
CS 051 Spring 2014

CS 051 Homework Laboratory # 3
Repulsive Behavior

Objective: To gain experience implementing classes and methods.
Note that you must bring a program design to lab this week!

—

The Scenario. For this lab, we would like you to write a program that simulates the action of two
bar magnets. Each magnet will be represented by a simple rectangle with one end labeled “N” for north
and the other labeled “S” for south. Your program should allow the person using it to move either
magnet around the screen by dragging it with the mouse. You know that opposite poles attract, while
similar poles repel each other. So, if one magnet is dragged to a position where one or both of its poles
is close to the similar poles of the other magnet, the other magnet should move away as if repelled
by magnetic forces. If, on the other hand, opposite poles come close to one another, the free magnet
should move closer and become stuck to the magnet being dragged.

To make things a bit more interesting one should be allowed to flip a magnet from end to end
(swapping the poles) by clicking on the magnet without moving the mouse. This will provide a way
to separate the two magnets if they get stuck together (since as soon as one of them is reversed it will
repel the other).

As usual, copy the folder Lab3−Magnets from the folder cs051/labs. Copy this into your CSC51Workspace
folder. This particular program uses objectdrawDialect.grace as well as two program files: poleModule.grace
and magnetgame.grace. The first one has been written by the instructor. You will NOT need to make
any changes to it. You will put all of your code in the second, magnetgame.grace. Double click on it to
bring it up in Aquamacs.

Start up FireFox and go to the Grace compiler at http://web.cecs.pdx.edu/∼grace/minigrace/js/.
This week you will need to add the three files listed above. Add them in the order listed above and
click on ”go” for each of them. When you select ”go” for magnetGame.grace it will just pop up a blank
window. As usual, you will edit the program in Aquamacs. When ready to run it, click on reload and
then go for the file.

A sample magnet program also appears in the online version.

Some Video Game Physics If you are worried that you might not remember (or never knew)
enough about magnetic fields to do this assignment, relax. First, we will be providing you with most
of the code that does the “physics”. Even if you had to write all the code yourself, you still would not
need a deep knowledge of magnetism and mechanics. Instead, you could exploit something every special
effects expert or video game author must know. Most humans observe the world carelessly enough that
even a very coarse approximation of reality will appear “realistic”. Our code takes advantage of this
by simplifying the behavior of our magnets. We never compute the force between two magnets, just
the distance between them (or, more accurately, their poles). If they get too close together, our code
moves them apart or makes them stick together.

Despite the fact that we will provide most of the code to handle this approximate version of physics,
there are two aspects of the magnet’s behavior that will impact the code you write. The first is a
simplifying assumption. The magnets will not be allowed to rotate. They only slide up, down and
across the screen.

More significantly, there is one aspect of the behavior of the real magnets that we must model fairly
well. Above, we said that we just compute the distance between two magnets. This would not really

1

http://web.cecs.pdx.edu/~grace/minigrace/js/

CS 051 Spring 2014

be accurate enough, since it is not the distance between the magnets that matters, but the distances
between their similar and opposite poles.

Consider the two pairs of magnets shown below:

The magnets shown in the left pair are the same distance apart as the magnets in the right pair. In
the pair on the left, however, the opposite poles are close together while the similar poles are relatively
far apart. The situation is reversed in the other pair. In one case, one would expect the magnets to
attract, in the other to repel. (Remember similar poles repel each other, opposites attract.)

So it is the poles rather than the magnets that really matter when deciding whether something
should be attracted or repelled. As a result, instead of just manipulating magnet objects in your
program, you will also need objects that explicitly represent poles.

Design of the program. We will help you design this program by identifying the classes and meth-
ods needed. In particular, you will need two classes named magnet, which generates objects of type
Magnet, and pole, that generates objects of type Pole, as well as an object magnetGame that inherits
graphicApplication . We will provide the code for the pole class. You will write the other class and object
definition.

