
CS 051 Spring 2014

CS 051 Homework Laboratory #2
Dirty Laundry

Objective: To gain experience using conditionals.

—
The Scenario. One thing many students have to figure out for the first time when they come to

college is how to wash their clothes. Often by the time most students have figured it out, all their
underwear is pink and T-shirts and other light-colored items are streaked with all sorts of interesting
colors. In the hopes of helping next year’s first-year students adjust more easily to college, we would
like you to write a laundry sorting simulator.

The Approach. It is usually a good practice to develop programs incrementally. Start with a
simplified version of the full problem. Plan, implement and test a program for this simplified version.
Then, add more functionality until you have solved the full problem.

To encourage this approach, we have divided this lab into two parts. For the first, we will describe
a laundry sorter with a very simple interface. You should plan, implement and test a program for this
problem first. Then, in the second part of the assignment we will ask you to add additional functionality.

You are also encouraged to approach each of our two parts in this step-wise fashion. For example,
in the first part you might begin by just writing the instructions to construct the necessary graphical
objects without worrying about any of the mouse event handling. Once your program can draw the
picture, you can move on to figure out how to handle events.

Part 1: The simulator should begin with three wash baskets on the screen (for our purposes they
can just be rectangles or squares). One is labeled “whites”, one “darks”, and the last “colors”. An
image showing the kind of display we have in mind appears below. When the simulation begins, a color
swatch will appear on the screen. The user (“laundry trainee”) should then click in the corresponding
basket. If the user is correct, the program should randomly select a new color for the next item and
display it on the screen. For this part of the assignment you may just select among the three colors
white, red, and black when creating items of clothing. If the user clicks on an incorrect basket, the
original item remains in position for another try.

1



CS 051 Spring 2014

Design of Part 1. You will need to design an object that inherits graphicApplication that will display
the wash baskets and the item to be sorted. Begin by laying out where all the items go on some graph
paper. The picture should look more or less like the one above.

When the program begins, place all the wash baskets (with labels) on the screen. Then, add the
item of clothing that is to be sorted. For simplicity you can make the first item always have color white
(or you can be more ambitious and select the color randomly). The item should actually consist of two
rectangles, a filled rectangle which is the appropriate color and a framed rectangle which is the same
size, but lays on top of the filled rectangle to form a border (otherwise it will be awfully difficult to see
a white item!)

Think Constants! When you lay out the wash baskets and item, use definitions for all the relevant
values. The width and heights of wash baskets and the item to be sorted, coordinates of the upper left
corner of each of these, etc., are all good candidates for constants. Examples include:

def basketWidth = 80
def laundryLocation = 280@100

Using names rather than numeric values in your program will make it easier to change things around
and also make your program much, much easier to read (presuming you give them good names). Of
course you will also need to use definitions to provide names for key items of your program like the
three laundry baskets, the filled and framed rectangles for the laundry item, etc.

Identifying the Correct Basket (Pay attention to the following as it will make your code much,
much easier! )

Once you have done the layout and figured out how to generate new items, all you have to do is
to write the code for the method onMousePress. You will need to associate some information with an
instance variable that will enable onMouseClick to determine which is the correct basket. A particularly
clever and useful way to do this is to use an instance variable – let’s call it correctBasket – that will refer
to one of the laundry baskets. In particular, you will make sure it always refers to the laundry basket
that is the same color as the laundry item.

Whenever you generate a new laundry item, you will associate correctBasket with the rectangle/basket
in which an item of its color should be placed. That way when the user presses the mouse on a basket,
onMousePress can simply check to see if the rectangle currently associated with the correctBasket contains
the point where the mouse was clicked. Then, onMousePress will either select a new color for the item
(if the user was correct) or wait until the user clicks again (if incorrect).

A Warning! One odd feature of the simple interface that may bother you a bit is a result of
the fact that the program selects laundry items randomly. Because the selection is truly random it
sometimes picks the same color twice in a row. When this happens and you click on the correct basket
for the first item you will get the feeling that the program ignored you. Even though it has actually
displayed a new item, the new item looks just like the old one, so you may think nothing changed.
Don’t let this trick you into thinking that your version of the program (or ours) isn’t working correctly.
The more advanced interface in part 2 includes counters in the display that eliminate this problem.

