Grace Documentation: Using GUI Components in the objectdraw
dialect in Grace

Kim B. Bruce

August 17, 2016

1 Introduction

Grace’s objectdraw dialect supports GUI components modeled on those available in Java and
Javascript.

Grace supports classes that generate GUI components of types Button, TextBox (for labels),
TextField (for data entry), NumberField (for entering numbers), and Choice (for pop-up menus), all
of which extend the type Component.

We begin by talking about these types and the classes that can be used to construct them. Later
we will discuss how to place these components in a window.

2 GUI components

In this section we discuss the different kinds of GUI components supported by Grace and the
methods that may be requested of them. However, first we take a brief detour to talk about events
generated by components.

2.1 Events generated by GUI components

When the user interacts with a GUI event, the system generates an event that allows access to
relevant information about the event, e.g., the component that was affected, the location of the
mouse, etc. We list these types below:

type Event = {

// returns the C()Iﬂ[?()l’l(’]’ll genemlmg the event

source —> Component

}

type MouseEvent = Event & type {
// returns the mouse location when the event was generated
at —> Point

}
type KeyEvent = Event & type {

// returns the numeric code of the key pressed
code —> Number

}

These events are generated by the operating system in response to user actions. Thus we do not
need to worry about how to create them.



The event handling methods all take as parameter actions which the programmer can use to
respond to the events. They all take events as parameters and then execute code. Their types are
given below:

// type of a block that takes an event as parameter

type Response = {apply: Event —> Done}
type MouseResponse = {apply: MouseEvent —> Done}

type KeyResponse = {apply: KeyEvent —> Done}
An element of type MouseResponse is a block that takes a MouseEvent as a parameter. For
example,
{msEvent: MouseEvent —> print "the event was at {msEvent.at}"}

is a block that takes a MouseEvent as a parameter and then prints out the location associated with
the event.

2.2 Component

Type Component contains the methods available on all GUI components. While no classes
generate objects with type exactly matching Component, all classes generating GUI components
support all the method of Component:

type Component = {

// The width of this component.
width —> Number

// The height of this component.
height —> Number

// The dimensions of this component
size —> Point

// Respond to a mouse click (press and release) in this component with the
// given event.
onMouseClickDo (f : MouseResponse) —> Done

// Respond to a mouse press in this component with the given event.
onMousePressDo (f : MouseResponse) —> Done

// Respond to a mouse release in this component with the given event.
onMouseReleaseDo (f : MouseResponse) —> Done

// Respond to a mouse move in this component with the given event.
onMouseMoveDo (f : MouseResponse) —> Done

// Respond to a mouse drag (move during press) in this component with the
// given event.
onMouseDragDo (f : MouseResponse) —> Done

// Respond to a mouse entering this component with the given event.
onMouseEnterDo(f : MouseResponse) —> Done



// Respond to a mouse exiting this component with the given event.
onMouseExitDo (f : MouseResponse) —> Done

// Respond to a key type (press and release) in this component with the given
// event.
onKeyTypeDo (f : KeyResponse) —> Done

// Respond to a key press in this component with the given event.
onKeyPressDo (f : KeyResponse) —> Done

// Respond to a key release in this component with the given event.
onKeyReleaseDo (f : KeyResponse) —> Done

// Whether this component will dynamically fill up any empty space in the
// direction of its parent container.
isFlexible —> Boolean

// Set whether this component will dynamically fill up any empty space in the
// direction of its parent container.
flexible := (value : Boolean) —> Done

}

The mouse event handlers all take parameters of type MouseResponse, which is a block that
takes a parameter of type MouseEvent (see the previous section).

2.3 TextBox

An object of type TextBox is a GUI component that can serve as a label for another component.
type TextBox = Component & type {

// The text contents of the box.
contents —> String
contents := (value : String) —> Done

}

// create a label show the string in contents'

class textBoxWith (contents' : String) —> TextBox

As shown above, the class textBoxWith is used to create objects of type TextBox. Thus textBoxWith
("Enter your name:") will create a label that reads “Enter your name”.