The pole class You will be able to use the pole class we have defined much like one of the built-in
graphics classes in objectdraw. In this handout, we explain how to construct a new object of type Pole

and describe the methods that can be used to manipulate Poles. You can then write code to work with
Poles just as you wrote code to work with filled rectangles. We will see, however, that the interaction
of Poles with the rest of your program is a little more complex than that of rectangles.

A Pole’s constructor will expect you to specify the point at which it should initially appear and the
label that should be displayed (i.e. “N” or “S”). It will also require you to provide as parameters the
canvas and the Magnet to which the new pole will belong. The header of the pole class is:

class pole . inside (container ’) at(center ’: Point)
isNorth(isNorth ’: Boolean)on(canvas: DrawingCanvas)− > Pole

Since you will usually create the Poles within the code of the magnet constructor, the name self will
refer to the Magnet that contains the Pole. Thus, the code to construct a Pole might look like:

pole . inside (self)at(poleLocn) isNorth (true) on (canvas)

When evaluated this would create a north pole (because of the true) at poleLocn on canvas, with the pole
remembering that the magnet executing this code contains it.

The Pole type is defined in pole .grace as:

2

CS 051 Spring 2014

type Pole = {
// return magnet containing the pole
container −> Magnet

// return the coordinates of the center of the pole
center −> Point

// move the pole by dx to right and dy down
moveBy(dx: Number, dy: Number)−>Done

// if close enough to oppositePole then move other magnet to be adjacent
tryAttract (opposite : Pole) −> Done

// if close enough to similar then push other magnet away
tryRepel(similar : Pole) −> Done

}
Method container returns the magnet containing the pole, while center provides the location of the

pole (hopefully inside the magnet!). Method moveBy just moves the pole by the given amount (just like
the graphic items in objectdraw).

In addition, the Pole class has two more specialized methods: tryAttract and tryRepel. Each of these
methods expects to be passed the Pole of another magnet as a parameter. If you say,

tryAttract (anotherPole)

then somePole and anotherPole should have opposite polarities. If somePole is a north pole, then anotherPole

must be a south pole and vice versa. If the two poles are close enough then executing the method
request will result in the magnet associated the the parameter being pulled to be adjacent to the magnet
associated with the receiver of the request.

The tryRepel method, on the other hand, assumes that the pole provided as its parameter has the
same polarity as the object to which the method is applied. Therefore, if you write:

somePole.repel(anotherPole)

and somePole is a north pole, then anotherPole should also be a north pole. This time if the poles are close
enough, executing the method will result in the magnet associated with the parameter being pushed
away from the magnet associated with the receiver.

If these methods discover the other pole is close enough to attract or repel, they will use the moveBy

and moveTo methods of the magnets to bring the magnet used as a parameter either closer to the receiver
or far enough apart that they would no longer interact.

The good news is that we have already written the code for all the methods described above and
will provide these methods to you. Important: Do not modify the provided pole or its type in any way!!
It contains sufficient methods to write this program and we will be testing your code with our version of
pole.

Design of part 1 For the first part of this program, you should just worry about creating the
magnets and moving them around. We’ll worry about their interactions (attracting and repelling) later.
Just like last week, we want you to come to lab with a written design. At the end of this section, we
will be more specific about what you should bring with you to lab. To give you a better sense of what
we mean by a written design, you can see a sample design for the first part of the laundry lab at the
end of this document.

The key to this lab is the design of the magnet class. A magnet is represented by a framed rectangle,
a filled rectangle (for the red background) and two poles. To ensure that our Poles work well with
your Magnets, each magnet should be 150 by 50 pixels. The poles should be located near each end of

3

CS 051 Spring 2014

the magnet. We recommend locating them so the distance from the pole to the closest end, top, and
bottom, are all 1/2 the height of the magnet (i.e. 25 pixels away from each).