2



CS 051 Spring 2014

Generating random numbers We have provided a method named randomIntFrom()to() in the
objectdraw package that helps to generate random numbers. For example, to generate a random number
between 1 and 3 (inclusive), just write randomIntFrom(1)to(3). You can use a conditional statement to
associate each of the numbers from 1 to 3 with a different color. For example, n is the random value,
make the color of the item be white if n is 1, black if n is 2, and red if n is 3.

Design document You should bring in a design for the first part of this assignment to the lab.
We have supplied an outline of the object definition, including descriptions and declarations for all of
the methods you will be using in part I in LaundrySorter.grace. You should augment this with:

1. declarations and descriptive comments for definitions you will be using in part I. These should
include information on their values. E.g., laundryItem will be a filled rectangle at (280,100) with
width and height 80.

2. declarations and descriptive comments for instance variables you will be using in part I. (Note
that for part 1 of the lab, you will only need the instance variable correctBasket and possibly
another to remember the random numbers generated in choosing colors.) Indicate how these will
be initialized.

3. pseudo-code (see below) to describe the onMousePress method in part I.

Add these declarations, comments, and pseudo-code to the supplied starter, and print it out for
submission before you write any of the actual code. You will lose points if you do not complete (and
submit) this design BEFORE writing the real code.

The design is an important step in the coding process! You are sketching out the code to be written
before you actually write it. I promise you that thinking about the design before you start coding will
make your life easier in the long run.

Along with the document above, be sure to bring a sketch showing where all of the boxes will be
drawn as a consistency check for your constants. Each item in the sketch should be labeled with its
dimensions and location.

Please write a description in English of what should happen in method onMousePress for Part 1 (this
is what we called ”pseudo-code” above). It should include sufficient detail that you can easily translate
it into Grace. E.g., you might say something like ”if the user clicks inside the correctBasket then ...”.
Because onMousePress will only be called when the mouse is pressed, your description should explain
what happens in response to that click.

To give you a better sense of what a design looks like, take a look at the design for the BasketBall
example done in class (see the actual code in the lecture notes).

Try to convince yourself that your design is correct before you come to lab, as that will make your
lab work much simpler. In particular, the trickiest part of the lab is using our hint above to make it
easy to determine whether the user clicked in the correct basket, so look at this very carefully.

Writing and testing your Grace program Once you are in the lab and ready to code in Grace,
copy Lab2-Laundry from the cs051 folder on your desktop to the CS51Workspace folder, also on your
desktop. Double click the file LaundrySorter.grace to get it showing in Aquamacs.

Start up FireFox and navigate to http://web.cecs.pdx.edu/∼grace/minigrace/js/. Just like last week,
you will need to add two files. Just as last time, click on ”Add a file” toward the bottom of the page
and then click on ”Browse” and select the file objectdrawDialect in the CS51Workspace folder. Click
”go” in the browser and wait patiently while it compiles. Repeat this with ”LaundrySorter.grace” in
”Lab2-Laundry”. You can go ahead and click on ”Go”, but it will only bring up a blank window. Close

3

http://web.cecs.pdx.edu/~grace/minigrace/js/


CS 051 Spring 2014

it and go back to Aquamacs to work on your program. Be sure to write it in small pieces, and test it
frequently (by saving it, clicking ”reload” in the browser next to the file name, and then clicking on
”Go”). For example, you might write the code to draw the laundry item and then make sure it shows
up where you want it. Do the same with the three laundry baskets and their labels, etc.

Once you have part 1 working correctly, make sure it is commented properly. In particular, the
comments inside the method body should have been replaced by actual Grace code, but the comments
before the method header should remain, and you should have appropriate comments for each definition
and variable declarations.

At this point, get one of your lab instructors or TAs to check it out to make sure it works properly
and to give you feedback on your code. You may then proceed on to part 2. (You won’t be turning in
part 1, but you will use it as a starting point for part 2.)

Part 2: Once you get the basic version working, we would like you to jazz it up a bit. Here are the
extensions we would like you to make:

1. Add labels (text items) at the bottom of the picture showing the number of correct and incorrect
placements. This makes it clearer when the student succeeds in placing the item correctly. They
should read something like “correct = nn”, “incorrect = mm”. The value in the first text item
will be formed by using {...} to interpolate an instance variable which keeps track of the number
of correct answers into the string being displayed. The other is similar.