2.4 Button

An object of type Button is a labeled button that can be pressed to generate an event. Type
Labeled is a synonym of Button and is included because other types will extend it.

type Labeled = Component & type {

// The label on the button.
label —> String
label := (value : String) —> Done

}



type Button = Labeled

class buttonLabeled (label' : String) —> Button

A button saying “Press Me” can be generated by buttonLabeled ("Press Me™).

2.5 TextField and NumberField

The types TextField and NumberField generate components where users can add strings and
numbers. They both extend the type Input.

type Input = labeled & type {

// Respond to this input gaining focus with the given action.
onFocusDo (f : Response) —> Done

// Respond to this input losing focus with the given action.
onBlurDo (f : Response) —> Done

// Respond to this input having its value changed (requires typing return).
onChangeDo (f : Response) —> Done

}
type TextField = Input & type {

// The contents of the text field.
text —> String
text := (value : String) —> Done

}
class textFieldLabeled (label' : String) —> TextField
type NumberField = Input & type {

// The contents of the number field.

number —> Number

number := (value : Number) —> Done
}
class numberFieldLabeled (label : String) —> NumberField
type Choice = Input & type {

// The currently selected option.

selected —> String
selected := (value : String) —> Done

}

class menuWithOptions (Iterable[[String]]) —> Choice

For example, evaluating menuWithOptions ["one","two","three"] creates a pop-up menu
with three choices.



2.6 DrawingCanvas

An object of type DrawingCanvas is a rectangular portion of a window in which the programmer
can draw graphic items of type Graphic, included filled and framed rectangles and ovals, as well as
lines, text items, and images. These items are described more completely in other documents.

type DrawingCanvas = {

// Start drawing on the canvas. Will continue until the canvas is destroyed.
startDrawing —> Done

// add d to canvas

add(d: Graphic)—>Done

// remove d from window
remove(d: Graphic)—>Done

// tell the system to redraw the screen
notifyRedraw —> Done

// clear the canvas
clear —> Done

// Send d to top layer of graphics
sendToFront (d: Graphic)—>Done

// send d to bottom layer of graphics

sendToBack (d: Graphic)—>Done

// send d up one layer in graphics
sendForward (d: Graphic)—>Done

// send d down one layer in graphics

sendBackward (d: Graphic)—>Done

// return the current dimensions of the canvas
width —> Number

height —> Number

size —> Point

}

class drawingCanvasSize (dimensions': Point) —> DrawingCanvas

3 Adding components to a window

Most programs using the objectdraw library will require a canvas in the middle of the window.
Objects and classes that inherit graphicApplicationSize(dim) will have a canvas preinstalled, while
other GUI components can be added above or below it. On the other hand, objects or classes that
inherit applicationTitle (windowTitle) size (dim) will start with no GUI components in the window.

3.1 Application and GraphicApplication

Types Application and GraphicApplication both extend type Container.



// The type of components that contain other components.

type Container = Component & type {

// The number of components inside this container.
numComponents —> Number

// Retrieve the component at the given index.
at (index: Number) —> Component

// Put the given component at the given index.
at (index: Number) put(component: Component) —> Done

// Add a component to the end of the container.
append (component: Component) —> Done

// Add a component to the start of the container.
prepend (component: Component) —> Done

// Perform an action for every component inside this container.
do (f: Procedure[[Component]]) —> Done

// Arrange the contents of this container along the horizontal axis.
// Components which exceed the width of the container will wrap around.
arrangeHorizontal —> Done

// Arrange the contents of this container along the vertical axis.
// Components which exceed the height of the container will wrap around.
arrangeVertical —> Done

}

// A standalone window which contains other components.
type Application = Container & type {

// The title of the application window.
windowTitle —> String
windowTitle := (value : String) —> Done

// must be requested in order to pop up window when initialization complete
startApplication —> Done

// Close the window
stopApplication —> Done

}

class applicationTitle(initialTitle : String)
size (initialDimensions: Point) —> Application

// Type of object that runs a graphical application that draws
// objects on a canvas and responds to mouse actions on the canvas
type GraphicApplication = Application & type {

// canvas holds graphic objects on screen

canvas —> DrawingCanvas



// Respond to a mouse click (press and release) in the canvas at the given
// point.
onMouseClick (mouse : Point) —> Done

// Respond to a mouse press in the canvas at the given point.
onMousePress (mouse : Point) —> Done

