What Semantics Can Teach
Functional Programmers About
Object-Oriented Languages

Kim Bruce
Williams College

O-0O Languages

® Seem to be a great improvement over
procedural languages

= Objects encapsulate state & methods
= Subtyping

= |nheritance

What's the Big Deal?

Are objects more than records with
function components?

What provides real power?
How can semantics and type theory help!?

Focus on class-based O-O languages like
Smalltalk, Eiffel, & Java

= Multi-method languages are quite different

Defining a Class

public class Squares {
private FilledRect outer, inner;

public Squares(Location upleft, int size,
DrawingCanvas canvas){...}

public void move(int dx, int dy) {
outer.move(dx,dy);
inner.move (dx,dy) ;

}

public void moveTo(int x, int y) {
this.move(x-outer.getX(),y-outer.get¥());

}

Instance Variables

public class Squares {
private FilledRect outer, inner;

public Squares(Location upleft, int size,
DrawingCanvas canvas){...}

public void move(int dx, int dy) {
outer.move (dx,dy);
inner.move(dx,dy);

}

public void moveTo(int x, int y) {
this.move(x-outer.getX(),y-outer.get¥());

}

Constructor

public class Squares {
private FilledRect outer, inner;

public Squares(Location upleft, int size,
DrawingCanvas canvas){...}

public void move(int dx, int dy) {
outer.move (dx,dy) ;
inner.move(dx,dy);

}

public void moveTo(int x, int y) {
this.move(x-outer.getX(),y-outer.get¥());

Methods

public class Squares {
private FilledRect outer, inner;

public Squares(Location upleft, int size,
DrawingCanvas canvas){...}

public void move(int dx, int dy) {
outer.move(dx,dy);
inner .move(dx,dy);

}

public void moveTo(int x, int y) {
this.move(x-outer.getX(),y-outer.get¥());

Creating & Using Obijects

Squares fst = new Squares(corner,10,canvas);
Squares snd = new Squares(middle,40,canvas);
/] objects are references
fst.moveTo(20,30);

snd = fst; //snd & fst refer to same object

fst.move(30,50);

Objects Are Fixed Points

First naive view of objects:
[new Squares(...)]] =

U this.({ outer = ..., /I no mention of this
inner = ... } X
{ move = fun(dx,dy). this.outer...,
moveTo = fun(x,y). this.move(...) })

Classes Are Generators

® Classes serve many roles:
- Types
= Generate new objects

= Extensible to form new generators

Subclass

public class OvalSquares extends Squares {
private FramedOval center;

public OvalSquares(Location upleft,
int size, DrawingCanvas canvas) {
super (upleft, size, canvas);
center = new FramedOval(...);

}

public void move(int dx, int dy) {
super.move(dx, dy); // old nove
center.move(dx, dy);

Classes Are Generators of
Fixed Points

® Meaning of this is not bound in classes

= Semantics of moveTo changes (indirectly) in
OvalSquares

® Squares = SQ(this)

® OvalSquares = OSQ(this) where OSQ extends
SQ.

® Objects formed as fixed points of SQ and OSQ.

Objects From Subclasses

® sg = new Squares(...);
= sq = W this. SQ(this)
® 0osqg = new OvalSquares(...);

= 0sq = M this. OSQ(this) // meaning of this
changed!

= where super = SQ(this) // uses new this in body

Subtyping

® Related to signature matching in ML and
type classes in Haskell

® T <:U iff any object of type T can
masquerade as object of type U

® More formally, subsumption rule:
T<U&o: T = o:U

® Java Interfaces & extension

Subtyping Immutable Record Types

Records field update: only operation is
extracting field: .. S.filling ...

{bread: BreadTp; filling: CheeseTp; sauce: SauceTp}
<.

{ bread: BreadType; filling: FoodType }
iff CheeseTp <:FoodType

Subtyping Immutable Record Types

lh | |13
rn 1 I3

{Ii :T’i}ISiSn<:{|i :Ti}ISiSk
iff
k<nandforall | i<k, T <T.

Subtyping Function Types

If f:S—=Tand s:Sthen f(s):T
Whenis S —= T <:S—T7?

If £:S —=T and s:S, needf’ (s):T.

Subtyping Function Types

.
S —-T <S—=T
iff
S<:§ and T <T.

Contravariant for parameter types.
Covariant for result types.

Subtyping Reference Types

Variables can be suppliers & receivers of values.
X:=x+ |

If x is a vble of type T, write x:refT.

When is ref T’ <:ref T?

To replace variable x :refT by x':refT'in:
expression: ... X ...

Need T'<: T.
assignment: x := e where e:T.

Need T<:T.

Subtyping Reference Types

Supplier: covariant; Receiver: contravariant

ref T'<:ref T iff T =T

Subtyping Updatable Record Types

Updatable Records:

When is {Ii :T’i}ISiSn < {Ii :Ti}ISiSk?

.. rl:==e..

Subtyping Array Types

Arrays:
If S<:T, is Array of S <: Array of T?
Java says yes, but ...

With few exceptions, for F: Types — Types,
S <:T = F(S) <:K(T).

Subtyping Object Types

ObjType { m,: T’ }, ..., <t ObjType {m,:T } ...,
iff
k<nandforall | i<k T <T.

only if methods not updatable at run-time!

Method parameter can vary contravariantly,
return types covariantly.

Restriction on Subclass Changes

® Java doesn’t allow any changes to types of
methods in subclass.

® C++ allows covariant changes to return
types.

® Suppose you don'’t care if subclass gives a
subtype. Do you still need restrictions!?

= In Smalltalk, subclass and subtype hierarchies
sometimes reversed.

class Example {

void m(...) {... this.n(s) ...}
T n(S x) {...}

class SubExample extends Example {
T' n(S’' x) {...}
void newMeth(...) {...}

}

What is relationship of new type of n to old if want
tybe safety?

Restriction on Subclass Changes

® Method type in subclass must be subtype of
method type in superclass for safety:

= Covariant change allowed in return type

= Contravariant change in parameter type

Semantics of Classes?

® Methods must retain meaning in subclasses.

[[class(i1:I,m:M)]] =
VM < M7.VIR < (17 7.

[[1] % A(this : IR’ (IR>— M’)). [[m]]

Semantics of Objects

[new Squares(...)]] =
{ outer = ref ..., inner = ref ... } X

u(fm Iy - M),
(inst : [[T 1)),

{ move = fun(dx,dy). inst.outer...,
moveTo = fun(x,y). inst,fm) .move(...) }

Also information hiding with existential types -
for correctness & type safety!

Sending Messages

[obj.p(...) 1 = fm(i.p(..)
where [[obj] = (i, fm)

In objects, methods fixed - parameterized by suite
of instance variables, not this.

Summary

® Fixed points are key to understanding O-O
languages.

® Classes are extensible generators of fixed
points.

® Subtyping explains restrictions on subclasses

= Even though subtyping distinct concept.

There Is Much More ...

® Gets much more interesting when:

= Allow type parameters (e.g., GJ)

= Allow type for this: ThisType
= Consider weaker relations than subtyping

® e.g., matching

Questions!

http://www.cs.williams.edu/~kim

