B end up being type safe if A is?

Homework asks similar question for instance variables.

GJ: Adding F-bounded polymorphism to Java
Odersky, Wadler, et al (follow up to Pizza)

GJ adds parametric polymorphism w/ syntax like C++'s templates:

public class Stack<Elt> extends Vector<Elt>{
public EIt push(Elt item{...}
public Elt pop(){...}
public EIt peek(){...}
public bool ean empty(){...}
public int search(Elt o){...}

St ack<Poi nt > nmyStack = new St ack<Poi nt>();
Poi nt aPoint = new Point (2, 3);
nmy St ack. push(aPoi nt) ;

Can also add constraints to type parameters:

public interface Conparing {
publ i ¢ bool ean equal (Conparing ot her);
publ i ¢ bool ean greater Than(Conparing ot her);
publ i ¢ bool ean | essThan(Conpari ng ot her);

public class OrderedList<Elt inplenments Conparing>
extends ... {
protected Elt[] elts = new EIt[O0];

public void insert(Elt item{...
while (elts[current].greaterThan(item)
current ++;

public EI't renoveFirst(){...}
public boolean empty(){...}
public int searchFor(Elt 0o){...}

}

How to define ordered objects?

public class KeyedObj inplenents Conpari ng{
protected int key ;
public int getKey(){.}
publ i c | essThan(Conpari ng ot her) {
return this.key < other.getKey();}

}

Won't work: other.getKey() not well-typed!

public | essThan(Conparing ot her){

i f (other instanceof Conparing)
return this.key < other.getKey();}
el se

Same problem as earlier!

F-bounded polymorphism (1989) can help:

public interface Conparing <Elt>{
bool ean | essThan(Elt ot her);
bool ean greaterThan(Elt other);

}

public class O deredLi st
< Elt inplenments Conparing<Elt> >{
protected EIt [] elts;
public void insert(Elt newal){
while (elts[current].greaterThan(newval))
current ++;

}

public class KeyedObj
i mpl enments Conpari ng <KeyedCbj >{
protected int key ;
public int getKey(){.}
public | essThan(KeyedObj ot her){
return this.key < other.getKey();}

}

Now OrderedList<KeyedObj> is fine!

Generally works well (though confusing at first).
Still one problem -- F-bounded not preserved under subclass:

public class NuKeyedObj extends KeyedObj {
protected String nuField;
public | essThan(KeyedCbj ot her){
return this.key < other.getKey() &&
ot her.getNuField() ...;}

}

Unfortunately, NuKeyedObj does not implement
Comparing <NuKeyedObj>.

Can't be used with OrderedList!

Other info on GJ:
Works with existing JVM -- essentially translates to original code
w/0Object and casts.
Authors designed so that existing library classes can be used as
though they were polymorphic.
Because of translation, cannot get accurate info using Java's reflection

facilities or debugger.
See GJ web page available through hmwk page.

Eifffel
Designed by Bertrand Meyer in mid-80's
Class-based OOL w/multiple inheritance

Assertions: pre- and post-conditions, loop invariants and variants built
into language.

Supports bounded polymorphism.
Reference semantics like Java, garbage collection, etc.

Information hiding: private, public, or could list classes visible to (like
C++'s friends)

No interfaces or modules.

In subclasses, can redefine or even rename methods.
Can also change type of instance variables, parameters and return types
covariantly.

Seen this can cause type-safety problems!

Introduced "anchor" types:
Can declare type to be "like" another feature:

X A;
y: like Xx;

Current is Eiffel's name for self.

Example:

cl ass LI NKABLE [(F

feature
item G -- val ue held
right: like Current; -- Right neighbor

put Ri ght (other: like Current) is
-- Put “other' to right of current cell.

do

right := other
ensure

chai ned: right = other
end;

end -- class LI NKABLE

class BILINKABLE [G inherit

LI NKABLE [G
redefi ne
put Ri ght
end
feature -- Access
left: like Current; -- Left nei ghbor

put R ght (other: like Current) is
-- Put "other' to right of current cell
do
right := other;
if (other /= Void) then
ot her. si npl ePut Left (Current)
end
end;

put Left (other: like Current) is
-- Put “other' to left of current cell
do
| eft := other;
if (other /= Void) then
ot her. si npl ePut R ght (Current)
end
ensure
chai ned: left = other
end;

feature {BI LI NKABLE}

sinplePutRight (other: like Current) is
-- set ‘right' to "other'

do

right := other
end;
sinplePutLeft (other: like Current) is
-- set "left' to "other'
do
| eft := other
end;
i nvari ant

ri ght Synmetry:

(right /= Void) inmplies (right.left
| eft Symmet ry:

(left /= Void) inplies (left.right

end -- class Bl LI NKABLE

Notice BILINKABLE is subclass of LINKABLE.
Can't do this with Java, C++, etc.

= Current);

= Current)

Secret is use of "like Current” as type of instance variables and in types

of methods.

Can define:
cl ass LI NKEDLI ST[NODE - > LI NKABLE]

Can be instantiated with either
LINKABLE (and get singly-linked list) or
BILINKABLE (and get doubly-linked list).

Very expressive w/out F-bounded polymorphism:
deferred class Conparing
feature
| essThan(other: |ike Current): bool ean
i
end

s deferred

greater Than(other: like Current): bool ean;
end

Unfortunately, use of like Current gives rise to implict covariant change to
types of instance variables and method parameter and return types.

Thus BILINKABLE is not a subtype of LINKABLE.
Though BILINKABLE is internally consistent.