// Respond to a mouse release in the canvas at the given point.
onMouseRelease (mouse : Point) —> Done

// Respond to a mouse move in the canvas at the given point.
onMouseMove (mouse : Point) —> Done

// Respond to a mouse drag (move during press) in the canvas at the given
// point.
onMouseDrag (mouse : Point) —> Done

// Respond to a mouse entering the canvas at the given point.
onMouseEnter (mouse : Point) —> Done

// Respond to a mouse exiting the canvas at the given point.
onMouseExit (mouse : Point) —> Done

// must be invoked to create window and its contents as well as prepare the
// window to handle mouse events
startGraphics —> Done

3.2 Adding Components

You can add components to an object of type Application or GraphicApplication by using the
commands prepend and append. These methods add components either at the very beginning or
at the very end of the list of components.

For example, suppose drawingProgram is an object of type GraphicApplication. Thus it starts
out as having a canvas in the window. If button1, button2, and menu are GUI components then the
results of executing:

prepend (button2)

prepend (button1)

append (menu)
will result in button1 and button2 being next to each other (in that order) above the canvas, while
menu is centered below the canvas in the window.

You can have more control over the arrangement of the components by inserting them in contain-
ers and placing those containers in the window or in other containers. You can create a container
by evaluating emptyContainer.

Here is an example of using containers to arrange the GUI components more carefully:

def southBox = emptyContainer

// items are laid out in southBox from top to bottom
southBox.arrangeVertical

// container rowl will hold boxLabel and sizeField
def row1 = emptyContainer



Figure 1: Layout of GUI components in a window

row1.append (boxLabel)
row1.append (sizeField)

// container row2 will hold colorLabel and colorMenu
def row2: Container = emptyContainer
row2.append (colorLabel)

row2.append (colorMenu)

// container row3 will hold three buttons
def row3 = emptyContainer
row3.append (slowButton)
row3.append (mediumButton)
row3.append (fastButton)

// Add the rows from top to bottom in southBox
southBox.append (row1)
southBox.append (row2)
southBox.append (row3)

// add the whole southBox to the bottom of the window, below the canvas

append (southBox)

The container southBox contains three other containers: row1, row2. and row3, which will be
stacked one on top of the other (that is determined by southBox.arrangeVertical). Each of the row
containers contains several GUI components, which are laid out next to each other, as shown in
Figure[T]

The same idea works with objects inheriting from application except there will be no canvas in
the window.

4 Responding to events involving GUI components
As can be seen in the type Component, GUI components can respond to user actions. For

example, components can respond to mouse presses or clicks, selecting an item in a pop-up menu,
or entering a new item in a text or number field.



4.1 Button events

An object of type Button, can respond to various mouse events. Normally, however, we will
only have them respond to a press or click by a mouse. Suppose tickleButton has type Button. If
we wish for it to respond to a mouse press by printing a message then we can write:

tickleButton.onMousePress {mEvt: MouseEvent —> print "Stop tickling me!"}

Now when the user presses the mouse on the button, it will print “Stop tickling me!”. The code
after the arrow can use the formal parameter mEvt, for example by sending it method requests
for source or at. However, it will be unusual to need those pieces of information (especially the
location of the mouse in the button) in the code reacting to the press.

If you prefer to react to a mouse click or release instead, you can use the corresponding method.
You can add as many actions as you like to respond to mouse events. They will all be executed
when the corresponding event occurs.

4.2 Input events

An object of a type extending Input, e.g., Choice, TextField, or NumberField will generate a
Change event when a new item is selected from a pop-up menu or a new entry is made to a field
(terminated by hitting the enter key).

These are handled using the onChangeDo method of the component.

menu.onChangeDo {evt: Event —> ... menu.selected ...}
myTextField.onChangeDo {evt: Event —> ... myTextField.text ...}
myNumberField.onChangeDo {evt: Event —> ... myNumberField.number ...}

As you can see, once the event is triggered we can query the item to see what value has been
provided.



	Introduction
	GUI components
	Events generated by GUI components
	Component
	TextBox
	Button
	TextField and NumberField
	DrawingCanvas

	Adding components to a window
	Application and GraphicApplication
	Adding Components

	Responding to events involving GUI components
	Button events
	Input events