Your magnet class generate objects of type Magnet, where Magnet will have all the methods that will
enable someone running your program to drag magnets about within a window. The Magnet type is
defined as follows:

type Magnet = {
// location of magnet
location −> Point

// move this object to newLocn
moveTo(newLocn:Point)−>Done

// move this object dx to the right and dy down
moveBy(dx:Number,dy:Number)−>Done

// Does this object contain locn
contains(locn :Point)−>Boolean

// Dimensions of magnet
width −> Number
height −> Number

// flip the magnet left−right
flip −> Done

// return the poles of the magnet
northPole −> Pole
southPole −> Pole

// move other if it is close enough to this magnet
interact (other :Magnet) −> Done

}
The headers for these methods are already included in the starter file for the magnet class. These
methods should behave just like the corresponding methods for rectangles and ovals. Method request
someMagnet.location should return a Point value, and someMagnet.contains(point) should return a boolean.
For this portion of the lab we will only be concerned with the methods moveBy, moveTo, location , and
contains. We will address the others later.

In order to write these methods, your magnet will need to contain several instance variables. A
magnet should consist of a filled and a framed rectangle and two poles, and you will need instance
variables for each of those. The constructor for a magnet needs the following parameters:

• The point corresponding to the upper-left corner of the magnet,

• The canvas that will hold the magnet

The header of the magnet class should be:

• class magnet.at(locn ’: Point) on (canvas:DrawingCanvas)−> Magnet

It should construct the filled rectangle forming the red background, the framed rectangle forming the
outline of the magnet, and should create two poles in the correct positions inside the magnet (see the
earlier discussion on the constructor for class pole).

4

CS 051 Spring 2014

Once these instance variables have been declared and initialized, writing the methods should be easy.
The moveBy and moveTo methods should simply move the rectangle and poles to their new positions.
The move method is pretty straightforward as all three items get moved the same distance, but moveTo

takes a little thought as Pole objects do not have a moveTo method. Instead you’ll need to calculate
how far to move them. (Hint: check to see how far the rectangle is moving from its current position.)
The method location will simply return the location of the rectangle, while a magnet contains a point
exactly when the rectangle does.

When you have this much of the magnet class written, you can test it by writing magnetGame, an
extension of the WindowController class that creates a magnet, and then write methods onMousePress and
onMouseDrag that will allow you to drag it around. We suggest you set the window to be 600 by 600
pixels.

Once onMousePress and onMouseDrag work, it should be pretty easy to add a second magnet and
be able to drag either of them around. We suggest declaring a variable (movingMagnet) that can be
associated with the appropriate magnet and used to remember which magnet to move whenever the
mouse is dragged. This variable will be useful in other parts of your assignment as well. (See the Tshirt
example from class.)

As you were writing the methods for the magnet class, you probably noticed that definitions of width

and height are already included there. As you will learn soon in class, declaring those identifiers to be
public means that Grace will automatically supply methods that will return their values. These methods
are also named width and height, so you do not need to do anything else to define them. These are used
by the Pole class in ensuring that the methods attract and repel draw the magnets appropriately in the
window.

As mentioned earlier, you should bring a design with you to lab. The design should show us how
you plan to organize your magnet class and magnetGame object to accomplish the actions required of the
first part of this lab only. We have told you what methods each class should have and the behavior
that they should provide. You should write (in English, not Grace) your plan for how each method will
provide the necessary behavior. You should start with the starter file magnetgame.grace and modify it
to contain the complete design. (Notice that we left out the pole class, because we are providing the
complete code for it.)

Be sure to describe in your design (in English) what variables you feel are necessary for each class
as well as filling in a detailed design for all methods of classes magnet and magnetGame. This level of
preparation will allow you to progress much more quickly in lab so that you can take better advantage
of the presence of the instructors and TAs. This week your design will be worth 10% of your lab grade.