2. Users should drag the items to the correct laundry basket rather than just clicking on the basket.
Recall from the examples in class that you will need an instance variable to label the last mouse
position before the drag so you can determine how far to drag the item. If the user presses the
mouse button down outside the laundry item, it should not increase the correct or the incorrect
counter.

3. Assign the item a randomly generated color by randomly choosing integers redNum, greenNum, and
blueNum between 0 and 255 for each of the red, blue, and green components of the color. You can
then create a color from those components by writing color . r(redNum)g (greenNum)b (blueNum).

Now define criteria for determining where each color should go. A simple criterion is based on the
sum of the three color components. If the sum of the component numbers is less than 230, decide
it is dark, if it is greater than 600, decide it is white. Otherwise it is colored. After you get the
program working you might want to experiment with other criteria.

We will let you figure out most of the details of how to add the features for the more advanced
versions. One piece of advice is that for the second enhancement the code to determine whether the
user got the laundry into the right basket will need to be in the onMouseRelease method, rather than the
onMousePress method as it was in part 1. Instead the onMousePress will merely need to record whether
or not the mouse was pressed on the laundry and to record where the mouse was pressed. The purpose
of the three methods that respond to mouse events are:

• onMousePress – for when the user first clicks on the item - though remember that they might miss.

• onMouseDrag – to do the actual dragging (assuming they clicked on it originally).

• onMouseRelease – if they were dragging it, check to see if they’ve dropped it in the right place when
the mouse is released. Update the laundry item appropriately

While we do not require you to bring a design document for this part of the program, you will find
it extremely helpful to make some notes and sketch this out in advance, realizing that your work in
part 1 will help you better understand how to do part 2.

4



CS 051 Spring 2014

Table 1: Grading Guidelines

Value Feature
Design (1 pt total)

1/2 Variables and definitions
1/2 Pseudo-code in onMousePress

Style, Design, and Efficiency (10 pts total)
2 pts. Descriptive comments
2 pts. Good identifier names
2 pts. Good use of definitions
2 pts. Appropriate formatting
1 pt. Does not generate new objects unnecessarily

Correctness (10 pts total)
2 pts. Generates a new color for swatch only if previous one placed correctly
2 pts. Swatch displayed in the correct initial position; returns to original location if incorrectly sorted
2 pts. Updates number correct and incorrect properly
2 pts. Drags swatch properly (-1 pt if can just press to increase score instead of dragging)
2 pts. Appropriate behavior if user does unexpected things like starting to drag outside the swatch

Extra credit (1 pt)
1 pt. Does not update either # correct or # incorrect if user misses all baskets

Grading Guidelines

Final remarks Be sure to do the basic version of the lab before attempting the more advanced
features. Just work on adding one feature at a time, testing each thoroughly before working on the
next.

Turning in your program Your program is due at 11p.m. on Monday evening. Turn in your
program as you did last week. Here are the instructions again:

• First, return to Aquamacs and make sure you included your name and course number in a comment
at the start of the program. If you modified the program in the web program editor (we strongly
recommend that you DO NOT!), make sure the file in Aquamacs is updated to be the same as
the one that was run.

• On the desktop, navigate to the folder called “Lab2-Laundry” in your CS51Workspace folder.
You should now rename that folder by clicking on it and pressing return, and typing in a more
descriptive name (one that identifies you and the lab you are working on, such as “Bruce-Lab2”
or “Bruce-Laundry” – except replace “Bruce” by your name!). Note that dashes in names are
OK, but don’t include spaces or periods.

• Now open the “cs051G” folder icon on the desktop by double-clicking on it. Within the “cs051G”
folder you should see a “dropbox” folder.

5



CS 051 Spring 2014

• Drag the folder you just created into the dropbox folder. When you do this, the computer may
warn you that you will not be able to look at this folder. That is fine. Just click “OK”.

If you should accidentally turn in a bad version of your program, you may drag another copy in as
long as you change the name to be slightly different from the one you used before (e.g. Jane Doe - lab
2a). The new name should make it clear which is the newer version.

Good luck and have fun!

6


