
Streams Cheat Sheet for Grace
The following instructions show how programmers can read and write text

files in Grace.

1 Opening a file for reading.

Files to be read by Grace programs must first be loaded into the browser in the
same way that programs are loaded, i.e. by clicking on the upload icon at the
top of the left pane that holds the list of files and then selecting the file in the
dialog box.

File operations are accessed from built-in library io. Thus a program using
files will need to import the library, e.g.

import "io" as inout

A file that has been opened in a program has type FileStream, a type
defined in io. We can access a file for reading by invoking method open of io

with two parameters, the complete path to the file, and the string ”r”. Thus if
file words.txt is in the folder MyFolder, then we open the file and give it name
input as follows:

def input: inout.FileStream = inout.open("MyFolder/words.txt","r")

The three most important methods available on an object of type FileStream
that has been opened for reading are getline, eof, and close. In the exam-
ple above, words.getline would return the next line of the file (i.e., a string
consisting of all the characters up to but not including the new line character).
The expression words.eof would evaluate to true if and only if the there is
nothing left unread in the file. When you are done reading a file, you should
always close it so that if you wish to read and write to it later, you can open it.

If you would like to get the entire file as a single string, the read method
will provide that. However, in most cases it will be easier to read a file a line
at a time.

2 Opening a file for writing

We can write to existing files or create new ones to write to. In either case,
when a file is opened for writing it is first erased. New data cannot be added to
the end of an existing file.1

Files are opened for writing similarly to reading except that the second
parameter is “w” rather than “r”.

def output: inout.FileStream = inout.open("MyFolder/vals.txt","w")

1It is possible to open a file so that you can write new material at the end of the existing
material. See the Grace documentation at
http://web.cecs.pdx.edu/~grace/doc/modules/io/ for further information.

1



Data can be written to the file using method write. Unlike the print command,
write does not move to the next line after the string is written. Thus if you
want output to be on separate lines, you will need to tack on an "\n" at the
end of the text to be output.

It is critical that you close a file after you have finished writing to it. If you
don’t, the data to be written may remain in a buffer and never end up written
to the file.

3 Exceptions

Errors can occur when trying to access files. These can include a file that is
not there (or in use by another program), trying to read from a file that has
disappeared, trying to write to a file when no more space is available, etc. These
errors will throw an IOException, so all code accessing files should surround
the file commands with a try catch construct. See the example below

4 Example

In this section we show an example of a program that reads in all the lines of
the file words.txt in folder MyFolder and copies them into file copy.txt in the
same folder. After the program is complete, the two files should be identical.

try {

def words: inout.FileStream = inout.open ("MyFolder/words.txt","r")

def output: inout.FileStream = inout.open("MyFolder/copy.txt","w")

while {!words.eof} do {

def nextWord: String = words.getline

output.write(nextWord ++ "\n")

}

words.close

output.close

} catch {ex: IOException ->

print "Exception {ex}"

}

2