Part 2: Flipping the magnet When you click on a magnet, it should reverse its north and
south poles. Add method flip to class magnet that interchanges the north and south poles. Remember
that you can move a Pole, and one possible way to implement flip is to just move the north pole to the
south pole’s position and vice versa.

Add an onMouseClick method to your program that invokes flip when the mouse is pressed.

Part 3: Interacting magnets Finally, after you move or flip a magnet, you will need to tell the
magnet to check if it is close enough to the other magnet to move it. To make this possible, include a
method named interact in your magnet class. The method interact should be invoked on the moving (or
changing) magnet, and should take as a parameter the magnet that has not just been moved or flipped.
It should effect the interaction by calling the tryAttract and tryRepel methods of its poles with the poles
of the other magnet passed as parameters appropriately. For simplicity, you might want to just check
for attraction first, and only worry about repelling after the attraction works correctly.

5

CS 051 Spring 2014

When writing interact you will discover you need to add two more methods in the magnet class to
enable you to access the other magnet’s poles: northPole and southPole. You may either write these
explicitly or have them generated automatically by Grace if you annotated the definitions with these
identifiers with is public . Both of these methods will return objects with type Pole. Also, note that the
attract method that we have provided in the pole class calls the moveTo method that you must define
in the magnet class. If you did not fill in the body of this method correctly, attraction will not work
properly.

You will need to call the interact method every time one of the magnets is either moved or flipped.
Because you want to send the interact message to the magnet that moved and provide the other magnet
as the parameter, you will need to keep track of which is which. As we suggested above, whenever you
start dragging a magnet (i.e., in the onMousePressed method), you should associate a name with the
moving magnet. You will also find it convenient to associate a name with the resting magnet in order
to call your interact method appropriately.

When your program is finished, your magnet class should have a constructor and method bodies
implemented for location , move, moveTo, and contains, for which headers were provided. In addition,
you will need to provide the methods interact , northPole, southPole, and flip . You should think carefully
about the structure of the method headers for each of these. To help you in formulating your ideas, the
following gives typical uses of the methods:

• someMagnet.interact(otherMagnet) // someMagnet & otherMagnet are magnets

• def theNorthPole: Pole = someMagnet.northPole

• def theSouthPole: Pole = someMagnet.southPole

• someMagnet.flip // someMagnet is a magnet

Getting Started The starter project contains several files intended to hold Java code. The file
magnetgame.grace should be used to write the magnet class as well as the magnetGame object that will
serve as your “main program”. This file will initially contain skeletons of the code that you will need
to complete. The final “.grace” file will be pole .grace. It will hold our implementation of the pole class.
Remember, you should not change pole.

Due Dates This assignment is due at 11 pm on Monday evening.

Submitting Your Work Before submitting your work, make sure that your program file includes
your name in the comment heading up the code. Also, before turning in your work, be sure to double
check both its logical organization and your style of presentation. Make your code as clear as possible
and include appropriate comments describing major sections of code and declarations. Make sure your
indentation is all consistent.

Turn in your project the same as in past weeks. Be sure to put your program in folder whose name
includes your name and identifies the lab. Then drag your folder to the dropoff folder.

6

CS 051 Spring 2014

Table 1: Grading Guidelines

Value Feature
Design (2 pts total)

1 pts. Constants & Variables
1 pts. Methods

Readability (6 pts total)
2 pts. Descriptive comments
1 pts. Good names
2 pts. Good use of constants
1 pts. Appropriate formatting

Code Quality (4 pts total)
2 pts. Good use of boolean expressions
1 pt. Not doing more work than necessary
1 pt. Using most appropriate methods

Correctness (8 pts total)
1 pt. Drawing magnets correctly at startup
1 pt. Dragging a magnet
1 pt. Ability to move either magnet
1 pt. Moving a magnet to the right place when attracted
1 pt. On attraction, moving the magnet not pointed to
1 pt. Flipping a magnet
1 pt. Attracting and repelling at the right times
1 pt. No other problems

7

